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De Novo Mutations in Synaptic Transmission Genes
Including DNM1 Cause Epileptic Encephalopathies

EuroEPINOMICS-RES Consortium,* Epilepsy Phenome/Genome Project, and Epi4K Consortium

Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large

cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia

(EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the ‘‘classical’’ epileptic encephalopathies,

infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this

expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations

in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess

of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p ¼ 8.2 3

10�4), supporting a prominent role for de novomutations in epileptic encephalopathies. We bring statistical evidence that mutations in

DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of

analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to

disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes

in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic enceph-

alopathies, above and beyond that caused by ion channel dysfunction.
Introduction

Epileptic encephalopathies (MIM 308350) comprise a

range of severe epilepsy syndromes determined by age of

onset, seizure types, developmental and clinical course,

and electroencephalographic findings.1 Infantile spasms

are one of the most common seizure types seen in epileptic

encephalopathies, and in combination with hypsarrhyth-

mia on EEG and developmental regression define West

syndrome. In some individuals, West syndrome evolves

to Lennox-Gastaut syndrome, characterized by multiple

seizure types including atonic and tonic seizures and

generalized slow-spike-wave activity on EEG. Both entities

are considered prototypic epileptic encephalopathies.

Anunderlyinggenetic causehasbeen shown inagrowing

proportion of persons with epileptic encephalopathies.

Many causal mutations arise de novo.2–7 Our earlier

exome-sequencing study of 264 trios identified de novo

mutations in seven genes reported at the time in the Men-

delian Inheritance in Man (OMIM) database as linked to

epileptic encephalopathy (CDKL5 [MIM 300203], KCNQ2

[MIM 602235], KCNT1 [MIM 608167], SCN1A [MIM

182389], SCN2A [MIM 182390], SCN8A [MIM 600702],

and STXBP1 [MIM 602926]) and provided clear evidence

of pathogenicity for de novo mutations in two not previ-

ously implicated genes, ALG13 (MIM 300776) andGABRB3

(MIM 137192).2 Although we found multiple additional

candidate genes affected by de novo mutations, statistical

power was insufficient to implicate a pathogenic role for

these genes.2 By combining samples fromtwo international

consortia, we now analyze a joint cohort of 356 proband-

parent trios with infantile spasms or Lennox-Gastaut syn-

drome to search for additional causal de novo mutations.
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Subjects and Methods

Study Subjects and Procedure of Exome Sequencing
Three epileptic encephalopathy cohorts were evaluated in this

study: (1) Epilepsy Phenome/Genome Project (EPGP) cohort 1

(n ¼ 264 trios) used in the previously published paper,2 (2) new

EPGP cohort 2 (n ¼ 73 trios), and (3) EuroEPINOMICS-RES cohort

(n ¼ 19 trios). The study was approved by the local ethics commit-

tee of each participating center. Parents or the legal guardian of

each proband signed an informed consent form for participation.

The EPGP cohort inclusion criteria have been reported previ-

ously.2 Probands recruited through the EuroEPINOMICS-RES con-

sortium for the project on nonlesional epileptic spasms (NLES)

were enrolled by clinical sites in 18 different European countries.

Genomic DNA of the individuals was extracted from peripheral

blood according to standard procedures. All phenotypic data

were entered in the web-based platform Cartagenia-BENCH,

which was adapted for this study. Inclusion criteria included docu-

mented infantile spasms with onset in the first 2 years of life,

normal routinemetabolic screening, and exclusion of causal struc-

tural abnormalities on MRI of the brain. Most probands had un-

dergone testing for known genetic causes of infantile spasms,

but this was not required for study inclusion. Individuals with a

family history of epilepsy in first-degree relatives were excluded.

Detailed exome-sequencing and data analysis methods are pro-

vided in the legend of Table S1 available online.
Trio-Specific Callable Real-Estate
Since the ability to call a de novo mutation requires that all three

individuals comprising the trio are well sequenced, we calculated

the percent of the exome and individual genes, as defined by the

consensus coding sequence (CCDS release 9, GRCh37.p5) and

the 2 bp flanking splice sites, where each base was sequenced at

least 10-fold with a multisampling (GATK) raw phred-scaled con-

fidence score ofR20 in the presence or absence of a variant. These
y of Human Genetics. All rights reserved.
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estimates for callable real-estate were incorporated into the archi-

tecture and gene-enrichment analyses.
Genetic Architecture Likelihood Analyses
We conducted a likelihood analysis of parameters describing

the genetic architecture of epileptic encephalopathies, including

the relative risk (g) and proportion of the exome related to

epileptic encephalopathies (h). Because there were substantial

differences in sequenced regions across the different exome-

sequencingmethods used in this study, we adapted our previously

proposed likelihood model2 to incorporate the sequence-specific

mutation rate for the individual proband’s callable real-estate.

