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Abstract

Transcription is regulated by transcription factor (TF) binding at promoters and distal regulatory elements and histone modifi-
cations that control the accessibility of these elements. Chromatin immunoprecipitation followed by sequencing (ChIP-seq)
has become the standard assay for identifying genome-wide protein–DNA interactions in vitro and in vivo. As large-scale ChIP-
seq data sets have been collected for different TFs and histone modifications, their potential to predict gene expression can be
used to test hypotheses about the mechanisms of gene regulation. In addition, complementary functional genomics assays
provide a global view of chromatin accessibility and long-range cis-regulatory interactions that are being combined with TF
binding and histone remodeling to study the regulation of gene expression. Thus, ChIP-seq analysis is now widely integrated
with other functional genomics assays to better understand gene regulatory mechanisms. In this review, we discuss advances
and challenges in integrating ChIP-seq data to identify context-specific chromatin states associated with gene activity. We
describe the overall computational design of integrating ChIP-seq data with other functional genomics assays. We also discuss
the challenges of extending these methods to low-input ChIP-seq assays and related single-cell assays.
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Introduction

DNA–protein interactions and epigenetic modifications are cru-
cial for transcriptional regulation. Genome-wide profiling of tran-
scription factor (TF)-binding sites, regions with covalently
modified histones and other DNA-binding proteins reveal cell- or
tissue-, species- and disease-specific cis-regulatory repertoires,
which are vital for understanding gene regulation. Chromatin
immunoprecipitation (ChIP) methodologies [1–3] use an antibody
that recognizes a TF or histone modification to pull down
attached DNA for identifying binding locations. With the rapid
development of sequencing technology, chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) [2–5] has become
the most common and effective assay to identify bound loci
genome-wide in vitro and in vivo. The basic computational

pipeline and software for analyzing ChIP-seq data have been es-
tablished and optimized alongside advances in sequencing li-
brary preparation and ChIP-seq techniques [6–8], including read
quality control, alignment, peak calling and evaluation of repro-
ducibility. ChIP peaks can be visualized using genome browsers
as a simple quality check of signal over known true positives.
Confirmed peaks can be further analyzed with differential dens-
ity analysis for different treatments, gene-associated annotation,
motif discovery and other downstream analyses. Limitations and
advances in these steps are reviewed in detail elsewhere [9].

However, the binding of one TF alone is rarely enough to dir-
ectly infer functional effects on the gene expression levels of
neighboring genes, which are typically under the combinatorial
control of multiple TFs. Therefore, ChIP-seq data are often actively
integrated with other functional genomic techniques to decipher
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the basic regulatory control of gene expression by incorporating
open chromatin regions, long-range chromatin interactions and
SNP (single-nucleotide polymorphism) variants. With the increas-
ing availability of multiple ChIP-seq data sets [10, 11], as well as
data sets from other genome-wide assays, the power of integra-
tive computational analysis is of ever-increasing interest. In this
review, we discuss the application of probabilistic models and ma-
chine learning methods to the analysis of TF and histone modifi-
cation ChIP data simultaneously to identify chromatin patterns
across multiple genomes and cell types. We also focus on the com-
putational integration of ChIP-seq with other functional genomic
assays such as RNA sequencing (RNA-seq) for gene expression lev-
els, ATAC-/DNase-seq/FAIRE-seq for chromatin accessibility, and
chromatin interaction analysis by paired-end tag sequencing
(ChIA-PET)/Hi-C for chromatin interactions that affect regulation
of gene expression. Finally, we discuss the development of ChIP-
seq assays that use low amounts of input materials, and their fur-
ther application in the emerging field of integrative analysis of
single-cell sequencing functional genomics data.

Identifying distinct chromatin states using
histone modifications and TF occupancy

Histone modifications are often found in recurring combinations
at promoters, enhancers and repressed regions. These combin-
ations are referred to as ‘chromatin states’ and can be used to an-
notate regulatory regions in genomes [12, 13]. For example,
H3K4me1 alone marks primed enhancers, while H3K4me1 com-
bined with H3K27ac mark active enhancers. Promoters are charac-
terized by a detectable level of H3K4me3 coupled with a high ratio
of H3K4me3 to H3K4me1. Furthermore, H3K36me3 histone modifi-
cations and RNA polymerase (Pol) II ChIP signal are associated
with transcribed regions, while the presence of H3K27me3 or
H3K9me3 is associated with repressive chromatin states (Figure 1)
[14, 15]. The goal of software packages analyzing chromatin states
is to first discover these relationships in the data, and to then
check for changes in states assigned to a particular region in dif-
ferent cell types. Large-scale data sets produced by ENCODE [10]
and Roadmap Epigenomics [11] have been used to train and to test
with statistical or machine learning methods that assign chroma-
tin states to genomic segments (typically 100 bp or longer). These
state assignments can then be interpreted through comparisons
with known annotations and gene expression.

