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Nicotine  stimulates  brain  reward  circuitries,  most  prominently  the

mesocorticolimbic dopamine system, and this action is considered critical in

establishing  and  maintaining  the  tobacco  smoking  habit.  Compounds  that

attenuate  the  rewarding  effects  of  nicotine  are  considered  promising

therapeutic  candidates  for  tobacco  dependence,  although  many  of  these

drugs  have  off-target  effects  that  limit  their  translation  to  the  human

condition. Consequently, the neurobiological mechanisms of nicotine reward

are  the  subject  of  intense  investigation.  Nicotine  is  also  highly  noxious,

particularly  at  higher  doses,  and aversive  reactions  to  nicotine  after  initial

exposure can decrease the likelihood of developing a tobacco habit in many

first  time  smokers.  Nevertheless,  relatively  little  is  known  about  the

mechanisms of  nicotine  aversion.  The purpose of  this  review is  to present

recent  new  insights  into  the  neurobiological  mechanisms  that  regulate

avoidance of nicotine. First, the role of the mesocorticolimbic system, so often

associated with nicotine reward, in regulating nicotine aversion is highlighted.

Second,  genetic  variation  that  modifies  noxious  responses  to  nicotine  and

thereby influences vulnerability to tobacco dependence, in particular variation

in  the  CHRNA5-CHRNA3-CHRNB4 nicotinic  acetylcholine  receptor  (nAChR)

subunit  gene  cluster,  will  be  discussed.  Third,  the  role  of  the  habenular

complex in nicotine aversion,  primarily  medial habenular projections to the

interpeduncular  nucleus  (IPN)  but  also  lateral  habenular  projections  to

rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are

reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in

nicotine avoidance has not yet been assessed, will be proposed. Finally, the

feasibility of developing novel therapeutic agents for tobacco dependence that

act not by blocking nicotine reward but by enhancing nicotine avoidance will

be considered. 
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Introduction

Nicotine is considered the major reinforcing component of tobacco responsible

for addiction in human smokers (Stolerman and Jarvis, 1995), and it has been

shown that humans, non-human primates and rodents  will  volitionally  self-

administer the drug (Corrigall and Coen, 1989; Goldberg et al., 1981; Harvey

et al., 2004; Watkins et al., 1999). Volitionally consumed nicotine is known to

stimulate activity in brain reward circuitries  (Kenny and Markou, 2006), with

this action considered central to the establishment and maintenance of the

tobacco habit in human smokers. It is important to note, however, that instead

of hedonic reactions, most smokers report their initial smoking experiences as

unpleasant.  This  reflects  the  fact  that  in  addition  to  its  rewarding  effects,

nicotine  is  also  highly  noxious.  Highlighting  this  dichotomous  nature  of

nicotine,  doses  of  the  drug  that  support  maximal  rates  of  responding  in

squirrel monkeys also induce marked symptoms of aversion, such as vomiting,

when the drug-taking  habit  is  being acquired.  Moreover,  monkeys work  to

avoid non-contingent delivery of intravenous nicotine infusions even though

they will work equally hard to obtain those same nicotine infusions when they

are available for contingent  delivery  (Goldberg and Spealman, 1982,  1983;

Goldberg et al., 1981; Goldberg et al., 1983; Spealman and Goldberg, 1982).

These aversive reactions to nicotine are important in the context of tobacco

dependence, as stronger aversive reactions to nicotine after initial exposure

are negatively correlated with the development of habitual tobacco use in first

time smokers (Sartor et al., 2010). 

Aversive responses to nicotine also appear to play key roles in determining the

overall amounts of tobacco smoke consumed and patterns of intake. Indeed,

when levels of nicotine contained in tobacco are varied, smokers are far more
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efficient at titrating their  intake downwards when consuming high-nicotine-

content  tobacco  to  avoid  noxious  effects  of  the  drug  (Henningfield  and

Goldberg, 1983a; Henningfield et al., 1986; Russell et al., 1975), than they are

at adjusting their intake upward to compensate for reduced nicotine in low-

content tobacco (Sutton et al., 1978). Hence, self-regulation of consumption to

avoid noxious  effects of  nicotine is  far  better  regulated that compensation

upwards to avoid a reduction in nicotine intake. Also consistent with a key role

for noxious nicotine effects in controlling tobacco consumption, a treatment

strategy previously employed to facilitate smoking cessation,  but no longer

typically  used  (Hajek and Stead,  2004),  is  to encourage smokers  to inhale

tobacco smoke more rapidly and deeply than usual. This results in aversive

reactions to nicotine, with this increased nicotine exposure from more rapid

consumption resulting in persistent suppression of intake (Norton and Barske,

1977).  It  is  likely,  therefore,  that  tolerance  to  the  unpleasant  effects  of

nicotine,  and learning to efficiently control  tobacco smoking to avoid these

effects,  must  develop  in  order  for  habitual  tobacco  use  to  be  established

(Russell,  1979). As such, it  is probable that discrete circuitries in the brain

respond  to  the  noxious  properties  of  nicotine  and  that  learning  to  titrate

patterns  of  tobacco  consumption  in  order  to  avoid  activation  of  these

circuitries plays a key role in the acquisition of smoking behavior. Indeed, the

nicotinic acetylcholine receptor antagonist mecamylamine has been shown to

block  both  the  rewarding  and  aversive  effects  of  nicotine,  delivered  by

intravenous infusions to human volunteers  (Lundahl et al., 2000), consistent

with  their  being  at  least  two  discrete  populations  of  nAChRs  with  each

regulating  either  rewarding  or  aversive  effects  of  the  drug.  Diminished

sensitivity of nicotine-related aversion systems in the brain is therefore likely

to  increase  vulnerability  to  develop  habitual  smoking.  As  such,  it  may  be
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possible to target such circuitries in brain to enhance the noxious properties of

nicotine  with  small  molecule  drugs,  offering  a  novel  treatment strategy to

facilitate lower levels of tobacco consumption, and perhaps increased ability

to cease tobacco smoking altogether.  Nevertheless, until  recently relatively

little was known about which circuits in the brain regulate nicotine aversion, in

sharp  contrast  to  our  burgeoning  knowledge  on  mechanisms  of  nicotine

reward.  Here,  we  summarize  much  of  the  current  knowledge  on  the

mechanisms of nicotine aversion.

