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ABSTRACT OF THE THESIS
Very Low Power High-Frequency Floating Point FPGA PID Controller
By
Radhit Dedania
Master of Science in Computer Science
University of California, Irvine, 2022

Assistant Professor Sang-Woo Jun, Chair

In this work, we propose the design of a floating-point Proportional-Integral-Derivative(PID)
controller accelerator and present its implementation on a Lattice UP5K FPGA which at-
tains a high throughput rate of 645-K samples per second for a single controller and a net
throughput of 1032-K samples per second for an interleaved double controller at the expense
of 20-mW of power consumption. Our single controller and interleaved double controller
systems respectively achieve over 70x and 120x the performance of a similar sized micro-
processor with comparable power constraints, and 5x the power efficiency compared to a
large and more potent ARM Cortex-M4F capable of hardware floating-point operations.
We obtain such a high performance with a systolic array design that uses simplified hard-
ware floating-point operations that get synthesized on embedded DSP blocks of a low-power
FPGA. Additionally, we support a simple treatment of complex reference signals such as
sinusoidal inputs by storing the reference in an on-chip block RAM in the form of a time
series. The level of power efficiency and high performance that we achieve on a small sized

board is imperative for our target applications of micro, or insect-scale robotics.
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Chapter 1

Introduction

Complex real-world systems like Cyber-Physical Systems (CPS), Robotic Systems, Self-
driving cars, Autonomous Underwater Vehicles (AUV) and Unmanned Aerial Vehicles (UAV)
have high-performance and accurate control systems as one of their core components. Low
resource requirements complemented by simple algorithmic structure contribute to the pop-
ularity of the Proportional-Integral-Derivative (PID) controller in comparison with a variety
of other control algorithms and systems under research and deployment. PID controllers take
into account measured state of the system being controlled through a feedback mechanism
and use this to generate control signals and thereby, fall into the class of closed-loop control
systems. PID controllers are useful for a wide range of situations [29, 10, 4] due to their
versatile adaptability attributed to their flexible parameters that can be tuned manually or

algorithmically using one of the available standard techniques [36, 22, 19].

Synthesizing PID controllers on resource-constrained robotics systems or even CPS is a
quite challenging task despite its simplicity. Insect-scale robotics has gained prominence in
recent years and proves to be an exciting field of modern research [15, 21, 20, 16]. Lack

of essential computing power results in low-power micro-controllers’ struggle to keep up



with the required signal rates, with each sensor input sampled at 10-KHz or higher [15],
though they may meet the stringent power budgets. Absence of a dedicated floating-point
processing unit in many low-power micro-controllers makes this matter worse. Fixed-point
PID controllers are not amenable for many modern-day applications due to their rigidness
and software emulation of floating-point arithmetic degrades performance by an order of
magnitude [3, 35]. On the other hand, computationally powerful micro-controllers possessing
floating point units breach the upper threshold of size and power budget requirements of these
micro-scale robots [21, 20, 16]. It is highly desirable to use dedicated Application-Specific
Integrated Circuits (ASIC) equipped with low-power cores and floating point operators for

this task but their fabrication is very expensive.

In this work, we present a solution approach based on off-the-shelf low-power Field Pro-
grammable Gate Array (FPGA) chips, which meet system specifications in every critical
aspect including performance, power efficiency, cost and size. We use low-cost lattice UP5K
FPGA for synthesizing our solution and build simplified, resource-efficient floating-point
operations on its Digital Signal Processor (DSP) cores. We implement the PID controller
using low-power FPGA resources and optimize its design to fit it within these available on-
chip resources. Our controller allows storing reference signals as a time series in the FPGA
BRAM in order to support handling of complex reference signals like sinusoidal signals for
control of flapping wing motion and wing speed of a micro-scale robot. Our work has been
accepted to appear at the 12" International Symposium on Highly Efficient Accelerators
and Re-configurable Technologies(HEART 2022) and will be published by ACM through the

International Conference Proceedings Series [11].

Our single controller and interleaved double controller solutions respectively attain a 26-MHz
& 23-MHz clock frequency on the Lattice UP5K FPGA and result in a 20-mW power budget
as they adequately fit within the board while consuming 75% & 90% of the chip resources.

As far as throughput is concerned, our single controller design emits 637-K control outputs



per second which is roughly equivalent to a computational throughput of 7-MFLOPS. On
the other hand, our interleaved double controller emits a total of 1032-K control outputs
per second which is roughly 11.4-MFLOPS. For the above two cases, we get 70x & 120x
the computational throughput of an ATMega328 micro-controller which has similar size
and clock speed as our UPS5K FPGA and also consumes comparable power. Lack of a
floating point unit on ATMega328 also partly degrades its performance. We also evaluate our
system against a more potent and power-consuming ARM Cortex-M4F which is equipped
with floating point operators and clocks at 180-MHz but far exceeds the size and power
budget constraints of our target application. In comparison to this highly capable system,
our accelerator displays a comparable computational performance and more saliently, we
outperform it drastically in terms of power efficiency. We maintain the upper hand in
power efficiency even when compared to much more powerful and sophisticated desktop-

class systems such as Raspberry Pi machines.