Hidden Markov models (HMMs) were originally developed
for speech recognition, but have since been used extensively in
other fields to identify hidden states from observed signal data
[16]. In genomics studies, it has been successfully applied to
gene annotation [17] and protein domain characterization [18].
HMMseg [19] was the earliest software package to partition and
annotate a genome by training HMMs on functional genomics
data. However, this tool can only identify two states (‘active’ or
‘inactive’), which limits its application in annotating chromatin
states in greater detail, e.g. active/poised promoters and enhan-
cers. ChromHMM [13] and Segway [20] were developed with the
goal of capturing more comprehensive combinatorial patterns
of multiple histone modifications, RNA Pol II binding and insu-
lator CTCF binding genome-wide (Figure 2). ChromHMM seg-
ments the genome into minimum 200 bp intervals (default) and
converts raw read counts into binary code using a product of in-
dependent Bernoulli random variables for each interval, which
are then used to train a HMM. Similarly, Segway was developed
based on dynamic Bayesian networks. It transforms raw read
counts to coverage signal and can segment the genome down to

1 bp resolution, although 100 bp segments are more practical.
Additional tools have been developed to extend and speed up
the identification of chromatin states. For example, TreeHMM
[21] also uses binary vectors but is position-dependent when
inferring chromatin patterns during cell differentiation and
across different cell types. hiHMM [22] uses a hierarchically
linked infinite HMM model to not only identify chromatin states
across multiple ChIP-seq data sets but also address species vari-
ance for cross-species inference. diHMM [23] inherits from
ChromHMM but uses a hierarchical HMM to identify combina-
torial patterns at variable length scale that range from
nucleosome-level to higher-order domain-level states. Another
joint analysis platform, IDEAS [24, 25], can infer chromatin
states using both position-dependency and cell-type-specific
cases at multiple range scales, and can run faster than both
ChromHMM and Segway using single core mode. Additional
tools have been developed for comparing chromatin patterns
between different experimental treatments [26] and expanding
the comprehensiveness of epigenomic maps [27]. The combina-
torial patterns generated by these methods have been correlated
with gene expression profiles to find context-specific signatures
across cell types using linear regression model [24, 25]. However,
the difficulty of interpreting large numbers of states has led to a
practical preference for models with lower numbers of states.
Typically, the focus is on the discovered states rather than their
transition probabilities, unlike more traditional applications of
HMM to gene annotation. The assumption is that a limited num-
ber of chromatin states and a small number of histone markers
combinations covering significant fractions of the genome will
capture most of the biologically relevant features.

While useful for predicting chromatin states, HMM-based
methods have been relatively less successful when applied to a
large number of TFs with restricted, presumably combinatorial
binding patterns, which cover small fractions of the genome.
Self-organizing maps (SOMs) are an alternative, unsupervised
machine learning method for integratively analyzing such high-
dimensional, comparatively sparse data. SOMs consist of indi-
vidual units (which can be thought of as either neurons or mini-
clusters) arranged on a scaffold that is trained with data to cap-
ture the high-density parts of high-dimensional data sets while
preserving similarity relationships, i.e. data that are close in the
input will also be close on the SOM. Chromatin SOMs identify
TF-TF localization and co-binding pairs of TFs across cell types
and tissues [28]. SOMs have been trained on the same data as
chromHMM and Segway in ENCODE, namely, histone modifica-
tion markers, RNA Pol II and CTCF. These are then overlaid
post-training with additional data such as EP300 ChIP-seq sig-
nals to confirm cell-type-specific and commonly shared enhan-
cer activity of groups of DNA segments [29]. For example, a
trained SOM would distinguish open chromatin regions from
promoters and enhancers based on their difference in H3K4me3
and H3K4me1 signal density (Figure 3). The individual units in
SOM maps can be grouped into map regions called metaclusters
[29, 30], which can then be analyzed for their ChIP-seq signal en-
richments and used to automatically identify sets of potentially
co-regulated regions [29]. Once a unit or metacluster of interest
has been identified, proximal genes can be associated with bound
DNA elements by using tools like GREAT [31] and Homer [32], and
their gene expression profiles can be correlated [24] and visualized
together with DNA element activity. Co-associated genes can then
be analyzed for gene ontology enrichment using GREAT and
Homer, but other tools such as DAVID [33] and Metascape [34] can
also be applied to identify potential functional enrichments. While
SOM does not impose a state transition model like HMMs, it
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recovers similar high-level states at the level of metaclusters but
allows for further granular mining of ‘microstates’ corresponding
to specific chromatin profiles in individual such as distinct com-
bination of TFs that are present in small sections of the genome
[29]. SOM can therefore be used to deeply data-mine for compli-
cated relationships in highly dimensional ChIP-seq data sets.

