
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Machine Learning Embedded Nonparametric Mixture Regression Models

Permalink
https://escholarship.org/uc/item/4809d6nm

Author
Xue, Jiacheng

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4809d6nm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Machine Learning Embedded Nonparametric Mixture Regression Models

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Statistics

by

Jiacheng Xue

September 2022

Dissertation Committee:

Dr. Weixin Yao, Chairperson
Dr. Shujie Ma
Dr. Nanpeng Yu

Copyright by
Jiacheng Xue

2022

The Dissertation of Jiacheng Xue is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This Dissertation would never have been possible without the help and support of my super-

visor Dr. Weixin Yao, my committee members, my family, my friends and Helena. I would

first like to express my deepest gratitude to my supervisor, Dr. Yao, for offering me the

opportunity to be his advisee, for always encouraging and motivating me on the research,

for never blaming me for procrastinating at my work, for all the kind patience when my

learning pace was slow, and most importantly, for his endless support from the beginning

to the final stage. Thank you for all the knowledge you have shared you have taught, all of

which will be the greatest assets of my entire life.

Moreover, I would like to thank my committee members Dr. Shujie Ma and Dr. Nanpeng

Yu. I have a great deal of respect for you and thank you for offering me the precious oppor-

tunity to learn from you.

I would also like to offer my heartfelt thanks to the Departments of Statistics and Economics

for offering me positions as teaching assistants, especially during the COVID pandemic. I

could not imagine how I would have survived without your sponsorship. More importantly,

I would like to express my gratitude towards my friends during my graduate studies in UCR.

Many thanks to Lin, Ran, Jinhui, Song, Bibby and Sichen for offering help on both profes-

sional and personal aspects. Finally, I would like to thank my family, especially my mom

and Helena for simply always being there for me. I could not have achieved this without

your accompany.

iv

ABSTRACT OF THE DISSERTATION

Machine Learning Embedded Nonparametric Mixture Regression Models

by

Jiacheng Xue

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2022

Dr. Weixin Yao, Chairperson

A new class of nonparametric mixture regression models with covariate-varying

mixing proportions is introduced by embedding machine learning methods into mixtures of

regressions. Two new methods proposed in this article for the above topic. One method

uses the neural network to estimate mixing proportions nonparametrically while using the

maximum likelihood estimate to estimate all other component parameters. The new machine

learning embedded nonparametric mixture regression models offer more flexible estimation

compared to the traditional ones. More importantly, the new hybrid method could better

estimate the effects of multivariate covariates nonparametrically than the traditional kernel

regression methods that suffer from the well-known “curse of dimensionality". Additionally,

we extend the first approach by incorporating the neural network to estimate both mixing

proportions and regression component nonparametrically. Two modified EM algorithms are

proposed to carry out the estimation procedure for the two new approaches.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Literature Review of Mixture of Regression 1
1.2 Label Switching . 9
1.3 Identifiability . 10
1.4 Selecting the Number of Components . 12

2 Neural Network 14
2.1 Feed-Forward Neural Network . 16
2.2 Activation Functions . 17

2.2.1 Sigmoid Function . 17
2.2.2 Tanh Function . 19
2.2.3 ReLU Function . 19
2.2.4 Leaky ReLU Function . 19

2.3 Back-Propagation Algorithm . 20

3 Methodology 23
3.1 Machine Learning Embedded Semiparametric Mixtures of Regressions with

Covariate-Varying Mixing Proportions . 23
3.1.1 Likelihood Methods . 23
3.1.2 EM Algorithm . 24
3.1.3 NNEM Algorithm . 25

3.2 NeuralNet Embedded EM Algorithm for Nonparametric Mixture of Regressions 27
3.2.1 Likelihood Function . 27
3.2.2 Kernel Regression Method . 28
3.2.3 NeuralNet EM (NEM) Algorithm . 29
3.2.4 Mixture of Neural Network EM algorithm 31

vi

4 Simulation Studies 32
4.1 Metrics Overview . 33
4.2 Simulation Examples . 35

5 Real Data Analysis 59
5.1 Boston Housing Data . 59
5.2 Academic Performance Index . 66

6 Conclusions 70

A Random Forest Methods 77
A.1 Random Forest Simulation Results . 78

B More examples on NNEM 84

vii

List of Figures

1.1 Example: Tone dataset of Cohen (1980) [8] 4

2.1 Feed-forward neural network with L layers. 17

4.1 The left plot displays how the mixing proportion varies with the predictor x
and the right plot shows a scatterplot of a simulated data set in Example 1. . 37

4.2 The left plot displays the estimated mixing proportion versus the predictor for
four methods and the right plot displays the predicted y versus the predictor
for four methods. The black solid line represents the truth of Example 1. . . 38

4.3 The top 4 plots display the predicted y versus the predictor for four methods.
The bottom plots display the estimated mixing proportion versus the predic-
tor for four methods. The black solid line represents the truth of Example 1.
. 39

4.4 Plot of the estimated mixing proportion versus the index u for Example 2.
The black solid line represents the truth. 43

4.5 The left plot is the true mixing proportion versus the index x for Example 3.
The right plot is the scatterplot of simulated y versus x. 45

4.6 This plot shows the predicted value of y versus the covariate x in Example 3. 47
4.7 The left plot is the true mixing proportion versus the index x for Example 4.

The right plot is the scatterplot of simulated y versus x. 50
4.8 This plot shows the MSE(m̂j(x)) for each component in Example 4. 52
4.9 This plot shows MSE(π̂j(x)) for each component in Example 4. 53
4.10 The left plot is the true mixing proportion versus the index x for Example 2.

The right plot is the scatterplot of simulated y versus x. 55
4.11 This plot shows the MSE(m̂j(x)) for each component in Example 5. 57
4.12 This plot shows MSE(π̂j(x)) for each component in Example 5. 58

5.1 Histogram of rad in the real data. 61
5.2 Scatterplot for medv vs covariates in Boston data example. 62
5.3 Scatterplot for api00 vs covariates in API data example. 67
5.4 Boxplots for response variable and predictions for two clusters in API data. . 69

viii

A.1 The left scatterplot presents the relationship between response and predictor
and the right plot indicates how mixing proportion vary with predictor . . . 79

A.2 The top set scatterplot reflects mixture regression prediction based on pre-
dictor x1 for three different algorithm. The bottom set includes three plots
of the estimated mixing proportion versus predictor x1, in which black points
are the simulated data belong to component 1 and red point are generated
from component 2. 80

A.3 The left scatter plot is the relationship between y and x1, the right plots
depict two probability plots given x1 . 81

A.4 The left scatterplot present the relationship between response and predictor
; The right plot indicate how mixing proportion vary with predictor 82

A.5 The top three plots are the estimated y hat vs x1. The middle row plot set
is the relationship between the estimated prob2 and x1, the bottom plots are
the estimated prob3 and x1 . 83

B.1 The top three plots are the estimated y hat vs x1. The middle row plot set
is the relationship between the estimated prob2 and x1, the bottom plots are
the estimated prob3 and x1 . 85

B.2 The top three plots are the estimated y hat vs x1. The middle row plot set
is the relationship between the estimated prob2 and x1, the bottom plots are
the estimated prob3 and x1 . 86

ix

List of Tables

2.1 Non-linear activation functions. 20

4.1 Performance comparison of four methods based on MAB,MSE, CE, and PE
for n = 100, 500 and 1500 in Example 1. 40

4.2 Performance comparison of four methods based on MAB, MSE, CE, and PE
for n = 100, 500 and 1500 in Example 2. 42

4.3 Performance comparison of four methods based on MAB, MSE, CE, and PE
for n = 500 in Example 3. 46

4.4 Performance comparison of four methods based on MSE, CE, and PE for
n = 200, 500 and 2000 in Example 4. 51

4.5 Performance comparison of four methods based on MSE, CE, and PE for
n = 200, 500 and 2000 in Example 5. 56

5.1 Summary statistics for continuous variables for the Boston housing dataset. . 60
5.2 Frequency table for categorical variable in Boston data example. 60
5.3 Prediction error and classification error for the Boston housing data. 64
5.4 Estimated regression coefficients along with their standard errors by the boot-

strap method for NNEM, EM and MoE for the Boston housing data. 65
5.5 Summary statistics for continuous variables for the API dataset. 68
5.6 Summary statistics for continuous variables for the API dataset. 68

A.1 This table present mean squared error of coefficient for mixture linear re-
gression model, where β0j and β1j denoted as the intercept and slope for jth
component; mean squared error for the estimated mixing proportion; Classi-
fication accuracy, Sensitivity and Specificity; mean squared error of predicted
response variable . 79

A.2 Metrics for RFEM, EM and MoE . 82

x

Chapter 1

Introduction

The development of modern data storage technique has given statisticians and

scientists more and more data that is large and complex. Parametric models such as linear

regression are popular techniques in data modeling, but they may not be flexible to capture

nonlinearity in data. Nonparametric regression is able to allow the data to be determined by

themselves. However, nonparametric regression such as kernel based method would suffer the

“curse of dimensionality", which fails to perform well in multivariate data. Mixture regression

is hence invented to handle nonlinear pattern while keeping the regression component. It

models the joint density of the data using a Gaussian mixture instead of modeling the

regression function directly.

1.1 Literature Review of Mixture of Regression

The finite mixture regression is originated from the idea of finite mixture model,

an efficient tool to analyze data in a heterogeneous population consists of several unknown

1

latent homogeneous groups. It has been used for more than 100 years and the fundamental

knowledge of mixture models is remarked by a number of books including Titterington et al.

(1985) [47], McLachlan and Basford (1988) [36], Lindsay (1995) [30] and McLachlan and Peel

(2000) [35]. It is usually applied when there is a bimodal or multimodal pattern in the data.

For example, Li et al., (2006) [29] indicated the distribution of HIV RNA data presented a

bimodal shape because the patients were collected from a mixture of two groups with one

receiving suboptimal background therapy while the other more of the potent therapy.

When the data are clustered by the latent variable, finite mixture model is com-

monly used to analyze the data. The mixture model is extended to mixture regression when

a random variable with a finite mixture distribution depends on certain covariates. The

mixture regression models first introduced by Goldfeld and Quandt (1973) [13] are popular

tools to study the relationship between a response variables and covariates coming from

several unknown latent components. They are widely used in various fields, such as biology,

econometrics, medicine, and genetics, for example, Jiang and Tanner (1999) [24], Böhning

(1999) [4], Henning (2000), McLachlan and Peel (2000) [16], Skrondal and Rabe-Hesketh

(2004) [44], and Frühwirth-Schnatter (2006) [12]. Figure 1.1 shows an example of for the

application of mixture of regression. A pure fundamental tone was first played to a trained

musician. The musician was asked to tune an adjustable tone to the octave above the fun-

damental tone. The tuning ratio was recorded by measuring the adjusted tone divided by

the fundamental tone. The purpose of this experiment was to demonstrate the “two musical

perception theory”. Another application of mixture of regression model is related to interac-

tion term of linear regression, which is presented in Chapter 5 Real Data Application of this

2

article. For example, the traditional way of the researchers studying differential treatment

effects is through multiple regression models takes covariates such as gender and race into

account. This is known as an interaction, where an individual’s response to an intervention

is a product of the average response to the intervention and that individual’s characteris-

tics. Differential effects are present when behavior is influenced by environmental or social

factors. This can be thought of as risk factors, which suggests that there is an underlying

heterogeneity within populations of interest. It is important to capture the underlying het-

erogeneity of individuals’ experiences and account for its effect on the relationship between

predictors and outcomes. However, most research designs do not explicitly take into ac-

count the fact that different people will have different responses to interventions depending

on their environment. One method to consider the heterogeneity is applying interaction

term between covariates. However, this approach makes no distinction between a model

where the effects of explanatory variable on response variable differ as a function of another

covariate (Kraemer et al., 2008) [7]. The alternative approach to analyze differentiate effect

is using the mixture of regression model that could explicitly analyze model’s heterogeneity

by allowing model parameters to vary across latent variable.

3

Figure 1.1: Example: Tone dataset of Cohen (1980) [8]

Let Z be a latent cluster indicator with probability Pr(Z = j|x) = πj for j =

1, 2, ...J , where J is the number of mixture components, assumed to be known in this

article, and x is a (p+ 1) dimensional-vector with the first element being 1 and the other p

elements containing all the predictors. Given Z = j, the response variable Y is assumed to

be linearly related with x

Y|Z=j ∼ N(x⊤βββj , σ
2
j),

(1.1)

where βjβjβj = (β0j , β1j , ..., βpj)
⊤ is the coefficient vector for the jth component. Thus, without

4

observing Z, the distribution of the response variable Y given x can be written as

Y|x ∼
∑J

j=1 πjN(x⊤βββj , σ
2
j).