The mesocorticolimbic system and nicotine aversion

As noted above, the reward-enhancing actions of nicotine are hypothesized to

play a key role in the establishment and maintenance of the tobacco habit in

human smokers  (Kenny  and  Markou,  2006).  The  reward-related  actions  of

nicotine are thought to be related to the stimulatory effects of the drug on

neuronal  nicotinic  acetylcholine  receptors  (nAChRs)  containing  α4  and  β2

subunits  (denoted α4β2* nAChRs),  particularly  those located in  the ventral

tegmental area (VTA) (Corrigall et al., 1992; Ikemoto et al., 2006a; Maskos et

al., 2005; Picciotto et al., 1998; Tapper et al., 2004). Indeed, nicotine-induced

activation  of  α4β2*  nAChRs  in  the  VTA  increases  forebrain  dopamine

transmission, most prominently in the shell region of the nucleus accumbens

(NAc), and this has been shown to contribute to the reinforcing properties of

the  drug in  laboratory  animals  (Iyaniwura  et  al.,  2001;  Nisell  et  al.,  1997;

Pontieri et al., 1996). Because of their central role in nicotine reinforcement,

α4β2*  nAChRs  are  considered  important  targets  for  the  development  of

smoking  cessation  agents.  Varenicline  (Chantix)  is  the  only  FDA-approved

smoking cessation agent that was rationally designed through traditional drug
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discovery and was developed as an α4β2* nAChR partial agonist  (Coe et al.,

2005; Dwoskin et al., 2009; Lerman et al., 2007; Reus et al., 2007). 

In addition to α4β2* nAChRs in VTA, accumulating evidence suggests that α7

nAChRs in this site may also play a role in nicotine reinforcement. Nicotine-

induced increases in glutamatergic transmission in the VTA is thought to occur

through  actions  at  both  α4β2*  and  α7  nAChRs,  leading  to  increases  in

mesoaccumbens  dopamine  transmission  and  regulation  of  nicotine  self-

administration behavior (Besson et al., 2012; Gao et al., 2010; Mansvelder and

McGehee,  2000;  Mao  et  al.,  2011;  Melis  et  al.,  2013;  Pons  et  al.,  2008;

Schilstrom et al., 2000). Supporting a key role for nicotine-induced increases

in  glutamatergic  transmission  in  the  VTA  with  nicotine  reinforcement,

blockade of local NMDA receptors profoundly decreases nicotine intake in rats

(Kenny et al., 2009b). Considering the well-established role for the VTA and

mesocorticolimbic  dopamine  transmission  in  regulating  the  reinforcing

properties of nicotine and other drugs of abuse, it is interesting to note that

accumulating  evidence  implicates  this  same  system  in  nicotine  aversion.

Lesions  of  cholinergic  innervation  of  the  VTA  arising  from  the

pedunculopontine tegmental nucleus (PPTg) blocked the expression of reward-

related behaviors in response to nicotine and rendered ‘rewarding’ doses of

nicotine aversive, reflected in increased avoidance of the drug  (Laviolette et

al., 2002).  Similarly, blockade of α7 nAChRs or NMDA receptors in the VTA

switched  the  effects  of  nicotine  from rewarding  to  aversive  (Kenny  et  al.,

2009b; Laviolette and van der Kooy, 2003b). Projections from the VTA into the

striatum  and  NAc  also  appear  to  be  influenced  by  nicotinic  signaling.

Presynaptic  nAChRs  directly  regulate  the  release  of  dopamine  from

dopaminergic terminals  (Rice and Cragg, 2004; Zhou et al., 2001), in which
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452 nAChR subtype regulates DA release in the dorsal caudate/putamen

and the  4623 nAChR is involved in the NAc core  (Exley et al., 2012). In

these regions, several subtypes of nAChRs have been identified, including the

4, 5, 6, 7, 2 and 3 (Exley et al., 2012; Marks et al., 1992; Seguela et al.,

1993; Wada et al., 1989), and as such, nicotine has the potential to directly

and/or  indirectly  modulate  various  types  of  neurotransmission.  An intricate

network  of  cholinergic  interneurons  is  present  throughout  the  NAc  and

striatum. In addition to releasing acetylcholine, these interneurons may also

corelease glutamate  (Higley  et  al.,  2011).  Presynaptic  42*  nAChRs  have

been shown to enhance GABA release from inhibitory interneurons, which may

subsequently inhibit the cholinergic interneurons (Grilli et al., 2009; Koos and

Tepper, 2002; Sullivan et al., 2008). Increased accumbal acetylcholine release

is found during expression of a conditioned taste aversion (Mark et al., 1995),

and pharmacologically enhancing cholinergic signaling in the NAc is sufficient

to  produce  a  conditioned  taste  aversion  (Taylor  et  al.,  2011).  It  has  been

proposed that dopamine and acetylcholine act in an opposing manner within

the  NAc,  in  which  dopamine  mediates  reward-related  processing,  whereas

acetylcholine signals aversion-related events (Hoebel et al., 2007). Support for

this hypothesis derives from the findings that drugs of abuse, such as nicotine,

stimulate mesolimbic dopamine release (Mifsud et al., 1989), and in contrast,

increased acetylcholine  in  the  NAc attenuates  drug self-administration  and

promotes  escape  behavior  (Glowa  et  al.,  1997;  Rada  and  Hoebel,  2001;

Williams  and  Adinoff,  2008).  Furthermore,  nicotine  withdrawal  elicits  a

decrease  in  dopaminergic  signaling  that  is  paralleled  by  an  increase  in

acetylcholine (Rada et al., 2001). Although evidence supports this concept of

dopamine/acetylcholine  opponent  processing,  more  recent  findings  suggest

that acetylcholine can directly enhance dopamine release in this brain region
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as well  (Cachope et al.,  2012; Threlfell  et al., 2012). Moreover, rather than

diminishing its rewarding effects, blockade of dopamine receptors can in some

instances enhance the rewarding effects of nicotine, as measured using place

conditioning procedures  (Grieder et al.,  2012; Laviolette and van der Kooy,

2003a). Laviolette and colleagues have shown that blockade of dopamine D2

receptors in the shell region of the nucleus accumbens (NAc), or D1 receptors

in  the  core  region  of  the  accumbens,  can  switch  the  effects  of  intra-VTA

infusions of higher doses of nicotine from aversive to rewarding during place

conditioning  (Laviolette  et  al.,  2008).  Clarke  and co-workers  have similarly

shown that lesioning dopamine inputs to the NAc shell, achieved using local

infusions of the toxin 6-hydroxydopamine, abolished the rewarding effects of

intravenously delivered nicotine infusions  (Sellings et al., 2008). Conversely,

lesions of dopamine inputs into the NAc core region increased the rewarding

effects and abolished the aversion-related responses to nicotine, as measured

by conditioned taste aversion  (Sellings et al., 2008). These findings suggest

that dopamine signaling, at least somewhat compartmentalized between the

NAc shell  and core regions,  regulate the rewarding and aversive effects of

nicotine, respectively.  