The rest of this work is structured as follows. In Chapter 3, we cover the background
information and prior works related to PID controllers and their accelerators. In Chapter 5,
we present the design details of various components constituting our accelerator architecture.
We evaluate the performance of our solution with existing systems in terms of throughput
and power efficiency in Chapter 6. At last, in Chapter 9, we conclude our discussion with

suggestions for future research in this direction.



Chapter 2

Motivation

The motivation for this work comes from the power budget, cost, size and throughput con-
straints needed for our target applications of insect-scale robotics and micro-aerial vehicles.
These use cases require controllers implementations which have low power consumption of
the order of 10 mW-100 mW [21, 20, 16], reasonably high throughput over 10 KHz [15] and
small sized boards, which measure a few inches in both dimensions of length and width, that
can be embedded on the target devices. Another inspiring reason for this work has been the
limitation of fixed-point arithmetic which results in significant accuracy loss even though it

works on low-power devices.

Much needed support for floating-point operations that conform to IEEE-754 Standard [12]
requires use of high-power devices and its implementation alone takes up a sizeable chunk
of available resources on the device. Thus, the need of the hour is to get good from both
these worlds by using simplified floating-point operations that work on low-power devices.
As micro-processors and micro-controllers consume a lot of power, are relatively large and
too generic due to which they are not optimized for a specific task, it is better to avoid

them for our target applications. Application-Specific Integrated Circuits (ASICs) are the



best choice for high-performance and low-power applications but their fabrication is very
expensive and additionally, are not re-configurable like Field-Programmable Gate Arrays
(FPGAs). FPGAs are the best choice as they are relatively cheaper and these integrated
circuits can be reprogrammed multiple times at no additional costs. Moreover, they provide
dedicated computational units in the form of Digital Signal Processing (DSP) blocks and

have adequate on-chip Block RAM (BRAM) memory for storage purposes.
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Figure 2.1: Conventional Control of a Micro-Aerial Vehicle
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To understand the application requirements, consider a motivating example of a micro-
serial vehicle that is controlled from a command center like desktop, data center, etc. in
a traditional way as shown in Figure 2.1. This mode of control requires communication of
data over wireless network. The sensors on the vehicle send observed inputs to the command
center which then computes control outputs based on these inputs and transmits them back
to the vehicle for next course of action. There are many limitations of this control scheme.
There is a round-trip latency involved between the sensor inputs and control outputs which
could become a bottleneck for throughput. As the network is unreliable, both the sensor
inputs and control outputs can get lost or arrive out-of-order. There are also security concerns
about possible snooping over the communication channel and malicious modification of data.

Hence, there is a need arises for an embedded control solution that comfortably fits on the



vehicle, is low-powered so that its battery lasts for a longer duration, is comparably cheaper

and meets computational requirements of the target device.



Chapter 3

Background and Related Works

The prime objective of a controller in any dynamic system is to modulate the output value
of the system in order to synchronize it with a given reference input value. This is generally
expected to be carried out in an automated fashion. There are two types of control loop
systems, namely, open-loop and closed-loop available to accomplish this task. The control
inputs of an open-loop system are independent of the measured output variable. Despite
their design simplicity and economical nature, they are quite inaccurate and highly vulner-
able to fluctuations in the environment which renders them unreliable. These drawbacks of
open-loop systems can be overcome with the introduction of an output to input feedback
mechanism that closes this open loop in a closed-loop control. Thus, a closed loop system also
considers value of the output variable, which is mainly sensor measurements, and contrasts
it with a provided input reference to produce an error. If the final objective is to equate
these input and output values, then the complete control problem gets transformed into one
whose end goal is to minimize this error. The addition of feedback raises accuracy score of a
closed-loop system even in non-linear settings [8] and makes it more resilient against extrinsic
perturbations as opposed to open-loop control systems [13]. Some works have also explored

adaptive hybrid control that transitions between open-loop and closed-loop for carrying out



repetitive tracking [31].

3.1 PID Controller

PID Controller
—' e(t) X | Kp
i Reference i_ Le® fe(t)dt x |k | s : Controlled i
! Setpoint | J ! System |
de(t
e(t) x | Ky
dt

Measured State

Figure 3.1: PID Controller.