Incorporating chromatin accessibility with
ChIP-seq

Eukaryotic chromatin is tightly packaged into nucleosomes, and
the positioning of nucleosomes regulated by TFs and histone
modifications shows dynamic patterns during cell differenti-
ation and development [35]. Specific proteins, often called pion-
eer factors, can control nucleosome repositioning via
recruitment of chromatin remodelers, thus exposing cis-regula-
tory elements to lineage- or cell-type-specific TFs that activate
or repress gene expression [15, 36]. Additionally, nucleosomes
with H3.3/H2A.Z histone variants show hypermobility, which
make them less stable and the DNA more easily accessible for
TFs binding [37, 38]. Histone-depleted regions are referred to as
open chromatin (Figure 1), and several sequencing assays have
been developed to capture chromatin accessibility directly at
high resolution such as DNase-seq [39–41], FAIRE-seq [42, 43]
and ATAC-seq [44]. MNase-seq [35, 45, 46] is a related assay for
identifying DNA regions occupied by nucleosomes instead of
detecting open chromatin regions directly. DNase- and ATAC-
seq depend on enzymatic digestion and Tn5 transposase inser-
tion, respectively, to detect open chromatin regions in vivo. Both
of them have a higher signal-to-noise ratio than the other
methods, and ATAC-seq has become increasingly popular be-
cause of its ease of use. All of these methods need deep

sequencing (about 50–100 million reads per sample) to get ac-
curate, high-resolution profiles. The basic computational pipe-
line for open chromatin assays includes reads alignment,
visualization for QC, peak calling and footprint analysis for
DNase- and ATAC-seq or nucleosome profiling for MNase- and
ATAC-seq (each step has been reviewed in detail elsewhere) [35,
47]. Specific software packages have been developed to detect
signal-enriched regions for each assay. For example, Hotspot
[48] detects DNase I hypersensitive regions for DNase-seq;
GeneTrack [49] and DANPOS [50] do nucleosome calling for
MNase-seq; NucleoATAC [51] calls nucleosome positions and
occupancy for ATAC-seq. In addition, tools developed for ChIP-
seq and DNase-seq peak calling also work effectively for ATAC-
seq, such as MACS [52], Hotspot [48] and Homer [32]. DNAse-seq
open chromatin data have been used alongside histone modifi-
cation ChIP-seq data to define chromatin states using HMMs
and SOMs in the ENCODE project [10, 29].

Deeper sequencing of open chromatin data to 200–500 million
reads per sample can also be used to detect TF-binding occupancy
‘footprints’ at nucleotide resolution [35]. The ability of DNase- and
ATAC-seq to perform footprint calling is the consequence of TF oc-
cupancy protecting DNA from nuclease cleavage and Tn5 trans-
position, which results in small stretches of fewer cuts within
otherwise open regions. The sequences within these footprints
can be compared with known motifs for identification [53–55]. The
power of footprinting is that a single experiment can identify the
binding sites for hundreds of TFs, a task that would be still gargan-
tuan with hundreds of TF-specific ChIP-seq experiments.
However, many TF motifs are similar to each other and can be dif-
ficult to distinguish based on sequence alone. For these cases,
ChIP-seq of selected TFs can be used to validate the footprints
when they are critical to the inferred gene regulatory networks [56].
Additionally, histone modification ChIP-seq data can be mapped

Figure 1. Chromatin states are defined by different combinations of histone modifications, TFs and RNA Pol II binding. In this example, a typical repressive state (gray)

is characterized by high H3K27me3 signal or H3K9me3 signal, an enhancer state (yellow) would show a high occupancy ratio of H3K4me1 to H3K4me3 as well as high

H3K27ac and the promoter state (red) would show a high occupancy ratio of H3K4me3 to H3K4me1 as well as RNA Pol II binding at the promoter, whereas poised pro-

moter state (magenta) would show the occupancy of H3K4me3 and H3K27me3 bivalent modifications. Actively transcribed region (green) is characterized by a high oc-

cupancy of H3K36me3 with some RNA Pol II binding along the gene body.
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to open chromatin peaks to confirm the chromatin state of regula-
tory elements [44, 57–59]. The profiling of chromatin accessibility
and TFs/histone occupancy has revealed that cis-regulatory elem-
ents show both transitory and stable activity during development
and differentiation process for different lineages [60, 61].
Integrative analysis of chromatin accessibility and TFs occupancy
from ChIP-seq has revealed that the two processes are not neces-
sarily synchronous. Some TFs commonly referred to as pioneer
factors can induce and remodel chromatin accessibility [62–65]. On
the other hand, chromatin can be opened and activated before TF
binding [48] or closed well after the TF has ceased to be bound. As
open chromatin assays such as ATAC-seq are relatively easier to
do and require less starting material than ChIP-seq, we expect that
an increasing number of studies will start with open chromatin
data followed with selected ChIP-seq for TFs and/or histone modi-
fications. These data will be analyzed integratively with additional
packages developed to facilitate their joint analysis.

