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abstract: Many species exhibit widespread spatial synchrony in
population fluctuations. This pattern is of great ecological interest
and can be a source of concern when the species is rare or endangered.
Both dispersal and spatial correlations in the environment have been
implicated as possible causes of this pattern, but these two factors
have rarely been studied in combination. We develop a spatially
structured population model, simple enough to obtain analytic so-
lutions for the population correlation, that incorporates both dis-
persal and environmental correlation. We ask whether these two
synchronizing factors contribute additively to the total spatial pop-
ulation covariance. We find that there is always an interaction be-
tween these two factors and that this interaction is small only when
one or both of the environmental correlation and the dispersal rate
are small. The interaction is opposite in sign to the environmental
correlation; so, in the normal case of positive environmental cor-
relation across sites, the population synchrony will be lower than
predicted by simply adding the effects of dispersal and environmental
correlation. We also find that population synchrony declines as the
strength of population regulation increases. These results indicate
that dispersal and environmental correlation need to be considered
in combination as explanations for observed patterns of population
synchrony.
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Regional synchrony in the dynamics of local populations
is common in animal populations ranging from parasites
(Bolker and Grenfell 1996) to insects (Pollard 1991; Hanski
and Woiwod 1993; Myers and Rothman 1995; Williams
and Liebhold 1995; Sutcliffe et al. 1996, 1997), fish (Myers
et al. 1995, 1997), birds (Ranta et al. 1995; Koenig 1998),
and mammals (Moran 1953; Mackin-Rogalska and Na-
baglo 1990; Steen et al. 1990; Royama 1992; Sinclair et al.
1993; Heikkila et al. 1994; Grenfell et al. 1998; Bjørnstad
et al. 1999). The classical explanation for this phenomenon
is that regionally correlated climatic forces engender pop-
ulation synchronization (Hagen 1952; Mackenzie 1952;
Moran 1953), a hypothesis that has been reinvestigated in
several recent theoretical studies (Royama 1992; Ranta et
al. 1995; Haydon and Steen 1997). Studies of spatially
explicit population models reveal that local synchroniza-
tion can also arise due to dispersal (Holmes et al. 1994;
Molofsky 1994; Bascompte and Solé 1998) and due to
spatially extended trophic interactions (Ims and Steen
1990; de Roos et al. 1991; Neubert et al. 1995).

Understanding the causes of wide-scale synchrony has
recently become a central problem in population ecology
because the global persistence of metapopulations de-
creases as regional correlation increases (Harrison and
Quinn 1989; Gilpin and Hanski 1991; Hansson et al. 1992;
Burgman et al. 1993; Grenfell et al. 1995). Many aspects
of the design of nature reserves and the effective conser-
vation of endangered species thus hinge on the level of
regional synchronization in species dynamics. The resil-
ience of populations to manipulation (Myers and Roth-
man 1995), to biological control (Cavalieri and Kocak
1995), and to pest eradication (Bolker and Grenfell 1996)
can also be related to the degree of correlation in dynamics.

Investigations of synchrony as a function of environ-
mental correlation and dispersal have produced equivocal
results. For instance, Ranta et al. (1995) concluded that
either dispersal or correlated noise may induce synchrony,
whereas Haydon and Steen (1997) concluded that migra-
tion acting alone can maintain synchrony only under re-
strictive conditions. Gyllenberg et al. (1993) showed that
dispersal may lead to spatial asynchrony (through spatially
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induced chaos) or synchrony (through phase-locking of
cyclic populations), depending upon the mode of dispersal
(see also Ruxton 1996; Kaneko 1998). One possible reason
for the disparities among these results is that dispersal and
environmental forcing might interact with local dynamics
in a nonadditive manner to induce regional synchrony. If
this interaction is strong, it will not be possible to study
the effects of dispersal and environmental correlation sep-
arately. This, in turn, will have consequences for the design
and analysis of ecological studies.

The nature of this interaction is the primary focus of
this article. In particular, we use a simple population model
to ask whether the population covariance can be decom-
posed, exactly or approximately, into additive contribu-
tions from dispersal and a correlated environment. If not,
we ask how large the remaining interaction term is. We
analyze a model in which the local dynamics, dispersal,
and environmental stochasticity all enter linearly; if the
decomposition works anywhere, it should work in this
model. We obtain a full analytical decomposition for the
simplest possible system that can entertain these effects: a
coupled stochastic two-patch model.

