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Spatio-temporal analysis of the cerebral spontaneous oscillation

Jee Hyun Choi a Martin Wo1f', Viad Toronov C Antonios Michalos a and

Enrico Gratton a

a Laboratory for Fluorescence Dynamics, University oflllinois at Urbana-Champaign, 1 1 1 0 W.
Green Street, Urbana, IL 6 1 80 1 , USA;

C Clinic for Neonatology, University Hospital Zurich, Frauenklinikstr 1 0, 809 1 Zurich, Switzerland;
CBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana-

Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA;

ABSTRACT
Cerebral vasomotion was studied on the human brain in vivo by use of multi-optode frequency domain near-infrared
spectroscopy (NIRS). Vasomotion is a spontaneous oscillation with a frequency of 0. 1Hz in the arterial flow. We
investigated (1) the fluctuations of cerebral hemodynamics on the dynamical characteristics of cerebral vasomotion and
(2) the dynamical coupling between vasomotion in the skin and brain.

We found that (1) vasomotion is temporal coherent at least for about 3mm; (2) vasomotion observed from NIRS is low-
dimensional chaotic with its fractal dimension ofabout 4.5;(3) vasomotion is spatially coherent with coherence length of
about 1-2cm but cerebral vasomotion is dynamically independent from vasomotion in the skin.

Keywords: Vasomotion, Near-Infrared Spectroscopy, Cerebral Hemodynamics

1. INTRODUCTION
The determination of the optical properties of the brain is important in many fields of medicine and neuroscience, both
for monitoring of physiologically important processes and localizing any brain activities. In particular, the measurement
of hemoglobin concentrations in the brain can provide important information about the cerebral oxygenation or related to
neurovascular coupling. In near-infrared region, the light is highly scattering and low absorbing and the main
chromospheres in biological tissue are oxy- and deoxyhemoglobin molecules. The spectral studies of the human brain
using the near-infrared spectroscopy (NIRS) have been developed recently [1-3] and the baseline values ofthe oxy- and
deoxyhemoglobin concentration of the adult human brain have been successfully measured using multi-optode
frequency-domain NIRS separated from the scalp noninvasively [4].

The frequency-domain NIRS monitors the dynamical changes in the hemoglobin parameters continuously. Generally,
the measured signals are fluctuating a lot with multiple sources and their spectral analysis show rich structure in the
frequency domain. The frequency components in the spectral analysis are variable depending on the individual, but
mainly we observe primary frequencies around 1, 0.3, 0.1, and 0.04 Hz corresponding to pulse, breathing, vasomotion,
and the blood pressure wave, respectively. The rhythms, except 0.1Hz, are systemically driven or controlled by the
central nervous system [5, 6], whereas the origin of vasomotion is still unknown but it exists in the entire body.
Vasomotion is a rhythmic alternation of vasoconstriction and vasodilation of vessels, which is observed in the diameter
measurement of the large and small arteries, and arterioles. It has been showed that 0.1Hz oscillation in NIRS is due to
vasomotion by many researchers [7-9].

In the NIRS signals, the amplitude ofvasomotion is about 1-10 fold amplitude ofthe pulse and the frequency ofit is
variable but narrowly banded within the frequency band of 0. 1±0.04Hz. In the diameter measurements, the patterns of
vasomotion are variable depending on the types of arteries and measurement point [10] and the dynamics of vasomotion
is determined to be highly nonlinear [11]. The spatial averaging of the NIRS signal is much larger than the spatial unit of
the artery network, and therefore it is more reasonable to assume that the slow oscillation is the superposition of
numerous vasomotion waves rather than an individual vasomotion at the level of single arteries. Therefore, the 0.1Hz
oscillation observed in the NIRS signals is a collective vasomotion wave.
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Vasomotion in the brain is particularly interesting with its dynamic coupling with brain activation. Recently,
Cimponerin and Kaplan [12 observed from the optical imaging of the cat visual cortex that vasomotion is stimulus-
dependent. According to their observation, the spatially asynchronous vasomotion became spatially coherent at the start
of stimulus as well as phase-locked to the stimulus. This is direct evidence that vasomotion is sensitive to neuronal
activation and the phase-locking phenomena suggest that the relation between the neurovascular coupling and
vasomotion is nonlinear. In addition, Diehl et al. [13] suggest the phase shift of cerebral vasomotion to the blood
pressure wave as a measure of cerebral flow autoregulation, Biswal et al. [14, 15] and Lowe et al. [14, 15] even try to
find a criterion for a functional connectivity map based on the correlation of spontaneous vasomotion. Most of all, the
coupling behavior of cerebral vasomotion to the neuronal activation arises as an interesting subject with the increased
interest in the area of the functional brain mapping. Usually, the cerebral vasomotion and neurovascular coupling are
observed to interact with each other in a complicated manner so that the cerebral vasomotion is introduced as an intrinsic
artifact in analyzing signals from neurons and it is challenging to filter.