This likelihood can be written as

Lðg; hÞ ¼
Y
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where xi and li are the de novo counts and mutation rate, respec-

tively, for the ith trio. As in previous analyses, C is assumed to be a

known constant taking the value of 0.25. Point estimates were ob-

tained by optimizing Equation 1 and likelihood ratio tests were

computed by comparing the log-likelihood at this optimum to

the value obtained under the null hypothesis. Marginal confi-

dence intervals for h and g were derived based on a profile likeli-

hood calculated from the equation above.
‘‘Hot-Zone’’ Analysis
To further assess the likelihood of pathogenicity of mutations, we

considered two scores for each de novo single-nucleotide variant

(SNV): the gene-level residual variation intolerance score (RVIS)

assesses the intolerance of genes to functional genetic variation8

and the variant-level score assesses the probability that a given

variant damages protein function. For the variant-level score, we

use PolyPhen-2 (HumVar) to score missense variants. Synony-

mous and loss-of-function (nonsense and splice acceptor/donor)

mutations were scored 0 and 1, respectively. For comparison, we

also assessed de novo mutations in previously published control

trios that reported at least one protein-coding de novo mutation

(n ¼ 411).9–14,16 The de novo mutations previously reported in

controls were subjected to the same filtering criteria we used in

this study, including presence in the CCDS protein-coding regions

or in the 2 bp flanking splice donor and acceptor sites and absence

from control cohort and ESP6500SI database. We also reassessed

variant function using the same annotation pipeline used for

the epileptic encephalopathy probands. Overlapping control sam-

ples, which were reported across multiple studies, were only

considered once.

For each case and control sample that reportedmultiple de novo

mutations, we considered only the single most damaging de novo

mutation based on the shortest Euclidian distance from the most

damaging coordinate [1,0] in the 2D space that is constructed

based on the variant-level vector (PolyPhen-2 score) along the

x axis and the gene-level vector (RVIS percentile score) along the

y axis (Figure 1).

A two-tailed Fisher’s exact was used to test whether the single

most damaging de novo mutation found in cases preferentially

lay in the ‘‘hot zone,’’ defined by a PolyPhen-2 score of R0.95

and RVIS %25th percentile,8 in comparison to the single most

damaging de novo mutations in previously published control

trios.
The Americ
Calculation of the Gene-Specific Mutation Rate
The probabilities of getting greater than or equal de novo point

mutations by chance when considering the observed numbers of

de novo point mutations were calculated using procedures similar

to the one that we introduced previously,2 with one minor

modification: for the X chromosome, instead of calculating the

average mutation rate and multiplying it by the number of gene

copies, the mutation rate was calculated as the sum of the diploid

rate in each female trio and the haploid rate in each male trio

(Table 1).
Determination of ‘‘Solved’’ Epileptic Encephalopathy

Trios
To determine what proportion of the 356 epileptic encephalopa-

thy probands are currently explained by an identified de novo

mutation, we first generated a list of genes in which mutations

with high confidence cause an epileptic encephalopathy (further

referred to as ‘‘epileptic encephalopathy genes’’). We searched

the OMIM database (January 2014) as well as several recent publi-

cations to obtain a comprehensive list of putative epileptic en-

cephalopathy genes. We considered five categories of genes: (1)