The Model

We assume that the local population density is fluctuating
around a stable equilibrium, described by

∗ ∗N(t 1 1) 2 N = b[N(t) 2 N ] 1 «(t). (1)

The current population density is N(t), is theN(t 1 1)
population density at next time step, is the equilibrium∗N
density, b (between 21 and 1) is the rate of return to the
equilibrium, and «(t) is a white noise process. This can
be thought of as the linearization of a nonlinear model
around the equilibrium. The parameter b represents the
outcome of population regulation, with meaningb = 0
that the population returns to the equilibrium immediately
following a perturbation (“strong regulation”) and with b
close to 51 representing a very slow return to the equi-
librium (“weak regulation”). Negative values of b corre-
spond to overcompensation.

Equation (1) is a first-order autoregressive process; it
can be rearranged to read

∗N(t 1 1) = bN(t) 1 (1 2 b)N 1 «(t). (2)

We now consider a two-patch model, with the local
populations linked by density-independent dispersal. A
constant fraction of individuals (D) moves to the other
patch in each generation. The coupled system is, thus,

∗N (t 1 1) = (1 2 D)[bN (t) 1 (1 2 b)N 1 « (t)]1 1 1

∗1 D[bN (t) 1 (1 2 b)N 1 « (t)]2 2

∗N (t 1 1) = (1 2 D)[bN (t) 1 (1 2 b)N 1 « (t)] (3)2 2 2

∗1 D[bN (t) 1 (1 2 b)N 1 « (t)].2 2

The dynamics of the total population density, M(t) =
, are described byN (t) 1 N (t)1 2

∗M(t 1 1) = bM(t) 1 2(1 2 b)N 1 [« (t) 1 « (t)], (4)1 2

which is also a first-order autoregressive process.

The Covariance

We calculate the covariance between andN (t 1 1)1

by recalling that the covariance of two sums isN (t 1 1)2

the sum of the covariances of all of the cross terms:

cov(a 1 b, c 1 d) = cov(a, c) 1 cov(a, d)

1 cov(b, c) 1 cov(b, d).

We assume that the noise is density independent:
. We define the noise variance, var(«i),cov[N (t), « (t)] = 0i i

to be j 2 and the noise covariance, cov(«1, «2), to be r.
As long as , the model is second-order stationary.FbF ! 1

This means that is independent of time;cov[N (t), N (t)]1 2

in particular .cov[N (t 1 1), N (t 1 1)] = cov[N (t), N (t)]1 2 1 2

Thus, we find by calculating thecov[N (t 1 1), N (t 1 1)]1 2

covariance of both sides of (3):

cov[N (t 1 1), N (t 1 1)] =1 2

2 2 22D(1 2 D)j 1 [D 1 (1 2 D) ]r

21 b D(1 2 D){var[N (t)] 1 var[N (t)]} (5)1 2

2 2 21 [D 1 (1 2 D) ]b cov[N (t), N (t)].1 2

We need to calculate the variance terms var[N (t)] 11

in equation (5). Since is the totalvar[N (t)] N 1 N = M2 1 2

population size,

var(N ) 1 var(N ) = var(M) 2 2cov(N , N ).1 2 1 2

Now we need the variance of M; being a first order au-
toregressive process, its variance is simply

22j 1 2r
var(M) = , (6)

21 2 b

and so
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22j 1 2r
var(N ) 1 var(N ) = 2 2cov(N , N ). (7)1 2 1 221 2 b

Substituting (7) into (5), applying the identity

cov[N (t 1 1), N (t 1 1)] = cov[N (t), N (t)]1 2 1 2

{ cov(N , N ),1 2

and crunching through tedious algebra yield

cov(N , N ) = (8)1 2

2 2 22j D(1 2 D) 1 r[1 2 b 2 2(1 2 2b )D(1 2 D)]
.