In this manuscript, we focus on defining the dynamic characteristics of vasomotion in the cerebral hemodynamics
assessed by frequency domain NIRS.

2. METHODS

2.1. Multi-optode frequency domain near-infrared spectroscopy
The propagation of light in tissue is well described by the diffusion equation for semiinfinite [16] or two-layer media
[1 7]. Fantini et al. have obtained the analytic solution for the frequency domain parameters such as the average intensity
I, modulation amplitude M, and phase shift ., as functions of the distance p in a semiinfinite geometry boundary
condition using the diffusion approximation [17]:

= (a 1 D)112 [i + (, /PaV)2 ]1/4 sin[tan'(a)Pa 21 (1)

dln(p2A1) 1/21 21114 1 _i 1= (Pa 1 D) 1.1 +( i Pa") j costan (w IPaV)/2j, (2)
dp

where D is the photon diffusion coefficient determined by D =(2(u + Pa )) ' 5 the angular frequency of the

modulation, v is the speed of light in the medium. From Eqs. (1) and (2), one can estimate Pa and ,:

0) ( ôq5 a 1n[p2M(p)]

Pa(P)ôl[2M]_ ap J'
(3)

,; (M =
jfl[p2M(p)J2 _(a)2 )

(4)

where ln[p2M(p)] and ô,,q$ are the slopes ofmodulation and phase shift with respect to p. Using Eqs. (3) and (4), Pa

and Ps can be determined directly from the values of 0and M measured at p in the frequency domain. One benefit of
these expressions is their independence from the instrumental parameters such as the laser light power, detector
sensitivity, and other instrumental factors. However, since the above equations were obtained under the assumption that
the amplitude and initial phase are the same for each light source, an instrumental calibration must be performed to
correct for any inequalities in the amplitude and phase by calibration with a tissue phantom with known optical
properties.

According to Beer-Lambert law, the absorption coefficient can be written as a linear sum of the extinction
coefficients multiplied by the concentration of absorber and in the near infrared region, oxyhemoglobin (c0y) and
deoxyhemoglobin (cdeoyx) are main absorber. Therefore the absorption coefficient is represented by
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2 + CoxyCdexy (5)

where g1 is the extinction coefficient of the ith chromophor. Since the p, and are dependent on wavelength of light, we
can solve eq. (5) by use oftwo wavelengths of light.

2.2. Experimental Methods
The instrumental configuration used in determining the hemoglobin parameters is schematically shown in Figure 1 .We
used a multi-channel frequency domain near infrared spectrometer (Imagent, 155, Champaign, IL). In brief, the
instrument employs laser diodes (LD) modulated at the frequency, 110MHz and photomultiplier tubes (PMT) whose
gain is modulated at a close frequency of 1 10.005MHz to heterodyne the high frequency down to the frequency of 5
kHz. In this study, 32 LDs (16 at 758nm and 16 at 830nm) and our PMTs were used. The LDs were multiplexed so that
two LDs with the same wavelength and at the same location were on at a time. The light from LDs was guided by the
optical fibers with a diameter of 400 im to the tissue surface and the photons re-emitted from the tissue were collected
simultaneously by the fiber bundles with a diameter of 5.6 mm placed several centimeters apart from the source fibers.
The collected light was carried to the PMTs and then the signals from the PMTs were digitally processed to yield I, M,
and.