Proportional-integral-Derivative (PID) controllers [6] are the most popular and widely used
controllers among various other sub-categories of the class of closed-loop control. Despite
having a simple algorithmic structure [32], PID controllers are less prone to environmental
disturbances [28]. Moreover, they are quite robust to tuning errors and mismatches [23],
and reasonably economical due to dependence on fewer resources [26]. These controllers are
composed of proportional (P), integral (I) and derivative (D) parts as presented in Figure
3.1 and this class of controllers derive their name from these three components. An output
proportional to the error signal e(t) and scaled by a gain factor of K, is generated by the P
component. The error signal e(t) is integrated over time [ e(¢)dt by the I component and
multiplied by the constant K; before it gets added to the control input. The D component
calculates the time differentiation of the error signal dil—(tt) and weighs it by a multiplicative
coefficient K. Each of the above components adds some value to the final control signal by

taking care of different output features like overshoot, oscillations, etc. and hence, play an

integral role in the correct functionality of the controller.

The parameters K, K;, and K; must be correctly tuned for the PID controller to accurately

8



adapt to the external environment. This can be achieved by using any of the three promi-
nent tuning techniques which are heuristic-based, rule-based and model-based methods. An
important category of heuristic-based methods is trial and error tuning [1] which is a manual
recursive process of setting controller parameters that takes into account observable char-
acteristics like overshoot, oscillations, steady-state error, etc. for faster and better tuning.
Rules-based methods rely on the response model of the given system and transform it into a
mathematical expression that guides the parameter tuning process. There are many distinct
rule sets available for this purpose each of which requires differing amount of system infor-
mation with varying accuracies [36, 22, 19]. Ultimately, model-based methods [17] provide
a framework for setting parameters in a way that meets the given control specifications but

they are quite time-intensive and are mainly used for critical applications.

3.2 PID Controller Acceleration

PID controllers must swiftly record the behaviour of the controlled system and rapidly act on
it in order to be helpful. This implies operating on a sampling rate of 10-KHz or higher [15].
A floating-point implementation of the PID control algorithm puts tremendous overhead on
low-power embedded processors due to inherent accuracy requirements. Thus, enhancing

power efficiency of the PID controllers is an active area of research.

To address this issue, one method is to utilize parameter quantization and then rely on
cheaper fixed-point arithmetic for computation of control inputs. However, it results in a
significant loss of accuracy [35] and also complicates the control design to a greater extent [25].
Another approach is to employ application-specific hardware accelerators like FPGAs. Some
prior works avail of techniques based on distributed arithmetic to minimize resource utiliza-
tion and chip area for synthesising the design [9]. Other designs trade-off on-chip resources

for parallel control flow architecture [34] to accelerate computation of control input which



also pays reasonable attention to its accuracy. Some projects have implemented multiple
controllers on the same chip but they worked with a large and powerful Xilinx Spartan-6
board and furthermore, did not utilize floating-point arithmetic which is essential for higher

accuracy and better control [2].

Many optimized standard FPGA implementations are also available from multiple vendors.
One such implementation on a Spartan-3 board focuses more on resource efficiency through
a parallel as well as a compact control design and thus, achieves it at the cost of increased
latency[33]. Another version utilizes Vivado HLS Design Suite for optimizing a RTL imple-
mentation constructed from a C++ based instance of the control design. There are multiple
applications of PID controllers based on FPGA architecture including but not limited to

stabilization of DC-DC converter [37] and non-linear control of manipulator robot arm [24].

There are variety of PID controller designs on FPGA. As far as we know, there are no
published implementations that cater to target applications of insect-scale robotics which

requires a lower threshold of 10-KHz sample rate realised in tens of mW power.

Analog versions of PID controllers also exist. They are cheaper but are much slower. Ad-
ditionally, relative to digital implementations, they are characterized by increased tuning

difficulty and decreased stability [3].

10



Chapter 4

PID Controller

4.1 Controller Tuning

The tuning process of a PID controller involves adjusting the gains of various paths (K, K;, K )
to obtain a steady-state error of zero. There are multiple standard methods available for set-
ting the correct values of these controller parameters as discussed in Chapter 3. The tuning
of a controller is specific to a domain/task of interest. Once it changes, this process has to
be repeated again from scratch. For setting parameter values in this work, we used heuristic-
based tuning[18] which is a manual process of iterating through controller parameter values
based on some observable characteristics like overshoot, oscillations, steady-state error, rate
of convergence, etc. The plots of reference signal, control input signal and observed signal
at various phases during the tuning process used in our work are shown in Figure 4.1. These
plots highlight the importance of observable characteristics in the manual tuning process.
Some of them are magnified at the initial time steps to emphasise more on the legibility and

distinction aspects.

In this method, we start off by setting the value of every controller parameter to zero.