(1.2)

The unknown parameters can be estimated by the maximum likelihood estimate (MLE) via

the EM algorithm (Dempster et al., 1977) [9].

The limitations of model (1.2) are the strong assumptions of constant mixing pro-

portions and linear assumption on regression components. In many applications, the co-

variates also carry important information about mixing proportions. Without incorporating

such information, model (1.2) will provide biased, inconsistent, and even misleading sta-

tistical inference and data analysis results. Jacobs and Jordan (1991) [23] first proposed

the mixtures of experts (MoE) models, which model the mixing proportions as multinomial

logistic regressions with respect to covariates x, i.e.,

πj(x) = P (Z = j|x) =
exp(x⊤γj)∑J
j=1 exp(x

⊤γj)
, j = 1, . . . , J − 1, (1.3)

and
∑J

j=1 πj (x) = 1 for any x, where γjs are unknown multinomial logistic regression

coefficients. Then, the distribution of Y |x can be written as

f(y | x) =
J∑

j=1

P (Z = j | x)f(y | x, Z = j) =

J∑
j=1

πj (x)ϕ(y;x
Tβj , σ

2
j), (1.4)

where ϕ(y;µ, σ2) is the probability density function of the normal distribution with mean µ

and variance σ2, and πj (x) is the mixing probabilities for the component j.

Although the above MoE model can incorporate the covariates information into

the mixing proportion, it requires the validity of the parametric assumption of multinomial

logistic regressions.

5

Young and Hunter (2010) [59] proposed a semi-parametric mixture of regressions

model by employing nonparametric function on mixing proportions. πj (x) is estimated by

the idea of kernel density estimation. Let Ji to be defined as the cluster label for the ith

observation. Then define

zij =

1 if Ji = j

0 otherwise

. (1.5)

The mixing proportion πj(xi) can be calculated by

πj(xi) =

∑n
l=1 zljKh (xi − xl)∑n
l=1Kh (xi − xl)

, (1.6)

where

Kh (xi − xl) =
1

h1 · · ·hp
K
(
xi,1 − xl,1

h1
, . . . ,

xi,p − xl,p
hp

)
. (1.7)

Here, K denotes a (multivariate) kernel density function operating on p arguments and

h = (h1, . . . , hp)
T is the bandwidth vector.

Huang et al. (2014) [18] proposed methods to estimate πj(x) nonparametrically

based on kernel regression to reduce the possible modeling bias of multinomial logistic re-

gression. In the article, they proposed their new method for mixture of Gaussian process

incorporating both functional and inhomogeneous properties of the functional curves. Define

{y(t) : t ∈ T } is the observed curve, where T is a closed and bounded time interval [0, T].

Then the mixture of gaussian process is defined as:

y(t) ∼
J∑

j=1

πjN
{
µj(t), σ

∗2
j (t)

}
. (1.8)

Both µj(·) and σ∗2j (·) are nonparametric smoothing functions and were estimated by kernel

regression. For any t0 ∈ T , µj (tij) and σ∗2j (tij) are approximated by µj (t0) and σ∗2j (t0) for

6

tij in the neighborhood of t0. The corresponding local log-likelihood function is

n∑
i=1

J∑
j=1

z
(l+1)
ij

Ni∑
i=1

[
log ϕ

{
yij | µj (t0) , σ∗2j (t0)

}]
Kh (tij − t0) , (1.9)

So µj (t0) and σ∗2j (t0) , j = 1, . . . , J , can be calculated by:

µj (t0) =

∑n
i=1

∑J
j=1 zijKh (tij − t0) yij∑n

i=1

∑J
j=1 zijKh (tij − t0)

(1.10)

σ∗2j (t0) =

∑n
i=1

∑J
j=1 z

(l+1)
ij Kh (tij − t0) {yij − µj (t0)}2∑n

i=1

∑J
j=1 zijKh (tij − t0)

. (1.11)

Huang and Yao (2012) [20] and Wang et al. (2014) [50] proved that the semipara-

metric mixture of regression model (1.4) without parametric assumption about πj (x) (i.e.,

with covariate-varying mixing proportions) will be identifiable under smoothing conditions

for πj(xi). They demonstrated that the new method could work much better than the MoE

when the relationship between the mixing proportions and the covariates is not monotone.

However, their nonparametric estimation methods are based on the kernel regression and

are practically difficult to use when applied to multivariate covariates due to the “curse of

dimensionality".

In this thesis, we first proposed a machine learning embedded semi-parametric mix-

ture of regressions with covariate-varying mixing proportions. More specially, we proposed

a machine learning embedded EM-type algorithm to estimate both mixing proportion and

parameters of regression components. The distribution of Y |x can be written as

f(y | x) =
J∑

j=1

P (Z = j | x)f(y | x, Z = j) =
J∑

j=1

πj (x)ϕ(y;mj(xi;βj), σ
2
j), (1.12)

wheremj(xi;βj) = xTβj . We propose using the neural network algorithm to estimate πj(x)

nonparametrically. The proposed new hybrid semiparametric estimation method enjoys at

least the following four benefits.

7

1. The new method offers a more flexible estimation compared with the fully parametric

MoE.

2. The new method could better handle multivariate covariates than the traditional kernel

regression based methods that suffer the well-known “curse of dimensionality".

3. Compared to the fully machine learning methods, the new hybrid estimation method

still enjoys the nice interpretation of parametric statistical models since the new

method retains the linear model assumption for each component regression.

4. The hybrid idea of this new method can be easily extended to other semiparametric

statistical models and other machine learning methods.

Although the NNEM algorithm could relax the assumption of estimating mixing

proportion, the linear assumption of regression component is strong and fails to capture

the nonlinear pattern in data. A lot of contributions have been made to extend the tradi-

tional parametric mixture of linear regression models. Cao and Yao (2012) [5] suggested a

semiparametric mixture of binomial regression. Huang et al. (2013) [19] proposed a fully

nonparametric mixture of regression models, which assumed the mixing proportions, the

regression functions, and the variance functions to be nonparametrically depending on ex-

planatory variable; Xiang and Yao (2016) [53] relaxed the parametric assumptions on the

mean functions while the mixing proportion and variances were assumed to be constant.

However, the limitation of kernel regression was obvious for high dimensional data.

So in this thesis, we proposed another new method, the NeuralNet embedded EM

algorithm (NEM) that assumes the πj (x) and mj(xi;βj) in (1.4) are nonparametrically

8

depending on the covariate. This nonparametric estimation method outperforms under the

following circumstances.

1. The sub-population of data are non-linear.

2. The new method could better handle multivariate covariates similar to NNEM.

3. This new method can also be easily extended to other nonparametric statistical models

and other machine learning methods.

1.2 Label Switching

The problem of label switching, where the labels assigned to different groups in a

mixture model are swapped, has been a challenge for mixture model. Let

θh =
(
θh(1), . . . , θh(J)

)
, (1.13)

where h = (h(1), . . . ,h(J)) is the identity permutation of (1, . . . , J). The likelihood function

L (θ;X) is the same as L
(
θh;X

)
. Such permutation of component label is called label

switching. There are several approaches to deal with label switching. Aitkin and Rubin

(1985) [2] proposed putting constraints on one of the estimated parameters, for example, set

π̂1 < . . . < π̂J . However, it is not always possible when it comes to find such constraints. It

is difficult to choose the right one, especially for multivariate problems. Different constraints

can generate significantly different results, which might fail to predict the overall effect. Yao

(2015) [57] proposed two approaches for labeling. One is to label the parameter estimates by

maximizing the complete likelihood. The other one is by minimizing the Euclidean distance

between the classification probabilities and the latent true labels.

9

1.3 Identifiability

Identifiability is a necessary condition for the existence of consistent estimates for

the parameters of mixture models. It means that the same model cannot be constructed

by different mixing distributions of members from a given class of distributions. Teicher

(1963) [46] proved that the class of all mixtures of one-dimensional normal distributions is

identifiable. Yakowitz and Spragins (1968) [56] extended the identifiability to the class of

all Gaussian mixtures. Henning (2000) [16] proposed the identifiability for linear regression

mixtures with Gaussian errors under certain conditions. Many finite mixtures of continuous

distribution families are identifiable based on the results from existing research including

finite mixtures of univariate normal distributions, finite mixtures of multivariate normal

distributions, finite mixtures of exponential distributions, finite mixtures of Gamma dis-

tributions, etc. In addition, finite mixtures of Poisson distributions and finite mixtures of

negative binomial distributions are also identifiable. And finite mixtures of binomial distri-

butions are identifiable when the number of components is less than or equal to half of the

number of trials of the binomial distributions. Wang et al.(2014) [50] extended the identi-

fiability to semipararmetric mixture of regression and nonparametric mixture of regression.

In their article, they defined the identifiability as follows:

Semiparametric Mixture of GLMs: Define
∑C

c=1 πc(z)f
{
y;xTβc, ϕc

}
and∑D

d=1 λd(z)f
{
y;xTγd, ψd

}
to be any two semiparametric mixture of GLMs of the model

(1.4), where πc(z) > 0, c = 1, . . . , C,
∑C

c=1 πc(z) = 1, λd(z) > 0, d = 1, . . . , D,
∑D

d=1 λd(z) =

10

1. The model (1.4) is said to be identifiable, if

C∑
c=1

πc(z)f
{
y;xTβc, ϕc

}
=

D∑
d=1

λd(z)f
{
y;xTγd, ψd

}
(1.14)

for all x ∈ X and z ∈ Z implies that C = D and that the summations in (1.14) can be

reordered such that πc(z) = λc(z), βc = γc, and ϕc = ψc, c = 1, . . . , C. The model (1.4) is

identifiable if:

1. The domain X of x contains an open set in Rp, and the domain Z of z has no isolated

points.

2. πc(z) > 0 are continuous functions, c = 1, . . . , C, and (βc, ϕc) , c = 1, . . . , C, are

distinct pairs.

3. The parametric mixture model
∑C

c=1 πcf {y; θc, ϕc} is identifiable.

Nonparametric Mixture of GLMs: Define
∑C

c=1 πc(x)f {y; θc(x), ϕc(x)} and∑D
d=1 λd(x)f {y; γd(x), ψd(x)} to be any two nonparametric mixtures of GLMs of the form

(1.12), where πc(x) > 0, c = 1, . . . , C,
∑C

c=1 πc(x) = 1, λd(x) > 0, d = 1, . . . , D,
∑D

d=1 λd(x) =

1. The model (1.12) is said to be identifiable, if

C∑
c=1

πc(x)f {y; θc(x), ϕc(x)} =
D∑

d=1

λd(x)f {y; γd(x), ψd(x)} (1.15)

for all x ∈ X implies that C = D and that the summations in (1.15) can be reordered such

that πc(x) = λc(x), θc(x) = γc(x), and ϕc(x) = ψc(x), c = 1, . . . , C. The model (1.15) is

identifiable if the following conditions are satisfied:

11

1. The domain X of x is an open set in Rp.

2. πc(x) > 0 are continuous functions, and θc(x) and ϕc(x) have continuous first deriva-

tive, c = 1, . . . , C.

3. For any x and 1 ≤ j ̸= k ≤ C
1∑

l=0

∥∥∥θ(l)j (x)− θ(l)k (x)
∥∥∥2 + 1∑

l=0

∥∥∥ϕ(l)j (x)− ϕ(l)k (x)
∥∥∥2 ̸= 0,

where g(l) is the lth derivative of g and equal to g if l = 0.

4. The parametric mixture model
∑C

c=1 πcf {y; θc, ϕc} is identifiable.

1.4 Selecting the Number of Components

The number of components selection is very important in mixture regression mod-

els. McLachlan and Peel (2000) [35] discussed many common methods. In this article, the

number of components is known. For parametric mixture models, many methods have been

proposed to deal with this selection issue. One popular and simple approach is the infor-

mation criteria. Akaike’s Information Criterion (AIC) of Akaike, the Bayesian Information

Criterion (BIC) are usually applied as the criteria. The form can be written as

AIC = −2 logL(θ̂) + 2d, (1.16)

BIC = −2 logL(θ̂) + 2d log(n), (1.17)

where θ̂ is the MLE of unknown parameters including unknown mixing proportion functions,

d is the number of parameters in the mixture of model and n is the number of observations.

The choice of the number of components is related to degrees of freedom based on (1.16)

12

and (1.17). However, the degrees of freedom of the proposed model are not clear. As one

of our future works, more research are needed on how to choose the number of components

for modeling.

The rest of the paper is structured as follows. In Chapter 2, we introduce the

background of feed-forward neural network and back propagation algorithm. In Chapter 3,

we derived the estimation procedure of a neural network embedded EM algorithm (NNEM)

to estimate mixing proportion and the advanced method of NEM that estimates both mixing

proportion and regression components by neural network. And it also includes the preview

of the methods that we used to compare with ours in simulation including mixture of expert

(MoE), mixture of neural network (MNN), kernel based EM algorithm (KernEM) and the

regular EM algorithm. In Chapter 4, we presented the simulation results for NNEM and

NEM. In Chapter 5, we demonstrated two real data analysis of the Boston Housing Price

dataset and the API dataset. Chapter 6 concluded the article with some discussion and

future directions for research.

