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ABSTRACT: Non-targeted analysis (NTA), including both suspect screen-
ing analysis (SSA) and unknown compound analysis, has gained increasing
popularity in various fields for its capability in identifying new compounds of
interests. Current major challenges for NTA SSA are that (1) tremendous
effort and resources are needed for large-scale identification and
confirmation of suspect chemicals and (2) suspect chemicals generally
show low matching rates during identification and confirmation processes.
To narrow the gap between these challenges and smooth implementation of
NTA SSA methodology in the biomonitoring field, we present a thorough
SSA workflow for the large-scale screen, identification, and confirmation of
industrial chemicals that may pose adverse health effects in pregnant women
and newborns. The workflow was established in a study of 30 paired maternal and umbilical cord serum samples collected at delivery
in the San Francisco Bay area. By analyzing LC-HRMS and MS/MS data, together with the assistance of a combination of resources
including online MS/MS spectra libraries, online in silico fragmentation tools, and the EPA CompTox Chemicals Dashboard, we
confirmed the identities of 17 chemicals, among which monoethylhexyl phthalate, 4-nitrophenol, tridecanedioic acid, and
octadecanedioic acid are especially interesting due to possible toxicities and their high-volume use in industrial manufacturing.
Similar to other previous studies in the SSA field, the suspect compounds show relatively low MS/MS identification (16%) and
standard confirmation (8%) rates. Therefore, we also investigated origins of false positive features and unidentifiable suspected
features, as well as technical obstacles encountered during the confirmation process, which would promote a better understanding of
the flaw of low confirmation rate and encourage gaining more effective tools for tackling this issue in NTA SSA.

■ INTRODUCTION

Non-targeted analysis (NTA) is a fast-growing approach to
uncover emerging environmental chemicals of concern and
provide early warnings for industrial regulations and public-
health improvement.1−4 Its essential advantage over traditional
targeted analysis lies in the capability to identify “known
unknowns” (SSA, suspect screening analysis route) and
“unknown unknowns” (unknown compound analysis route)
rather than just focusing on “known knowns” (target analysis).
For example, in recent NTA studies, new fluoroalkylether
compounds from environmental and biological samples have
been identified,5 pesticide residues in food, food packaging, as
well as those that end up in the human body have been
screened,6−8 and manymore other chemicals can be tracked and
monitored from various matrices to better understand their
effects on human and environments.9

In NTA SSA studies, suspect features (compounds) are
typically obtained by screening all the acquired raw features
against a database that is composed of the chemicals of interest
and are more likely to be valid with richer pieces of experimental
evidence. According to the well-known and widely used
confidence scale proposed by Schymanski et al.,10 masses

extracted from the rawTIC (total ion chromatograph) only have
a level 5 identification confidence as exact mass of interest. The
suspected features screened out from the database and assigned
with isotopic patterns and formulas can be slightly improved in
the confidence to level 4 as unequivocal molecular formula.
Features with experimental evidence, such as MS/MS, or
matched computationally predicted spectra, for possible
structures but insufficient for further assignment have a level 3
identification confidence as tentative candidates. We categorize
features that have their mass and MS/MS spectra matched with
library spectra as level 2 identification confidence, probable
structures, and those that have MS/MS spectra and retention
time (RT) confirmed by analytical standards are qualified for the
highest confidence of level 1 as conf irmed structures.
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Some previous SSA studies only reported and discussed
features with confidence levels up to level 4,11 thus the
information delivered by those studies was doubtful as the
features were not confirmed.Many SSA studies limit their search
for chemicals in certain chemical class or usage category (e.g.,
phthalates only,12 pharmaceutical drugs only,13 pesticides
only14), and almost all of the limited existing SSA studies of
human serum chose to apply very stringent prioritization
criteria;15−17 in these cases, they proceeded with only a small
number of level 4 suspected features for further confirmation.
Indeed, as a major challenge for NTA SSA, tremendous effort
and resources are needed for identification and confirmation of
suspected chemicals, especially in biomonitoring studies of
serum samples, due to the large number of suspect chemicals
typically presented and the complication brought by endoge-
nous chemicals/metabolites.17,18 It is also noteworthy that
computationally predicted spectra produced by in silico
fragmentation tools are typically used heavily for MS/MS
identification in most previous NTA studies, yet many have
shown that accuracies of predicted spectra are generally low.19,20