Integrative analysis of gene expression with
ChIP-seq

Most users of ChIP-seq data are interested in understanding the
impact of TF binding or histone modifications on the expression

of nearby genes, and therefore, ChIP-seq and RNA-seq are ana-
lyzed jointly to estimate this effect [6, 7, 14, 66, 67]. In the ideal
case, a high ChIP-seq signal of a transcriptional activator would
be found near highly expressed genes, while a high ChIP-seq
signal of a repressor would be found near silenced genes. In an-
other case, differentially expressed genes are first identified and
classified into upregulated or downregulated genes between dif-
ferent experimental treatments. Then, differential TF and epi-
genetic occupancy are correlated with differential gene
expression levels. TF-binding peaks and histone modification-
enriched regions are associated with genes based on which
gene is nearest, or using a particular distance radius. However,
TF and epigenetic occupancy alone are seldom effective in pre-
dicting nearby target gene expression level accurately because
(a) they cannot account for posttranscriptional turnover of the
transcript, (b) it is difficult to accurately associate ChIP-seq
peaks with their target genes and (c) we may not have the ChIP-
seq data for all of the TFs controlling the expression of the tar-
get genes. One study has reported that the binding signal of 12
embryonic stem cell (ESC) TFs can explain 65% of the variance
in mES gene expression, and the correlation coefficient between
predicted and observed gene expression is 0.8 [68]. However, the
predictive power of the same set of TFs in differentiated mES

Figure 2. Graphical structure of annotating chromatin states using a HMM method such as ChromHMM. The genome is split into nonoverlapping segments, and ChIP-

seq signal for histone modifications is binarized (0 or 1) and collected for each segment, which are further built into input matrix for HMM training. The hidden state of

the current segment is dependent on the state of the previous one, and the transition probabilities (in red) of changing from one state to another are learnt from train-

ing on the input matrix. ChromHMM outputs trained hidden states for each segmentation, which are then interpreted as chromatin states based on the chromatin pro-

file and gene annotations, such as active promoter/enhancer, transcriptional elongation or repressive states.
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decreased dramatically (r¼ 0.2) [68], and they can only explain
30% of gene expression variance in GM12878 [69]. In addition,
while histone modifications alone can explain high gene ex-
pression variance in human CD4 Tþ cells (r¼ 0.7), combinatorial
histone modification combinations show different predictive
power [70]. Inferring the effect of TFs on expression is compli-
cated by the fact that TFs may activate a subset of target genes
but repress others. Furthermore, TFs and histone marks have
different power in predicting gene expression levels [71–73].
Thus, this approach is only practical for predicting gene expres-
sion in well-studied systems, where there are plenty of TFs and
histone modifications data sets available that can be selected
based on biological significance.

Efforts have been made to integrate chromatin accessibility
data and ChIP-seq together to predict gene expression, and this
combination is more accurate than using ChIP-seq alone [69].
However, the asynchrony between binding and chromatin ac-
cessibility also accounts for the less than perfect correlation
between changes in these metrics and changes in gene expres-
sion. This is because transcription is the sum total of the multi-
tude of effects of chromatin remodelers, TFs co-occupancy,
different combination of histone marks and even DNA methyla-
tion, which are laborious to capture and profile simultaneously.
Using regression models of RNA-seq, ChIP-seq and chromatin
accessibility data, gene expression can be predicted from TFs/
histone binding [69] and ChIP-seq-identified TF-binding motifs
in open chromatin regions [74]. Mixed linear models of gene

expression correlated with chromatin accessibility corrected
with ChIP-seq TF binding can predict TF triggering or binding
before chromatin remodeling [75]. Furthermore, TF-TFs co-oc-
cupancy can be predicted using support vector machines
(SVMs) trained on open chromatin, histone markers and TFs
ChIP-seq data [76]. The predictive power of integrated chroma-
tin feature data can also be extended to the inference of gene
regulatory networks. In one recent study [77], chromatin feature
data were not only used to predict gene expression but also to
predict the activation status of regulatory elements and further
infer a context-specific gene regulatory network. The expres-
sion of TFs, target genes and chromatin remodelers as well as
the accessibility of cis-regulatory elements and TF motifs in
regulatory elements are integrated together and fed into a stat-
istical Paired Expression and Chromatin Accessibility (PECA)
model. This model predicts active cis-regulatory elements, TF
expression and expression of related target genes within the
same context-specific gene regulatory network, which are con-
firmed by knocking down key TFs in the network [78]. Although
combining TF/histone modification ChIP-seq and chromatin ac-
cessibility data is an effective strategy for predicting gene ex-
pression and inferring gene regulatory networks, more software
packages and platforms are still needed to be developed for
integrating data from different functional assays. We expect
that the next generation of packages will improve the predictive
power of ChIP-seq for gene expression prediction using ever-
more sophisticated and robust statistical methods.