13

Chapter 2

Neural Network

Machine learning methods are being rapidly applied in statistical research recently.

Ratkovic (2014) [42] applied Support Vector Machine (SVM) to estimate causal effect. Wa-

ger and Athey (2018) [49] proposed a nonparametric causal random forest for estimating

heterogeneous treatment effects. Neural networks, one of the machine learning methods

developed by McCulloch and Pitts (1943) [34], are one of the most popular approaches to

machine learning. They have been applied to various fields including classification, causal

inference, signal processing, image processing, control systems and stock market predictions.

The idea of neural networks originates from biological brains. The fundamental element of

a neural network is a “neuron". Each neuron in the network is capable of receiving input

signals, as well as processing and transmitting output signals. In addition, each neuron is

connected with at least one other neuron through weights based on the degree of importance

of the given connection in the neural network. Two main categories of neural network ar-

chitectures exist based on the type of connections between neurons, the feed-forward neural

14

network and the recurrent neural network. The earliest application of feed-forward neural

networks is analyzed in Lapedes and Farber (1987a, b) [27, 28]. The common part of the two

neural networks is that the connections between neurons are from distinct layers, so that each

neuron in one layer is connected to every other neuron in the next layer. Furthermore, the

signal flow will be transmitted across the network. The difference between the feed-forward

and recurrent neural network is the “feedback" signal from the output neurons to the input

neurons across the networks. In the feed-forward neural network, signals flow only one way

from input neurons to output neurons. On the other hand, if there is a “feedback" signal, the

network is called a “recurrent neural network". The application of recurrent neural network

can be found in Jordan (1986) [25]. Neural networks is a state-of-art tool used in present ma-

chine learning field including supervised learning, unsupervised learning and reinforcement

learning. There are numerous research of statistics applied neural networks. For example, in

statistical literature, Hornik et al. (1989) [17] showed that single-layer feedforward networks

can approximate any measurable function, regardless of the activation function. McCaffrey

and Gallant (1994) [33] proved convergence rates for one-layer artificial neural networks

(ANN). Farrell et al. (2021) [11] established novel rates of convergence for semiparametric

causal inference. Chen et al. (2020) [6] proposed a unified approach for efficient estimation

of treatment effects using artificial neural networks (ANN) when the number of covariates

is allowed to increase with sample size. In this article, we employed the feed-forward neural

network and trained the network using a backpropagation algorithm. However, our hybrid

method can be similarly implemented if other machine learning methods are used.

15

2.1 Feed-Forward Neural Network

Figure 2.1 shows an example of a feed-forward neural network containing input,

hidden, and output layers. The first layer is the input layer, which receives the input of raw

data and passes it to the hidden layer. The feed-forward neural network can have zero or

multiple hidden layers. The hidden layers perform computations and transfer information

from the input neurons to the output neurons. The output layer is the last layer in a neural

network, which receives inputs from the hidden layer and performs similar computations

as shown in the hidden layers. Each layer is composed of multiple neurons. The neurons

in the network are inspired by biological neurons, receiving inputs from the previous layer

and producing outputs by applying certain transformations on the inputs provided. The

architecture of the neural networks can be summarized as follows. The connection between

the jth neuron in the lth layer and ith neuron in the (l + 1)th layer is characterised by

the synaptic weight coefficient ω(l)
ij and the bias threshold b(l)

i . Each neuron in the network

receives “weighted” information from the connected neurons and produces an output by

transmitting the weighted sum of those input signals through an “activation function”. The

output in the ith neuron of the (l + 1)th layer is

x
(l+1)
i = f(b

(l)
i +

∑
j

ω
(l)
ij x

(l)
j), (2.1)

where f is an activation function. Table 2.1 shows some examples of commonly used non-

linear activation functions including the traditional function Sigmoid, Tanh and Rectified

Linear Unit function (ReLU) (Nair et al.,2010) [40].

16

...

...

...
...

x
(0)
1

x
(0)
2

x
(0)
3

x
(0)
N

x
(1)
1

x
(1)
J

x
(L−1)
1

x
(L−1)
J

x
(L)
1

ω
(0)
11

ω
(0)
1N

ω
(L−1)
11

ω
(L−1)
1J

Input
layer

Hidden
layer

Hidden
layer

Output
layer

. . .

Figure 2.1: Feed-forward neural network with L layers.

2.2 Activation Functions

Activation functions are used to compute weights and bias in the neuron. The

derivative of the activation function is used in backpropagation afterwards. Therefore, a

differentiable function is suitable as an option of activation function.

2.2.1 Sigmoid Function

The sigmoid activation function can be referred to as the logistics function (Turian

et al., 2009) [48]. The sigmoid function is a smooth, S-shaped curve that mainly applied for

binary classification. It is easy to understand and widely used in artificial neural networks.

The range of this function is bounded within (0, 1) and is also a differentiable real function.

The sigmoid function is usually employed in the output layer of neural networks to predict

17

probability output, which can be equivalent of logistics regression. An extension of sigmoid

function is called softmax function, which generalizes the binary classification to a multi-class

classification (Goodfellow et al., 2016) [14]. The softmax function is defined as

fi(x) =
e−xi∑
j e

−xj
. (2.2)

The Softmax function returns probabilities of each class with the target class having the

highest probability. One disadvantage of sigmoid-based function is that it suffers gradient

vanishing issue. There will be small gradient in either end of the sigmoid function as the

derivative is approaching to 0. This would be a considerable issue for Multilayer Perceptron

(MLP). Because of the successive multiplication of these derivative terms, the gradient value

will become smaller and smaller and finally vanishes leading to a slow convergence ultimately.

Another drawback with sigmoid function is the non-zero centered output producing positive

result all the time thereby causing the derivative to be either all positive or all negative.

Therefore, the training process will be slow to converge. One way to avoid the non-zero

centered issue is to apply Layer Normalization. The output in the ith neuron of the (l+1)th

layer could be re-written as:

x
(l+1)
i = f(b

(l)
i +

∑
j

ω
(l)
ij N(x

(l)
j)), (2.3)

N(x
(l)
j) =

x
(l)
j − µ

(l)
j

σ
(l)
j

, (2.4)

where µ(l)j and σ(l)j are the mean and standard deviation for the input. Layer Normalization

could handle non-zero centered problem by reshaping the input distribution and thus provide

better convergence.

18

2.2.2 Tanh Function

Another approach to solve the above problem is to use tanh function as the ac-

tivation function. The tanh function is an extended version of sigmoid function, which

extends the output range from (0, 1) to (-1, 1). It relaxes the issue of the non-zero centered

output from sigmoid function. The Tanh became gives better training performance for mul-

tilayer neural networks compared to sigmoid function (Karlik et al., 2011) [26]. However,

the vanishing gradient problem cannot be solved by tanh function either.

2.2.3 ReLU Function

The rectified linear unit (ReLU) activation function has been the most commonly

used function in deep learning. ReLU is first proposed by (Nair et al.,2010) [40]. The

function rectifies the negative input value and force the output to be 0 and therefore solve

the vanishing gradient issue. One of the advantage of ReLU is the fast computation speed,

since it doesn’t involve in exponential and division calculation. However, one significant

drawback of ReLU is known as the Dying-ReLU problem (Agarap, 2018) [1], where most

input would possibly be negative and thus generate outputs with 0 value. This would

make the neuron inactive and prevent the training process from updating weights during

backpropagation.

2.2.4 Leaky ReLU Function

Leaky ReLU is an extended version of ReLU but avoiding the Dying-ReLu problem.

Leaky ReLU activation was introduced in Maas et al. (2013) [32]. It applied a small value α

multiplier, e.g., 0.01 to the negative part of ReLU and successfully prevented the problem.

19

Name Function Derivative Figure

Sigmoid f(x) = 1
1+e−x f ′(x) = f(x)(1− f(x))2

o

Tanh f(x) = ex−e−x

ex+e−x f ′(x) = 1− f(x)2
o

ReLU f(x) =

{
0 if x < 0

x if x ≥ 0.
f ′(x) =

{
0 if x < 0

1 if x ≥ 0.

o

Leaky ReLU f(x) =

{
αx1(α>0) if x < 0

x if x ≥ 0.
f ′(x) =

{
α if x < 0

1 if x ≥ 0. o

Table 2.1: Non-linear activation functions.

2.3 Back-Propagation Algorithm

Back-propagation (Rumelhart et al., 1986a) [43] is a stochastic gradient descent

algorithm widely used for training neural networks. It updates the synaptic weights by

calculating the derivative of a cost function with respect to the synaptic weights w and the

bias b, where w collects all the weight coefficients and b collects all the bias thresholds. The

updating rate for the weights and bias are controlled by the “learning rate,” ranging from 0

to 1.

20

The computation procedure can be described as follows:

1. Set initial values w(0) and b(0).

2. Define the cost error function J(w, b),

J(w, b) =
1

2

∥∥∥fw,b(x
(0))− y

∥∥∥2 (2.5)

if Y is a continuous response, and

J(w, b) = −y⊤ log{fw,b(x
(0))} − (1− y)⊤ log{1− fw,b(x

(0))}, (2.6)

if Y is a binary response, where y = (y1 . . . yn) is the vector of all observed values of

the response variable, and fw,b(·) is the function of the neural network mapping the

input x(0) to the output. If yi = 1, only first term matters, if yi = 0 only second term

matters. The cross-entropy error function is used to calculate the deviance between

the predicted value and the actual value.

3. Chain rule is used to calculate the partial derivative of the error function with respect

to weights. Define t(l)j =
∑

j ω
(l)
ij x

(l)
j , then

∂J

∂w
(l)
ij

=
∂J

∂x
(l+1)
j

∂x
(l+1)
j

∂w
(l)
ij

=
∂J

∂x
(l+1)
j

∂x
(l+1)
j

∂t
(l)
j

∂t
(l)
j

∂w
(l)
ij

, (2.7)

∂t
(l)
j

∂w
(l)
ij

=
∂

∂w
(l)
ij

(
n∑

k=1

w
(l)
kj x

(l)
k

)
=

∂

∂w
(l)
ij

w
(l)
ij x

(l)
i = x

(l)
i (2.8)

The derivative of the output of neuron j with respect to its input is simply the partial

derivative of the activation function. For example, if activation function is sigmoid

21

function, then

∂x
(l+1)
j

∂t
(l)
j

=
∂f(t

(l)
j)

∂t
(l)
j

= f(t
(l)
j)(1− f(t(l)j)) = t

(l+1)
j (1− t(l+1)

j) (2.9)

∂J

∂x
(l+1)
j

=
∑
ℓ∈L

(
∂J

∂tℓ

∂tℓ

∂x
(l+1)
j

)
, (2.10)

where L is the set that receive input from neuron j.

4. Iterate the following steps until some convergence criterion is approached to get ŵ and

b̂

w
(l)
ij ← w

(l)
ij − α

∂

∂w
(l)
ij

J(w, b), (2.11)

b
(l)
j ← b

(l)
j − α

∂

∂b
(l)
j

J(w, b), (2.12)

where α is the learning rate and the partial derivatives of the cost function J(w, b)

are evaluated at the current updated parameter values.

5. Output f
ŵ,

ˆb
(x(i)) as the fitted value for y.

22

Chapter 3

Methodology

3.1 Machine Learning Embedded Semiparametric Mixtures of

Regressions with Covariate-Varying Mixing Proportions

3.1.1 Likelihood Methods

Given the observations {(x1, y1), . . . , (xn, yn)} from the mixture regression model,

the log-likelihood function is

ℓ(θ|X,y) =
n∑

i=1

log

J∑

j=1

πj(xi)ϕ
(
yi;x

T
i βj , σ

2
j

), (3.1)

where X = (x1,x2, . . . ,xn),y = (y1, . . . , yn), and θ collects all unknown parameters in-

cluding unknown mixing proportion functions. It is well known that there are no explicit

solutions for the mixture likelihood even if the mixing proportions have parametric forms.