Therefore, we recommendmonitoring inaccurate predictions by
moderate manual checking based on knowledge in organic
chemistry, but it will further add burden to the amount of time
and efforts needed for feature identification.
Another major challenge for NTA SSA is the low matching

rates of suspect features (level 4) during identification (level 2)
and confirmation (level 1).2,21 For example, in a representative
SSA study in wastewater conducted by Gago-Ferrero et al., with
their original SSA method, out of 2524 level 5 features, 150
features were screened out as level 4. However, only 13 features
reached the level 2 confidence, and only 7 were finally confirmed
with the level 1 identification confidence.2 These low MS/MS
identification and analytical standard confirmation rates are also
commonly observed in other SSA studies and are critical
challenges to be addressed in this field.22−24

Despite the above challenges, the biomonitoring field would
still benefit most from NTA SSA studies that (1) screen with a
more inclusive database consisting of diverse categories of
chemicals, (2) prioritize a larger number of interesting features,
and (3) achieve higher feature confirmation rates. Therefore, in
order to narrow the gap between the above NTA SSA challenges
and beneficial implementation of NTA SSA methodology in the
biomonitoring field, here we present a thorough SSA workflow
for the large-scale screening, identification, and confirmation of
industrial chemicals that may pose adverse health effects in
pregnant women and newborns. Instead of focusing on
environmental issues and exposomes of populations of different
socioeconomic status as in our original study,27 this work more
comprehensively describes the methodological tools used
during the MS/MS identification, origins of false positive
features, and unidentifiable suspected features observed during
the experiment, as well as technical obstacles encountered
during the confirmation process with possible solutions
proposed. Specifically, to focus research resources on the most
interesting features relevant to this study, we prioritized level 4
features based on a tiered approach. During the feature
identification using LC-HRMS/MS analysis for prioritized tier
1−3 features, we referred to the “ToxCast” and “source” indexes
of U.S. EPA CompTox Chemicals Dashboard25,26 to greatly
minimize the efforts needed on the nonfingerprint type of
fragmentation spectra. Finally with an 8% level 4 → level 1
confirmation rate, we confirmed 17 chemicals, including 4
possibly toxic industrial chemicalsmonoethylhexyl phthalate,

4-nitrophenol, tridecanedioic acid, and octadecanedioic acid
by comparing to analytical standards. Most importantly, to
promote a better understanding toward realistic analytical errors
in SSA identification and confirmation, we also investigated
typical reasons for identification failures and origins of false
positives/negatives and discussed how to improve these rates for
future studies. Thus, this work not only serves as one of the
emerging studies on large-scale implementation of SSA in
biomonitoring field to uncover environmental contaminant
industrial chemicals of broad categories but also provides flaw
investigation to assist the further advancement of SSA
methodology in all related fields.

■ MATERIALS AND METHODS
Study Samples. The study serum samples were collected

from 30 pregnant women who enrolled in the Chemicals in Our
Bodies 2 Study (CiOB2) when seeking prenatal and delivery
care at the Zuckerberg San Francisco General Hospital and
UCSFMission Bay Medical Center between March 1, 2014 and
March 31, 2016.15,27

In-House Industrial Chemicals Database.27 Our suspect
database consists of 3518 chemicals of different categories,
including 369 environmental organic acids, 207 per- and poly-
fluoroalkyl substances, 44 flame retardants, and other industrial
chemicals in U.S. EPA Chemical Data Reporting (CDR) 2016
database. These chemicals were compiled into the database
using Agilent Mass Hunter Personal Compound Database and
Library software (PCDL).