We investigated the time series of oxyhemoglobin concentration (c01) as the vasomotion parameter of interest. Data
were obtained from an adult forehead with multidistance frequency domain NIRS probe (source-detector distance 1-
8cm) at data acquisition frequency of 2.5Hz.

Figure 1 Block diagram of frequency-domain near-infrared spectroscopy (Oxy-
Imager ISS, Champaign, IL USA) and geometric arrangement of the long-ranged
multi-distance probe containing the source and detector fibers on the forehead.

2.3. Data analysis

2.3.1. Pattern recognition

A repeatability of a similar pattern in a time series can be characterized by pattern recognition. We use the least squares
method to fit a part of interest to the entire time series. To illustrate the linear squares fitting process, suppose one has a
test data set {yj} with a size of N that can be fitted to a reference data set {x1} with the same size. We maymodel the
reference data by a first degree polynomial such as y =px+q, whereas p and q are fitting coefficients.

We solve the equation for the unknown coefficients p and q with a least squares fitting process by minimizing the
normalized summed squares of the residuals j(p,q) ,i.e.

human head
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(yi —(px +q))2
z2(p,q)= '=

2 ' (6)
Na

where N is the length of the data and c is the sample variance of the data yi. The minimized summed squared residual

x2(p,q) is solved by d2 (p, q)/ dp 0 and d2 (p, q)/ dq =0 . Using this method, one can recognize a particular

pattern in a time series by scanning the whole data with the pattern. If the data is the same as the pattern, ,will be zero.
On the contrary, if one fails to interpolate the data with the pattern, the minimized j will be a constant function with the
mean value of data, therefore, j will be zero by definition.

2.3.2. Cross-correlation study
One effective way to describe the joint properties of two time series is the cross correlation function. It describes the
general dependence of one signal to the other. For two time sequences, x(t) at time tand y(t) at time t+'r for an
observation period T, a cross correlation function is defined by

CCF(r) tim---
Jx(t)y(t + r)dt. (7)T-o 2T
T

The cross correlation function CCF(-r) indicates the existence of correlation between x(t) and y(t) for a specific time
displacement, -r. Therefore, the maximum of CCF(-r) will yield the time delay ofy(t) with respect to x(t).

A cross correlation function within the same signal is called the autocorrelation function. The autocorrelation
function for random data provides a general temporal structure of a time series by evaluating the dependence of the value
of the time series at one time on the value at another time. Intuitively, it is a measure of how similar a series is with a
shifted version of itself. This autocorrelation function is an even function by definition and has a global maximum at the
origin, i.e. r = 0. The major application ofan autocorrelation function is to monitor the influence ofa value at any time to
values at a future time. For example, a noisy signal without any deterministic nature has a quickly decaying ACF(t) as r
increases. Whereas, if the signal is deterministic, ACF('r) will exist over all r and have local peaks at every period of
oscillation modes. Hence, ACF(t) is very useful for detecting a characteristic frequency buried in an extraneous noise. If
CCF(t) oftwo independent time series is similar to ACF('r) ofone, the signals are coherent to each other.

2.3.3. Fractal dimension

The fractal dimension is a magnification factor of self-similar objects in a fractal geometry that is defined by D =
log(number of self-similar unit)/log(magnification factor). Basically, it is a measure of how complicated a self-similar
pattern is. This concept may also be applied for determining the dynamic characteristic of a time series. In case of a time
series, Df can be the degree of freedom of the dynamical system that the series belongs to and it is a measure of strange
attractors ifthe system is deterministic chaos [18]. Ifthe time series is completely random, Djwill be infinite whereas if
the time series is a deterministic signals, Djwill be a finite number.

A popular method to calculate a fractal dimension in time series analysis is the correlation dimension D:

log C(r)Dm—hm , (8)
r-*O log(f)

where C(r) is the number of points of the set located within a smaller distance of the values than a given distance r
(correlation integral). The correlation integral C(r) is defined as

C(r) lim H(r - - x ), (9)
i,j=1i�j
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where H is the Heaviside step function (H(s) = 1 for s>O and H(s) = 0 for s<O). For example, a distance r can be
arbitrarily chosen and C(r) can be evaluated by counting the number of points of the neighborhood in the experimental
data that falls into the distance r. And the slope in a plot oflog C(r) versus log (r) as r goes to zero will beequal to D.