2 2 2(1 2 b )[1 2 b (1 2 2D) ]

The covariance increases linearly with r (the environ-
mental covariance) and (the environmental variance)2j

and diverges to infinity as approaches 1. The effect ofFbF
the dispersal rate (D) is rather more complex, involving
quadratics in both the numerator and denominator, but
the covariance always increases with D (fig. 1).

The pattern in b occurs because the variance of the
population densities is going to infinity as b approaches
1 ( is a random walk). It is, thus, more informa-FbF = 1
tive to look at the correlation,

Îcorr(N , N ) = cov(N , N ) var(N )var(N ).Z1 2 1 2 1 2

Since

2j 1 r
var(N ) = var(N ) = 2 cov(N , N )1 2 1 221 2 b

(see eq. [7]), more mind-numbing algebra yields

corr (N , N ) = (9)1 2

2 22D(1 2 D) 1 r[1 2 b 2 2(1 2 2b )D(1 2 D)]
,

2 22rD(1 2 D) 1 [1 2 b 2 2(1 2 2b )D(1 2 D)]

where is the correlation in the noise. As expected,2r = r/j
the population correlation increases with r and D ; sur-
prisingly, it also increases with (fig. 2). The latter meansFbF
that the synchrony decreases as the populations become
more strongly regulated.

Decomposing the Covariance

Given an explicit representation of the spatial covariance
(eq. [8]), we can proceed to evaluate the relative contri-
butions of dispersal and environmental correlation to the
overall population synchrony. We define the “dispersal-
induced covariance” as the part of the covariance that does

not involve the environmental covariance. We find this by
setting in equation (8), yieldingr = 0

22j D(1 2 D)
cov = . (10)d 2 2 2(1 2 b )[1 2 b (1 2 2D) ]

The “environment-induced covariance” is a little more
subtle. At first glance, one might think (as did we) that
this is simply r, the covariance in the environmental noise.
However, we are really interested in the effects of the en-
vironmental patterns on the covariance of the population
density, which may be modified by the local dynamics. We
choose to define the environment-induced covariance as
the population covariance in the absence of dispersal; sub-
stituting into equation (8) yieldsD = 0

r
cov = . (11)e 21 2 b

Thus the environmental covariance is amplified by the
local dynamics, with the environment-induced covariance
going to infinity as approaches 1 (as in the total co-FbF
variance). This is the Moran effect for a first-order auto-
correlated process.

Casual inspection reveals that the dispersal-induced co-
variance and the environment-induced covariance do not
account for all of the terms in (8). Thus, even in this
simplest of systems (linear dynamics, constant dispersal
rate, two patches) the spatial covariance in population
density cannot be exactly decomposed into the effects of
dispersal and the effects of the environmental correlation.
We call the remaining term the “interaction covariance”:

2rD(1 2 D)
cov = 2 . (12)i 2 2 2(1 2 b )[1 2 b (1 2 2D) ]

Upon inspection, this may be written as , where2rcovd

is the spatial correlation in the noise. Thus, the2r = r/j
interaction covariance is small only when either r or covd

is small; the interaction is a small fraction of the total
covariance only when r or D is small (fig. 3). Despite the
importance of the interaction term and the grimness of
the intermediate calculations, the overall covariance de-
composition is simple:

cov(N , N ) = cov 1 (1 2 r)cov . (13)1 2 e d

The total correlation (eq. [9]) can be decomposed in a
similar fashion. We cannot obtain the partial correlations
by dividing the partial covariances by the total variance,
for that would cause the dispersal correlation, for example,
to depend on r (because the total variance depends on
r). Instead we substitute the boundary conditions r = 0
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Figure 1: Population covariance as a function of the dispersal rate (D), for various values of the return rate to equilibrium (b) and various
relationships between the noise variance ( ) and covariance (r). Solid line : ; dashed line : ; dotted line : . A, ; B,2 2 2 2j r = j /2 r = j /4 r = j /10 b = 0.01

; C, .b = 0.25 b = 0.5

and into equation (9). The resulting “dispersal-D = 0
induced correlation” is

2D(1 2 D)
corr = (14)d 2(1 2 b )[1 2 2D(1 2 D)]