This likelihood function has multiple modes, which will be difficult to find the

global maximum. Theoretically the MLE of θj is calculated as:

23

∂ℓ

∂θj
=

n∑
i=1

∂

∂θj
log

J∑
j=1

πj(xi)ϕ
(
yi;x

T
i βj , σ

2
j

)
=

n∑
i=1

1∑J
j=1 πj(xi)ϕ

(
yi;xT

i βj , σ
2
j

)πj(xi)
∂

∂θj
ϕ
(
yi;x

T
i βj , σ

2
j

)

=
n∑

i=1

πj(xi)ϕ
(
yi;x

T
i βj , σ

2
j

)
∑J

j=1 πj(xi)ϕ
(
yi;xT

i βj , σ
2
j

) 1

ϕ
(
yi;xT

i βj , σ
2
j

) ∂

∂θj
ϕ
(
yi;x

T
i βj , σ

2
j

)

=

n∑
i=1

πj(xi)ϕ
(
yi;x

T
i βj , σ

2
j

)
∑J

j=1 πj(xi)ϕ
(
yi;xT

i βj , σ
2
j

) ∂

∂θj
log ϕ

(
yi;x

T
i βj , σ

2
j

)
= 0.

(3.2)

So maximizing the likelihood could be considered as maximizing weighted likelihood func-

tion. However, the likelihood equation will have multiple roots and, which can be easily

converged into local maxima.

3.1.2 EM Algorithm

The EM algorithm (Dempster et al., 1977) [9] is commonly used to maximize the

mixture likelihood. Let zij be the unobserved indicator such that zij = 1(zi=j), where zi is

the component label of the ith observation. Then the complete log-likelihood function for

(X,y, z) can be written as

ℓc (θ|XXX,y, z) =
n∑

i=1

J∑
j=1

zij log
{
πj(xixixi)ϕ

(
yi;x

T
i βj , σ

2
j

)}
, (3.3)

where z = (z11, . . . , z1J , z21, . . . , znJ). The EM algorithm consists of iterating between E-step

(Expectation) and M-step (Maximization) until convergence. Let θ(t) be the parameter esti-

mate at the tth iteration. At (t+1)th iteration, the E-step finds the conditional expectation

24

of the complete log-likelihood function (3.3) given the current parameter estimate

θ(t) : Q(θ;θ(t)) = E
θ(t) [ℓc (θ|XXX,y, z) |X,y] . (3.4)

Note that ℓc (θ|XXX,y, z) is a linear function of the latent indicator zijs. Therefore, the E-step

simplifies to the computation of conditional expectation of zijs,

p
(t)
ij = P

(
Zij = 1|X,y,θ(t)

)
. (3.5)

. M-step then finds θ(t+1) by maximizing Q(θ;θ(t)) over θ, where

Q(θ;θ(t)) =

n∑
i=1

J∑
j=1

p
(t)
ij log

{
πj(xixixi)ϕ

(
yi;x

T
i βj , σ

2
j

)}
=

n∑
i=1

J∑
j=1

p
(t)
ij log πj(xi) +

n∑
i=1

J∑
j=1

p
(t)
ij log

{
ϕ
(
yi;x

T
i βj , σ

2
j

)}
. (3.6)

Since ϕ
(
yi;x

T
i βj , σ

2
j

)
is a Gaussian density function, the updates for βββj and σ2j have

an explicit formula. To estimate πj(x) nonparametrically and better handle multivariate

covariates, we proposed incorporating the neural network machine learning method into

the estimation of πj(x) in the M-step, i.e., we update π̂(t+1)
j (xi) = fw,b(xi) by the neural

network introduced in Section 2 using {ẑi = argmax
j

p
(t)
ij , i = 1, . . . , n, j = 1, . . . , J} as the

input for the response and xi as the input for the covariates.

3.1.3 NNEM Algorithm

The NNEM is proposed for semiparametric mixture of regression. We summarized

the proposed neural network embedded EM (NNEM) algorithm as follows.

Algorithm 3.1.1 Given the initial values θ̂
(0)

, iterate the following E-step and M-step until

convergence.

25

E-Step: Given the current parameter estimates θ(t), compute

p
(t)
ij =

π
(t)
j (xi)ϕ

(
yi;x

T
i β

(t)
j , σ

2(t)
j

)
∑J

j=1 π
(t)
j (xi)ϕ

(
yi;xT

i β
(t)
j , σ

2(t)
j

) ,
where i = 1, . . . , n, j = 1, . . . , J.

M-Step: Update βj and σj by

β̂ββ
(t+1)

j = argmin
βj

n∑
i=1

p
(t)
ij (yi − xxx

⊤
i βββj)

2 =

(
n∑

i=1

p
(t)
ij xix

⊤
i

)−1(n∑
i=1

p
(t)
ij xiyi

)
, (3.7)

σ̂
2(t+1)
j =

∑n
i=1 p

(t)
ij

(
yi − xTi β̂

(t+1)
j

)2
∑n

i=1 p
(t)
ij

, j = 1, . . . , J. (3.8)

Update π̂(t+1)
j (xi) = fw,b(xi) based on the neural network using {ẑi = argmax

j
p
(t)
ij , i =

1, . . . , n, j = 1, . . . , J} as the input for the response and xi as the input for the covari-

ates.

If πj(x) is assumed to be constant by the traditional mixture regression models, then the

regular EM algorithm updates πj by

π
(t+1)
j =

1

n

n∑
i=1

p
(t)
ij .

If πj(x) is assumed to follow the assumption of MoE in (1.3), then γjs can be updated in

M-step by maximizing
n∑

i=1

J∑
j=1

p
(t)
ij log πj(xi).

In Young and Hunter(2010) [59], their nonparametric approach employed the idea of kernel

regression (Nadaraya, 1964) [39] estimating πj(x) by

πj(xi)
(t+1) =

∑n
l=1 p

(t)
lj Kh (xi − xl)∑n

l=1Kh (xi − xl)
, (3.9)

26

where

Kh (xi − xl) =
1

h1 · · ·hp
K
(
xi,1 − xl,1

h1
, . . . ,

xi,p − xl,p
hp

)
. (3.10)

Here, K denotes a (multivariate) kernel density function operating on p arguments and

h = (h1, . . . , hp)
T is the bandwidth vector. Based on the mixture regression model estimate

from Algorithm 1, we can then classify the data by

ẑi = argmax
j

p̂ij , i = 1, . . . , n. (3.11)

3.2 NeuralNet Embedded EM Algorithm for Nonparametric

Mixture of Regressions

In this section, we first introduced the kernel based EM algorithm for nonparamet-

ric mixture of regression by Huang et al. (2013) [19] and then proposed the NeuralNet EM

algorithm for Nonparametric Mixture of Regressions.

3.2.1 Likelihood Function

Given the observations {(x1, y1), . . . , (xn, yn)} from the mixture regression model,

the log-likelihood function for the nonparametric mixture of regression is

ℓ(θ|X,y) =
n∑

i=1

log

J∑

j=1

πj(xi)ϕ
(
yi;mj(xi), σj(xi)

2
), (3.12)

where X = (x1,x2, . . . ,xn),y = (y1, . . . , yn), and θ collects all unknown parameters includ-

ing unknown mixing proportion functions. Note that πj(·),mj(·) and σ2j (·) are nonparamet-

ric functions.

27

3.2.2 Kernel Regression Method

Similar to (1.9), the local log-likelihood can be written as

ℓn (θ|X,y) =
n∑

i=1

log

J∑

j=1

πjϕ
(
yi;mj , σ

2
j

)Kh (xi − xl) , (3.13)

where πj , mj and σ2j are the local constants in kernel regression used to approximate πj(xi),

mj(xi) and σj(xi)
2. Kh(·) = h−1K(·/h) is the rescaled kernel of a kernel function K(·) with

a bandwidth h. The complete log-likelihood is

n∑
i=1

J∑
j=1

zij
[
log πj(xi) + log ϕ

{
yi;mj (xi) , σ

2
j (xi)

}]
(3.14)

Then in the E-step, the expectation of latent variable zij is given by

p
(t+1)
ij =

π
(t)
j (xi)ϕ

{
yi;m

(t)
j (xi) , σ

2(t)
j (xi)

}
∑J

j=1 π
(t)
j (xi)ϕ

{
yi;m

(t)
j (xi) , σ

2(t)
j (xi)

} . (3.15)

In the M-step, they maximize

n∑
i=1

C∑
c=1

z
(t+1)
ij

[
log πj + log ϕ

{
yi;mj , σ

2
j

}]
Kh (xi − xl) (3.16)

And similar to (3.9), (1.10) and (1.11), they update πj(xi), mj(xi) and σj(xi) as follows:

πj(xi)
(t+1) =

∑n
l=1 p

(t)
lj Kh (xi − xl)∑n

l=1Kh (xi − xl)
, (3.17)

m
(t+1)
j (xi) =

n∑
i=1

w
(t+1)
ij (xi)yi/

n∑
i=1

w
(t+1)
ij (xi), (3.18)

σ
2(t+1)
j (xi) =

∑n
i=1w

(t+1)
ij (xi)

{
yi −m(t+1)

j (xi)
}2

∑n
i=1w

(t+1)
ij (xi)

, (3.19)

where w(t+1)
ij (xi) = r

(t+1)
ij Kh (xi − xl).

28

3.2.3 NeuralNet EM (NEM) Algorithm

The method introduced in Section 3.2.2 are based on kernel estimation methods and

are practically difficult to handle multivariate covariates due to the “curse of dimensionality".

In this section, we proposed an advanced method that applied neural network to estimate

both mixing proportion and regression components. Similar to (3.12), the log-likelihood is

defined as

ℓ(θ|X,y) =
n∑

i=1

log

J∑

j=1

πj(xi)ϕ
(
yi;mj(xi), σ

2
j

), (3.20)

where X = (x1,x2, . . . ,xn),y = (y1, . . . , yn), and θ collects all unknown parameters includ-

ing unknown mixing proportion functions. The complete log-likelihood is defined as

ℓc (θ|XXX,y, z) =
n∑

i=1

J∑
j=1

zij log
{
πj(xixixi)ϕ

(
yi;mj(xi), σ

2
j

)}
, (3.21)

where z = (z11, . . . , z1J , z21, . . . , znJ). At (t+1)th iteration, the E-step finds the conditional

expectation of the complete log-likelihood function (3.21) given the current parameter esti-

mate

θ(t) : Q(θ;θ(t)) = E
θ(t) [ℓc (θ|XXX,y, z) |X,y] . (3.22)

Note that ℓc (θ|XXX,y, z) is a linear function of the latent indicator zijs. Therefore, the E-step

simplifies to the computation of conditional expectation of zijs,

p
(t)
ij = P

(
Zij = 1|X,y,θ(t)

)
. (3.23)

29

M-step then finds θ(t+1) by maximizing Q(θ;θ(t)) over θ, where

Q(θ;θ(t)) =
n∑

i=1

J∑
j=1

p
(t)
ij log

{
πj(xixixi)ϕ

(
yi;mj(xi), σ

2
j

)}
=

n∑
i=1

J∑
j=1

p
(t)
ij log πj(xi) +

n∑
i=1

J∑
j=1

p
(t)
ij log

{
ϕ
(
yi;mj(xi), σ

2
j

)}
. (3.24)

The maximization of (3.24) is maximizing

n∑
i=1

J∑
j=1

p
(t)
ij log πj(xi) (3.25)

and for j = 1, ..., J ,
n∑

i=1

J∑
j=1

p
(t)
ij log

{
ϕ
(
yi;mj(xi), σ

2
j

)}
. (3.26)

Algorithm 3.2.1 Given the initial values θ̂
(0)

, iterate the following E-step and M-step until

convergence.

E-Step: Given the current parameter estimates θ(t), compute

p
(t)
ij =

π
(t)
j (xi)ϕ

(
yi;m

(t)
j (xi), σ

2(t)
j

)
∑J

j=1 π
(t)
j (xi)ϕ

(
yi;m

(t)
j (xi), σ

2(t)
j

) ,
where i = 1, . . . , n, j = 1, . . . , J.

M-Step: Update mj(xi) and σj by

m̂
(t+1)
j (xi) = argmin

mj(xi)

n∑
i=1

p
(t)
ij

(
yi − m̂(t)

j (xi)
)2
, (3.27)

σ̂
2(t+1)
j =

∑n
i=1 p

(t)
ij

(
yi −m(t+1)

j (xi)
)2

∑n
i=1 p

(t)
ij

, j = 1, . . . , J. (3.28)

Update π̂(t+1)
j (xi) = fw,b(xi) based on the neural network using {ẑi = argmax

j
p
(t)
ij , i =

1, . . . , n, j = 1, . . . , J} as the input for the response and xi as the input for the covari-

ates.

30

3.2.4 Mixture of Neural Network EM algorithm

In this section, we introduced a semiparametric mixture of nonparametric mixture

of regression, where we defined the mixing proportion as a parametric model and the re-

gression component as nonparametric model. For Mixture of Neural Network (MNN) EM

algorithm, πj(x) is assumed to follow the same assumption of MoE in (1.3) and mj(xi) is

assumed to be same as NEM. The log-likelihood is defined as

ℓ(θ|X,y) =
n∑

i=1

log

J∑

j=1

πj(xi)ϕ
(
yi;mj(xi), σ

2
j

), (3.29)

where πj(xi) is assumed to be a parametric model on xi.