However, in practice, the experimental data are not continuous but discrete and D will yield different values for
different time scale. Therefore, a reliable way to evaluate D is to calculate D for different time scales and find a value
that remains constant regardless ofthe change ofthe time scale. The time scale can be easily modified by multiplying an
integer m in the time index x1 -x,,,, and usually, m is called an embedding dimension. Then the correlation dimension for
this embedding dimension m, C(r,m) is calculated by

C(r, m) tim —- H(r - Xmj - Xmj ). (10)

If the time series is noisy, C(r, m) will increase with increasing m without ever reaching a plateau. But if the time series

is deterministic, C(r, m) will reach a plateau for a time scale larger than a certain value of m because of its

characteristic of self-similarity. And the plateau value of C(r,m) is the fractal dimension of the time series.

3. RESULTS

3.1. Dynamical characteristics of cerebral vasomotion

3.1.1. Temporal structure
We first estimated the temporal coherence based on the pattern recognition method. The temporal coherence measures
the correlation of two distant events in a time series. We used the nonfiltered data after detrending with a 3rd order
polynomial function (Figure 2(a)). Figure 2(b) shows the result from the pattern recognition method. For the pattern
recognition analysis, we randomly picked a time window with a size of lOsec and scanned the entire time series and
evaluated the summed square of the residuals X2(t). The local minima indicate the appearance of a similar pattern. A
detailed analysis of X2(t) shows that local minima tend to be separated by a period of 15 sec and that this behavior
persists with time. The local minimum does not appear at every vasomotion period but appears repetitively.

t(sec)
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Figure 2 (a) Oxyhemoglobin fluctuation recorded from the forehead of an adult.
'Ihe solid line box contains the reference signal for the pattern recognition test and
the dotted box move the entire time to produce (b). ,'2 of the least square
method plotted with respect to the time. The solid/dotted arrow is the temporal
location of the reference/test signal, respectively.

We next use the autocorrelation analysis to determine the long range dependence ofthe vasomotion wave. Figure 3
(a) shows ACF of the same time series in Fig. 2(a). Figure 3 (b) shows the same function in a smaller time window. The
modulations of ACF with an approximate period of 1 Osec and other oscillations at longer periods are also observed. The
main feature of Fig. 3 is that the ACF of the oxyhemoglobin signal decreases to zero slowly in an oscillatory behavior
conserving the long range dependence lasting for a significant amount oftime (> 3mm).

00 -300 -200 .fJ 0 100 200 3DB 400

t (sec)

.00 .41) .0 .20 .1'U i'D 20 30 4; 50

t(sec)

Figure 3 (a) The autocorrelation of the oxyhemoglobin after a polynomial
detrending plotted for the whole period of time. (b) The same function plotted in
smaller time window.
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3.1.2. Fractal dimension
The fractal dimension of the vasomotion was calculated using the Grassberger-Procaccia method [1 8]. We first chose a
time delay of 2.5sec that is approximately ¼ ofthe vasomotion period. The correlation integral C(c,m) was obtained by
Eq. (10) by calculating the probability that the pair of neighboring points has a distance smaller than e for an embedding
dimension m. The correlation dimension was obtained from the slope by a linear regression in the linear region with
distinct slopes of log C( m). The correlation dimension D was plotted with respect to the embedding dimension m in
Fig. 4. In order to test the dependency ofthe fractal dimension on the time delay r, we plotted D for different values ofT
in Fig. 4. Each plot of D versus m reaches a plateau and its value is similar. The value at the plateau is taken asthe
estimate ofthe fractal dimension Djand a fractal dimension ofabout 4.5 is suggested from this plots.

3.2. Spatial correlation

Figure 4 fhc correlation dimension, D as a function of embedding dimension, m
for different time delay r. The solid, dashed, and dotted lines are D<m for t
3T/4, and 1/2, respectively, where T is the period ofvasomotion (-1Osec.