OMIM ‘‘epileptic encephalopathy (EIEE),’’ n¼ 18; (2) OMIM ‘‘Dra-

vet Syndrome,’’ n ¼ 1; (3) OMIM Neurological Clinical Synopsis

containing ‘‘epileptic encephalopathy’’ in disorders with a

‘‘known molecular basis,’’ n ¼ 8; (4) genes implicated in OMIM

due to ‘‘epileptic encephalopathy’’ in the gene summaries, n ¼
19; and (5) genes implicated in epileptic encephalopathy in

the recent literature, n ¼ 6 (ALG13,2 DNM1 [MIM 602377],

GABRA115 [MIM 137160], GABRB3,2 GRIN2B7 [MIM 138252],

and SLC35A25 [MIM 314375]). For the first two categories, if the

mode of inheritance was recessive or if the first reported allelic

variant in OMIM was published before 2010, we considered these

definitive EE genes (n ¼ 15; ARHGEF9 [MIM 300429], ARX [MIM

300382], CDKL5, KCNQ2 [MIM 602235], PCDH19 [MIM

300460], PLCB1 [MIM 607120], PNKP [MIM 605610], PNPO

[MIM 603287], SCN1A, SCN2A, SLC25A22 [MIM 609302],

ST3GAL3 [MIM 606494], STXBP1, SZT2 [MIM 615463], and

TBC1D24 [MIM 613577]). For all remaining genes on this compre-

hensive list of putative epileptic encephalopathy genes, a panel of

clinicians reviewed the specific phenotypic details to determine

the relevance to epileptic encephalopathy specifically. This high-

lighted 13 genes of interest, including eight genes from category

1, two from category 3, one from category 4, and six from category

5 (Table S4). We then applied the test for a significant excess of

de novo mutations in these genes to statistically analyze their

association with epileptic encephalopathy (Table S4). Of the 13

tested genes, 11 showed significant association with epileptic en-

cephalopathy (ALG13, CHD2 [MIM 602119], DNM1, GABRA1,

GABRB3, GNAO1 [MIM 139311], GRIN2A [MIM 138253],

KCNT1, SCN8A, SLC35A2, and SYNGAP1 [MIM 603384]), giving

us a total of 26 high-confidence epileptic encephalopathy genes

(11 newly tested genes þ 15 original ‘‘definitive epileptic enceph-

alopathy genes’’). A full list of contributing variants and corre-

sponding literature references is provided in Table S4.
Gene List Enrichment Analyses
To determine whether our list of de novo mutations was preferen-

tially located in genes contained in a set of relevant gene lists, we

used a previously published method.2 In brief, a binomial proba-

bility calculation was adopted to determine whether the de novo

mutations identified in this cohort of epileptic encephalopathy
an Journal of Human Genetics 95, 360–370, October 2, 2014 361
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2-tail Fisher’s Exact test,  p = 3 x10 -9

An excess of 62%, i.e., 46 excess DNMs in the hot-zone
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Figure 1. Hot-Zone Analysis
Illustrates where de novo single-nucleotide mutations reside along the variant-level vector (x axis: PolyPhen-2 HumVar score) and the
gene-level vector (y axis: RVIS percentile score).We identified 411 controls9–14,16 (A, adapted from Zhu et al.34) and 232 epileptic enceph-
alopathy cases (B) that reported at least one single-nucleotide de novo mutation. For each of the cases and controls, we plot the single
most damaging single-nucleotide de novo mutation, as defined by the shortest Euclidian distance from the most damaging coordinate
[1,0]. The hot zone (red shading) is defined as the region that reflects a PolyPhen-2 score R0.95 and a RVIS percentile score %25%.
Details for all hot-zone de novo mutations are available in Table S1. Among the case hot-zone insert we flag with red the hot-zone
de novo mutations that occur in the epileptic encephalopathy gene list as described in the panel.
probands were selectively enriched within the well-sequenced

coding sequence of genes within a particular gene list. This process

corrects each gene list not only for the protein-coding real estate

(size) of genes, but also for the average ‘‘callable real estate’’ across

all trios.

We performed two additional tests to confirm the relationship

of the observed gene list enrichments among genes harboring a

de novo mutation in epileptic encephalopathy probands. First,

for each gene list, we calculated the matching exact binomial

test based on de novo single-nucleotide mutations identified

among controls, corrected for corresponding CCDS protein-cod-

ing sizes.9–14,16 Then, for each gene list, we also directly compared

the rate of overlapping single-nucleotide de novo mutations be-

tween our epileptic encephalopathy cohort and a control cohort.
362 The American Journal of Human Genetics 95, 360–370, October
For this direct comparison we used a two-tail Fisher’s exact test to

determine whether there was a significantly increased frequency

of de novo mutations overlapping a gene list among either the

cases or controls.
Protein-Protein Interaction Network Analyses
Ingenuity Pathway Analysis (Ingenuity Systems) was used to assess

connectivity of proteins harboring a de novo substitution. The re-

quirements for assessing protein-protein interconnectivity were

experimentally observed interactions. The permitted interaction

types were: protein-protein, protein-DNA, activation, inhibition,

phosphorylation, and ubiquitination. As described previously,2

preferential gene list enrichment among the network, compared
2, 2014



Table 1. Recurrently Mutated Genes and Probability of Observing Multiple De Novo Mutations in a Cohort of 356 Trios only Considering
Substitutions