Sample Preparation and MS Instrumental Analysis.
Serum samples together with blank samples (LCMS grade
water) and spiked QC samples (Table S1) were extracted and
prepared for instrumental analysis using the protein precip-
itation technique followed by centrifugation, concentration, and
reconstitution (Figure S1). Ten microliters of each sample
extract was injected sequentially into an Agilent 1290 UPLC
interfaced with an iFunnel 6550 QTOF-MS system for TIC
mass spectra acquisition in both negative (ESI−) and positive
(ESI+) ionization mode in the 100−1000 m/z mass range. An
Agilent Eclipse Plus C18 column (2.1 × 100 mm, 1.8 μm) was
used with 5 mM ammonium acetate in water (0.1% methanol)
as gradient A and 5 mM ammonium acetate in methanol with
10%water as gradient B. The gradient flowwas set to be 0.3 mL/
min. More detailed instrumental parameters are shown in Table
S2. Two technical replicates were analyzed for each sample. Two
blank samples and two quality control samples with two
replicates were also analyzed together within one batch.

MS Data Analysis: Feature Extraction, Alignment,
Cleaning and Screening (Figure 1). The raw MS TIC data
files obtained were processed using Agilent MassHunter
Profinder software (version B.08.00) with the raw molecular
feature extraction (MFE) and target MFE algorithms to extract
compound features recursively across the batch data files. In
order to reduce duplicated binning on the same feature, for the
initial raw MFE, we employed relaxed binning and alignment
parameters of a 0.5 min RTwindow and a 50 ppm + 2mDamass
window. If a stringent narrow window is used, there would be
too many identical features being treated in different bins, which
not only complicates the following data analysis but also distorts
the detection frequency of the same features. The masses and
retention times of the binned features obtained during rawMFE
were then used to perform a recursive targeted MFE referred to
as find by ion (FbI). During the subsequent target MFE step, a
much narrower window of 5 ppm was applied to reduce false
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positive hits (Table S3). The extracted features were then
aligned (RT correction window = 5% + 0.5 min, mass correction
window = 10 ppm + 2 mDa, RT alignment window = 0.3 min)
throughout the whole data set using the Agilent Mass Profiler
Professional software (MPP, version 12.06.01). Further quality
control filtering processes, such as (1) frequency filtering to filter
out features that only appear once in the data set as technical
replicates were analyzed, (2) blank subtraction to filter out
features that do not have significantly higher concentrations in
samples than in blanks (2-fold was used as the threshold), and
(3) repeat removal to remove the repeated features that had not
been successfully aligned together by the software (threshold:
mass error <5 ppm, retention time difference <0.5 min), were
applied. The resulting features were then screened against our
in-house curated database for human exposure studies based on
the spectral information (mass, isotopic abundance and
patterns, as well as adduct ions) using MPP (mass tolerance
window = 5 ppm + 0.01 mDa, score >70). Matched suspected
chemicals were thus assigned a molecular formula and level 4
identification confidence.
Suspect Prioritization for MS/MS Analysis. We

prioritized the suspect (database screened) chemicals based
on three criteria that were the focus of the parent study:27

(1) Universal presence in general population: 100% detection
frequency (DF), that is, DF≥ 117 (total sample number =
30 pairs × duplicate injections = 120 samples), and
feature peak areas rank among the top 50% of all features

(2) Significant demographic differences in peak areas of cord
or maternal samples (p < 0.05, demographic details can be
found in Table S4)

(3) Maternal and cord serum sample correlation:
3a. half of cord samples have peak areas that are not

lower than twice the median peak area of maternal
samples

3b. half of maternal samples have peak areas that are
not lower than twice the median peak area of cord
samples

3c. the Spearman correlation between cord and
maternal peak areas ≥0.5 (p < 0.05)

Based on these criteria, we obtained three tiers of prioritized
chemicals. Features that met all three criteria were assigned to
tier 1; features that met the common presence and demographic
difference criteria were assigned to tier 2; features that met the
common presence and maternal−cord correlation criteria were
assigned to tier 3. Features in tiers 1−3 were prioritized for MS/
MS spectra analysis for further identification (details of data
prioritization strategies are reported elsewhere27).

Targeted MS/MS Spectra Acquisition (Table S5). The
30 pairs of maternal−cord serum samples were ranked according
to peak areas of the prioritized features in descending order. For
each feature, 10 μL extracts of the top ranked samples were used
for individual injection into the same Agilent LC-QTOF-MS
system used for MS acquisition to acquire the target MS/MS
spectra. The targeted MS/MS acquisition method was built
based on the list of target precursor ion masses and respective
retention time ranges (feature retention time ±1 min) of the
prioritized features. For each MS/MS spectra, different collision
energies of 0, 10, 20, and 40 eV were applied.