We analyzed a set of data spatially distributed in the vertical section into the brain to extract information on the
dynamical correlation between vasomotion at the skin and the brain surface. The data was obtained from the forehead of
an adult with the multidistance probe ranging from 1-8cm of its source-detector distance. Visualizing the correlation
between vasomotion is very difficult, when we do not filter the data, because the fluctuation amplitudes of the other
physiological signal such as pulse and blood pressure wave are comparable to the vasomotion. Therefore, we filtered the
vasomotion with 5th order of Butterworth bandpass filter with passband from 0.06Hz to 0.20Hz and stopband from
0.02Hz to 0.28Hz. Since the phase difference between two parameters is one of our interests, we used zero-phase
filtering by processing the input data in both the forward and reverse direction [191.
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Figure 5 The region of sensitivity for long-ranged multidistance NIRS signal. The
horizontal axis is the surface of the forehead and the vercal axis is the depth from
the tissue surface. The NIRS signal at each position is obtained from the slopes of
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the modulafion and the phase shift with respect to the source-detector distance for
4 sources.

From the given probe, the approximate region of maximal signal sensitivity is shown in Fig. 5 and the penetration
I

depth z is determined by z = r"2Pa/s ) " 2 [201. We denote the filtered oxyhemoglobin contents at the th

position as c,,(t). n1 indicates the closest point to the skin and as n increases, the measurement point goes deeper. In
order to investigate the spatial correlation between vasomotion signals at different depths with the aim of describing the
dynamical feature of the propagation of vasomotion waves, we use a cross-correlation technique. The cross-correlation
Xn,m between two simultaneously registered time series of c,,(t) and Cm(t) 15 determined by Eq. (7) For all the possible
pairs, we draw the cross-correlation map of a test signal c,,(t) with the reference signal .By simple visual inspection of
the cross-correlation plots, we joined all the regions that have similar cross-correlation to the autocorrelation at a given
location, which indicate that the patterns of slow oscillations are similar at that location. We obtained the map shown in
figure 6. A clear pattern of local spatial coherence appears localized into topologically distinct and non-intersecting
regions.
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L
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/ 2i
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Figure 6 Topological map of the regions that have similar cross correlation to the
autocorrelation at a given location.

4. DISCUSSION AND CONCLUSION
Both the pattern recognition and autocorrelation analysis show that similar patterns are repeating with the frequency of
vasomotion and the correlation dissipates slowly with time. This analysis clearly shows that the long range dependence
of the vasomotion is not limited to a few periods of vasomotion but exists for dozens of periods. In other words, the
vasomotion wave is a temporally coherent wave even though there is no explicit driving force ofthe fluctuation.

The finite fractal dimension suggests that the dynamics ofvasomotion belong to a low-dimensional dynamical system. If
the vasomotion is stochastic, D will increase continuously without reaching a plateau with m. It is interesting that the
fractal dimension we obtained is similar to those obtained from diameter measurements. Rosen et al. [21] calculated the
fractal dimension ofthe diameter and red blood cell velocity in a single vessel. Fractal dimensions of3-4 were obtained
for diameter oscillations and that of 6-7 for velocity oscillations in the same vessel. Slaaf et al. [22] also obtained the
fractal dimension of about 4 in the diameter measurement. The signal from NIRS is a volumetric parameter measuring
the amount of fresh blood in the arteriole network in a tissue. Therefore, it is reasonable that our result is similar to those
for the diameter measurement rather than the flow measurement. However, the vasomotion results from NIRS are
statistically averaged over a large scale of arteriole networks, merging the individual vasomotion at a number of
arterioles. If any contribution from an arbitrary dynamical factor is added or removed during the signal integration, the

g4 .

v...

44
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fractal dimension will increase or decrease. We obtained a similar value of the fractal dimension, which implies the
dynamical property is conserved throughout the arteriole network.

The cross correlation analysis on cerebral vasomotion measured in different locations at the forehead and in the motor
cortex has shown that the cerebral vasomotion has a local spatial coherence extending to regions of 1-2cm in size.
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