Gene Chr
Average Effectively
Sequenced Length (bp)

Average Mutation
Rate

Number of De Novo
Mutations p Valuea

ALG13b X 1,134.24 1.57 3 10�5 2 8.07 3 10�12***

CDKL5 X 2,860.67 3.97 3 10�5 3 1.33 3 10�6*

CHD2c 15 5,369.04 7.34 3 10�5 2 1.32 3 10�3

DNM1 9 2,334.48 4.58 3 10�5 5 2.99 3 10�10***

FASN 17 6,139.81 1.30 3 10�4 2 4.05 3 10�3

GABBR2 9 2,560.29 4.43 3 10�5 2 4.86 3 10�4

GABRB3 15 1,263.05 2.02 3 10�5 4 1.75 3 10�9***

GNAO1 16 1,319.68 2.49 3 10�5 2 1.55 3 10�4

HDAC4d 2 2,769.92 6.04 3 10�5 2 9.00 3 10�4

KCNQ2 20 1,708.42 3.84 3 10�5 2 3.66 3 10�4

PIK3AP1e 10 2,431.02 4.01 3 10�5 2 3.99 3 10�4

RANGAP1f 22 1,557.37 2.48 3 10�5 2 1.54 3 10�4

RYR3 15 14,777.56 2.18 3 10�4 2 N/Ag

SCN1Ab 2 6,067.97 8.07 3 10�5 7 3.91 3 10�13***

SCN2Ab 2 5,899.52 7.69 3 10�5 3 2.07 3 10�9***

SCN8A 12 5,858.57 8.35 3 10�5 2 1.70 3 10�3

SLC35A2h X 1,107.91 1.95 3 10�5 2 4.86 3 10�5

STXBP1 9 1,922.03 3.22 3 10�5 5 5.20 3 10�11***

TTNi 2 104,698.88 1.35 3 10�3 2 2.50 3 10�1

aAdjusted a is equivalent to 0.05 / 18,091 ¼ 2.76 3 10�6, indicated by single asterisk; 0.01 / 18,091 ¼ 5.53 3 10�7, indicated by double asterisk; or
0.001 / 18,091 ¼ 5.53 3 10�8, indicated by triple asterisk.
bExact same mutation was observed in multiple unique individuals in this gene; in these instances, a p value reflecting probability for site-specific recurrent
mutations was also calculated. The smaller p value is shown in the table.
cMIM 602119.
dMIM 605314.
eMIM 607942.
fMIM 602362.
gMutation rates for small insertion-deletion de novo mutations are not able to be estimated, therefore probability could not be estimated.
hMIM 314375.
iMIM 188840.
to outside the interconnected network, was assessed using a two-

tailed Fisher’s exact test.
Results

Distribution of De Novo Mutations in the Epileptic

Encephalopathy Cohort

In the 356 trios, 29.18 5 1.07 Mb (range 25.50–31.06 Mb)

of the CCDS and associated splice sites were sufficiently

sequenced in each family to detect a de novo mutation.

These estimates were similar between the two cohorts

(Epi4K, 29.18 5 1.10 Mb [range 25.50–31.06 Mb];

EuroEPINOMICS-RES, 29.20 5 0.25 Mb [range 28.77–

29.54 Mb]). We identified a total of 429 de novo mutations

in the 356 individuals analyzed (mean 1.2 per person). Of

these, 58 (13.5%) are predicted loss-of-function (nonsense,

frame-shift insertion-deletion, splice site) mutations and

281 (65.5%) are missense or in-frame deletions (Table
The Americ
S1). The frequency of loss-of-function mutations is signifi-

cantly higher than the 7.1% observed in exome-sequenced

control trios,9–14,16 (exact binomial test, p ¼ 3.0 3 10�6).