One may question how mesoaccumbens dopamine transmission can be critical

for both the reinforcing properties of nicotine that support consumption of the

drug and also the aversive effects of the drug that support avoidance? Two

recent findings appear to shed important light on this issue. First, Malenka and

colleagues have shown that  distinct  populations  of  VTA dopamine neurons

may separately encode reward-related and aversion-related information, and

thus  guide  approach or  avoidance behaviors  accordingly.  Specifically,  they

found that the cholinergic inputs to the VTA from the laterodorsal tegmental
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nucleus  (LDTg),  and  inputs  to  the  VTA  from  the  lateral  habenula  (LHb),

regulate reward and aversion behaviors in mice, respectively (Lammel et al.,

2012). Moreover, LDTg neurons preferentially synapse onto dopamine neurons

that project to the NAc shell, whereas LHb neurons synapse onto dopamine

neurons  that  project  to  the  medial  prefrontal  cortex  or  the  rostromedial

tegmental  nucleus  (RMTg),  both  areas  of  the  brain  involved  in  response

suppression (Lammel et al., 2012). Hence, these findings are consistent with

the  concept  that  discrete  populations  of  dopamine  neurons  receive

information from brain regions that regulate appetitive or aversive responses,

which in  turn project  to discrete areas of  the accumbens (and other brain

sites) to regulate approach versus avoidance behaviors. Consistent with this

possibility,  Suto  and  Wise  have  shown  recently  that  enhancing  dopamine

transmission by co-infusion of a D1 and a D2 receptor agonist in the NAc core,

but  not  shell,  increased  satiety-like  responses  to  intravenously  self-

administered cocaine infusions  (Suto and Wise, 2011); see also  (Suto et al.,

2009; Suto et al., 2010).  

In addition to dopamine and acetylcholine, opioid signaling also appears to be

an important mediator of aversive processing within the NAc, most notably

through the kappa opioid receptor (KOR) (McCutcheon et al., 2012; Resendez

et al., 2012), and interactions between nicotinic and KOR signaling have been

established.  Administration  of  KOR agonists  can attenuate nicotine-induced

hyperlocomotion in rats (Hahn et al., 2000), and chronic nicotine pretreatment

can enhance the effectiveness of KOR agonists to induce a place aversion or

anxiolytic-like response in adult rats  (Tejeda et al., 2012). Following chronic

nicotine  exposure,  the  somatic  signs  of  nicotine  withdrawal  may  also  be

potentiated  by  KOR  activation,  an  effect  that  can  be  reversed  by  co-
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administration of  the KOR antagonist,  nor-BNI  (Tejeda et al.,  2012).  At the

intracellular  level,  it  is  an  interesting  possibility  that  nicotine  signaling  in

accumbens  may  exert  its  aversive  effects  by  stimulating  cAMP  signaling

cascades,  resulting in activation of  cAMP response element-binding protein

(CREB) and consequently the increased transcription of the endogenous KOR

ligand, dynorphin (McCarthy et al., 2012). Taken together, the above findings

suggest  that  neurotransmission  in  the  NAc  shell  regulates  the  reinforcing

effects  of  nicotine  and other  drugs  of  abuse that  drive  their  consumption.

Conversely,  the  NAc  core  may  regulate  satiety  responses  and  avoidance

behaviors that limit consumption of nicotine and other addictive drugs.

 

Genetics of tobacco dependence and nicotine aversion

In mice, it has been shown that genetic factors play a key role in regulating

sensitivity  to  the  aversive  effects  of  nicotine  (Risinger  and  Brown,  1996).

Emerging data from genome-wide association studies (GWAS) are identifying

polymorphisms that increase vulnerability to tobacco dependence in humans,

and  also  support  the  notion  that  sensitivity  to  nicotine  aversion  may  be

influenced by genetics. A prominent gene in which allelic variation has been

associated with risk of developing tobacco dependence is CYP2A6. This gene

encodes  the  cytochrome  P450  enzyme  responsible  for  ~80%  of  nicotine

metabolism in the human liver  (Raunio and Rahnasto-Rilla, 2012; Ray et al.,

2009; Thorgeirsson et al., 2010). CYP2A6 polymorphisms are more commonly

found  in  individuals  of  Asian  descent  and  less  frequently  in  Caucasians

(Johansson  and  Ingelman-Sundberg,  2011).  The  CYP2A6 gene  is  highly

polymorphic,  with over 60 allelic  variants known. Of these, 17 alleles have

been shown to exhibit reduced function, whereas two of the variants result in

increased  nicotine  metabolism  (Mwenifumbo  et  al.,  2008;  Raunio  and
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Rahnasto-Rilla,  2012).  Allelic  variations  that  result  in  a  slower  metabolism

would be expected to allow for a more prolonged action of nicotine. As such,

nicotine  clearance  is  expected  to  be  decreased  and  doses  required  to

experience the rewarding and aversive effects of  the drug would be lower

(e.g.,  leftward  shift  of  the  dose-response  curve).  Consistent  with  this

prediction,  individuals  with  a  slow  metabolizer  CYP2A6 genotype  are  less

vulnerable  to  develop  tobacco  dependence  than  those  with  normal

metabolism (Audrain-McGovern et al., 2007; Bloom et al., 2011; Thorgeirsson

et  al.,  2010),  potentially  due  to  a  greater  aversive  response  when similar

amounts of nicotine are consumed. In further support of this notion, the slow

metabolizers  intake  less  nicotine  per  day  and  are  more  successful  when

attempting  to  quit  smoking  than  individuals  with  a  normal  metabolism

(Patterson et al., 2008; Rodriguez et al., 2011; Strasser et al., 2007). Thus, a

slower metabolism permits smaller quantities of the drug to be consumed that

lead to prolonged activity at nAChRs. As such, it may be more difficult for the

individual behaviorally titrate their intake to avoid synaptic accumulation and

subsequent activation of lower affinity nAChRs involved in aversive signaling

(see nAChR subtype discussion below). In  contrast,  faster rates  of  nicotine

metabolism would  allow for  quicker  recovery  from the  actions  of  nicotine,

resulting in diminished sensitivity to the aversive effects of the drug. Indeed,

individuals that rapidly metabolize nicotine exhibit lower cessation rates and

more severe withdrawal symptoms (Bloom et al., 2011; Patterson et al., 2008).

Given that both withdrawal duration and severity predict likelihood to relapse

(Piasecki et al., 2000), the aversive state elicited during nicotine withdrawal

likely motivates the individual to seek and continue to consume the drug, thus

maintaining the tobacco smoking habit.  Interestingly,  metabolism regulated

by CYP2A6 may be directly modulated by tobacco exposure and contribute to
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the  development  of  dependence.  Smokers  exhibit  a  slower  clearance  of

nicotine  compared  to  non-smokers  (Hukkanen  et  al.,  2005),  and  nicotine

appears to reduce CYP2A6 transcript and protein levels in monkeys (Ferguson

et al., 2012; Schoedel et al., 2003). Finally, given that the CYP2A6 gene is also

expressed  in  respiratory  tissues,  it  is  perhaps  not  surprising  that  CYP2A6

allelic  variation is  associated with smoking-related diseases,  such as COPD

and cancer  (Ariyoshi et al.,  2002; Hukkanen et al., 2002; Wassenaar et al.,

2011).

Insert Fig. 1 about here

Since the main site of action of nicotine in the brain is the nAChRs, it may be

expected  that  genetic  variation  in  the  genes  encoding  nAChR  receptor

subunits would be implicated in tobacco dependence vulnerability. However,

what may be surprising is the fact that the subunit genes most implicated in

dependence vulnerability are not those that encode the high-affinity nAChRs

responsible for regulating the rewarding effects of nicotine (42* nAChRs),

but instead lesser studies  5,  3 and  4 nAChRs nAChR subunit genes best

known  for  their  role  in  regulating  ganglionic  nAChR  transmission  (Fig.  1).