Figure 3. Graphical structure of annotating chromatin states using SOMs. (A) The genome is split into nonoverlapping segments, and ChIP-seq signal for histone modi-

fications is collected for each segment to build a signal matrix for SOM training, where each segment represents a vector of signal. (B) At the beginning of training, the

map consists of a grid of regularly spaced or randomly initialized units (green dots) that we wish to fit to the data, which are signal vectors (black plus signs) spread in

high-dimensional space. (C) For each training step, a signal vector is selected and the closest unit is found. The best matching unit is pulled as well as other surround-

ing units toward to the selected signal vector, which causes the map to adapt itself to match the data distribution in the space. (D) The trained SOM map is divided into

metacluster regions (metaclusters 1–8) that represent combinations of signal enrichments. (E) Metaclusters are then assigned chromatin state labels by inspection

based on annotations and the combinations of signal enrichments as in the HMM case.
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Incorporating long-range chromatin
interactions with ChIP-seq

Most gene regulatory analyses only consider the effects of his-
tone modifications and TFs on the nearest gene, thus not taking
into account long-range interactions of cis-regulatory elements
with more distal genes. Promoters and enhancers are physically
coupled with target genes by chromatin loops mediated by TFs,
cohesin, mediator and some noncoding RNAs to control gene
expression [79–83]. A single promoter or enhancer can interact
with multiple enhancers or promoters within the same chroma-
tin loops [10, 84]. Recruitment of cofactors such as EP300 by
TFs ultimately mediates these complex promoter–enhancer
interactions. Chromosome conformation capture (3C)-based
sequencing assays such as Hi-C [85, 86] and ChIA-PET [87] can
be used to detect these long-range interactions. In particular,
ChIA-PET combines ChIP and 3C-based methods to detect chro-
matin interactions between sites bound by specific proteins
such as RNA Pol II or CTCF on a genome-wide scale [79, 88], but
requires hundreds of millions of cells as starting materials.
Compared with ChIA-PET, Hi-C can capture all sites interactions
in the genome but at the expense of deep sequencing, as it
needs at least a billion reads to achieve 1 kb resolution in mam-
malian genomes [85, 86, 89]. ChIA-PET can capture promoter–
enhancer, promoter–promoter and enhancer–enhancer inter-
actions that involve RNA Pol II directly, while Hi-C identifies
TADs (topologically associated domains) in chromatin struc-
ture. Newer methods such as HiChIP [90] and PLAC-seq [91]
combine the advantages of ChIA-PET and Hi-C to capture long-
range interactions more efficiently and accurately. 3C-based
methods and the basic computational analysis pipelines for
each of the techniques have been reviewed previously [92, 93].

Although the mechanisms of long-range interactions are not
completely understood, it is known that TFs and histone modi-
fications are actively involved in the interactions and may help
alter the chromatin structures [94]. By coupling ChIP-seq with
long-range interaction data, studies find that TFs such as CTCF
and YY1 are highly enriched in interacting loci or the bounda-
ries of TADs in long-range interactions [86, 88, 89, 95–101].
Multiple studies have reported that CTCF can also co-bind with
other TFs to form lineage—or cell-type—specific long-range
interactions and activate context-specific gene expression [101–
104]. It has also been shown that disruptions to TF binding at
TADs boundaries or cis-regulatory elements, whether caused by
mutations, methylation of TF-binding sites or deletion of a TF,
can cause remodeling of chromatin interactions and abnormal
expression of target genes, which may lead to disease [105, 106].
To integrate ChIP-seq data with ChIP-based long-range inter-
action data (i.e. ChIA-PET), peak callers are used to find TF co-
binding and histone modifications in anchor sites of PETs [79,
107, 108]. For example, RNA Pol II ChIA-PET detects promoter–
promoter and enhancer–promoter interactions directly.
Enhancers or promoters can be further confirmed by comparing
ChIP signal between H3K4me3 and H3K4me1 modifications [79].
In addition, distal enhancers have been thought to interact with
promoters via cohesin-associated CTCF-CTCF loops that also in-
sulate enhancers from genes that they are not supposed to tar-
get. The insulators are identified by overlapping anchor sites of
cohesin ChIA-PET with cohesin and CTCF ChIP signal, while ac-
tive enhancers are marked with H3K27ac ChIP signal [108].
Specific TFs co-binding patterns involved in the cis-interactions
can be detected with ChIP-seq peak calling in the anchor re-
gions [107]. Furthermore, differential promoter–promoter, en-
hancer–promoter and enhancer–enhancer interactions can be