Using a likelihood analysis, we compared the distribu-

tion of the number of de novo mutations per individual

in probands with epileptic encephalopathies (Figure S1)

to the expected distribution in a control population. We

find that individuals with epileptic encephalopathies

have significantly more exonic de novo mutations

compared to controls (p ¼ 1.9 3 10�4, Figure S2).

We show that by taking the single most damaging

de novo mutation per individual in a population of con-

trols,9–14,16 12% of de novo SNVs fall in the hot zone

(Figure 1A). In contrast, among individuals with epileptic

encephalopathies, the proportion of all single most

damaging de novo mutations in the hot zone is 32%.

This translates into an excess of 46 de novo mutations

in the hot zone in our sample of probands with epileptic

encephalopathies compared to control expectations
an Journal of Human Genetics 95, 360–370, October 2, 2014 363



(Figure 1B, two-tailed Fisher’s exact test, p ¼ 3.0 3 10�9).

Considering only intolerant genes in the likelihood anal-

ysis (RVIS % 25th percentile), we likewise see an excess of

de novo mutations in intolerant genes (p ¼ 4.1 3 10�4,

Figure S2). From this analysis, we estimate that 2.8% (h ¼
0.028; CI ¼ 0–1) of the ~4,000 intolerant genes (RVIS %

25%) in the genome contribute to epileptic encephalopa-

thy risk. Because the confidence interval limits reliability

of the parameter estimate, we simulated the sample size

needed to reduce the boundaries of the CI. We found

that sample sizes approximately four times the size of the

current cohort would be expected to reduce the CI to

half its current size.

Screen for Genes Not Previously Implicated in

Epileptic Encephalopathy

We found 19 genes with a de novo mutation in two or

more probands (Table 1). Seven genes carried a significant

excess of de novo mutations, independently supporting

their roles in epileptic encephalopathies (Table 1, Fig-

ure S3), including six genes known to carry epileptic en-

cephalopathy-causing mutations (ALG13,2 CDKL5,17

GABRB3,2 SCN1A,4 SCN2A,18 and STXBP119) and one,

DNM1, not previously linked to disease. Clinical features

of persons with a de novo mutation in DNM1 are summa-

rized in Table 2. We note that our method analyzing the

likelihood of seeing multiple de novo mutations in the

same gene in the aggregate epileptic encephalopathy

cohort does not take into account that some of the genes

with mutations in more than one individual might be

particularly associated with specific epileptic encephalopa-

thy subphenotypes.

Protein-Protein Interaction Network Analyses and

Gene Enrichment Analysis

The addition of de novo mutation data from 92 samples to

our original investigation on 264 probands2 shows an

extension of the interconnected network to 139 interact-

ing proteins, and we continue to see an enrichment of

known epileptic encephalopathy genes (Table S3). Strik-

ingly, among the 139 genes forming this protein network,

42 (30.2%) encode proteins annotated to the ‘‘synaptic

junction transmission’’ gene list, as defined by Ingenuity

Pathway Analysis (IPA, Ingenuity Systems), including

DNM1 and two other genes with multiple de novo muta-

tions in this study (GABBR2 [MIM 607340] and RYR3

[MIM 180903]) (Figures 2 and S4). Furthermore, of the 26

definitive epileptic encephalopathy genes, as defined in

Supplemental Methods, 13 genes (ARHGEF9, DNM1,

GABRA1, GABRB3, GNAO1, GRIN2A, KCNQ2, PLCB1,

SCN1A, SCN2A, SCN8A, STXBP1, SYNGAP1) encode pro-

teins that are part of IPA’s ‘‘synaptic junction transmission’’

gene list. Given these patterns, we first assessed whether

the single nucleotide de novo mutations found in the

356 probands were preferentially occurring within the

1,085 genes annotated to synaptic junction transmission

by IPA and found significant enrichment (p ¼ 7.3 3
364 The American Journal of Human Genetics 95, 360–370, October
10�14) (Table S5). Interestingly, we find enrichment for

synaptic transmission genes even discounting all genes en-

coding ion channels (p¼ 3.13 10�6), but the reverse is not

true (p ¼ 0.38).