Indeed,  recent  GWAS  studies  have  shown  that  variation  in  the  CHRNA3-

CHRNA5-CHRNAB4 gene  cluster,  which  encodes  the  3,  5  and  4 nAChR

receptor subunits, respectively, is prominently associated with predisposition

to develop tobacco dependence. Variation in this  cluster is  also associated

with  vulnerability  to  many  smoking-associated  diseases  such  as  chronic

obstructive pulmonary disease (COPD) and lung cancer  (Bierut et al.,  2008;

Hung et al., 2008; Saccone et al., 2010; Saccone et al., 2007; Thorgeirsson et

al., 2008).  Strikingly, the risk of developing tobacco dependence appears to

be more than doubled in individuals carrying two copies of the  CHRNA5 risk
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allele,  rs16969968,  a  polymorphism  that  results  in  an  aspartic  acid  to

asparagine substitution at amino acid residue 398 (D398N). The D398N risk

variant is also associated with early onset of smoking behavior  (Weiss et al.,

2008),  a  self-reported  “pleasurable  buzz”  during  smoking  (Sherva  et  al.,

2008), and heavy smoking (Berrettini et al., 2008; Bierut et al., 2008; Grucza

et  al.,  2008;  Stevens  et  al.,  2008).  As  described  in  detail  below,  genetic

variation  in  the  CHRNA5-CHRNA3-CHRNB4 subunit  cluster,  and  resultant

alterations  in  the  function  of  mature  nAChRs  incorporating  these  altered

subunits,  appears  to  regulate  tobacco  dependence  vulnerability  not  by

altering  the  stimulatory  effects  of  nicotine  on  brain  reward  systems,  but

instead by diminishing the aversive effects of nicotine.

The CHRNA5-CHRNA3-CHRNB3 gene cluster and nicotine aversion

Genetic  variation  in  enzymes  responsible  for  nicotine  metabolism  can

influence  tobacco  dependence  vulnerability  as  noted  above,  perhaps  by

regulating  sensitivity  to  the  aversive  effects  of  nicotine.  Considering  that

genetic variation in the  CHRNA5-CHRNA3-CHRNB4 gene cluster,  particularly

genetic variation that diminishes 5* nAChR activity, also influences tobacco

dependence vulnerability, our laboratory sought to determine if this effect was

because  of  enhanced  rewarding  effects  of  nicotine  or  instead  diminished

sensitivity the aversive properties of the drug.

Using  a  mouse  intravenous  nicotine  self-administration  procedure,  we

assessed nicotine intake in wild-type (WT) and 5 subunit knockout (KO) mice

on a C57BL6 background; for full details, see (Fowler et al., 2011). We found

that both genotypes responded for intravenous nicotine infusions according to

an inverted U-shaped dose-response (D-R) curve (Fig. 1). Levels of intake were
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similar between WT and KO mice when lower doses of nicotine were available.

The  ascending  portion  of  the  D-R  curve  is  thought  to  reflect  increasing

reinforcing properties of nicotine as the unit dose increases (Henningfield and

Goldberg, 1983b; Lynch and Carroll, 2001). Therefore, our data suggest that

the  rewarding  effects  of  nicotine  are  unaltered  by  α5  subunit  deletion.  In

contrast, strikingly different patterns of intake were revealed when higher unit

doses  of  nicotine  were  available,  with  the  KO  mice  responding  far  more

vigorously than WT mice (Fig. 1). In control experiments, it was shown that

this increased nicotine intake in KO mice was not secondary to alterations in

operant performance or alterations in sensitivity to drug or non-drug paired

conditioned stimuli.

When  we  examined  total  amounts  of  nicotine  consumed  at  each  dose

available in the WT and α5 KO mice, we found that WT mice consumed ~1.5

mg kg-1 per session independent of the available dose (Fig. 1). In contrast, KO

mice  consumed  progressively  greater  amounts  of  the  drug  as  the  dose

increased. This suggests that WT mice efficiently titrate their intake whereas

this  behavior  is  largely  absent  in  α5  subunit  KO  mice.  Similar  to  human

smokers,  diminished  responding  of  rodents  for  nicotine  as  the  unit  dose

increases  is  thought  to  reflect  greater  restraint  over  intake  to  avoid  the

increasingly aversive effects of the drug  (Henningfield and Goldberg, 1983b;

Lynch  and  Carroll,  2001).  As  such,  these  findings  suggest  that  diminished

aversive  effects  of  nicotine,  measured  by  increased  responding  on  the

descending  portion  of  the  D-R  curve  for  self-administered  nicotine,  likely

explains the increased nicotine intake in α5 KO mice see (Fowler et al., 2011)

and perhaps in  humans carrying  CHRNA5 risk  alleles  (Bierut  et  al.,  2008).

Consistent with these findings, it was also reported that high nicotine doses
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continued to support place-conditioning behavior in the knockout mice even

though these doses  were  no longer  rewarding in  WT mice  (Jackson et  al.,

2010).  While it is plausible that rodents vary in their aversive responses to

nicotine as compared to humans, the similarities between the findings in both

species  supports  the  notion  that  similar  aversive  states  underlie  nicotine’s

effects. The plasma concentrations achieved by self-administering WT mice

are comparable to those in humans after 5 hours of smoking their preferred

cigarette  (Fowler and Kenny, 2011; Fowler et al.,  2011; Matta et al.,  2007;

Russell et al., 1975). Moreover, self-administration of intravenous nicotine in

both  rodents  and  humans  decreases  when  higher  doses  of  the  drug  are

provided (Fowler and Kenny, 2011; Harvey et al., 2004), similar to that found

with  cigarette  smoking  in  humans  (Henningfield  and  Goldberg,  1983a;

Henningfield et al., 1986; Russell et al., 1975). These data, combined with the

findings that altered expression of the 5* nAChRs in mice, rats and humans

results in a similar behavior profile in relation to nicotine consumption, support

the contention that the aversion induced by nicotine is likely conserved across

species. Even so it  remains unclear what precise psychological  state(s) are

achieved with these high doses of nicotine, and while this type of assessment

may be more readily investigated in humans, it will likely remain unclear in

rodents  until  significant  advancements  are  achieved  in  assessing  rodent

psychological  states. In  addition  to  5*  nAChRs,  4*  nAChRs  also  play  an

important role in regulating the aversive properties of nicotine (Frahm et al.,

2011). Specifically, it was shown that transgenic overexpression of this subunit

in mice increased their sensitivity to the aversive properties of the drug and

consequently decreased nicotine drinking behavior  (Frahm et al., 2011). No

studies to date have reported the effects of genetic ablation or modification of

3 nAChR subunit expression on nicotine intake, likely because deletion of this
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subunit  results  in  post-natal  lethality.  Taken  together,  the  above  findings

suggest that the  CHRNA5-CHRNA3-CHRNB4 gene cluster plays a key role in

nicotine aversion but not nicotine reward, with genetic variation in this cluster

increasing vulnerability to tobacco dependence by attenuating the aversive

effects of nicotine and thereby diminishing avoidance of the drug.