MS/MS Spectra Interpretation. Agilent MassHunter
Qualitative Analysis software (version B.08.00) was used to
extract and review the MS/MS spectra of prioritized chemicals
at different collision energies. For each chemical feature, online
MS/MS libraries, mainly MassBank of North America
(MoNA),28 MassBank Europe,29 HMDB,30 and mzCloud31

were first used to search for any existing MS/MS spectrum
uploaded by other researchers to compare with the MS/MS
spectra acquired. If existing MS/MS spectra were found and
matched with acquired MS/MS spectra, the corresponding
features were assigned with level 2 identification confidence.
Otherwise, online in silico fragmentation tools, CFM-ID
(competitive fragmentation modeling for metabolite identi-
fication)32 and MetFrag,33 were used to predict the MS/MS
spectra and compare with the acquired ones. Empirical checking
based on organic chemistry theories and chemical reactivity was

Figure 1.Workflow of the suspect screening analysis including the feature MS/MS identification and confirmation steps for the 30 pairs of pregnant
women and umbilical cord serum (*tiers 1−3 also include the 100% detection frequency criterion asmentioned in theMaterials andMethods section).
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also performed during MS/MS interpretation, especially when
comparing experimental MS/MS spectra with predicted ones
from in silico fragmentation to monitor inaccurate predictions.
In this work, a MS/MS spectrum with at least two

fragmentation peaks (mass error <10 ppm) congruent to the
spectrum from the online MS/MS libraries was considered a
match and the confidence level of the corresponding feature was
elevated from level 4 to level 2. If there was only one
fragmentation peak match between a MS/MS spectrum and
the spectrum from online library, or if there was a match of at

least one fragmentation peak between theMS/MS spectrum and
in silico fragmentation prediction or empirical check, the
confidence level of the corresponding feature was set as level 3. If
the acquired MS/MS spectra of a suspected chemical was not a
match, the confidence level of the corresponding feature was
lowered to level 5. After new appropriate formulas and structures
were proposed to these features by the molecular formula
generation tool, theMS/MS spectra were examined again for the
newly proposed structure, as shown in the flowchart (Figure 2).
When proposing new structures, in order to benefit the most

Figure 2. Flowchart that shows the processes of elevating the confidence levels of suspected features by examining MS/MS spectra (to level 2) and
comparison with analytical standards spectra (to level 1) using MEHP (monoethylhexyl phthalate) as an example.
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from the collected MS/MS data, we did not just limit our search
to the in-house database but instead looked for all possible
isomers that were featured with a nonzero “ToxCast” index
(toxicity forecaster, for reference, 48% chemicals of our in-house
industrial chemical database are in the nonzero ToxCast
collection) or a relatively high (>10) “sources” index (for
reference, 93.7% chemicals of our in-house industrial chemical
database are in the “sources > 10” collection) in U.S. EPA
CompTox Chemicals Dashboard.25,26 This way we were able to
inclusively screen for a large number of possibly toxic chemicals
with minimum efforts.
Feature Confirmation with Analytical Standards.

Analytical standards for 25 level 2-3 features were purchased
(see Table 1 and Table 2 for purchased standards) from Sigma-
Aldrich and Thermo Fisher Scientific (standards for the rest of
the eight features are not available for purchase, Table 1 and

Table 2) and were dissolved in LCMS grade methanol/water
mixture (ratio depending on the solubility of the chemicals) with
concentrations on the nanogram tomicrogram/milliliter scale. A
10 μL solution of each standard was injected into the instrument
for both the MS and MS/MS spectra. The spectra were then
compared to those acquired for the suspected chemicals. The
highest identification confidence, level 1, was assigned to
matched suspected chemicals (Figure 2).