Consistent with earlier studies, we also find that de novo

mutations are preferentially drawn from a number of other

groups of genes, including fragile X mental retardation

protein (FMRP)-regulated genes (p ¼ 3.9 3 10�12)2,20 and

Mouse Genome Informatics (MGI) seizure ortholog genes

(p ¼ 3.7 3 10�19).21 We see no similar preferential enrich-

ment of de novo single-nucleotide mutations among any

of the above gene lists when looking at de novo mutations

observed in control trios (Table S5).
Discussion

Infantile spasms and Lennox-Gastaut syndrome represent

classical phenotypes of epileptic encephalopathy. Analysis

of exome data of 356 trios with these severe epileptic disor-

ders shows an excess of exonic de novo mutations com-

pared to control trios. While a number of studies report

de novo mutations in neuropsychiatric diseases,10–13,22,23

they did not show a statistically significant overall excess

(genome-wide) of de novo mutations. Furthermore, we

show that there is an excess of de novo mutations in mu-

tation-intolerant genes and in a hot zone defined by a

PolyPhen-2 score of R0.95 and RVIS8 % 25th percentile

in probands. These findings underscore the prominent

role of de novo mutations in the etiology of epileptic en-

cephalopathies. Pathway analysis further shows that there

is a strong enrichment of de novo mutations in genes

annotated to synaptic junction transmission, even when

excluding ion channel genes. Disturbance of synaptic

transmission thus seems to be a key factor in the pathogen-

esis of epileptic encephalopathies.

In the current data set, we find five individuals with a

de novo missense mutation in DNM1, one of the genes

involved in synaptic transmission. In our earlier study, de

novo mutations in DNM1 were identified in two persons,

but statistical evidence was insufficient to support patho-

genicity.2 In this larger cohort we now securely implicate

DNM1 as a gene in which mutations cause epileptic en-

cephalopathy. All five probands with de novo mutations

in DNM1 had infantile spasms with onset between 2 and

13 months. Four of the five persons evolved to Lennox-

Gastaut syndrome. All individuals had severe to profound

intellectual disability with pronounced hypotonia and

absence of speech. The presence of some developmental

delay prior to epilepsy onset in two probands may suggest

an influence of DNM1 on neurodevelopment independent

of seizure activity.

Dynamin-1 (DNM1) is an exclusively brain-expressed

GTPase localizing to the presynaptic terminal. It is involved

in activity-dependent synaptic vesicle endocytosis and

membrane recycling.24 More precisely, it provides the me-

chanical force necessary to pinch off budding vesicles
2, 2014



Table 2. Clinical Features of Individuals with De Novo DNM1 Mutations

Trio LGSkj ISg LGSaix NLES16 NLES7

Mutationa c.529G>C (p.Ala177Pro) c.618G>C (p.Lys206Asn) c.1076G>C (p.Gly359Ala) c.709C>T (p.Arg237Trp) c.194C>A (p.Thr65Asn)

Gender, age F, 15 years M, 8 years M, 6 years F, 13 years M, 6 years

Exam at birth normal normal normal normal normal

Development prior to
epilepsy onset

probably normal (lost skills
between 9 and 11 months)

head control 2–3 months, at
6 months some delay noted

normal all milestones delayed all milestones delayed

Seizure onset 7 months 6 months 2 months 12 months 13 months

Seizure type at onset epileptic spasms epileptic spasms epileptic spasms epileptic spasms epileptic spasms

Other seizure types atypical absences with eyelid
fluttering, drop attacks,
generalized tonic clonic
seizures

atonic and tonic seizures none myoclonic, atypical absences,
tonic, focal dyscognitive
seizures, generalized tonic
clonic seizures, obtundation
status

atypical absences, tonic, focal
dyscognitive seizures,
obtundation status

Antiepileptic drug response therapy resistant, longer
periods of seizure freedom on
vigabatrin and valproic acid

therapy resistant, some
response to ketogenic diet

seizure free on ketogenic diet
since age 3.5 years

therapy resistant therapy resistant, no effect of
ketogenic diet

Seizure outcome seizure free between 3 and
8 years, then relapse

on-going frequent seizures seizure free on ketogenic, off
antiepileptic drugs

ongoing frequent seizures ongoing frequent seizures

EEG at onset slow background, multifocal
discharges

hypsarrhythmia high voltage bilateral slow
spike-wave discharges

modified hypsarrhythmia hypsarrhythmia

Course of EEG slow background, slow
generalized spike-wave
discharges and multifocal
(poly)spikes

slow background, left
temporal slowing, slow
generalized spike-wave
discharges, diffuse (poly)
spikes

not available slow background, diffuse slow
spike-wave discharges, sharp
waves-slow waves; (poly)spike
waves; paroxysmal fast
activity

slow background, diffuse
multifocal sharp waves and
sharp waves-slow waves;
paroxysmal fast activity