11



Then, we decide on the need of a positive or a negative feedback by setting K, to a small
positive and negative value respectively and depending on the value of steady-state error,
we select one which provides a minimum value. Now, we change the value of K, in orders of
magnitude and continue till there is no significant change in the observed steady-state error
which should decrease over time. Subsequently, we start changing the value of K; and stop
when most of the oscillation overshoots die out due to the damping effect of the parameter.
Finally, we start adjusting the value of K; to ensure further reduction in steady-state error
but it comes at the cost of instability in the form of some overshoot. To stabilize it, values
of other parameters can be modified. Additionally, two or more parameters can be scaled
simultaneously by a factor to reduce steady-state error while keeping transient response the
same. This iterative process is repeated till the final steady state error becomes close to zero
and there are no visible oscillations that aim to destabilize the system by inhibiting steady-
state convergence. The tuning process can also be stopped once desired characteristic values
provided in specifications(if any) are reached. It should be noted that very high gain values
often lead to chattering although they might meet characteristic requirements and hence,

should be avoided at all costs.

4.2 Controller Convergence

The convergence of the controller to steady-state error depends on a variety of factors like
controller parameters (K, K;, K;), reference signal (ref), value of initial observation (obs),
sampling frequency (dt), etc. The final configuration of chosen variables including controller
parameters is shown in Table 4.1 below. The final convergence plot is illustrated in Figure 4.2
along with a magnified version of the initial part of the plot for the sake of legibility. It can
be observed that for the above choice of parameters, the convergence to steady-state error is

very fast as it occurs within tens of controller cycles and is devoid of any overshoots which

12
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generally give rise to oscillations. Moreover, it is stable as once the measured output comes

within +2% boundary of the reference signal, it does not cross it again and remains inside

it forever.

Table 4.1: Final Configuration of Controller Variables

Controller Variable Final Value
Reference Signal (ref) 2sin(2mt)
Initial Observation (obs) 20
K, 0.5
K; 0.4
K, 0.0001
Sampling Frequency (dt) 512
Sampling Time () = = 0.00195

13
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Chapter 5

Accelerator System Design

The overall high-level architecture of the system containing our PID controller accelerator
is shown in Figure 5.1. Time series representation of the reference setpoints sampled at rate
é and parameters like tuning constants (K, K;, K4) along with period-dependent dt values
are stored in the configuration array of the PID accelerator. This array can be set up at
compile time and modified in a dynamic fashion over either the UART or the SPI channel

by the host controller. Similarly, the sensor inputs and controller generated outputs are fed

and emitted respectively from the accelerator over the SPI channel.

Although the I/0 to and from the system can be carried out using 8-bit or 16-bit fixed-point
integer values, every internal arithmetic operation is executed using 32-bit floating point

operators that are realised using a few on-chip Digital Signal Processing (DSP) blocks.

FPGA
UART/SPI | .| Configuration
Configuration Array
SPI SPI
Sensor Input PID Controller Control Output

Figure 5.1: Overall architecture of a PID accelerator.
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5.1 Accelerator Microarchitecture

The architectural design of the interior of our PID accelerator is illustrated in Figure 5.2. We
highlight two important aspects of our accelerator micro-architecture: Use of a Block RAM
(BRAM) array for storing reference setpoints as time-series and time-sharing of floating
point adders as well as multipliers. A more detailed flowchart for a PID controller depicting
the operations executed in each cycle and the flow of control between them is shown in

Figure 5.3.

TIIIIE

Reference Setpoints

(BRAM)
I Ry
N

Measured W

State & %

Control
Output

Figure 5.2: Design of our PID Accelerator (re-used operators share fill patterns and are
marked with a dashed-line boundary).

As the sensor input of the next time-step depends on the control output of the previous time-
step, the design of our accelerator takes advantage of this information and hence, there is
no overlap between control output computations across different time-steps. To benefit from
this, our accelerator generates and time-shares a small collection of floating point operators.
Specifically, we create three instances of floating point adders and multipliers, so that a pair
of one adder and one multiplier is available for each of the three P, I and D paths. All the
operations performed exterior to the P, I and D paths share the floating-point operators,

that were created within these paths, in a deterministic scheme.

The floating-point operations carried out in the three paths and outside these paths do not

16



overlap which makes our chosen design trade-off productive. Additionally, there are similar
number of addition and multiplication operations performed inside and outside these paths
which complement our design choice. The synthesis of a floating-point operator occupies a
sizeable portion of the chip’s re-configurable fabric which will be covered in Section 6. Thus,
without operator re-use, it would not be feasible to fit the floating-point PID controller
design on our target Lattice iCE40 UP5K FPGA.