The difference between MNN and NEM is the way to estimate πj(xi).

Algorithm 3.2.2 Given the initial values θ̂
(0)

, iterate the following E-step and M-step until

convergence.

E-Step: Given the current parameter estimates θ(t), compute

p
(t)
ij =

π
(t)
j (xi)ϕ

(
yi;m

(t)
j (xi), σ

2(t)
j

)
∑J

j=1 π
(t)
j (xi)ϕ

(
yi;m

(t)
j (xi), σ

2(t)
j

) ,
where i = 1, . . . , n, j = 1, . . . , J.

M-Step: Update πj(xi) mj(xi) and σj by

π̂
(t+1)
j (x) = P (Z = j|x) =

exp(x⊤γ̂
(t+1)
j)∑J

j=1 exp(x
⊤γ̂

(t+1)
j)

(3.30)

m̂
(t+1)
j (xi) = argmin

mj(xi)

n∑
i=1

p
(t)
ij

(
yi − m̂(t)

j (xi)
)2
, (3.31)

σ̂
2(t+1)
j =

∑n
i=1 p

(t)
ij

(
yi −m(t+1)

j (xi)
)2

∑n
i=1 p

(t)
ij

, j = 1, . . . , J, (3.32)

where γ̂
(t+1)
j = argmax

γj

∑n
i=1

∑J
j=1 p

(t)
ij log πj(xi).

31

Chapter 4

Simulation Studies

In this section, we compared the performance of the proposed method NEM and

NNEM with some existing methods of regular EM with constant mixing proportions, mix-

tures of experts (MoE), and a kernel based EM algorithm (KernEM). Implementation of

the regular EM and MoE is done by the R package MoEClust (Murphy and Murphy, 2020)

[38]. The Nadaraya and Watson estimator in KernEM is done by function kernesti.regr in

R package regpro. For the proposed NNEM algorithm, we used the result of MoE as the

initial value and implemented the neural network along with the hyperparameter tuning in

the M-step using the R packages nnet and caret. In simulation, the activation function of

neural network uses sigmoid function, the number of hidden layer is set to be 1 and the

number of units is tuned to be 5 for example 1 and 3 and 10 for example 2. To compare the

performance of different methods, we use the following criteria.

32

4.1 Metrics Overview

Some metrics are used to evaluate the performance of our proposed methods com-

paring with the existing approaches. The metrics are aiming to assess on regression and

classification.

Mean Absolute Bias (MAB)

MAB(β̂) =
1

J(p+ 1)

J∑
j=1

p+1∑
i=1

∣∣∣E(β̂ij)− βij
∣∣∣ ,

where β̂ij is the regression coefficient estimate for ith feature in jth component and

E(β̂) is estimated by the sample mean of estimates from replicates. For the mixing

proportion, the absolute bias is calculated by

MAB(π̂(x)) =
1

n

n∑
i=1

|E{π̂(xi)} − π(xi)| ,

where π̂(xi) is the estimated mixing proportion function based on the converged EM

algorithm.

Mean Squared Error (MSE)

MSE(β̂) =
1

J(p+ 1)

J∑
j=1

p+1∑
i=1

E(β̂ij − βij)2.

For the mixing proportion, the MSE is calculated by

MSE(π̂(x)) =
1

n

n∑
i=1

E{π̂(xi)− π(xi)}2.

MSE(m̂(x)) =
1

n

n∑
i=1

E{
J∑

j=1

πj(xi) (m̂j(xi)−mj(xi))
2}.

33

Classification Error (CE)

CE =
1

n

n∑
i=1

I(ẑi ̸= zi),

where zi is the true component label and ẑi is the estimated component label based

on (3.11).

Prediction Error (PE) Generate test/out of sample (xoix
o
ix
o
i , y

o
i)

d
i=1 from the same distribu-

tion as (X, Y) and calculate the prediction error

PE(ŷ) =
1

d

d∑
i=1

{ŷ(xixixio)− yoi }
2 ,

where ŷ(xixixi
o) =

∑J
j=1 π̂j(xixixi

o) m̂j(xixixi
o;βj) and d is the out-of sample size. In our

numerical studies, we simply let d equal to the sample size of the original data.

Adjusted Rand Index (ARI) The Adjusted Rand Index (ARI) (Hubert and Arabie,

1985) [22] is defined by

ARI(P ∗, P) =

∑
ij

(nij

2

)
−
[∑

i

(
ai
2

)∑
j

(bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(bj
2

)]/ (
n
2

)
Here, n is the number of data points in a given data set and nij is the number of data

points of the class label C∗
j ∈ P ∗ assigned to cluster Ci in partition P.ai is the number

of data points in cluster Ci of partition P , and bj is the number of data points in class

C∗
j . In general, an ARI value lies between 0 and 1. The index value is equal to 1

only if a partition is completely identical to the intrinsic structure and close to 0 for a

random partition.

34

4.2 Simulation Examples

In this section, we conducted 5 simulation studies to evaluate and compare the

performance of our proposed model with the other existing approaches. Example 1 is to

evaluate the performance of NNEM on univariate example comparing with EM, MoE and

KernEM. The mixing proportion is set to be non-monotone function aiming to evaluate

how NNEM handle mixing proportion comparing with other methods. And the regression

component is linear. Example 2 is a multivariate study to compare NNEM with MoE and

EM. KernEM is not used to compare due to the “curse of dimensionality". Example 3 is a

4 mixing-components example to assess how the approaches perform on multiple clusters.

Starting from Example 4, we brought in the simulation study for both NEM and NNEM.

Example 4 is a 4-component setting that uses both non-linear pattern on mixing proportions

and regression components. The number of covariates in this example is 10. Example 5 is

an extended version of Example 4 that extends the number of covariates to 20.

Example 1: We generate the observations from the following model:

yi = π(xi)N(1.5xi, 0.5
2) + (1− π(xi))N(3xi, 0.5

2), i = 1, . . . , n,

where x ∼ Unif(−5, 5) and

π(x) =
2 exp(−0.1x4)

1 + exp(−0.1x4)
.

We consider n = 100, 500, and 1500.

Figures 4.1 displays how the mixing proportion varies with the predictor x (left

side) and the scatterplot of a typical simulated data (right side). For this example, the

mixing proportion is not a monotone function of x and it violates both the constant mixing

35

proportion assumption of the regular EM and the logistic regression assumption of the MoE.

Figure A.2 displays the mixing proportion (left part) and predicted y (right part) versus the

predictor for four methods for a typical generated data. The black solid line represents the

truth. From the plots, we can see that the nonparametric method performs better than the

parametric ones. The proposed NNEM outperforms the KernEM, while the regular EM and

MoE fail to estimate the mixture regression model well.

Table 4.1 presents the performance of four methods based on the criteria of MAB,

MSE, CE and PE. It can be seen that the new method NNEM has overall the best per-

formance. NNEM performs much better than the other three methods for all criteria, and

the improvement is substantial. The kernel method KernEM also works better than the

other two parametric methods due to its more accurate estimate of mixing proportions. In

addition, note that when the sample size increases from 100 to 1500 there is almost no

improvement for MoE and EM in terms of π̂(x), CE, and PE, which is expected due to the

inherent modeling bias of the mixing proportions and such bias will not disappear no matter

how large the sample size is. In comparison, the new method NNEM improves substantially

when the sample size increases since the mixing proportions can be better estimated by the

neural network when the sample size increases.

36

Figure 4.1: The left plot displays how the mixing proportion varies with the predictor x and
the right plot shows a scatterplot of a simulated data set in Example 1.

37

Figure 4.2: The left plot displays the estimated mixing proportion versus the predictor
for four methods and the right plot displays the predicted y versus the predictor for four
methods. The black solid line represents the truth of Example 1.

38

Figure 4.3: The top 4 plots display the predicted y versus the predictor for four methods.
The bottom plots display the estimated mixing proportion versus the predictor for four
methods. The black solid line represents the truth of Example 1.

39

Methods
NNEM MoE EM KernEM

n = 100 MAB(β̂) 0.05 0.06 0.07 0.05
MSE(β̂)∗100 0.40 0.50 0.50 0.49
MAB(π̂(x)) 0.04 0.37 0.37 0.19
MSE(π̂(x)) 0.04 0.19 0.19 0.07
CE 0.05 0.12 0.12 0.11
PE(ŷ) 0.04 1.50 1.45 0.23

n = 500 MAB(β̂) 0.02 0.03 0.04 0.03
MSE(β̂)∗100 0.11 0.20 0.20 0.14
MAB(π̂(x)) 0.02 0.37 0.37 0.13
MSE(π̂(x)) 0.01 0.19 0.19 0.04
CE 0.01 0.12 0.12 0.03
PE(ŷ) 0.01 1.44 1.44 0.18

n = 1500 MAB(β̂) 0.01 0.02 0.03 0.02
MSE(β̂)∗100 0.03 0.11 0.11 0.05
MAB(π̂(x)) 0.02 0.37 0.37 0.14
MSE(π̂(x)) 0.01 0.19 0.19 0.03
CE 0.01 0.12 0.12 0.04
PE(ŷ) 0.01 1.37 1.37 0.16

Table 4.1: Performance comparison of four methods based on MAB,MSE, CE, and PE for
n = 100, 500 and 1500 in Example 1.

40

Example 2: We generate observations from the following model

yi = π(xi)N(x⊤
i β1, 1) + (1− π(xi))N(x⊤

i β2, 1.5
2), i = 1, . . . , n,

where xi = (xi1, . . . , xi,10)
⊤ with xij ∼ Unif(−1.5, 1.5), i = 1, . . . , n, j = 1, . . . , 9, β1 =

(0, 2, 1, 3, 1, 2, 3, 2, 1, 1, 1.5)⊤,β2 = (0, 1, 3, 3, 4, 6, 3, 4, 6, 5, 3)⊤, and

π(u) =
2 exp(−0.1u4)

1 + exp(−0.1u4)
,

where ui =∼ Unif(−7.5, 7.5) and xi,10 = ui − 1
2

∑9
j=1 xij . We consider n = 100, 500 and

1500. In this example, since we have ten-dimensional covariates, the KernEM is not included

due to the “curse of dimensionality". Table 4.2 presents the performance of NNEM, MoE,

and EM based on the criteria of MAB, MSE, CE and PE. It can be seen that the new

method NNEM has much better performance than MoE and EM in terms of MAB(π̂(x)),

MSE(π̂(x)), CE, PE when sample size n = 500 and n = 1500. For example, in terms

of MAB(π̂(x)) and MSE(π̂(x)), MoE and EM have more than two times the error as the

NNEM. In terms of PE, MoE and EM have about ten times the error as the NNEM when

n = 1500. In addition, similar to Example 1, when the sample size increases from n = 100

to n = 1500, there is not much performance improvement for MoE and EM in terms of

MAB(π̂(x)), MSE(π̂(x)), CE and PE. However, the performance of the new method NNEM

increases when the sample size increases.

Figure 4.4 plots the estimated mixing proportion versus the index u for a typical

generated data. The black solid line represents the truth. As expected, NNEM can predict

the mixing proportion well but MoE and EM fail to do so. Note that the regular EM uses

the constant proportion assumption which explains why the estimated proportion does not

change over the index u.

41

Methods
NNEM MoE EM

n = 100 MAB(β̂) 0.26 0.26 0.26
MSE(β̂) 0.15 0.15 0.15
MAB(π̂(x)) 0.14 0.31 0.32
MSE(π̂(x)) 0.07 0.15 0.15
CE 0.08 0.08 0.08
PE(ŷ) 4.05 9.07 7.13

n = 500 MAB(β̂) 0.10 0.12 0.12
MSE(β̂) 0.02 0.03 0.03
MAB(π̂(x)) 0.08 0.31 0.32
MSE(π̂(x)) 0.04 0.15 0.15
CE 0.05 0.07 0.07
PE(ŷ) 1.87 7.85 7.45

n = 1500 MAB(β̂) 0.06 0.07 0.07
MSE(β̂) 0.01 0.01 0.01
MAB(π̂(x)) 0.05 0.31 0.32
MSE(π̂(x)) 0.02 0.14 0.14
CE 0.02 0.06 0.06
PE(ŷ) 0.78 7.59 7.48

Table 4.2: Performance comparison of four methods based on MAB, MSE, CE, and PE for
n = 100, 500 and 1500 in Example 2.

42

Figure 4.4: Plot of the estimated mixing proportion versus the index u for Example 2. The
black solid line represents the truth.