■ RESULTS AND DISCUSSION

Feature Extraction and Prioritization for MS/MS
Identification. Figure 1 shows the workflow of the SSA,
including feature MS/MS identification and confirmation steps.
From the acquired raw TIC of the 30 pairs of maternal−cord
serum samples, molecular feature extraction and alignment

Table 1. Details of the 16 ESI+ Features ThatWe Evaluated viaMS/MS Identification and StandardConfirmation Steps for the 30
Pairs of Pregnant Women and Umbilic Cord Serum Samples
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using Agilent Profinder and MPP software yield a total of 31099
ESI+ features and 19096 ESI− features. Considering that
technical replicates of sample extracts were used to collect the
spectra, a frequency filter was applied to remove 287 ESI+
features and 546 ESI− features that only appear once
throughout the whole data set, as they were likely to be artifacts.
Moreover, 10638 (34%) ESI+ features and 5710 (30%) ESI−
features were removed as repeated features that were likely to

result from incomplete binning/alignment rooted in the
software algorithm. Furthermore, 2662 (9%) ESI+ features
and 784 (4%) ESI− features had peak areas (<2-fold) similar to
those in the blank samples and were subtracted as they are likely
to be introduced during the experimental process, i.e., sample
preparation and injection. This data cleaning and reduction
process helps remove a large number of background and artifact
features, and as a result, 17512 (56%) ESI+ and 12054 (63%)

Table 2. Details of the 17 ESI− Features That We Evaluated via MS/MS Identification and Standard Confirmation Steps for the
30 Pairs of Pregnant Women and Umbilic Cord Serum Samples
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ESI− level 5 features remained for further SSA and unknown
identification analysis. For SSA, screening against our in-house
chemical database yields 662 ESI+ and 788 ESI− hits (level 4
features), consisting only ∼5% of the total cleaned-up features.
The majority of the remaining 16850 ESI+ and 11266 ESI−
unknown features are suspected to be likely related to
endogenous and metabolite compounds, as well as other
exogenous chemicals that are not covered by our in-house
chemical database. Instrumental background, in-source frag-
mentation, and improper peak grouping in the feature extraction
process may also compose a portion of the unknown features.
These unknown features can be analyzed via the NTA unknown
identification route and can be screened against new databases
of interest for additional SSA analysis. This capability of
retrospective analysis without the need of reinjecting samples is
another advantage of the NTA technique.
Figure 3 shows the histogram of DF of all level 4 suspected

chemicals in the 30 pairs of maternal and cord serums (a total of
120 samples when counting technical replicates). Feature counts
are much higher at the high detection frequency end of the
diagram, consistent with the matrix similarities, as well as the
expectation that the general population is exposed to similar
chemicals. There are also low-count (count number <40)
features with fewer DF (e.g., DF between 3 and 116). Features
with lowDF are likely to be contributed by individual differences
and unique experiences, which can include differences in diet,
personal care product use, and residential location. Industrial
chemicals exposed to the general population are of special
interest our study; therefore, universal presence in general
population (the threshold of DF = 100% was in this work) was
set as the top criterion that all prior features needed to meet. A
total of 328 features had 100% DF (DF ≥ 117 out of the 120
samples; also see the Materials and Methods section) in the
experimental maternal−cord pairs (Figure 3). The median peak
areas across all 120 samples for these 328 features also rank the
top 50th percentile when sorting the median peak areas of all
features in descending order. Among these 328 features, 27 ESI+
and 20 ESI− features had both demographic differences and
maternal−cord correlations and were assigned as tier 1 features;
58 ESI+ and 65 ESI− features had maternal−cord correlations
but no demographic differences and were assigned as tier 2

features; 31 ESI+ and 39 ESI− features had only demographic
differences without strong maternal−cord correlations and were
assigned as tier 3 features. Based on these criteria, we prioritized
a total of 240 features, 116 ESI+ and 124 ESI−, in tiers 1−3 for
furtherMS/MS identification (the full list is shown in Table S6).