The medial habenula-interpeduncular systems and nicotine aversion

The above findings show that disruption  of  α5* nAChR signaling increases,

whereas transgenic overexpression of  4 nAChR subunits decreases, nicotine

intake. These findings may appear counterintuitive when the role for nAChRs

in nicotine addiction has traditionally been to consider their involvement in

nicotine reward. Indeed, disruption of nAChR signaling, particularly the high-

affinity  nAChRs  (42*),  usually  results  in  diminished  reinforcing  effects  of

nicotine and consequently reduced consumption of the drug. Pharmacological

blockade of 42* nAChRs, or genetic disruption of 2 nAChR subunits, almost

invariably decreases nicotine intake in rats and mice  (Corrigall et al., 1994;

Corrigall et al., 1999; Corrigall et al., 2000; David et al., 2006; Ikemoto et al.,

2006b;  Kenny  et  al.,  2009a;  Maskos  et  al.,  2005;  Molles  et  al.,  2006).

Disruption of nAChR function in midbrain dopamine systems, particularly the

VTA,  is  generally  thought  to  be  responsible  for  the  decreased  reinforcing

effects of nicotine reported in these studies. In light of these previous studies,

it  is  somewhat  paradoxical  that  genetic  ablation  of  5*  nAChR  signaling

increases nicotine intake in rats and mice. Hence, these findings suggest that

5* nAChR receptors, and perhaps also 3* and 4* nAChRs, regulate nicotine

intake in  a  manner  distinctly  different  from nAChRs  in  midbrain  dopamine

systems. 
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The  5 nAChR subunit mRNA is expressed in the VTA and substantia nigra

pars compacta (SNc), as well as in deep layers of the cortex. However, the 5

nAChR  subunit  mRNA  is  most  densely  expressed  in  the  medial  habenula-

interpeduncular  nucleus  (IPN)  system  (Marks  et  al.,  1992).  The  3  and  4

subunits  are  also  predominately  found  in  the  MHb-IPN  system.  The  MHb

projects  almost  exclusively  to  the  IPN  via  the  fasciculus  retroflexus  (Fr)

(Herkenham and Nauta, 1979). Functional α5* nAChRs are expressed on MHb

afferents to IPN  (Grady et al., 2009; Sheffield et al., 2000). Intriguingly, the

MHb-IPN tract is known to limit consumption of noxious substances (Donovick

et al., 1970; Thornton et al., 1994) and regulate avoidance of aversive stimuli

(Donovick et al., 1970; Hammer and Klingberg, 1990; Meszaros et al., 1985;

Thompson, 1960; Thornton et al., 1994; Wirtshafter, 1981). This system is also

involved  in  the  expression  of  somatic  aspects  of  the  nicotine  withdrawal

syndrome  (Salas et al., 2009). We therefore hypothesized that α5* nAChRs,

and perhaps 3* and 4* nAChRs, in the MHb-IPN regulate aversive effects of

nicotine.  Consistent  with this  hypothesis,  we found that  virus-mediated re-

expression of the otherwise absent α5 subunit in the MHb-IPN system of the

KO mice completely rescued their behavioral phenotype; these “rescued” 5

KO mice reduced their level of nicotine intake at higher doses consistent with

the  behavioral  profile  exhibited  by  WT  mice.  Conversely,  virus-mediated

knockdown of this subunit in the MHb-IPN system of rats resulted in greater

intake,  particularly  when  high  unit  doses  of  the  drug  were  available  for

consumption  (Fowler et al., 2011). These findings suggest that the  CHRNA5-

CHRNA3-CHRNB4 gene cluster in the MHb-IPN system, and nAChRs in these

sites  that  incorporate  the  subunits  encoded  by  these  genes,  regulate  the

aversive effects of  higher nicotine doses that serve to suppress intake.  To

more directly test this hypothesis, we have examined the effects of nicotine on
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intracranial self-stimulation (ICSS) thresholds in  5 KO mice and in rats after

knockdown of 5 subunits in the MHb-IPN system. Nicotine-mediated lowering

of ICSS thresholds are thought to reflect the stimulatory actions of the drug on

the brain  reward systems responsible  for  establishing and maintaining  the

nicotine-taking habit in rodents and perhaps human tobacco smokers (Kenny,

2007). Conversely, elevations of ICSS thresholds induced by higher nicotine

doses are thought to reflect an inhibitory action on brain reward systems that

drives  avoidance of  the  drug  (Fowler  et  al.,  2011).   We found that  global

deletion of  5 nAChR subunits in the knockout mice  (Fowler et al., 2013), or

restricted knockdown of the subunits in the MHb-IPN system of rats, abolished

the ICSS threshold-elevating effects of higher doses of nicotine but did not

impact the threshold-lowering effects of lower nicotine doses. The specific role

for α5* nAChRs in nicotine aversion but not nicotine reward may explain the

shape of the D-R curve for nicotine self-administration in humans, primates

and rodents, and why it is altered by  5* nAChR deficiency. Specifically, we

propose that nicotine reward and aversion are dissociable effects, with the

mesoaccumbens  dopamine  neurons  that  project  to  the  accumbens  shell

region likely playing an important role in the positive reinforcing effects of

nicotine,  and  the  habenula-interpeduncular  systems  regulating  nicotine

aversion. The rewarding actions of nicotine may occur through the α4α623*

nAChR  subtype  (Grady  et  al.,  2007),  which  has  the  highest  sensitivity  to

nicotine of any native nAChR so far identified (Grady et al., 2007) and would

explain the “ascending” portion of the D-R curve. As α6nAChR subunits are

not expressed in the MHb-IPN aversion pathway, the high-affinity α4α623

nAChR  subtype  is  not  expressed  locally.  Instead,  nicotine  activates  this

pathway through lower affinity α5* nAChRs, accounting for  the descending

portion of the D-R curve at higher nicotine doses. The combinatorial effects of
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nicotine  at  the  high-affinity  α4α623*  nAChRs  in  the  mesoaccumbens

systems,  and  lower  affinity  α5*  nAChRs  in  the  MHb-IPN  therefore  likely

explains  the  “window”  of  nicotine  doses  that  are  reinforcing,  and  the

emergence of aversion at higher doses resulting in a U-shaped dose-response

curve. Taking all the above data together, it seems that nicotine stimulates

the  MHb-IPN  pathway  through  α5*  nAChRs  and  thereby  enhances

glutamatergic  transmission  in,  and consequent  activation  of,  the IPN.  Most

available  smoking  cessation  agents  are  thought  to  attenuate  smoking

behavior  by  targeting  nAChRs  in  midbrain  dopamine  systems,  perhaps  by

targeting the α4α623* nAChRs. As discussed below, it may be possible to

rationally  design  new  smoking  cessation  agents  that  act  independent  of

nicotine  reward  and  instead  act  by  targeting  α5*  nAChRs  in  habenular

aversion systems.  