43

Example 3: We generate observations from the following four-component mixture

model

yi =
4∑

j=1

πj(xi)N(x⊤
i βj , 0.5

2), i = 1, . . . , n,

where xi ∼ Unif(−5, 12), xi = (1, xi)
T , β1 = (0 3)⊤, β2 = (0 1.5)⊤, β3 = (−18 3)⊤,

β4 = (−9 1.5)⊤,

π1(x) =
2 exp(−0.1x4)

1 + exp(−0.1x4)
I(x < 3),

π2(x) = 1− 2 exp(−0.1x4)
1 + exp(−0.1x4)

I(x < 0),

π3(x) =
2 exp(−0.1(x− 6)4)

1 + exp(−0.1(x− 6)4)
I(x ≥ 3),

π4(x) = 1−
3∑

j=1

πj(x),

and I(A) is an indicator function, which equals to 1 if A is correct and 0 otherwise.

Figure 4.5 displays how the four mixing proportions vary with the predictor x (left

side) and the scatterplot of a typical simulated data (right side). For this example, we only

consider n = 500. When n = 100, the new estimation procedure and the KernEM will fail

to converge for some replicates since on average each component only has 25 observations.

Table 4.3 presents the performance of NNEM, MoE, EM and KernEM. It can be

seen that the new method NNEM outperforms KernEM in terms of PE and has much better

performance than MoE and EM in terms of all four criteria, especially CE and PE.

44

Figure 4.6 plots the predicted y versus the covariate x for a typical generated data.

The solid line represents the truth. From the plot, we can see that the predicted value from

NNEM approach matched most part of the true line comparing to the other three methods.

Figure 4.5: The left plot is the true mixing proportion versus the index x for Example 3.
The right plot is the scatterplot of simulated y versus x.

45

n=500
Method NNEM MoE EM KernEM
MAB(β̂) 0.07 0.10 0.13 0.07
MSE(β̂) 0.02 0.03 0.69 0.02
MAB(π̂1(x)) 0.01 0.01 0.29 0.06
MAB(π̂2(x)) 0.01 0.01 0.28 0.03
MAB(π̂3(x)) 0.01 0.22 0.29 0.02
MSE(π̂1(x)) 0.01 0.01 0.13 0.01
MSE(π̂2(x)) 0.01 0.01 0.13 0.01
MSE(π̂3(x)) 0.01 0.11 0.14 0.02
CE 0.01 0.08 0.19 0.01
PE(ŷ) 0.18 0.85 25.61 0.62

Table 4.3: Performance comparison of four methods based on MAB, MSE, CE, and PE for
n = 500 in Example 3.

46

Figure 4.6: This plot shows the predicted value of y versus the covariate x in Example 3.

47

Example 4: We generate observations from the following mixture model

yi =
4∑

j=1

πj(xi)N(mj(xi), 0.1
2), i = 1, . . . , n,

where xi = (xi1, . . . , xi,10)
⊤ with xij ∼ Unif(−0.75, 1.5), i = 1, . . . , n, j = 1, . . . , 9, m1(ui) =

−0.01u2i ,m2(ui) = −3 + 3 cos(0.25ui − 2),m3(ui) = 1 + 2 cos(0.5ui − 4) + 1,m4(ui) =

−1 + 2 cos(0.2ui) + 0.01(3− ui)2,

π1(u) = 0.09 +
1.44 exp(−0.1u4)
1 + exp(−0.1u4)

I(u < 3),

π2(u) = 0.09 + 0.72I(u < 0)− 1.44 exp(−0.1x4)
1 + exp(−0.1u4)

I(u < 0),

π3(u) = 0.09 +
1.44 exp(−0.1(u− 10)4)

1 + exp(−0.1(u− 10)4)
,

π4(u) = 1−
3∑

j=1

πj(u),

and I(A) is an indicator function, which equals to 1 if A is correct and 0 otherwise.

ui ∼ Unif(−7.5, 15) and xi,10 = 0.25ui −
∑9

j=1 xij . We consider n = 200, 500 and 2000.

Figures 4.7 displays how the mixing proportion varies with the predictor x (left side) and

the scatterplot of a typical simulated data (right side). For this example, the mixing pro-

portion is not a monotone function of x and it violates both the constant mixing proportion

assumption of the regular EM and the logistic regression assumption of the MoE and MNN.

The regression component mj(xi) is also not a monotone function of x, which violates the

linear assumption of mj(xi;βj) = xxx⊤i βββj in EM, MoE and NNEM. Table 4.4 presents the

performance of five methods based on the criteria of MSE, ARI, CE and PE. It can be seen

that the new method NEM has overall the best performance. NEM outperforms the other

48

four methods for all criteria, and the improvement is substantial. The MNN method also

works better than the other three methods due to its more accurate estimate of regression

components. In addition, note that when the sample size increases from 200 to 2000 there is

almost no improvement for MoE and EM in terms of π̂(x), CE, and PE, which is expected

due to the inherent modeling bias of the mixing proportions and such bias will not disap-

pear no matter how large the sample size is. In comparison, the NEM and NNEM improves

substantially when the sample size increases since the mixing proportions can be better

estimated by the neural network when the sample size increases. Figures 4.8 displays the

MSE(m̂j(x)) given the value of ui for four methods including NEM, MNN, NNEM, MoE.

The new method NEM has the lowest MSE(m̂j(x)) overall, the MSE is approaching to 0 for

Cluster 1 and an obvious better estimation of mixing proportion for Cluster 2. Figure 4.9

displays MSE(π̂j(x)) given the value of ui. The MSE(π̂j(x)) of NEM is closer to 0 for

Cluster 1 and 2 than the other three methods and shows an obviously better estimation of

π̂j(x) on Cluster 4 and hence a better overall estimation.

49

Figure 4.7: The left plot is the true mixing proportion versus the index x for Example 4.
The right plot is the scatterplot of simulated y versus x.

50

Methods
NEM NNEM MNN MoE EM

n = 200 MSE(π̂2(x)) 0.01 0.01 0.05 0.02 0.09
MSE(π̂3(x)) 0.04 0.04 0.05 0.05 0.06
MSE(π̂4(x)) 0.05 0.05 0.08 0.08 0.11
MSE(m̂(x)) 0.01 0.74 0.10 0.92 5.10
ARI 0.87 0.70 0.82 0.69 0.56
CE 0.11 0.12 0.12 0.12 0.22
PE(ŷ) 1.07 1.20 1.77 1.69 5.18

n = 500 MSE(π̂2(x)) 0.01 0.01 0.03 0.01 0.09
MSE(π̂3(x)) 0.03 0.03 0.05 0.05 0.06
MSE(π̂4(x)) 0.01 0.01 0.07 0.07 0.11
MSE(m̂(x)) 0.17 0.78 0.24 0.93 5.13
ARI 0.78 0.71 0.74 0.69 0.56
CE 0.09 0.12 0.11 0.12 0.20
PE(ŷ) 0.62 0.93 1.23 1.37 5.14

n = 2000 MSE(π̂2(x)) 0.01 0.01 0.02 0.01 0.09
MSE(π̂3(x)) 0.01 0.01 0.04 0.05 0.06
MSE(π̂4(x)) 0.03 0.04 0.07 0.07 0.11
MSE(m̂(x)) 0.45 0.84 0.49 0.93 5.11
ARI 0.73 0.71 0.70 0.70 0.53
CE 0.05 0.12 0.07 0.12 0.20
PE(ŷ) 0.16 0.35 1.03 1.19 4.73

Table 4.4: Performance comparison of four methods based on MSE, CE, and PE for n =
200, 500 and 2000 in Example 4.

51

Figure 4.8: This plot shows the MSE(m̂j(x)) for each component in Example 4.

52

Figure 4.9: This plot shows MSE(π̂j(x)) for each component in Example 4.

53

Example 5: We generate observations from the following model

yi =
4∑

j=1

πj(xi)N(mj(xi), 0.1
2), i = 1, . . . , n,

where xi = (xi1, . . . , xi,20)
⊤ with xij ∼ Unif(−0.375, 0.75), i = 1, . . . , n, j = 1, . . . , 19,

m1(ui) = −0.01u2i ,m2(ui) = −3+3 cos(0.25ui−2),m3(ui) = 1+2 cos(0.5ui−4)+1,m4(ui) =

−1 + 2 cos(0.2ui) + 0.01(3− ui)2,

π1(u) = 0.09 +
1.44 exp(−0.1u4)
1 + exp(−0.1u4)

I(u < 3),

π2(u) = 0.09 + 0.72I(u < 0)− 1.44 exp(−0.1x4)
1 + exp(−0.1u4)

I(u < 0),

π3(u) = 0.09 +
1.44 exp(−0.1(u− 10)4)

1 + exp(−0.1(u− 10)4)
,

π4(u) = 1−
3∑

j=1

πj(u),

and I(A) is an indicator function, which equals to 1 if A is correct and 0 otherwise. where

ui ∼ Unif(−7.5, 15) and xi,20 = 0.25ui −
∑19

j=1 xij . We consider n = 200, 500 and 2000.

Table 4.5 presents the performance of NEM, NNEM, MoE, MNN and EM based on the

criteria of ARI, MSE, CE and PE. It can be seen that the new method NEM has much

better performance than MNN, MoE and EM in terms of ARI, MSE(π̂(x)), MSE(m̂(x)),

CE and PE when for all sample size. In addition, similar to Example 1, when the sample size

increases from n = 200 to n = 2000, there is not much performance improvement for MoE

and EM in terms of MSE(m̂(x)), MSE(π̂(x)), ARI, CE and PE. However, the performance

of the new method NEM increases when the sample size increases. Figures 4.11 displays the

MSE(m̂j(x)) given the value of ui for four methods including NEM, MNN, NNEM, MoE.

54

The new method NEM performs lower MSE(m̂j(x)) overall, the MSE is approaching to 0 for

Cluster 1 and an obvious better estimation of mixing proportion for Cluster 2. Figure 4.12

displays MSE(π̂j(x)) given the value of ui. The MSE(π̂j(x)) of NEM is closer to 0 for

Cluster 1 and 2 than the other three methods and shows an obviously better estimation of

π̂j(x) on Cluster 4 and hence a better overall estimation.

Figure 4.10: The left plot is the true mixing proportion versus the index x for Example 2.
The right plot is the scatterplot of simulated y versus x.

55

Methods
NEM NNEM MNN MoE EM

n = 200 MSE(π̂2(x)) 0.01 0.01 0.06 0.03 0.09
MSE(π̂3(x)) 0.04 0.03 0.05 0.05 0.06
MSE(π̂4(x)) 0.04 0.04 0.09 0.09 0.11
MSE(m̂(x)) 0.44 1.19 0.49 1.31 5.20
ARI 0.72 0.73 0.69 0.69 0.52
CE 0.11 0.11 0.13 0.13 0.22
PE(ŷ) 1.03 1.68 2.58 2.95 5.35

n = 500 MSE(π̂2(x)) 0.79% 1.20% 4.06% 1.77% 9.19%
MSE(π̂3(x)) 0.02 0.02 0.05 0.05 0.06
MSE(π̂4(x)) 0.03 0.03 0.08 0.08 0.11
MSE(m̂(x)) 0.15 0.76 0.22 0.85 5.14
ARI 0.78 0.72 0.72 0.70 0.56
CE 0.09 0.11 0.12 0.12 0.20
PE(ŷ) 0.60 0.88 1.52 1.60 5.17

n = 2000 MSE(π̂2(x)) 0.32% 0.67% 2.51% 1.24% 9.30%
MSE(π̂3(x)) 0.63% 1.11% 4.60% 4.61% 5.93%
MSE(π̂4(x)) 0.01 0.03 0.07 0.07 0.11
MSE(m̂(x)) 0.03 0.73 0.13 0.88 5.09
ARI 0.86 0.70 0.80 0.69 0.55
CE 0.05 0.12 0.08 0.12 0.21
PE(ŷ) 0.19 0.42 1.07 1.23 4.85

Table 4.5: Performance comparison of four methods based on MSE, CE, and PE for n =
200, 500 and 2000 in Example 5.

56

Figure 4.11: This plot shows the MSE(m̂j(x)) for each component in Example 5.

57

Figure 4.12: This plot shows MSE(π̂j(x)) for each component in Example 5.