Neurological examination mild diffuse hypotonia, mild
ataxia with wide based gait,
mild tremor

general hypotonia general hypotonia axial hypotonia, secondary
microcephaly

axial hypotonia

Development at last
follow up

severe intellectual disability;
no speech; autism spectrum
disorder, behavioral problems
with self- injurious behavior

severe intellectual disability;
no speech; does not walk

severe intellectual disability;
no speech; does not walk;
behavioral problems with
self-injurious behavior

profound intellectual
disability; no speech; no
visual fixation; does not sit
or walk

profound intellectual
disability; no speech; no
visual fixation; does not sit
or walk

MRI normal normal normal generalized cerebral atrophy generalized cerebral atrophy

aAnnotated based on NCBI IDs: NM_004408.3 and NP_004399.2.
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Figure 2. Primary Protein-Protein Interaction Network of 139 Interconnected Proteins
This reflects 134 proteins that are affected by de novo substitutions identified among the 356 epileptic encephalopathy probands re-
ported here and 5 literature-introduced epileptic encephalopathy proteins (marked with an asterisk). Ingenuity Pathway Analysis
(IPA) annotated ‘‘synaptic junction transmission’’ proteins are marked in yellow. Known epileptic encephalopathy genes, including
the newly identifiedDNM1, are circled in gray. The geometric shapes reflect differing protein roles, as defined by IPA: enzyme, rhombus;
ion channel, vertical rectangle; kinase, inverted triangle; ligand-dependent nuclear receptor, horizontal rectangle; phosphatase, triangle;
transcription regulator, horizontal oval; transmembrane receptor, vertical oval; transporter, trapezoid; and unknown, circle.
from the synaptic membrane, and becomes essential dur-

ing high levels of neuronal activity.24 The expression of

DNM1 is upregulated during postnatal brain development

and peaks during neurite and synapse formation.25 Func-

tionally, DNM1 has five domains: (1) a GTPase domain

that binds and hydrolyzes GTP and contains four GTP

bindingmotifs (G1–G4), (2) amiddle domain that is impor-

tant for oligomerization, (3) a pleckstrin homology domain

that binds lipids, (4) a GTPase effector domain that fulfills

an assembly function and stimulates GTPase activity, and

(5) a proline-rich domain that interacts with SH3 domains

in other proteins (Figure 3).

All fiveDNM1 substitutions identified in this study affect

highly conserved residues (Figure 3). Four substitutions are

located in the GTPase domain, and two of these lie in a G
366 The American Journal of Human Genetics 95, 360–370, October
motif (c.194C>A [p.Thr65Asn] in G1 and c.618G>C [p.Ly-

s206Asn] in G4 [RefSeq accession numbers NM_004408.3,

NP_004399.2]). The fifth substitution lies in the middle

domain (Figure 3).

Several previous studies have introduced different dyna-

min mutant constructs into mammalian cells.26,27 The

overall effect was an impairment of endocytosis, as was

also shown for a mutant affecting the same amino acid

in G1, p.Thr65Ala, which blocked hydrolysis of GTP.26

Several other mutants have been shown to exert a domi-

nant-negative effect. Of particular interest in this regard

is the spontaneous substitution p.Ala408Thr (DNM1ftfl),

located in the middle domain of DNM1, in the so-called

fitful mouse.28 Mice heterozygous for the substitution pre-

sent with recurrent, often intractable, seizures whereas
2, 2014



A

B

Figure 3. Schematic Representation of DNM1 with Location of Substitutions and Conservation of Substitution Sites
(A) Structure of the DNM1 protein with indication of the different domains and the G1–G4motifs. Substitutions identified in this study
are shown below the figure, the substitution in the fitful mouse above the figure. PH, pleckstrin homology; GED, GTPase effector
domain; PRD, proline-rich domain.
(B) Sequence alignment in different species of the regions of the substitutions found in this study. Substitutions are highlighted in red.
homozygous mice have a more severe phenotype with

ataxia and often lethal seizures. DNM1ftfl showed impaired

oligomerization stalling endocytosis, and binding to wild-

type DNM1, thereby exerting a dominant-negative effect.