identified using ChIP-seq of histone modifications and compar-
ing ChIP signal between conditions [79, 108]. For example, CTCF
ChIP-seq signal at the anchor sites of cohesin PETs was used to
confirm CTCF-CTCF loops in hESC. Although CTCF-CTCF loops
are highly conserved between naı̈ve and primed ES cells, the
loop structures are different in terms of enhancer–promoter
and enhancer–enhancer interactions, as can be seen by compar-
ing H3K27ac ChIP-seq signal between the two states [108]. A
popular strategy is to segment the genome into TADs using HiC
when available, or predicting TADs using CTCF and/or cohesin
component ChIP-seq to constrain interactions between TFs and
cis-regulatory elements within these �100–1000 kb regions [109].
By matching ChIP-seq peaks of CTCF and cohesin complex pro-
teins to non-ChIP-based long-range interaction data, like Hi-C,
TAD boundaries can be defined and TADs can be segmented
into sub-transcription units more accurately [108]. Although
TADs have relatively conserved segmentation structure during
cell development and differentiation [105, 110], the intra-TAD
interactions and epigenetic states of TADs are less stable in
terms of outside stimulus and differentiation conditions [110,
111]. By comparing normalized ChIP signal of histone modifica-
tions within TADs before and after treatment, it is possible to
define activated or repressed TAD states that are then corre-
lated with differentially expressed genes within the same TADs.
As ChIP-seq has been performed routinely in many laboratories
and large consortiums such as the ENCODE [10] and
modENCODE [112] projects, many ChIP-seq data sets are avail-
able for public use. Frequent chromatin interaction loci (‘hubs’)
and TAD boundaries can be predicted accurately from published
histone ChIP-seq data integrated with customized Hi-C [113].
Interestingly, a recent study shows that cohesin loss causes
loop domains to disappear based on Hi-C data, but CTCF and
histone modification ChIP-seq data show that their patterns are
unaffected. The disappearance of loop domains only affects the
expression levels of a small percentage of genes, which suggests
that cohesin-mediated loops only have modest effects on tran-
scription for most genes and that super-enhancers of genes
seem to keep their activity intact without cohesin looping [114].
Thus, given the complex relationship between long-range inter-
actions and gene expression, more studies applying Hi-C/ChIA-
PET coupled with ChIP-seq are needed to understand the exact
role of chromatin loops in gene expression and to further cat-
egorize genes based on their response to the disruption of loop
formation.

Predicting regulatory sequence variants by
integrative analysis with ChIP-seq

Sequence variants or SNPs are known to be associated with gen-
etic traits and diseases [115, 116]. Most SNPs identified by
genome-wide association studies as associated with traits or
diseases are found outside of protein-coding regions, with the
majority of these noncoding SNPs located in open chromatin re-
gions [117, 118]. As open chromatin regions map to enhancers
and promoters, noncoding SNPs in the accessible regions may
interrupt or strengthen protein–DNA interactions by introduc-
ing sequence variants into binding motifs, and thus causing
gene expression and traits to vary between individuals. Indeed,
multiple studies have reported that many disease-causing nu-
cleotide changes are in TF-binding sites and affect TF-DNA-
binding events [10, 119–131]. The interruption in TF binding can
not only influence proximal gene expression but also that of
distal genes [122, 125, 129, 132]. However, only a minority of
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differential TF-DNA-binding causes can be explained by se-
quence variation in binding motifs [133]. Besides, allelic occu-
pancy profiling of >20 TFs using ChIP-seq data revealed that
only a small proportion of these events have sequencing vari-
ants in binding motifs for specific TFs [134]. Although local vari-
ants in motifs are not necessarily affecting specific TF binding,
sequence context is still an important source of differential TF-
DNA binding. For example, proximal sequence changes may in-
fluence cooperative TF-TF binding [133, 135–138], and distal
variants can affect TF-DNA and TF-TF interactions by changing
chromatin state and conformation [133, 139–141].