58

Chapter 5

Real Data Analysis

5.1 Boston Housing Data

The dataset used for the analysis is the famous Boston Housing data, by Harrison

and Rubinfeld (1978) [15], obtained from the UCI Machine Learning Repository (Asuncion

and Newman, 2007) [3]. The data set consists of 506 cases, 11 continuous variables, 1 discrete

variable and 1 binary variable. The purpose is to determine how the median house price

(medv), in thousands of dollars, in a certain area of Boston depends on all other collected

variables, which are per capita crime rate by town (crim), proportion of residential land

zoned for lots over 25,000 sq.ft.(zn), proportion of non-retail business acres per town (indus),

Charles River dummy variable (chas), nitric oxide concentration (nox), average number of

rooms per dwelling (rm), proportion of owner occupied units built prior to 1940 (age),

weighted mean of distances to five Boston employment centres (dis), full-value property-tax

rate per 10,000(tax), pupil-teacher ratio by town (ptratio), 1000(Bk − 0.63)2 where Bk is the

proportion of blacks by town (black), percentage of lower status of the population (lstat), and

59

the index of accessibility to radial highways (rad). Table 5.1 presents the summary statistics

for all continuous variable in the dataset. Table 5.2 depicts the frequency and percentage of

the binary variable “chas" and the discrete variable “rad". Note that the feature regarding

the index of accessibility to radial highways (rad) divides the data into two groups/clusters

corresponding to “rad" with levels 1 − 8 and “rad" with level 24. Figure 5.1 also displays

the histogram of “rad", which clearly demonstrates two very separated groups. Figure 5.2

displays the scatterplots for the response variable given the individual covariates based on

group of “rad”. In this plot, two components can be observed by different value of “rad”,

for example, covariate “crim”, “dis”, “lstat”, “nox” and “tax” presents two patterns given

different values of “rad”.

crim zn indus nox rm age dis tax ptratio black lstat medv
mean 3.61 11.36 11.14 0.55 6.28 68.57 3.80 408.24 18.46 356.67 12.65 22.53

sd 8.60 23.32 6.86 0.12 0.70 28.15 2.11 168.54 2.16 91.29 7.14 9.20

Table 5.1: Summary statistics for continuous variables for the Boston housing dataset.

Variable Levels Freq Percentage(%)
chas 0 471 93.1

1 35 6.9
rad 1-8 374 73.9

24 132 26.1

Table 5.2: Frequency table for categorical variable in Boston data example.

60

Figure 5.1: Histogram of rad in the real data.

61

Figure 5.2: Scatterplot for medv vs covariates in Boston data example.

62

We formed the mixture cluster/latent structure of the original data by leaving out

the index variable “rad". While treating “rad" as a latent variable, we applied NEM, NNEM,

EM, MoE and MNN to the above Boston housing data (without using the variable “rad")

with a two-component mixture regression model. We used 60% of the dataset for training the

models and the rest 40% for comparing the model performance. We also applied the Linear

Regression (LR) by using “medv" as the response variable and used the same covariates as

the mixture of regressions. We applied another two Linear Regression Models, LR1 including

“rad" as one of the covariates and LR2 including the interaction term between “rad" and

each covariates from LR1. This is because the interaction and mixture of regression model

both consider the effect of covariates on the response variable differing across levels of the

categorical variable “rad".

Table 5.3 presents the model performance in terms of both the prediction errors

(PE) and classification errors (CE). It can be seen that the NEM method has best perfor-

mance among all five methods in terms of both the prediction error (PE) and classification

error (CE). It can be seen that, by incorporating the ideas of the neural network into the

mixture regression models, we can improve both the prediction and the classification per-

formance of the traditional fully parametric mixture regression models. In addition, all

methods including NEM, NNEM, MNN and MoE are able to recover the latent structure,

without using the variable “rad", and correctly classify around 95% of observations. This

also demonstrates the effectiveness/applicability of two-component regression models for the

data after removing the variable “rad". For Linear Regression Models (LR), the prediction

errors decrease when “rad" variable and interaction terms are adding to the model. PE of

63

MNN and NNEM are close to LR2 and NEM is better than LR2. Note that, MNN , NNEM,

and NEM do not make use of the information of “rad" while LR2 does.

NEM MNN NNEM MoE EM LR LR1 LR2
PE(ŷ) 12.23 14.12 14.74 16.66 21.98 22.23 21.25 14.38
CE 0.03 0.03 0.047 0.052 0.198 – – –

Table 5.3: Prediction error and classification error for the Boston housing data.

Table 5.4 summarizes the estimates of the parametric portions of the model along

with their standard errors based on the bootstrap approach (Huang and Yao, 2012). Note

that we needed to solve the label switching issue [45, 58] across the bootstrapped estimates

before we could calculate their standard errors. We use the labeling method of Yao (2015)

[57] by aligning their posterior probabilities to solve the label switching issue for the boot-

strapped estimates. In order to find significant variables, the bootstrap confidence interval

can be calculated by β̂ ± za/2 SE∗
(
β̂∗
)

to produce a 100(1− α)% confidence interval for β

based on the estimator β̂. The variable will be significant under the significance level α if

the confidence interval does not contain 0. By defaulty, we set α = 0.05. The first column

corresponds to the component with the “rad" from 1-8 and the second column corresponds

to the component with the “rad"=24. It can be seen that the variables “crim", “rm", “age",

“dis", “ptratio", and “black" are significant in the first component, while the variables “chas",

“nox", “rm", “dis", and “lstat" are significant in the second component.

64

β̂1 β̂2

NNEM crim 0.6293 (0.1600) -0.1292 (0.0744)
zn 0.0169 (0.0142) -0.0878 (0.1698)
indus -0.0701 (0.0654) 0.4001 (0.8749)
chas 1.0249 (1.0781) 10.5278 (3.1295)
nox -3.0474 (5.0514) -29.0315 (13.2679)
rm 9.2648 (0.4088) -2.6563 (1.0556)
age -0.0638 (0.0142) 0.1224 (0.1019)
dis -0.7365 (0.1413) -3.3416 (1.6427)
tax -0.0072 (0.0039) -0.0131 (0.0274)
ptratio -0.6171 (0.1582) -2.0324 (1.7629)
black 0.0174 (0.0055) 0.0005 (0.0054)
lstat -0.0207 (0.3756) -0.9284 (0.3557)

EM crim 0.2044 (0.3062) -0.1058 (0.5923)
zn 0.0154 (0.0649) 0.1011 (0.0613)
indus -0.0627 (0.7275) 0.6150 (0.4706)
chas 0.9182 (13.5733) 11.8417 (8.0552)
nox -4.8913 (42.1025) -55.8940 (30.5627)
rm 8.5925 (2.2734) -3.2640 (2.1419)
age -0.0547 (0.079) 0.0567 (0.0569)
dis -0.7637 (1.058) -2.7449 (1.3500)
tax -0.0095 (0.023) 0.0012 (0.0245)
ptratio -0.7825 (0.6973) -1.7190 (0.7366)
black 0.0191 (0.0206) 0.0020 (0.0221)
lstat 0.0378 (0.0624) -0.8489 (0.1528)

MoE crim 0.6997 (0.5869) -0.1308 (0.6012)
zn 0.0164 (0.1337) -0.2089 (0.1044)
indus -0.0778 (0.8769) 0.3989 (0.5404)
chas 0.9753 (14.098) 10.2786 (9.3125)
nox -3.6510 (30.135) -29.8042 (21.8505)
rm 9.2636 (2.1105) -2.5496 (2.5471)
age -0.0613 (0.0719) 0.1358 (0.0959)
dis -0.7374 (1.0443) -3.1597 (1.2465)
tax -0.0073 (0.0285) -0.0126 (0.0301)
ptratio -0.6137 (0.9611) -2.0936 (0.9943)
black 0.0173 (0.0225) 0.0008 (0.0204)
lstat 0.0382 (0.3897) -0.8398 (0.2669)

Table 5.4: Estimated regression coefficients along with their standard errors by the bootstrap
method for NNEM, EM and MoE for the Boston housing data.

65

5.2 Academic Performance Index

This study focused on the Academic Performance Index (API) dataset. The API

is a criteria computed for all California schools based on standardised testing of students.

The data set is available to use in an R package survey (Lumley, 2004) [31], and we used

a stratified version named as apistrat in this section, which is also available from the R

package. The data set consists of 200 cases, 4 continuous variables and 1 categorical variable.

The purpose is to determine how students’ academic performance in 2000 (api00) depends

on all other collected variables percentage of English Language Learner (ell), percentage

of parents who are high-school graduates (hsg), percentage of parents with some college

(some.col), percentage of parents with postgraduate education (grad.sch).

66

Figure 5.3: Scatterplot for api00 vs covariates in API data example.

67

Table 5.5 presents the summary statistics for all continuous variable in the dataset.

We implemented all five methods in this data set and chose the number of mixture compo-

nents K = 2 according to Abdalla and Michael (2019). In their study, they fitted various

finite mixture of Gaussian polynomial regressions and found the optimal number of compo-

nents is K = 2 based on the optimal BIC value. We use 80% of the dataset for training

the models and the rest 20% for comparing the model performance. Table 5.6 presents the

model performance in terms of prediction error.

ell hsg some.col grad.sch api00
mean 20.95 22.86 22.96 9.72 652.82

sd 19.77 15.11 11.21 11.71 120.97

Table 5.5: Summary statistics for continuous variables for the API dataset.

Table 5.6 presents the model performance in terms of both the prediction errors

(PE). It can be seen that the NEM method has the best performance among all six methods

in terms of the prediction error (PE).

NEM MNN NNEM MoE EM LR
PE(ŷ) 5035.27 6735.92 6769.14 7223.95 7775.18 7493.85

Table 5.6: Summary statistics for continuous variables for the API dataset.

Figure 5.4 shows the boxplots for response variable api00 and its predictions for

two clusters on the five approaches. The plots indicate the expected values of api00 are

different for the two clusters for both real data and predictions using NEM, NNEM, MNN

and MoE, which also illustrate the inhomogeneity in data.

68

Figure 5.4: Boxplots for response variable and predictions for two clusters in API data.

69

Chapter 6

Conclusions

In this article, we proposed two new class of estimation methods for nonparamet-

ric mixture regression models by combining the machine learning methods with maximum

likelihood estimates. A machine learning embedded EM-type algorithm is proposed to esti-

mate mixing proportions nonparametrically using the neural network and estimate all other

component parameters using the maximum likelihood estimate. The proposed new meth-

ods will offer a more flexible estimation compared with the traditional parametric mixture

regression models and could better handle multivariate covariates than the kernel regression

based nonparametric methods. Moreover, it could better handle the non-linearity pattern

in the data.

The proposed hybrid idea can be easily extended to other semiparametric or non-

parametric statistical models and other machine learning methods. In addition, the pro-

posed method can be also extended to the hierarchical mixture cure model for survival

data (Dirick, et al., 2022) [10], the mixtures of generalised nonlinear models (Omerovic et

70

al., 2022) [41], and some other semiparametric mixture regression models (Xiang and Yao,

2018, 2020, Huang, et al., 2018) [21, 51, 52]. See Xiang et al. (2019) [54] for a good overview

of semiparametric mixture models.

Moreover, our future research should also address inferential problems such as

the hypothesis testing and the choice of number components for the NEM and NNEM

modeling. In our article, we assumed that the mixing proportions depend on all covariates

x. However, the estimation procedure can be easily extended to the cases when the mixing

proportions only depend on a subset of all covariates. If no such prior is available, it

requires more research whether we could develop some variable selection procedure (say

based on some penalized methods) to choose important variables for the covariate-varying

mixing proportions and/or the component regression functions. It will also be interesting

to combine the method of Mirfarah et al. (2021) [37] and the proposed method to handle

censored data and the data with outliers.

71

Bibliography

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

[2] Murray Aitkin and Donald B Rubin. Estimation and hypothesis testing in finite mixture
models. Journal of the Royal Statistical Society: Series B (Methodological), 47(1):67–75,
1985.

[3] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[4] Dankmar Böhning. Computer-assisted analysis of mixtures and applications: meta-
analysis, disease mapping and others, volume 81. CRC press, 1999.

[5] J Cao and Weixin Yao. Semiparametric mixture of binomial regression with a degenerate
component. Statistica Sinica, pages 27–46, 2012.

[6] Xiaohong Chen, Ying Liu, Shujie Ma, and Zheng Zhang. Efficient estimation of treat-
ment effects using neural networks with a diverging number of confounders. Available
at SSRN 3693072, 2020.

[7] Helena Chmura Kraemer, Michaela Kiernan, Marilyn Essex, and David J Kupfer. How
and why criteria defining moderators and mediators differ between the baron & kenny
and macarthur approaches. Health Psychology, 27(2S):S101, 2008.

[8] E Cohen. Inharmonic tone perception. Unpublished Ph. D. Dissertation, Stanford
University, 1980.

[9] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series
B (Methodological), 39(1):1–22, 1977.

72

[10] Lore Dirick, Gerda Claeskens, Andrey Vasnev, and Bart Baesens. A hierarchical mixture
cure model with unobserved heterogeneity for credit risk. Econometrics and Statistics,
22:39–55, 2022.

[11] Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation
and inference. Econometrica, 89(1):181–213, 2021.

[12] Sylvia Frühwirth-Schnatter and Sylvia Frèuhwirth-Schnatter. Finite mixture and
Markov switching models, volume 425. Springer, 2006.

[13] Stephen M Goldfeld and Richard E Quandt. A markov model for switching regressions.
Journal of econometrics, 1(1):3–15, 1973.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[15] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for
clean air. Journal of environmental economics and management, 5(1):81–102, 1978.