Inputs: ref, obs, Kp, Ki, Kd, dt, 1/dt

. Variables: err, int, prev_err Cycle
Computation Flow Term 11 T
ref - obs (err) 1
4
Term 21 Term 22 Term 23 T
KoxT, T, xdt T,, - prev_err 2
- - T4
Term 51 T
T31 = T42 s
Term 61
T
T, +Ty, 6
T

Figure 5.3: Detailed Control Flow of a PID accelerator.

Apart from that, the inner implementation of each of these paths is a quite elementary
implementation of the PID control algorithm. Our assumption of non-overlap of control
signal computations across time-steps reduces the parallelism available for exploitation. Due
to this, we are excused from speeding too much effort and resources in path pipeline de-

sign. Alternatively, we take a straightforward, blocking approach of feeding the arithmetic

17



computation requests into the floating-point operator units, waiting for these results to be-
come available, and then inserting the obtained control outputs into the same units for next
round of computation. The parallelism across the P, I and D paths is only exploited for
single controller case. Considering the inherent dependency constraint between current con-
trol output and next sensor input, we observe that our design is very effective in terms of
resource-efficiency as well as raw cycle count latency when compared against the reference

implementation available from Xilinx [7] .

The second re-utilization of the I-path adder to modify the integrated state register by adding
the current control output value is not shown in Figure 5.2. This occurs after the I-path
adder is used to first add the results of P and I path together and when this result is being
added to the output of the D-path by the D-path adder, there is a reuse of the I-path adder

to compute the updated integrated state value.

Due to on-chip resource efficiency and floating-point operator reuse as discussed in Chapter 6,
we were able to implement multiple PID controllers (multi-controllers) on the same chip
without incurring much re-configurable logic as well as block storage overhead and at no
additional requirement of DSP computational units. The applications of multi-controllers
are further elaborated in Chapter 8. The design details of the single, the interleaved multi-

controller and the cascaded multi-controller are discussed in the following subsections.

5.1.1 Single Controller

The computational flow of a single controller is shown in Figure 5.4. The periodic reference
setpoints along with other controller variables are passed over the Serial Peripheral Interface
(SPI) Input channel. The reference setpoints are then saved as a time-series in a Block
RAM (BRAM) FIFO which uses on-chip storage. A constant buffer, which is inherently a

random-access vector, is used to store the received controller variables. Apart from these,

18



it also stores some state variables (represented using light orange blocks in Figure 5.4) like
integral, previous error, etc. which are necessary for maintaining continuity of computational
flow between two distinct time steps (states). The controller computation starts once all the
inputs are stored appropriately. The floating-point operator units are coloured according to
a legend to lay emphasis on their time-sharing nature. In every computation round, error
signal and control output signal are emitted over SPI Output channel. The superscripts
are used to denote time-step corresponding to an emitted output. The control algorithm
execution is blocking in that computation of the next control output starts after previous
control output is emitted as the observed signal changes according to generated control

output and serves as an input for next round of computation.

Design: Single Controller
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Figure 5.4: Architectural Design of a single PID accelerator.
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5.1.2 Interleaved Double Controller

The computational flow of an interleaved multi-controller shown in Figure 5.5 is similar to
that of a single controller as far as SPI inputs and SPI outputs are concerned. However,
two sets of reference setpoints and controller variables are provided for the two distinct con-
trollers. This allows both controllers to simultaneously execute on completely different inputs
and does not complicate the implementation. The execution flow of both the controllers is
interleaved so that floating-point operations, which are scheduled to fire in a specific cycle,
are computed simultaneously irrespective of the controller they belong to. This design fur-
ther enhances the time-sharing behavior of floating-point units and reduces their idle time
by appropriate pipe-lining of computations which is vividly depicted using colored units in
Figure 5.5. The computational throughput almost gets doubled. The emitted error signals
and control output signals also get interleaved over SPI Output channel. The superscripts
denote time-step and the subscripts mark the identity of the controller to which an output

belongs.

5.1.3 Cascaded Double Controller

The cascaded double controller shown in Figure 5.6 is very similar to a single controller
except that it alternatively computes control outputs of two different controllers. Although
it doesn’t enhance throughput or increase resource efficiency, it allows two controllers to time-
share the same available resources as is lucidly shown in Figure 5.6 using colored floating
units. Just like the interleaved case, there are two sets of reference points and controller
variables provided over SPI Input channel which permit individual controllers to act on their
own unique input. The execution flow retains the same blocking nature of a single controller
as now instead of waiting across time-steps of the same controller, there is a holdup across

different controllers as one controller has to wait for the other to finish before starting its own
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Figure 5.5: Architectural Design of an interleaved double PID accelerator.

execution and vice-versa. Additionally, there are skip connections (represented by dotted
blue arrows in Figure 5.6) which are used when one of the controller has already converged
while the other is still trying to do so. They are just requirements of implementation design
to branch control flow suitably. The emitted error and control output signals for a particular
time-step are consecutive over SPI Output channel unlike interleaved controller but there
is interleaving across controllers for the same time-step. Similar to interleaved case, the
superscripts denote time-step and the subscripts mark the identity of the controller to which

an output belongs.
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Figure 5.6: Architectural Design of a cascaded double PID accelerator.