Many efforts have been made to integrate ChIP-seq and
other experimental data to predict regulatory sequence vari-
ants. One of the most straightforward methods is to match
SNPs to known TF-binding motifs from database such as
JASPAR [142] and TRANSFAC [143], or to look for putative TF-
bindings sites using HMMs. The binding affinity score can be
calculated based on a position weight matrix representation of
the motif. When comparing the motif affinity score between
two alleles, a greater motif score difference indicates that the
variant is more likely to be regulatory [144–146]. However, these
methods rely on known TF-binding sites and do not leverage
the predictive power of chromatin signatures to filter out a large
set of false-positive predictions. Recent studies have success-
fully integrated ChIP-seq and DNase-seq data into predictive
analyses without relying on TF-binding motifs databases [147,
148]. In these studies, peak calls from ChIP-seq and DNase-seq
are scanned for k-mers of a given length, and the putative regu-
latory sequences are used to train a SVM to predict the regula-
tory power of any k-mer sequence. The weighted sequences can
then be used to predict the impacts of single-nucleotide
changes on regulatory activity in the variant sequences [147].
Another version of this method is to weigh the predictive power
of k-mer sequences and compute DNase-seq covariates from
ChIP-seq data using regression methods. The trained k-mers
and DNase-seq signals are then used to predict ChIP-seq bind-
ing signals at two alleles. By comparing the predicted ChIP-seq
signal between the reference and variant alleles, the variant can
be predicted to be regulatory or not [148]. Other studies have
applied deep learning methods such as convolutional neural
nets to more comprehensively integrate sequence variants,
chromatin states, chromatin accessibility and even RNA-
binding protein data to predict which regulatory variants will be
functional [149, 150]. Some regulatory variants are disease-asso-
ciated, and we can predict the effect of those variants on the
binding affinity of TFs by evaluating the change in score for the
motif [149]. We expect additional work on the development al-
gorithms that can predict potential causal disease variants from
the integration of functional genomics data, which will require
experimental validation. The validation data in turn will be of
great value for training the next set of methods to analyze vari-
ants from ChIP-seq data.

ChIP-seq integrative analysis in the era of low
cell count and single-cell genomics

ChIP-seq has been the standard method for identifying
genome-wide protein–DNA interactions when a specific anti-
body is available [151]. However, the traditional ChIP-seq tech-
nique requires a large amount of starting material (preferably
>10 million of cells) to get high-resolution profiles, which limits
its applicability for small organisms, rare cell types and single
cells. Efforts have been made to optimize the ChIP-seq protocol

for a low amount of starting materials, which successfully de-
tect TF-binding signals with as few as 5000 cells [152] and
H3K4me3-binding signals with only 500 cells [153]. Although
these methods generate binding profiles at a good resolution
with a small number of cells, the experimental procedures are
still time-consuming and costly. Owing to the need for high
polymerase chain reaction amplification in the low-input ChIP
protocols, the number of identical aligned reads needs to be
carefully corrected for during data analysis. The low-input
ChIP-seq peaks can also be compared with open chromatin re-
gions from ATAC-seq to show high correlation between enhan-
cer histone modifications and open chromatin regions. By doing
motif discovery analysis, people also identify lineage-specific
TF binding to lineage-specific open chromatin regions. TF ex-
pression levels have been observed to correlate with differential
open chromatin regions accessibility across cell types [153].
Another advancement in low-input ChIP-seq technique is to
couple ChIP and Tn5 transposase tagmentation to add sequenc-
ing adapters to the bead-bound chromatin in a single step [154].
This protocol is both fast as well as cost-effective, and it suc-
cessfully identifies TF binding with 100 000 cells and histone
markers with 10 000 cells. The ChIP signal needs to be normal-
ized to genomic tagmentated DNA to remove tagmentation
bias. However, the protocol also benefits from Tn5 insertions in
open chromatin regions to detect TF footprints and nucleosome
positioning [154].

Single-cell epigenetics is a rapidly emerging area because of
the development of new techniques [155, 156]. While we know
that TF binding, histone modifications, chromatin accessibility,
DNA methylation and long-range interactions work together to
generate context-specific patterns, these results are primarily
based on experiments with bulk samples. Individual cells may
have different epigenetic patterns that influence their random
behaviors [157]. Therefore, many single-cell epigenetics assays
[156] have been developed to study this, including scATAC-seq
[158, 159], scHi-C [160] and scBS-seq [161–163]. In addition, sev-
eral techniques have been developed to couple multiple func-
tional assays together to get transcriptomic and epigenetic data
from the same cell simultaneously [164–166]. Compared with
these methods, single-cell ChIP-seq seems more limited be-
cause of the technical difficulties of working from so little ma-
terial. Only one protocol has successfully performed ChIP-seq at
single-cell level [167], identifying hundreds of histone modifica-
tion peaks per cell. The authors successfully distinguished three
cell types by doing unsupervised hierarchical clustering and
identifying subpopulations with different chromatin signatures.
However, the low input and antibody sensitivity cause single-
cell ChIP-seq to suffer from high technical variance and low
sensitivity across individual cells. Similarly, recent advances in
single-cell ATAC-seq [158, 159] successfully identified individual
open chromatin regions in single cells, with the downside of
low signal-to-noise compared with bulk ATAC-seq. However,
scACTAC-seq reads are aggregated to be validated when com-
paring with bulk ATAC-seq data, which shows less technical
variance and higher sensitivity compared with single-cell ChIP-
seq. The high background IP noise probably limits scChIP-seq to
histone modifications, and extensive computational analysis
needs to be carried out to remove the noise in peak calling. The
strategy used for now is to segment ChIP-ed DNA for peak call-
ing for individual cells and then cluster cells based on fractions
of reads in known ChIP peaks from bulk samples. Thus, the ana-
lysis is still performed at low-input level rather than the true
single-cell level [9]. Future studies need to develop methods to
remove IP noise and improve solid peak calling in individual
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cells, as bulk analysis methods cannot be applied directly in
single-cell assays. We can further expect that methods will ap-
pear combining single-cell ChIP-seq and single-cell RNA-seq
from the same cells, which will open up new possibilities when
working from mixed cell types and difficult-to-obtain samples.