[16] Christian Hennig. Identifiablity of models for clusterwise linear regression. Journal of
classification, 17(2), 2000.

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359–366, 1989.

[18] Mian Huang, Runze Li, Hansheng Wang, and Weixin Yao. Estimating mixture of
gaussian processes by kernel smoothing. Journal of Business & Economic Statistics,
32(2):259–270, 2014.

[19] Mian Huang, Runze Li, and Shaoli Wang. Nonparametric mixture of regression models.
Journal of the American Statistical Association, 108(503):929–941, 2013.

[20] Mian Huang and Weixin Yao. Mixture of regression models with varying mixing pro-
portions: a semiparametric approach. Journal of the American Statistical Association,
107(498):711–724, 2012.

[21] Mian Huang, Weixin Yao, Shaoli Wang, and Yixin Chen. Statistical inference and
applications of mixture of varying coefficient models. Scandinavian Journal of Statistics,
45(3):618–643, 2018.

[22] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification,
2(1):193–218, 1985.

73

[23] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79–87, 1991.

[24] Wenxin Jiang and Martin A Tanner. Hierarchical mixtures-of-experts for exponential
family regression models: approximation and maximum likelihood estimation. The
Annals of Statistics, 27(3):987–1011, 1999.

[25] M Jordan. A parallel distributed processing approach. Ics report 8604, 1986.

[26] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation functions
in generalized mlp architectures of neural networks. International Journal of Artificial
Intelligence and Expert Systems, 1(4):111–122, 2011.

[27] Alan Lapedes and Robert Farber. How neural nets work. In Neural information pro-
cessing systems, 1987.

[28] Alan Lapedes and Robert Farber. Nonlinear signal processing using neural networks:
Prediction and system modelling. Technical report, 1987.

[29] Xiuhong Li, Haitao Chu, Joel E Gallant, Donald R Hoover, Wendy J Mack, Joan S
Chmiel, and Alvaro Muñoz. Bimodal virological response to antiretroviral therapy for
hiv infection: an application using a mixture model with left censoring. Journal of
Epidemiology & Community Health, 60(9):811–818, 2006.

[30] Bruce G Lindsay. Mixture models: theory, geometry, and applications. Ims, 1995.

[31] Thomas Lumley. Analysis of complex survey samples. Journal of statistical software,
9:1–19, 2004.

[32] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3. Citeseer, 2013.

[33] Daniel F McCaffrey and A Ronald Gallant. Convergence rates for single hidden layer
feedforward networks. Neural Networks, 7(1):147–158, 1994.

[34] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[35] Geoffrey McLachlan and David Peel. Mixtures of factor analyzers. In In Proceedings
of the Seventeenth International Conference on Machine Learning. Citeseer, 2000.

74

[36] Geoffrey J McLachlan, Kaye E Basford, and M Dekker. Statistics: Textbooks and
monographs. New York: Dekker, 1988:1, 1988.

[37] Elham Mirfarah, Mehrdad Naderi, and Ding-Geng Chen. Mixture of linear experts
model for censored data: A novel approach with scale-mixture of normal distributions.
Computational Statistics & Data Analysis, 158:107182, 2021.

[38] Keefe Murphy and Thomas Brendan Murphy. Gaussian parsimonious clustering models
with covariates and a noise component. Advances in Data Analysis and Classification,
14(2):293–325, 2020.

[39] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications,
9(1):141–142, 1964.

[40] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Icml, 2010.

[41] Sanela Omerovic, Herwig Friedl, and Bettina Grün. Modelling multiple regimes in eco-
nomic growth by mixtures of generalised nonlinear models. Econometrics and Statistics,
22:124–135, 2022.

[42] Marc Ratkovic. Balancing within the margin: Causal effect estimation with support
vector machines. Department of Politics, Princeton University, Princeton, NJ, 2014.

[43] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[44] Anders Skrondal and Sophia Rabe-Hesketh. Generalized latent variable modeling: Mul-
tilevel, longitudinal, and structural equation models. Chapman and Hall/CRC, 2004.

[45] Matthew Stephens. Dealing with label switching in mixture models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 62(4):795–809, 2000.

[46] Henry Teicher. Identifiability of finite mixtures. The annals of Mathematical statistics,
pages 1265–1269, 1963.

[47] D Michael Titterington, Smith Afm, Adrian FM Smith, UE Makov, et al. Statistical
analysis of finite mixture distributions, volume 198. John Wiley & Sons Incorporated,
1985.

75

[48] Joseph Turian, James Bergstra, and Yoshua Bengio. Quadratic features and deep ar-
chitectures for chunking. In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics, Companion Volume: Short Papers, pages 245–248, 2009.

[49] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treat-
ment effects using random forests. Journal of the American Statistical Association,
113(523):1228–1242, 2018.

[50] Shaoli Wang, Weixin Yao, and Mian Huang. A note on the identifiability of nonpara-
metric and semiparametric mixtures of glms. Statistics & Probability Letters, 93:41–45,
2014.

[51] Sijia Xiang and Weixin Yao. Semiparametric mixtures of nonparametric regressions.
Annals of the Institute of Statistical Mathematics, 70(1):131–154, 2018.

[52] Sijia Xiang and Weixin Yao. Semiparametric mixtures of regressions with single-index
for model based clustering. Advances in Data Analysis and Classification, 14(2):261–
292, 2020.

[53] Sijia Xiang, Weixin Yao, and Byungtae Seo. Semiparametric mixture: Continuous scale
mixture approach. Computational Statistics & Data Analysis, 103:413–425, 2016.

[54] Sijia Xiang, Weixin Yao, and Guangren Yang. An overview of semiparametric extensions
of finite mixture models. Statistical science, 34(3):391–404, 2019.

[55] Jiacheng Xue and Weixin Yao. Machine learning embedded semiparametric mixtures
of regressions with covariate-varying mixing proportions. Econometrics and Statistics,
22:159–171, 2022. The 2nd Special issue on Mixture Models.

[56] Sidney J Yakowitz and John D Spragins. On the identifiability of finite mixtures. The
Annals of Mathematical Statistics, 39(1):209–214, 1968.

[57] Weixin Yao. Label switching and its solutions for frequentist mixture models. Journal
of Statistical Computation and Simulation, 85(5):1000–1012, 2015.

[58] Weixin Yao and Bruce G Lindsay. Bayesian mixture labeling by highest posterior
density. Journal of the American Statistical Association, 104(486):758–767, 2009.

[59] Derek S Young and David R Hunter. Mixtures of regressions with predictor-dependent
mixing proportions. Computational Statistics & Data Analysis, 54(10):2253–2266, 2010.

76

Appendix A

Random Forest Methods

Random Forest was first applied as the one of the embedded machine learning

methods in the investigation. Random forests (Breiman, 2001) were originally conceived as

an ensemble method of combining several CART (Breiman et al., 1984) style decision trees

using bagging (Breiman, 1996). Random forest is originated from the idea of decision tree.

The decision tree is depicted as follows:

• Input: Starting from root node, which include dataset (X,Y)

• Output: Partition of dataset.

• Repeat the stopping criteria satisfied.

• Define Il(j) and Ir(j) , Il(j) = {i : Xj′ ≤ xi′j′}, Ir(j) = {i : Xj′ > xi′j′}, where xi′j′

is the optimal point minimize the cost function over all p-dimensional predictors X.

• For regression tree, define c(I) =
∑

i∈I yi∑
1i∈I

, which is the sample mean for response y in

77

certain node. The optimal j′ is found by

j′ = argmin
j

 ∑
i∈Il(j)

[yi − ĉ (Il(j))]2 +
∑

i∈Ir(j)

[yi − ĉ (Ir(j))]2
 . (A.1)

Random Forest is created by the idea of Bootstrap aggregation (Bagging). Bagging

is an ensemble method to combine decision trees to random forest and the model runs as

the following.

• Generate B bootstrap sample from the original data set with sample size n.

• Perform decision tree modelling on each bootstrap sample, by randomly choosing √p

predictors of p-dimensional predictor.

• Aggregate the prediction from B trees once all the tree terminates. Denote fb as the

function of the tree classifier of sample b. Then we acquire the final prediction as:

f̂(x) =
1

B

B∑
b=1

f̂b(x) (A.2)

A.1 Random Forest Simulation Results

Example a:

x1...x400 ∼ Unif(0, 5)

P (Z = 1|X = xi) = π(xi) = 0.5 + 0.5 cos(2xi)

yi =

−0.2 + xi +N(0, 0.16), if Z = 1

−2.5 + 2xi +N(0, 0.25), O.W

78

Figure A.1: The left scatterplot presents the relationship between response and predictor
and the right plot indicates how mixing proportion vary with predictor

RFEM EM HME
MSE(β̂01) 0.0051 0.0100 0.0301
MSE(β̂02) 0.0006 0.0010 0.0007
MSE(β̂11) 0.0044 0.0142 0.0332
MSE(β̂12) 0.0004 0.0005 0.0008

MSE(π̂) 0.0323 0.1396 0.1339
ACC 0.9010 0.8425 0.7894
Spec 0.8250 0.7894 0.7796
Sens 0.9738 0.8938 0.7967

MSE(ŷ) 0.4804 0.7728 0.6238

Table A.1: This table present mean squared error of coefficient for mixture linear regression
model, where β0j and β1j denoted as the intercept and slope for jth component; mean
squared error for the estimated mixing proportion; Classification accuracy, Sensitivity and
Specificity; mean squared error of predicted response variable

79

Figure A.2: The top set scatterplot reflects mixture regression prediction based on predictor
x1 for three different algorithm. The bottom set includes three plots of the estimated
mixing proportion versus predictor x1, in which black points are the simulated data belong
to component 1 and red point are generated from component 2.

80

Figure A.3: The left scatter plot is the relationship between y and x1, the right plots depict
two probability plots given x1

Example b:

x1,j ...x400,j ∼ Unif(0, 5), j = 1, 2

π(xxxi) =

0.5 + 0.5cos(xi,1 + xi,2), xi,1 + xi,2 ≤ 7

0, O.W

So the response is

yi =

1.5 + xi1 + 1.5xi2 +N(0, 0.52), Z = 1

−3xi1 − 3xi2 +N(0, 0.52), O.W

81

Figure A.4: The left scatterplot present the relationship between response and predictor ;
The right plot indicate how mixing proportion vary with predictor

RFEM EM HME
MSE(β̂01) 0.0182 0.0464 0.1351
MSE(β̂02) 0.0008 0.0015 0.0054
MSE(β̂11) 0.0007 0.0014 0.0050
MSE(β̂12) 0.0136 0.0225 1.7529
MSE(β̂21) 0.0010 0.0012 0.0298
MSE(β̂22) 0.0008 0.0010 0.0130
MSE(π̂1) 0.0602 0.1270 0.1489

ACC 0.8986 0.7828 0.8209
Spec 0.9388 0.9643 0.9556
Sens 0.8564 0.6703 0.6667

MSE(ŷ) 1.3543 1.7323 2.1211

Table A.2: Metrics for RFEM, EM and MoE

82

Figure A.5: The top three plots are the estimated y hat vs x1. The middle row plot set is
the relationship between the estimated prob2 and x1, the bottom plots are the estimated
prob3 and x1

83

Appendix B

More examples on NNEM

In the beginning of simulation study, we tried a simulation example for 3 component

settings. Although we did not run our methods on multiple replicates, we still believed that

this example could be used to illustrate the performance of NNEM.

84

Figure B.1: The top three plots are the estimated y hat vs x1. The middle row plot set is
the relationship between the estimated prob2 and x1, the bottom plots are the estimated
prob3 and x1

85

Figure B.2: The top three plots are the estimated y hat vs x1. The middle row plot set is
the relationship between the estimated prob2 and x1, the bottom plots are the estimated
prob3 and x1

86

	List of Figures
	List of Tables
	Introduction
	Literature Review of Mixture of Regression
	Label Switching
	Identifiability
	Selecting the Number of Components

	Neural Network
	Feed-Forward Neural Network
	Activation Functions
	Sigmoid Function
	Tanh Function
	ReLU Function
	Leaky ReLU Function

	Back-Propagation Algorithm

	Methodology
	Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions
	Likelihood Methods
	EM Algorithm
	NNEM Algorithm

	NeuralNet Embedded EM Algorithm for Nonparametric Mixture of Regressions
	Likelihood Function
	Kernel Regression Method
	NeuralNet EM (NEM) Algorithm
	Mixture of Neural Network EM algorithm

	Simulation Studies
	Metrics Overview
	Simulation Examples

	Real Data Analysis
	Boston Housing Data
	Academic Performance Index

	Conclusions
	Random Forest Methods
	Random Forest Simulation Results

	More examples on NNEM