(fig. 4). The “environment-induced correlation” is simply
, the correlation in the environmental noise. The2r/j = r

remaining term, the “interaction correlation,” is a complex
and uninformative expression but reduces to

corr = 2r corr corr (N , N ) (15)i d 1 2

= 2corr corr corr (N , N ). (16)e d 1 2

Thus, the total correlation is

corr 1 corre dcorr (N , N ) = . (17)1 2 1 1 corr corre d

Discussion

We have analyzed a simple model of simple populations
coupled by dispersal and correlated environmental sto-
chasticity. Despite the linearity of the model, the contri-
butions of dispersal and the correlated environment to
population synchrony are not additive: the interaction be-
tween the two effects can be quite large. The interaction
covariance is proportional to the environmental correla-
tion and the dispersal-induced population covariance; the
interaction correlation is proportional to the environ-
mental correlation, the dispersal-induced correlation, and
the total correlation. The interaction term is always op-
posite in sign to the environmental correlation, so that in
the normal situation where the environmental correlation
is positive, the effects of dispersal and environmental cor-

relation are subadditive. The interaction correlation can
be as large as the dispersal-induced correlation and up to
half the environmental correlation.

A second important result is that local density depen-
dence (b close to 0) invariably serves to decrease the level
of synchrony in a metapopulation of linearized dynamic
maps. The stronger the local regulation, the more inde-
pendently will the subpopulations act. Density dependence
in population growth is previously known to enhance the
persistence of populations by lowering extinction proba-
bilities (e.g., Burgman et al. 1993; Hanski et al. 1996). We
add to this by showing that density dependence may im-
prove the persistence of a metapopulation by ameliorating
the regionally synchronizing effect of correlation in the
environment. Likewise, weakened regulation in environ-
mentally correlated populations coupled by dispersal may
contribute to synchronized extinctions (see Sutcliffe et al.
1997 for an example of such dynamics in butterflies).

Through their contributions to spatial synchrony, dis-
persal and environmental correlation among patches can
influence the global persistence of spatially distributed
populations (e.g., Gilpin and Hanski 1991; Burgman et al.
1993). In our model, the effects of dispersal-induced cor-
relation and environment-induced correlation are nearly
additive only when dispersal rate, environmental corre-
lation, or both, are small (eq. [17]). Consequently, if our
results prove general, ecologists would be able to treat
dispersal and environmental correlation as independent
forces in models of population dynamics and in analyses
of real data sets only under a rather limited set of con-
ditions. Dispersal rates may be directly estimated in many
species (e.g., Turchin 1998), and the environmental cor-
relation estimated if there is a priori knowledge of which
environmental factors are important. Alternatively, these
parameters may be estimated from spatially explicit time
series (Dennis et al. 1998; Lele et al. 1998), but the min-
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Figure 2: Population correlation, as a function of dispersal rate (D), stability parameter (b), and correlation in the environmental noise (r)

imum data requirements for such estimation are un-
known—it may require so much data that the population
correlation could be estimated directly.

In other cases, where both dispersal and environmental
correlation among patches were more substantial, we
found (sometimes considerable) subadditivity of these fac-

tors’ effects on the total correlation across patches. This
will complicate attempts to estimate the contribution of
dispersal to regional population dynamics in spatially syn-
chronized subpopulations.

Our results also identify some issues of practical im-
portance to conservation biology. For example, when
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Figure 3: “Iso-interaction” surface. At parameter combinations lying on
the surface, the interaction covariance (covi) is 5% of the total covariance.
For parameter combinations below the surface, the relative magintude
of the interaction is !5%.

patches in a metapopulation exhibit a low degree of en-
vironment-induced correlation, habitat features that
serve to increase dispersal among those patches (e.g.,
corridors; Simberloff et al. 1992) may substantially in-
crease the degree of dynamic synchrony across popula-
tions. In contrast, if populations are partially correlated
across patches due to environmental factors (e.g., the
patches are in close proximity to one another), then in-
creased dispersal may add to this correlation, but to a
(perhaps greatly) lessened degree, because of the impor-
tant contribution of the interaction correlation to the
total correlation.