Because the loss of DNM1 preferentially affects inhibitory

synapses,24 it is possible that the stalled endocytosis leads

to inefficient recycling of synaptic vesicles with impaired

tonic firing at inhibitory synapses and thus seizures as a

result.28 It remains to be shown whether the five muta-

tions identified in this study exert a similar dominant-

negative effect.

While no other novel genes reached statistical signifi-

cance, the excess of mutations among intolerant genes oc-

curs only partially in either known or newly established

genes for epileptic encephalopathies. This indicates that

furthergenetic risk factorsarepresent inourcohort. Inpartic-

ular, we identify multiple de novo mutations in GABBR2,

FASN (MIM 600212), and RYR3 (Tables S1 and S2), making

them strong candidate epileptic encephalopathy genes. All

three genes are among the genes most intolerant to func-

tional variation (RVIS: GABBR2, 5.08%; FASN, 0.38%;

RYR3, 0.06%). GABBR2 encodes a subunit of the brain-ex-

pressed G protein coupled GABAB receptor. Knockout mice

exhibit spontaneous seizures and severe memory impair-

ment.29 Fatty acid synthase, a multifunctional protein en-

coded by FASN, plays a key role in de novo lipogenesis and

is highly active in adult neural stem cells. Deletion of the

gene in mice results in impairment of adult neurogenesis.30

Finally, RYR3 is a brain-expressed ryanodine receptor,

responsible for calcium release from intracellular stores.

RYR3 plays a role in synaptic plasticity and Ryr3 knockout

mice exhibit impaired spatial learning.31

After establishing a list of 26 definite epileptic encepha-

lopathy genes, we estimate that at least 12% (42/356) of

persons with infantile spasms or Lennox-Gastaut syn-
The Americ
drome have definitive disease-causing de novo mutations

in protein-coding regions (Table S1). We emphasize that

the method used to define this list of epileptic encephalop-

athy genes is highly conservative and relies only on statis-

tical evidence supporting an excess of reported de novo

SNVs in epileptic encephalopathy probands across multi-

ple studies. It does not incorporate any assessments of

the biological consequences of mutations. As a result,

GRIN2B did not reach our threshold in this analysis,

although it is clearly linked to epileptic encephalopathy

when considering evidence of both the presence of muta-

tions in selected proband cohorts and functional and elec-

trophysiological effects of mutations.7

The likelihood and hot-zone analysis suggest additional

causal genes beyond those securely implicated in our

study. Evidence for these genes will accumulate with

increasing sample sizes. This continuous increase of

causally implicated genes is already illustrated by the

identification of six additional genes with epileptic en-

cephalopathy-causing mutations since the publication of

the initial screen for de novo mutations in epileptic

encephalopathies (CHD2,3 DNM1, GABRA1,15 GNAO1,6

SLC35A2,5 and GRIN2A32,33). In all six genes, our initial

study had identified at least one de novo mutation, but

we did not have definite statistical evidence for their role

at the time.2 In the current cohort of 356 individuals, we

find additional de novo mutations in four of these new

genes (CHD2,DNM1,GNAO1, and SLC35A2, Table S1; clin-

ical data of not previously reported persons, Table S2).

In conclusion, by combining the data from two interna-

tional consortia, we demonstrate the important role of

damaging de novo mutations, confirm the role of five

recently described genes with epileptic encephalopathy-

causing mutations, and find secure evidence for a

causative role of DNM1 mutations in severe epileptic
an Journal of Human Genetics 95, 360–370, October 2, 2014 367



encephalopathies. Moreover, we provide suggestive evi-

dence for three other genes (GABBR2, FASN, and RYR3).

The extent of the genetic heterogeneity associated with

epileptic encephalopathies strongly motivates genome-

wide screening in the clinical setting, rather than more

targeted approaches. We advocate the establishment of a

centralized genomedata repositoryonepileptic encephalop-

athy probands to increase the speed of gene discovery in

these devastating neurological disorders. Collectively, our

datapresent evidence for apredominant roleof synapticdys-

regulation in epileptic encephalopathies, complementing

the prevailing channelopathy paradigm in epilepsy.
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