MS/MS Identification and Level 2 and 3 Features. We
found a total of 10 ESI+ and 14 ESI− features identified with
level 2 confidence, plus 6 ESI+ and 3 ESI− features with level 3
confidence from the three tiers of prioritized chemicals (Table 1
and Table 2). Therefore, the level 2 and 3 identification rate is
16/116 = 13.8% for ESI+ suspected features and 17/124 =
13.7% for ESI− suspected features.
In this study, there were several factors that lowered the rate of

level 2 and 3 identification:
(1) Fragmentation patterns of ∼38% of the features did not

match to the suspect structure and only correspond to the loss of
−COOH, −OH, or −CH3, etc., which is not specific fingerprint
type evidence and thus limits our ability to assign the features to
specific chemical structures. Further, searching all of the possible
structures on EPA CompTox Chemicals Dashboard25,26 did not
yield any structure associated with a nonzero “ToxCast” index or
a high (>10) “sources” index. It is also possible that these
features were endogenous compounds and were false positively
identified as level 4 hits during database matching. For features
with specific isotopic patterns, such as those that contain
halogens, they are more likely to be true positive exogenous
compounds and exhibit more distinct fragmentation signature of
halogen loss.
(2) Signal/noise ratios (S/N) of ∼28% of acquired MS/MS

spectra are too low for interpretation, probably due to low
precursor (parent mass) intensities or the difficulties of
fragmenting some inert precursors and/or matrix interferences.
(3) Precursor ions for ∼10% features cannot be found during

MS/MS experiments, possibly due to the wrong grouping of
mass peaks by the molecular feature extraction algorithm during
feature extraction process. They could also be interferences from
instrument parts, such as analytical columns, sources, and
detectors, which only appeared during MS injections and were
absent in MS/MS injections, as they were acquired at different
times.

Figure 3.Histogram of DF (detection frequencies) of all level 4 suspected chemicals in the 30 pairs of maternal and cord samples. *DF is a statistical
value commonly used in the biomonitoring field to characterize the extent of exposure to a specific chemical by the investigated population.
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(4)Masses of about∼3% features are low, and their fragments
(product ions) are not in the detection range (m/z = 100−
1000).
Analytical Standards Comparison and Level 1

Features. Among 16 ESI+ and 17 ESI− level 2 and 3 features,
analytical standards of 4 ESI+ and 4 ESI− features (Table 1 and
Table 2) were not commercially available at the time of the
experiment, thus we only conducted confirmation on 12 ESI+
and 13 ESI− features. By comparison, 8 ESI+ and 9 ESI− level 2
features were matched with their analytical standards and were
confirmed to be level 1 features (Table 1 and Table 2). All
audited level 3 (3 ESI+ and 2 ESI−) features failed tomatch with
their analytical standards, suggesting that it may be more
efficient to focus on only confirming level 2 features. The
remaining four level 3 features (3 ESI+ and 1 ESI−) cannot be
examined due to the unavailability of analytical standards and
thus remained at level 3. For the unmatched ones, either the
retention times (e.g., quinoline) and/or the MS/MS spectra
(e.g., abietic acid) are different from those of the standard
compounds, or the standard compounds (e.g., bornyl acetate)
do not ionize much in the respective ionization modes. Hence
the level 2 and 3 → level 1 confirmation rate is 8/16 = 50% for
the ESI+ level 2 and 3 features and 9/17 = 52.9% for ESI− level 2
and 3 features, and if we only consider level 2 features, the level 2
→ level 1 confirmation rates are considerable higher with 8/10 =
80% in ESI+ mode and 9/14 = 64.3% in ESI− mode.
False Positives Found by MS/MS Identification and

Analytical Standards Comparison. Aided by the MS/MS
identification and standard confirmation process, we found
about 45% of false positive (FP) hits which were corrected or
dropped. Most of these hits had been assigned to level 4
identification confidence, and we identified them as being false
positive at theMS/MS identification step. Inmany cases of these
FP hits, the acquired MS/MS spectra turned out to match with
endogenous chemicals. For example, the MS/MS spectra
collected for C18H20N2O3 at 5.8 min, albeit suspected to be N-
(2-ethoxyphenyl)-N′-(2-ethylphenyl)-ethanediamide, instead
matched with di-L-phenylalanine, a metabolite of essential
amino acid phenylalanine (Figure S3.7 and S3.8), and the MS/
MS spectra collected for C30H56O4 at 15.8 min, suspected to be
ditridecyl (2Z)-2-butenedioate, were likely to match with a fatty