Future direction and conclusion

ChIP-seq has become the standard method for profiling pro-
tein–DNA binding over the past decade, and it has been actively
integrated with newer functional genomics assays such as
RNA-seq, DNase/ATAC-seq and Hi-C/ChIA-PET to generate
models of gene regulation. In the best studies, the integrative
analysis is validated with a series of validation experiments to
show that the binding of particular TFs is critical for target
genes expression. As ATAC-seq and RNA-seq protocols con-
tinue to become easier, we expect that ChIP-seq will be rou-
tinely integrated with these functional genomics assays. While
most current studies compare different ‘static’ cell types, tran-
scription changes temporally in response to stimuli that involve
changes in TF binding, and will become more often the subject
of study using ChIP-seq during development and/or stimula-
tion. ChIP-seq following perturbations will also become more
routine, and will need to be integrated when building predictive
models to identify potentially active cis-regulatory elements
and key TFs, which would guide experimental validation and
will feed back into further model building.

Another challenge in ChIP-seq integrative analysis will be
how to incorporate long-range interaction and gene expression
data into the chromatin state analyses that are being done with
HMMs and SOMs. Currently, all of these analyses include mul-
tiple ChIP-seq data sets and can incorporate chromatin accessi-
bility but are not designed to incorporate connectivity between
distant regions or gene expression data as part of their training
as opposed to post-training analysis and annotation. A chal-
lenge is that while at least ChIA-PET and HiC are working in a
similar ‘feature space’ of chromatin as ChIP-seq, regular RNA-
seq is measuring the steady state of transcripts, which is af-
fected by several posttranscriptional processes such as mRNA
turnover mediated by microRNAs. As chromatin will always be
more predictive of transcriptional initiation, it may be more
fruitful to compare the predicted models of expression to GRO-
seq and other measurements of transcriptional activity than
regular RNA-seq.

In recent years, ChIP-seq techniques for low-input materials
have been developed to expand its applications to rare tissues
or cell types, and even single-cell studies. Other functional gen-
omics assays have also been developed at single-cell level to an-
swer new biological questions. However, the integrative
analysis of single-cell ChIP-seq with these functional genomics
assays in single cells is a difficult challenge. One reason is that
the experimental protocols to capture protein binding, tran-
scriptomes and DNA methylation data from the same cell are
still not available. However, it may still be worthwhile to inte-
grate data from scChIP-seq and other functional genomics
assays in different individual cells from the same pool based on
the assumption that protein-binding profiles would match to
the gene expression profiles from the assay because these cells
are from the same pool. Once protocols are available to do
scRNA-seq and scChIP-seq from the same single cell, algorithms
will need to be developed to integrate these single-cell data
types together to understand the connection between binding
and gene expression heterogeneity in subsets of a cell popula-
tion. As single-cell data are sparser than bulk data, new

statistical methods and tools are required for integration. In a
hopefully not-so-distant future where robust single-cell ChIP-
seq and RNA-seq are practical, they could become the method
of choice for studying samples where the amount of material or
the heterogeneity of the population makes the bulk version of
these experiments less attractive.

Key Points

• TF and histone modification ChIP-seq data can be
used to define chromatin states for annotating regula-
tory regions in the genome.

• ChIP-seq data can be integrated with chromatin
accessibility and long-range interaction data to further
decipher mechanisms of gene regulation.

• ChIP-seq data can be integrated with other functional
genomics data to predict noncoding regulatory se-
quence variants.

• Single-cell ChIP-seq promises to reveal the cell-to-cell
variability of TF and histone occupancy, but the ex-
perimental and computational methods still need to
be improved to capture meaningful ChIP signal.
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