Finally, almost exclusively, regions of the posterior septum are responsible for

providing  afferent  input  to  the  MHb.  Specifically,  the  triangular  septal  and

septofimbrial nuclei  and the bed nucleus of  the anterior  commissure (BAC)

densely innervate the MHb (Yamaguchi et al., 2013). Interestingly, lesions to

the septum or the interpeduncular nucleus can abolish aversive responses to,

and avoidance of,  noxious bitter  tastants such as quinine  (Donovick et al.,

1970).  This  suggests  that  major  functions  of  the  septo-habenulo-

interpeduncular pathway include regulation of food consumption by controlling

avoidance of noxious substances. Interestingly, individuals with deficits in the

ability to detect bitter tastants are much more likely to be regular smokers

(Saper  et  al.,  2002).  Hence,  it  is  an  intriguing  possibility  that  constitutive

deficits  in  septo-habenulo-interpeduncular  function,  reflected  in  diminished

ability to detect bitter tastes, may also result in diminished sensitivity to the
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aversive  effects  of  nicotine  and  account  for  the  increased  vulnerability  to

developing  tobacco  dependence  in  such  individuals.  More  recently,  it  was

shown that septal inputs to MHb may also regulate anxiety and fear-related

behaviors in rodents  (Yamaguchi et al.,  2013). It  is  therefore interesting to

speculate  that  mood-regulated  effects  mediated  by  the  septo-habenulo-

interpeduncular  system  may  also  influence  vulnerability  to  tobacco

dependence. 

The  lateral  habenula-rostromedial  tegmental  area  pathway  and

nicotine aversion

In addition to the MHb projection to the IPN, recent evidence suggests that the

lateral habenula (LHb) may also play a role in nicotine aversion. Unlike the

MHb, which projects almost exclusively to IPN, the LHb projects only sparely to

IPN and instead sends prominent projections to the rostromedial tegmental

nucleus (RMTg)  (Jhou et al., 2009), and less prominent projects to the VTA.

Through these projections, the LHb inhibits the firing of midbrain dopamine

neurons  directly  (via  VTA  projections)  or  indirectly  (via  RMTg  projections)

(Bromberg-Martin  and  Hikosaka,  2011;  Hikosaka,  2010;  Jhou  et  al.,  2009;

Lecourtier and Kelly, 2007; Matsumoto and Hikosaka, 2009). LHb neurons are

activated by aversive stimuli or omission of anticipated rewards  (Bromberg-

Martin  and  Hikosaka,  2011;  Hikosaka,  2010;  Lecourtier  and  Kelly,  2007;

Matsumoto and Hikosaka, 2009). This suggests that LHb transmission, and its

inputs  to  RMTg,  could  encode  aspects  of  nicotine  aversion  and  influence

responses to the drug. Consistent with this possibility, Pistis and colleagues

have recently shown that nicotine potently and robustly excites neurons in the

RMTg (Lecca et al., 2012). This effect was likely related to a stimulatory action

of nicotine on α7 nAChRs located presynaptically on excitatory glutamatergic
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inputs from the LHb  (Lecca et al.,  2012). The functional consequent of this

stimulatory  effect  of  nicotine  on  RMTg  transmission  in  regulating  nicotine

aversion and nicotine consumption has not been directly investigated.

Other brain circuitries that may play a role in nicotine aversion

As  described  above,  the  MHb-IPN  system  densely  expresses  nAChRs

containing  α5,  α3  and/or  4  subunits.  Indeed,  it  was  based  on  the  dense

expression  of  these  subunits  in  the  MHb-IPN  system that  the  role  of  α5*

nAChRs  in  these  sites  in  nicotine  aversion  was  first  investigated  in  mice

(Fowler et al.,  2011). Interestingly,  the nucleus tractus solitarius (NTS) is a

hindbrain site that also displays very dense expression of these subunits. The

NTS contains at least three types of neurons: catecholaminergic neurons that

produce  the  neurotransmitter  norepinephrine  (and  to  a  lesser  extent

epinephrine);  glucagon-producing neurons that synthesize the neuropeptide

glucagon-like  peptide-1  (GLP-1);  and  neurons  that  synthesize  the  feeding-

related neuropeptide proopiomelanocortin (POMC). The NTS is perhaps best

known  for  its  role  in  regulating  taste  reactivity,  as  it  receives  dense

innervation from the buccal cavity  (Appleyard et al.,  2005; Grill  and Hayes,

2009).  NTS  neurons  also  receive  vagal  inputs  from  the  viscera  and  NTS

activation in response to vagal stimulation can induce cessation of food intake.

Specifically, catecholaminergic neurons relay signals to higher feeding centers

in the brain from the gastrointestinal (GI) tract related to meal ingestion or

gastric  distension,  and respond also  to  circulating  satiety  signals  including

cholecystokinin (CCK) (Appleyard et al., 2007; Monnikes et al., 1997; Rinaman

et al., 1998; Willing and Berthoud, 1997). Catecholaminergic neurons in the

NTS  have  been  implicated  in  the  expression  of  aversive  aspects  of  drug

withdrawal  (Delfs et al.,  2000; Taylor et al.,  1998). It  has been shown that
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nicotine  can  activate  NTS  catecholaminergic  neurons,  likely  though  a

mechanism involving increased local glutamatergic transmission (Feng et al.,

2012; Hong et al., 2012; Kalappa et al., 2011; Shiraki et al., 1997; Zhao et al.,

2007).  Moreover,  the   and   adrenergic  receptor  antagonist  carvedilol  can

reduce self-reported aversive responses to nicotine, delivered as a lozenge to

human volunteers (Sofuoglu et al., 2006). These findings suggest that nicotine

may  activate  NTS  catecholaminergic  neurons,  increasing  adrenergic

transmission  in  forebrain  regions,  with  this  effect  contributing  to  aversive

aspects  of  the  drug,  a  hypothesis  that  has  yet  to  be  tested.  NTS

catecholaminergic  neurons  have  instead  been  implicated  in  drug  reward

rather than aversion. Specifically, it was shown that the rewarding effects of

morphine are greatly diminished in dopamine β-hydroxylase knockout (DBH-

KO) mice that are unable to synthesize norepinephrine  (Olson et al., 2006),

and virus-mediated re-expression of DBH in the NTS of the KO mice restores

their  sensitivity  to  morphine  reward  (Olson  et  al.,  2006).  As  noted  above,

neurons that produce the neuropeptide GLP-1 are also a major population of

neurons  in  the  NTS.  Activation  of  GLP-1  occurs  in  response  to  gastric

distention, nausea, stress and illness and results in suppression of food intake

(Barrera et al., 2011; Hayes et al., 2009; Turton et al., 1996). Hence, the NTS,

and in particular GLP-1 neurons, seem well placed to regulate aversion-related

actions of  nicotine.  Nevertheless, the role of the NTS in nicotine avoidance

behavior has not yet been investigated.