5.2 Simplified Floating Point Core

To enhance performance efficiency, our design utilizes a simplified implementation of floating-
point operations. These simplification methods can be broadly categorized into two classes:

Approaches that affect accuracy (marginally), and approaches which do not.

For instance, our simplified floating point cores do not operate on special states like Infinity
and Not-a-Number (NaN) explicitly. However, they do not have any significant impact on
accuracy as these states would only be reached as a result of incorrect behaviour of the PID

control algorithm which is not expected to happen.

On the contrary, the simplified floating point cores do not support operations on subnor-
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mal numbers and this may affect accuracy if an underflow occurs in normal floating-point
representations due to exceptionally small fractional values generated by control arithmetic.
Our operators handle such small fractional values by flushing them to zero, i.e., by explicitly
setting to zero. The same optimization is applied by many SIMD and GPU implementa-
tions for efficiency purposes, including ARM NEON [27] and Intel SSE [5]. In practice,
this optimization does not cause any significant impact on the accuracy as all computations
ins our system involve values in the same scale, where a flushed zero is equivalent to an

infinitesimally small value.

The one optimization that can result in slight loss of accuracy is the implementation of a
floating-point multiplier operator using a 18-by-18 integer multiplier. While the bit-width of
the mantissa part in a single-precision floating-point number is 23 bits, the actual maximum
multiplication bit-width provided by the DSP blocks on the UP5K board is 18 bits. As
a result, there is degradation in accuracy. Alternatively, for each multiplication operator,
we could have utilized two DSP blocks to retain full accuracy, but based on the evaluation
results of our implementation which confirmed the negligible impact of 5 least-significant

bits on system behavior and for the sake of resource efficiency, we decided against it.
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Chapter 6

Evaluation

6.1 Implementation Details

Our accelerator was implemented on the low-power, low-cost and small-sized Lattice iCE40
UP5K FPGA, which has many beneficial characteristics for the accelerator. It weighs a
few milligrams [14] only and is quite cheap, at around $5 per chip. Moreover, it has a
significantly low, mW-scale power budget, which will be highlighted with our accelerator in
this section. Additionally, it also contains eight DSP blocks whose seasoned arithmetic logic
is effective in executing 18-bit multiplication and accumulation in a single cycle. Such a
capability is very rare among contemporary low-power FPGAs. Finally, there is additional
support from open-source toolchains like Yosys and nextpnr [30] as the chip has already been

reverse-engineered.

The major resource utilization of our accelerator and its sub-components on the UP5K FPGA
chip is shown by Table 6.1. The entire single controller design including all the considered
optimizations, fits easily into the chip and consumes 75% of available Logic Cells. As each

floating point adder takes up 14% of the chip, our approach of reusing the three adders is
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validated as three extra adders cannot be accommodated on the chip. The comparison of
resource utilization across different controller versions is listed in Table 6.2. It should be
noted that there is no change in DSP utilization across the three controllers while the double

controllers have 15% and 23% logic cell and memory overhead over single controller.

The results shown in the following sections are for sinusoidal reference signal. Experiments
were carried out on constant reference signal as well but those results have not been covered
here as they follow a similar trend albeit with a higher performance. Another reason for
excluding the constant reference results is that sinusoidal signal is more challenging and has
a large number of interesting applications compared to the constant signal.

Table 6.1: Chip resource utilization on the UP5K FPGA.

UP5K
1x Adder | 1x Multiplier | Total System || Availability
Logic Cells || 729 (14%) 343 (6%) 3998 (75%) 5280
BRAM 0 0 7 (23%) 30
DSP 0 1 (13%) 3 (37%) 8

Table 6.2: Chip resource utilization across different controller versions

Logic Cells | BRAM DSP
Single Controller || 3998 (75%) | 7 (23%) | 3 (37%)
Double Controller (C) || 4797 (90%) | 14 (46%) | 3 (37%)
Double Controller (I) || 4778 (90%) | 14 (46%) | 3 (37%)
UP5K Availability 5280 30 8

6.2 Performance Evaluation

The PID controller accelerator, in entirety, uses 41 cycles for computation of a single control
output which is the latency between sensor data input and control signal emission. For
the sake of performance evaluation, we assume that sensor data for next computation is
accessible as soon as the control output from previous computation gets emitted which

entails that one control signal is produced every 41 cycles. This implies a throughput of
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over 645K control outputs emitted per second for the single controller version while a net
throughput of over 1032K control outputs emitted per second for the interleaved double
controller implementation. In spite of using many techniques to minimize on-chip resource
usage, our work results in a latency of 41 cycles per emission which is quite competitive to
a standard implementation from Xilinx [7], which obtained a latency of 37 cycles using a

hand-optimised RTL design that utilized 5 hefty Xilinx DSP48 blocks.