acid. In other cases, the acquired MS/MS spectra match with
different high-use industrial chemicals. For example, those
collected for C18H30O at 12.9 min, suspected to be 4-s-butyl-2,6-
di-tert-butylphenol, 2,4,6-tris(tert-butyl)phenol, or 4-dodecyl-
phenol, match better with p-undecylanisole and farnesylacetone
(used as flavoring agent) which share the same formula but are
not in our in-house database used for screening (Figure S4.1 and
S4.2). Moreover, some features are in-source fragmentation
products of other features: for example, the MS/MS spectra
collected for C8H4O3 at 12.63 min match with the suspected
structure, phthalic anhydride; however, the RT is too late for this
formula, and it is suspected to be an in-source fragmentation
product of another suspect feature, dibutyl phthalate, which also
has the matched RT (Figure S5).
There were some FP features even after the MS/MS

identification step (level 2 FP) and were not discovered until
the analytical standard comparison step. As discussed above,
either the retention times and/or the MS/MS spectra of these
level 2 FP hits are different from those of the standard
compounds (e.g., stereoisomers of the standards), or the
standard compounds (e.g., bornyl acetate) could not be
detected in the ionization modes in which the level 2 FP hits
were detected.
We also noticed that in one rare special case, a level 2 FP

might pass the analytical standard comparison step depending
on the experimental setting employed. For example, theMS/MS
spectra collected for feature C9H7N at 3.8 min matched with the
suspected structure quinoline or isoquinoline. If quinoline/
isoquinoline and another analytical standard, 3-indolepropionic
acid, were prepared in one mixed solution for injection, which
can be a common practice for standard MS spectra acquisition,
this C9H7N at 3.8 min feature would be coincidently and
wrongly identified as a level 1 true positive as quinoline/
isoquinoline because that RT of 3-indolepropionic acid is 3.8
min. In fact, RT = 6.5 and 6.2 min are observed for the
isoquinoline and quinoline analytical standards, respectively,
when injected alone, and the C9H7N at 3.8 min feature is the in-
source fragmentation product of the level 1 feature C11H11NO2

at 3.8 min, which is confirmed to be 3-indolepropionic acid
(Figure S2).

Figure 4. Percentages of features that can be found in both ESI+ and ESI−modes in level 1 features, level 2 features, prioritized features, and all suspect
features.
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Generally, features that are detected in both ESI+ and ESI−
modes are more likely to be real features and identified with
higher identification confidence. As shown in Figure 4, the
percentage of features that are detected in both ESI modes are
highest in the group of 18 level 1 features and is lowest in the
group of all suspect chemicals. We use values in % instead of in
raw numbers in the figure because the numbers of level 1
features, level 2 features, prioritized features, and all suspect
features vary drastically. Values in % better convey the idea that
features that can be detected in both ESI+ and ESI− modes are
more likely to be real features and identified with higher
identification confidence. Therefore, appearances in both ESI+
and ESI− modes can be used as a critical factor for feature
prioritization in future studies. However, it is also worth noting
that these features also belong to a special class of chemicals
which can be ionized into both cations and anions.
Conclusion and Future Perspectives. We analyzed 30

pairs of maternal and umbilical cord serum samples collected in
the San Francisco Bay area for a large-scale implementation,
especially in terms of the broadness of industrial chemical
screening database used and the large number of suspect features
prioritized for further confirmation, of NTA SSA methodology
in the biomonitoring field. From a total of 17512 ESI+ and
12054 ESI− features extracted and cleaned from these samples,
662 ESI+ and 788 ESI−were matched with suspected chemicals
out of the in-house constructed industrial chemical database.
Among them, 116 ESI+ and 124 ESI− features were prioritized
for further identification and confirmation. By analyzing the
targeted MS/MS experimental data of these prioritized features,
16 ESI+ and 17 ESI− features were tentatively identified with a
level 2 and 3 confidence. After theMS andMS/MS of these level
2 and 3 features were compared with those of the purchased
analytical standards, eight structures for the ESI+mode and nine
structures for the ESI− mode are confirmed with level 1
confidence.
Among the confirmed level 1 features, monoethylhexyl