Efferents of  the IPN are also of  interest as potential  mediators of  aversive

processing. Indeed, it is currently unknown how the MHb-IPN circuit integrates

aversion-related  information  with  the  reward-related  processing  of  the

mesocorticolimbic  pathway.  The  IPN  has  broad  ascending  and  descending
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projections to various brain regions. The most prominent of these projections

are  the  medial  septum/diagonal  band  of  Broca,  hippocampus,  dorsal

tegmental nucleus, raphe and periaqueductal gray (Groenewegen et al., 1986;

Klemm, 2004; Montone et al., 1988; Shibata and Suzuki, 1984). Many of these

regions, including the diagonal band of Broca, dorsal tegmental nucleus, and

raphe, send projections  to the VTA  (Groenewegen et al.,  1986;  Oades and

Halliday, 1987; Phillipson, 1979; Wirtshafter, 1981). Thus, MHb-IPN signaling

may  be  integrated  with  mesocorticolimbic  processing  via  an  intermediate

brain region that then projects to the VTA, similar to that found with the LHb-

RMTg-VTA circuit.  Thus, identification of the predominant neural circuit that

mediates a motivational response to consume, or cease consuming, nicotine

will be important to delineate in future investigations.

Novel smoking cessation agents that modulate nicotine aversion

Data  described  above  demonstrate  that  deficient  α5*  nAChR  signaling,

particularly in the MHb-IPN system, increases nicotine intake in rats and mice.

Hence,  an  intriguing  approach  to  facilitate  smoking  cessation  may be  the

development of small molecule compounds that amplify α5* nAChR signaling.

Before such selective compounds can be developed, it is critical to know which

subtype of α5* nAChRs regulates nicotine aversion. In heterologous expression

systems,  α5  subunits  can  co-assemble  into  α42,  α32,  and  α34  nAChR

subtypes  (Fucile  et  al.,  1997;  Gerzanich  et  al.,  1998;  Tapia  et  al.,  2007).

However, in the mammalian brain it appears that α5 subunits predominantly

assembles  into  α42*  nAChR subtypes  (Gotti  et  al.,  2007;  Kuryatov  et  al.,

2008; Mao et al., 2008; Perry et al., 2007). Indeed, using immunoprecipitation,

it was reported that α5 subunits are almost exclusively in complex with α42

subunits  in  the  hippocampus,  striatum,  cortex  and  thalamus,  with  almost
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undetectable levels of α3* nAChRs containing the α5 subunit in these regions

(Mao et al., 2008). In the MHb-IPN pathway ~11% of  2* nAChRs express α5

subunits  (Grady et al., 2009), whereas only ~5% of  4* nAChRs express the

subunit  (Grady  et  al.,  2009).  Importantly,  in  the  MHb-IPN  pathway  α34*

nAChRs are thought to exclusively regulate acetylcholine release (Grady et al.,

2009),  whereas  α42α5*  nAChRs  regulate  glutamate  release  (Girod  et  al.,

2000). We previously found that disruption of glutamatergic transmission in

the  IPN  increases  nicotine  intake  in  rats  in  a  manner  similar  to  genetic

disruption of α5* nAChR signaling in rats or mice (Fowler et al., 2011). Hence,

α42α5* nAChRs are likely  to be a functional  subtype in the MHb-IPN that

negatively  regulates nicotine  intake.  Boosting the activity  of  this  particular

nAChR subtype in response to nicotine consumption may therefore be a novel

strategy to decrease nicotine intake and facilitate smoking cessation efforts.

Nicotinic  receptors  are  pentameric  complexes  in  which  acetylcholine  (and

nicotine) binds at the interface between  and  subunits (orthosteric sites). It

is hypothesized that agonist binding at orthosteric sites stabilizes the receptor

channel  complex  in  the  “open”  conformation,  thereby  increasing  receptor

activity. Partial agonists less efficiently stabilize the receptor “open” state, and

conversely,  competitive  antagonists  stabilize  the  receptor  channel  in  the

“closed” state. Agonists may also stabilize a receptor transition from “active”

to  an  inactive  “desensitized”  state.  There  are  multiple  allosteric  sites

elsewhere on the multimeric  nAChR complex,  which by themselves do not

stimulate opening or closing of the receptor channel, but instead modify the

activity of the receptor once activated by orthosteric ligands (Changeux, 1990;

Changeux et al., 1984; Changeux et al., 1992; Chemouilli et al., 1985; Lena

and Changeux, 1993). Positive allosteric modulators (PAMs) are ligands that
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bind to allosteric sites to facilitate agonist-induced stabilization of the “open”

conformation  or  to  reduce  agonist-facilitated  receptor  desensitization,  with

PAMs  unable  to  influence  receptor  function  in  the  absence  of  orthosteric

agonists. Hence, PAMs can potentiate the stimulatory effects of low agonist

concentrations  on  nAChR  function  in  much  the  same  manner  that

benzodiazepines  potentiate  the  actions  of  GABA at  the  GABAA receptor.  A

number  of  features  of  PAM  acting  at  425*  suggest  that  they  may  be

particularly  attractive  candidates  as  novel  smoking  cessation  agents.  First,

because the  orthosteric  binding  site  is  so  well  conserved  between various

nAChR subtypes, it is difficult to engineer agonists with receptor selectivity

(Albrecht et al., 2008; Armishaw et al., 2009). Moreover, α5 nAChR subunits

co-expressed  with  β2  or  β4  subunits  do  not  co-assemble  into  functional

heteropentameric nAChRs without the presence of another  subunit (Boulter

et al.,  1987;  Couturier  et  al.,  1990).  Instead, α5 subunits  act as accessory

subunits that modulate receptor activation/desensitization kinetics  (Ramirez-

Latorre et al., 1996). Moreover, α5 subunits play a key role in generating novel

allosteric modulatory sites on α5* nAChRs (Taly et al., 2009). Thus, it is likely

to be far easier to develop PAMs that are highly selective for α4β2α5* nAChRs

compared to the development of orthosteric agonists. Second, it is expected

that α4β2α5* PAMs have low intrinsic activity at these nAChRs in the MHb-IPN

tract  or  other  brain  areas  (depending  on  cholinergic  tone).  Instead  PAMs

should potentiate α4β2α5* nAChRs most efficiently only  when activated by

nicotine in tobacco smoke. This is an important point when considering that

MHb-IPN activation typically occurs in response to aversive stimuli  (Donovick

et al., 1970; Hammer and Klingberg, 1990; Meszaros et al., 1985; Thompson,

1960; Thornton et al., 1994; Wirtshafter, 1981), suggesting that full α4β2α5*

nAChR agonists may possess intrinsic aversive properties that would limit their
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clinical utility. Furthermore, unlike orthosteric agonists, PAMs are unlikely to

desensitize and thereby inhibit α4β2α5* nAChRs. Desensitization of nAChRs by

full  agonists  could  paradoxically  decrease  MHb-IPN  sensitivity  to  nicotine,

resulting  in  an increase in  the  motivational  properties  of  the drug and an

undesired  increase  in  tobacco  consumption.   Finally,  by  potentiating  the

deficient  function  of  α4β2α5*  nAChRs  in  individuals  carrying  CHRNA5 risk

alleles,  PAMs  may  be  able  to  attenuate  genetic  vulnerability  to  tobacco

dependence.