We assess the performance of our accelerator in comparison with some popular and compa-
rable embedded computing systems. The description of the platforms used for evaluation is

provided in Table 6.3.

Table 6.3: Comparison of the evaluated computing platforms.

’ Processor ‘ Clock Speed ‘ Hardware Float Units ‘ Cores ‘ Power Consumption ‘
AVR ATMega328 16 MHz No 1 ~ 20 mW
ARM Cortex-M4F 180 MHz Yes 1 ~ 200 mW
ARM Cortex-AT72 1.5 GHz Yes 4 ~6W
Lattice UP5K (S) 26 MHz Yes N/A ~ 20 mW
(This Work)

The processors used for comparison which are listed in Table 6.3 are from the following
systems: Arduino Uno, Arduino Teensy 3.6, and Raspberry Pi 4 B, respectively (from top
to bottom). We take a note of the fact that amongst all the above processors, ATMega328
is the only platform that has power consumption comparable to our accelerator. Our target
applications are insect-scale robotics and micro-aerial vehicles that require a total power
budget of 10 mW to 100 mW [21, 20, 16]. This power constraint is satisfied only
by the ATMega328 processor and our accelerator. The purpose of comparison with
other power-hungry and more capable processors is only to provide a holistic picture of the

performance and power efficiency aspects of our accelerator in the respective landscapes.

The comprehensive performance comparisons between these platforms are depicted in Fig-

ure 6.1. An important point to note is that for Cortex-A72.1, which is a 1.5-GHz processor,
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only single core performance is considered as otherwise its parallel performance will render
the chart illegible due to an order of magnitude difference between its numbers and that of
the rest. We observe that our accelerator surpasses the performance of ATMega328 processor
which has a comparable power budget and size. Our accelerator also displays competitive
performance in comparison to the Cortex-M4F processor equipped with a very rapid clock of
180 MHz which is an order of magnitude faster than ours. The performance of the Cortex-
AT2 processor is way ahead of other systems but its order of magnitude achievement can be
attributed to its desktop-grade architecture. Thus, its comparison with other platforms is

only for illustrative purposes.

Processor v/s Average Throughput

Single Controller [l Overall
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Processors

Figure 6.1: Comparison of Average Throughput across platforms.

The average throughput performance of the ATMega3d28 processor, meaning its rate of con-
trol signal emission, is 8.9K control outputs per second and fails to meet the 10-KHz threshold
needed for some insect-scale robotic applications [15] even if its whole chip was utilized for

implementing PID control.
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6.3 Power Efficiency Evaluation

As far as power efficiency is concerned, our accelerator outperforms all other systems. The
power efficiency comparison in terms of MFLOPS/W is presented in Figure 6.2. Our ac-
celerator obtains almost two orders of magnitude better power efficiency than a comparable
ATMega328, and over 5x the power efficiency of the Cortex-M4F, which has the second-best

efficiency among all comparison platforms after our FPGA accelerator.

The Cortex-AT72.4 results are obtained by multiplying the single-thread performance by 4 to
get an estimate of its four-core performance. This four-core performance along with power
consumption information of the whole Raspberry Pi 4B system is used to compute its power
efficiency due to measurement limitations. Every other comparison system only measures
the isolated chip power consumption.
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Power Efficiency (MFLOPS/W)

Figure 6.2: Comparison of Power Efficiency across platforms.

We want to highlight that in addition to our accelerator obtaining two orders of magnitude
better efficiency when contrasted with a comparable power budget platform, after observing
the power efficiency trend with more powerful processors like Cortex-A72.4, we expect with
high likelihood that our accelerator will continue maintaining its power efficiency dominance

over most standard general-purpose processors.
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6.4 Analysis on Operator Re-Use and Pipe-lining

We take a note of the fact that the implementations of both multiplier and adder are fully
pipelined, but can be used only in a blocking manner with a single request in-flight at any
given time. We could use the same pair of multiplier and adder operators for all PID paths
on a time-sharing basis without much reduction in performance. The removal of two pairs
of multipliers and adders would have led to increased resource efficiency by reducing the
utilization of Logic Cells by over 50% and this would have come at the expense of two
additional cycles of latency. Since this does not have any considerable impact on power

efficiency, we stick to our simplistic parallel approach which also fits snugly on the chip.