Within the framework of the totally linear population
model, there are two assumptions hidden in equation
(3). The first is the timing of the population census. In
the analysis described here, we have “censused” the pop-
ulation immediately after dispersal; it would be just as
legitimate to census after the population growth phase
or after the effect of the noise. As one might expect, the
details of the covariance functions differ with these dif-
fering censuses, in large part because the total variance
differs. However, in all three cases, equation (13) holds
true: . The correlations are similar in thecov = 2rcovi d

three cases, and equation (17) always holds. We expect
that this congruence would also hold in nonlinear mod-
els, as the timing of the census does not affect the
dynamics.

The second hidden assumption has to do with the order
of the components of the model (Ruxton 1996). Since
there are three processes (growth, noise, and dispersal),
there are two distinct orderings of the processes, ignoring

the differences in census time. The linear properties of the
model cause these two orderings to be mathematically
identical, however, so the results do not differ from those
presented above. This would not extend to nonlinear
models.

Our results may not extend to highly nonlinear dynam-
ical systems because nonlinearity will complicate the pro-
cess of spatial synchronization. The interaction between
the two correlating factors has not been studied in non-
linear systems, but existing work suggests how it may differ
from the interaction in simple linear systems. If the local
dynamics give rise to limit cycles, then either a little local
dispersal or weak correlation in the environment will in-
duce region-wide synchronization through a process of
phase locking (Ruxton 1996; Bascompte and Solé 1998),
but there may be multiple attractors in such systems, so
that large environmental variance may destabilize this syn-
chrony, even leading to negative correlations between
patches (Kendall and Fox 1998). In contrast, our results
here show that the population synchrony scales linearly
with environmental synchrony and roughly quadratically
with dispersal rate. Chaotic dynamics, in contrast, appear
to be harder to synchronize, either through dispersal or
through correlated stochastic forcing (Ruxton 1996; Bas-
compte and Solé 1998), although, in the absence of noise,
moderately large dispersal rates can lead to at least locally
stable synchrony (Kendall and Fox 1998). Such systems
exhibit strong sensitivity to initial conditions and expo-
nential divergence of nearby trajectories, so that even small
levels of stochasticity can induce asynchrony when dis-
persal rates are small (Allen et al. 1993). Thus, our results
are most relevant to populations with a stable equilibrium
and fluctuations that are not too large (so that the linear
approximation is valid). Many species of birds, for ex-
ample, may fit these requirements.

Empirical studies of spatial synchrony have generally
found that the correlation decays with distance (Myers
and Rothman 1995; Steen et al. 1996; Sutcliffe et al. 1996;
Ranta et al. 1997; Bjørnstad et al. 1999). Ecological theory
(as developed here and elsewhere; e.g., Tilman and Kareiva
1997; Bascompte and Solé 1998) shows that both dispersal
and extrinsic factors (via the Moran effect) can synchro-
nize populations. As pointed out by Ranta et al. (1997),
an important challenge is to distinguish the contributions
of these two factors with respect to the population syn-
chrony of real populations—a task that will require si-
multaneous consideration of environmental correlation
and dispersal. The synchrony of fully isolated populations,
such as on island archipelagos (Grenfell et al. 1998), testify
to the synchronizing effect of a correlated environment.
Causes of the synchrony of interconnected populations are
more elusive. Sutcliffe et al. (1996) and Bjørnstad et al.
(1999) speculated that wide-scale (region-wide) synchrony
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Figure 4: Dispersal-induced correlation (corrd), as a function of the dispersal rate (D) and the stability parameter (b)

is caused by population growth in a regionally correlated
environment, while local, above-average synchrony is
caused by dispersal. Our current analysis shows that the
real situation is likely to be somewhat more complicated.
The decompositions inherent in equations (13) and (17),

however, promise that disentangling the causes may be
sought through contrasting local and regional synchrony,
if dispersal is negligible across large distances. More work
will be needed because the correlation in the environment
is also likely to decay with distance.
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In conclusion, we have shown in detail how dispersal
and correlation in the environment interact to induce syn-
chrony in the dynamics of a metapopulation. The effects
of the two factors are not additive, even in a system gov-
erned by very simple dynamics. The nonadditive com-
ponent can be substantial. It can, however, be represented
analytically by very simple expressions.
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