In the context of developing α4β2α5* nAChR PAMs for smoking cessation, it is

interesting  to  note  that  that  the  acetylcholinesterase  (AChE)  inhibitors

galantamine and physostigmine are PAMs of α4β2* nAChRs  (Maelicke et al.,

2001;  Pereira  et  al.,  1994;  Pereira  et  al.,  1993;  Samochocki  et  al.,  2003;

Samochocki  et al.,  2000; Storch et al.,  1995), and codeine may also be an

α4β2* nAChR PAM (Storch et al., 1995). This action is not thought to be related

to  AChE  inhibitor  activity,  as  other  AChE  inhibitors  including  tacrine,

metrifonate, rivastigmine and donepezil do not share this action (Samochocki

et  al.,  2000).  Importantly,  the  FK1  monoclonal  antibody,  which  binds

selectively to α nAChR subunits (Schroder et al., 1994), completely abolishes

the PAM effects of galantamine, physostigmine and codeine on α4β2* nAChR

function  (Pereira et al., 1994; Storch et al., 1995), thereby verifying a direct

allosteric action on the α subunit, and not an orthosteric action at the interface

between    and    subunits.  Intriguingly,  a  recent  study  reported  that

galantamine is  a  PAM only  at  α4β2α5*  nAChRs,  and is  practically  inactive

α4β2*  nAChRs  that  do  not  contain  α5  subunits  (Kuryatov  et  al.,  2008).

Galantamine has been shown to reduce the number of cigarettes smoked in a

recent clinical trial  (Diehl et al., 2006) and also reduced intravenous nicotine
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self-administration  behavior  in  rats  (Hopkins  et  al.,  2012;  Liu  and Stewart,

2009). These actions of galantamine may be related in part to its PAM action

at α4β2α5* nAChRs. Nevertheless, galantamine is likely to have very limited

clinical  utility  for  smoking  cessation.  Its  PAM  action  occurs  only  at  low

concentrations, and at higher concentrations it inhibits α4β2α5* nAChRs. Also,

AChE inhibition by galantamine and other known PAMs is likely to be a major

confound. Therefore, it will be important to develop and test novel α5* nAChR

PAMs for smoking cessation that are efficacious across a broad dose-range

and are devoid of “off-target” effects. 

While the concept of enhancing nicotine aversion as a therapeutic strategy

may be novel, this type of approach has been used with other drugs of abuse,

such  as  alcohol.  Disulfiram  (Antabuse)  is  an  aversive  therapy  to  attain

abstinence  from  alcohol,  which  acts  by  irreversibly  inhibiting  an  enzyme

involved  in  alcohol  metabolism,  acetaldehyde  dehydrogenase  (Center  for

Substance Abuse Treatment,  2009).  During alcohol  consumption,  disulfiram

promotes the accumulation of acetaldehyde, resulting in moderate to severe

physical  reactions  that  include  nausea,  vomiting,  hypotension  and  facial

flushing. When alcohol  is  not consumed, side effects are minimal and may

include  headache  and  fatigue  (Fuller  and  Gordis,  2004).  The  clinical

effectiveness of disulfiram has been variable  (Brewer et al., 2000; Fuller and

Gordis, 2004), most notably due to issues with patient compliance (Suh et al.,

2006). While abstinence may be improved by promoting patient involvement

in support groups and extensive physician supervision  (Brewer et al., 2000),

treatment effectiveness can also be enhanced by concomitant use of other

therapeutics, such as acamprosate, a glutamate antagonist, or naltrexone, an

opioid receptor antagonist (Mason et al., 2006; Suh et al., 2006). Given these
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considerations, a therapeutic that enhances the aversive effects of nicotine

may not be as straightforward as one would hope in the clinical setting due to

the potential confound of patient adherence to the dosing schedule. However,

compared to other drugs of abuse, nicotine’s aversive effects are more readily

induced,  as  evidenced  by  the  narrow  D-R  range  for  intake.  In  contrast,

aversive reactions to alcohol are usually minimal in the absence of disulfiram,

as evidenced by it being more readily consumed in excess. Thus, by choosing

to  not  take  disulfiram,  a  patient  with  alcoholism  may  largely  avoid  any

physiological aversion associated with alcohol consumption, whereas this will

be less likely with nicotine consumption. Nevertheless, treatments that include

physician supervision, support of family and friends, and education regarding

the severe and detrimental health consequences of continued tobacco use will

likely  be  more  effective  than  pharmacotherapies  alone.  Finally,  a  novel

‘aversion-inducing’ therapeutic for smoking cessation may be most efficacious

when used in conjunction with drugs that limit the rewarding properties of the

drug, such as Chantix. By concurrently enhancing the aversive while reducing

the rewarding properties of the drug, it is possible that long-term abstinence

may be more readily attainable for the patient.

Summary

The findings reviewed above demonstrate that, in addition to the rewarding

effects  of  nicotine,  noxious  effects  of  the  drug  also  likely  influence  the

development  and  persistence  of  the  tobacco  smoking  habit  in  humans.

Specifically, avoidance of the aversive properties of nicotine play a key role in

determining the amounts of nicotine consumed, patterns of consumption, and

hence the magnitude by which nicotine induces neuroplasticity in addiction-

relevant brain reinforcement circuits. Habenula-interpedunular glutamatergic
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transmission  and  aspects  of  mesoaccumbens  dopamine,  acetylcholine  and

opioid transmission appear to regulate the aversive effects of nicotine,  and

thereby control  avoidance of  the drug.  Moreover,  allelic  variation  in  genes

highly expressed in the aversion-related circuitries, in particular the CHRNA5

gene  that  encodes  the  5  nAChR  subunit,  can  influence  vulnerability  to

tobacco  dependence  in  humans,  highlighting  the  importance  of  nicotine

aversion in controlling vulnerability to addiction. Much work still  remains to

precisely understand how the aversive effects of nicotine are encoded in the

brain, and how aversion-related circuits may interact with reward circuits to

control  nicotine  intake.  Nevertheless,  the  available  data  support  the

interesting possibility  that amplifying the noxious properties of  nicotine via

small  molecule drugs may serve as a novel  strategy to develop efficacious

smoking cessation agents.
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Figure legends:

Allelic variation in the  CHRNA5-CHRNA3-CHRNB4 gene cluster contributes to

vulnerability  to  tobacco  dependence.  (a)  Graphical  representation  of  the

genomic organization of the  CHRNA5-CHRNA3-CHRNB4 nAChR subunit gene

cluster on chromosome 15 (Chr15 q25.1). (b) Mice with null mutation in the 5

subunit  gene  self-administer  more  nicotine  than  wildtype  mice.  Mice  were

responding under a fixed-ratio 5 time-out 20 sec schedule of reinforcement.

(c) Data from panel B were transformed such that the total amount of nicotine

self-administered by wildtype and knockout mice could be examine. Data are

modified with permission from (Fowler et al., 2011).
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