For the interleaved double controller, the computational throughput almost doubles when
compared with the single controller. This is due to parallel execution of two single controllers
in an interleaved fashion. There is an increase in resource efficiency due to decrease in idle
time of floating-point operators as a result of pipe-lining architecture. Hence, the same
DSP blocks are utilized for synthesizing the control design. However, there is a minimal
overhead in terms of re-configurable fabric and block storage due to availing of two different
sets of inputs. But, as there is still availability of more logic cells and storage resources, this
overhead is irrelevant. For the cascaded double controller, resources are time-shared within
the same controller as well as across the two controllers. On the downside, the throughput of
individual controllers is halved while the overall throughput and resource utilization remain

the same.
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Chapter 7

Discussion

Our PID controller accelerator implemented on a Lattice iCE40 UPS5K FPGA makes use
of simplified floating-point operators, time-shares these operators for both single & multi-
controllers and has support for pipe-lining of these operators for better on-chip resource
reuse in case of multi-controllers. Although this system design has many advantages, it has

many downsides of its own.

7.1 Benefits

There are many advantages of our accelerator architecture. It is implemented on a low-
power FPGA which is quite small in size and is very cheap. It also meets the throughput
requirement of 10 KHz which is needed for our target applications of insect-scale robotics.
The chosen design works on periodic reference signals and also supports simplified floating-
point operations for better accuracy as compared to fixed-pint arithmetic. It ensures very
high resource efficiency through time-sharing and pipe-lining of floating-point operators at

minimal cost to the complexity of the circuit logic.
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7.2 Drawbacks

The prominent disadvantages of our approach include the requirement of task-specific tuning
of the PID controller accelerator. Every time the domain changes, the controller needs to
be adjusted to the new environment as its parameters are very sensitive to reference signal,
domain-specific system model and other tuning characteristics like overshoot, steady-state
error, etc. Our accelerator does not support tracking of a non-periodic reference signal as we
store the entire input as a time-series for higher throughput. Real-time control still works
in case of non-periodic inputs but can readily become a bottleneck for throughput. Lastly,
the use of simplified floating-point cores result in a slight but insignificant loss of accuracy

due to an upper threshold of 18 bits imposed by the chip on the multiplication operation.
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Chapter 8

Use Cases

Our target applications for a single controller implementation are insect-scale robotics and
micro-aerial vehicles. However, this work can be used for embedded control across multiple
domains including but not limited to tiny ground robotics, little underwater autonomous
vehicles, small-scale low-power cyber-physical system components, etc. In general, our work
can be used for real-time control of applications that involve tracking of periodic reference

inputs like sinusoidal signals, rectangular pulses, etc.

Multi-controller aspect of our work can be utilized to control multiple parts such as wings,
tail, etc. of a single micro-aerial vehicle. Moreover, it can also be used to guide multiple
agents in a swarm of drones/flock of unmanned aerial surveillance vehicles with one of the
agents fitted with the control chip acting as a mobile command center for others. Addi-
tionally, control chips can be planted on each agent in a swarm to make the whole system
fault-tolerant because there would be continued service in case of malfunction of an agent’s
chip as chip of another close-by agent can take over the control from the point of malfunc-
tion. Till that point, every agent would get benefit of exclusive control from their own chip

as these chips are very cheap. Finally, PID accelerator along with a system identification
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model can be used as a simulator for generating simulation data for training of Machine

Learning (ML) and Reinforcement Learning (RL) tasks.

Figure 8.1: Micro-Aerial Vehicle

Source: https://rpg.ifi.uzh.ch/docs/IoT19_Palossi.pdf
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Figure 8.3: Swarm of Micro-Aerial Vehicles

Source: https://www.researchgate.net/publication/356026968
_CoCo_Games_Graphical_Game-
Theoretic_Swarm_Control_for_Communication- Aware_Coverage
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Figure 8.2: Insect-Sized Robot

: https://www.science.org/doi/10.1126 /scirobotics.abi8189



Chapter 9

Conclusion and Future Work

In this paper, we propose the design of a floating-point PID controller and present its im-
plementation on the low-power, low-cost Lattice iCE40 UP5K FPGA. Through the use of a
simplified floating-point operator which is optimized for the chips’s DSP blocks along with
an effective time-sharing and pipe-lining of these operators, single controller and interleaved
double controller versions of our accelerator are able to surpass a comparable 8-bit micropro-
cessor by a factor of over 70x and 120x respectively. On a significant note, our accelerator
achieves superiority in terms of power efficiency over all general-purpose processors used
for comparison, ranging from 8-bit comparable microprocessors to desktop-grade ones with

clock speeds in GHz.

Subsequently, our accelerator is the only option available for our target applications of con-
trolling insect-scale robots and micro-aerial vehicles, as it is the only alternative that meets
both the performance and power budget requirements of those applications. In our future
work, we intend to explore accelerators for more complex and potential control algorithms

that are more suited for intelligent robotics and challenging tasks.
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