phthalate (MEHP), 4-nitrophenol, tridecanedioic acid, and
octadecanedioic acid are especially interesting for further
exploration in a future exposure study. MEHP is a common
plasticizer metabolite; 4-nitrophenol is found in diesel exhaust
particles and is also used for manufacture of pharmaceutical
drugs and fungicides; the last two are abnormal fatty acids that
appear in high levels in patients with Zellweger syndrome34 and
Reye’s syndrome,35,36 respectively, but an excess amount in
healthy people suggests that the exposure from these two
compounds may be from industrial chemicals because they are
also widely used in manufacturing plastics.
The advantage of the utilized tiered approach for feature

prioritization is that we are able to focus first on the most
interesting features at the time and can revisit the features in
lower tiers (e.g., tier 4, tier 5, etc.) later given additional time and
resources. For example, if we set tier 4 to be fluorinated
chemicals regardless of the DF, demographic difference, or
maternal−cord correlations, we could identify and confirm
another nine poly- and perfluoroalkyl substances as additional
level 1 features (Table S7). We can also set tier 5 as features with
80 ≤ DF < 100% in follow-up studies by setting DF = 100% in
this study: (1) our approach can miss interesting chemicals to
which the population is exposed universally but were not
detected at a high frequency due to reasons such as individual
differences of the subjects from whom the serum samples were
collected, the specific type of LC-MS instrument used in this
experiment, sample extraction efficiencies, matrix effects, limit of

detection, etc.; (2) endogenous chemicals, and background or
matrix interference existing in all samples that are also higher
than blank levels, are more likely to be picked up. Moreover,
chemicals of common exposure instead of universal exposure are
also meaningful for biomonitoring or regulation, and some
chemicals of interests may be only distributed in limited
population and associated with occupational exposure, age,
gender, race/ethnicity etc.
Despite the interference of a serious number of endogenous

compounds in human serum (possibly up to 38% of total level 4
features, vide supra) and low-quality MS/MS spectra (∼28%
with low S/N, ∼10% with no precursor ion found, ∼3% out of
detection range, vide supra), we were able to achieve a level 2
and 3 identification rate of ∼14% and confirm the identify of
∼50% of these level 2 and 3 features with level 1 confidence.
Nonetheless, the general low rates observed in all SSA studies is
still a long-standing challenge and calls for both intralab
improvement and interorganizational collaboration of research-
ers worldwide for improvements in many aspects. Based on our
analysis of origins of false positive features and unidentifiable
suspected features, as well as obstacles encountered during the
confirmation process, we believe the following aspects are
possible directions for future advancement: (1) improve the
sample extraction process for more efficient removal of lipids
and other endogenous compounds, and make sample extracts
more concentrated so that low concentration features can be
detected with better resolved isotopic patterns; (2) refine the
feature extraction algorithm to better group and bin the peaks
detected in MS scan to decrease duplicated or artifact features
(like isotopic peaks of high intensity wrongly identified as new
features); (3) find more suitable “blanks” for blank subtraction
process, because serum blanks cannot be used since the
exposome of the blank serum cannot be determined, using
procedure DI water sample as blanks as in this study, only a small
fraction of features can be subtracted, whereas many
endogenous/metabolite features from the complicated serum
matrix unrelated to exposome are retained; (4) improve suspect
screening database to better reflect environmental chemical
exposure and highlight those with high production volume or
that are more frequently seen in commonly used commercial
products, as these are more likely to be true positives; (5)
enhance the automatic feature prioritization strategies, such as
incorporating chemical structure/retention time predicting
tools, to pick out interesting true positive features more
efficiently; (6) expand existing online MS/MS libraries to
cover more industrial chemicals, which can be greatly benefited
from collaborations from analytical research laboratories around
the world; (7) improve instrument sensitivities and resolution,
especially in MS2 acquisition; (8) incorporate machine learning
techniques to improve automated online spectra matching and
fragmentation pattern recognition.
As for SSA studies in the biomonitoring field with biological

samples specifically, apart from the above aspects, we cannot
ignore the fact that a lot of exogenous chemicals that enter the
body will be metabolized by the liver, kidneys, etc. into different
unrecognized structures and be removed from the body, which
may also be a critical, even the core, reason for the overall low
identification and confirmation rates in works like this. In this
respect, studying the metabolites of industrial chemicals and
building MS andMS/MS databases for these metabolites will be
of great benefit to better identify industrial chemicals in the
body.
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