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Abstract

Thermal  acceptability  (TA)  and  perceived  air  quality  acceptability  (PAQA)  are
typically analysed in climate chambers or cross-sectional field studies.  Individual factors,
such  as  expectations  and  perceived  environment  history,  may influence  the  acceptability
response.  Longitudinal  studies  with  multi-day design  are  absent  in  the  literature.  Fifteen
Singaporean subjects participated in a 7-day longitudinal experiment in which they carried a
portable sensor that continuously recorded personal air temperature, relative humidity and
carbon  dioxide  concentration  at  1-minute  intervals.  Instantaneous  TA and  PAQA were
regularly sampled by survey for each subject.  

High  acceptability  was  found  at  home,  restaurants  and  workplaces,  whereas  low
acceptability  was  found  for  outdoor  and  transport  environments.  The  participants  from
Singapore’s modern tropical  environment spent  an average of 96% of their  time indoors.
Weak associations were reported between acceptabilities and measured physical parameters
taken independently.  Clustering  data  by location,  subject’s  sleeping ventilation habit,  air-
conditioning operation status and the changes in physical parameters over a designated time
period enhanced the understanding of the acceptability results. In general, acceptability was
lower for those who slept in air-conditioned environments than for those who slept without
air-conditioning. The carbon dioxide mixing ratio was critical for PAQA predictions but not
for  TA. The Gaussian process  (GP) had a  better  predictive  power than a  multiple  linear
regression approach. Using GP, we found that a general predictive model had comparable
simulation performance as for individual predictive models. The longitudinal experiment has
demonstrated effectiveness for TA and PAQA analysis, which could be beneficial to future
studies in personal comfort prediction. 

Keywords: Environmental exposure history, Perceived air quality acceptability (PAQA), 
Personal acceptabilities simulation, Thermal acceptability (TA), Wearable sensor

1 Introduction

Satisfactory thermal and perceived air quality of the indoor environment is one of the
central  goals  of  building  design  and  operation.  Evidence  in  the  literature  indicates  that
thermal acceptability (TA) may affect occupant performance [1–5], and perceived air quality
acceptability (PAQA) is found to be associated with a number of sick building syndrome
(SBS) symptoms [6-9].  
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Most  thermal  comfort  and  perceived  air  quality  studies  have  been  conducted  in
controlled environmental chambers [10,11] or using cross-sectional field surveys focusing on
specific environments, such as offices [12–14], residences [15,16], and classrooms [17–19].
Some studies have extended the measurement protocol to a partial longitudinal approach,
evaluating acceptability over longer periods and including the monitoring of environmental
parameters, such as air temperature, relative humidity, and carbon dioxide concentration, but
always at a fixed location, for example in an office or a bedroom [20,21].  

Beyond the physical and physiological attributes, personal assessment of environmental
acceptability can also be psychologically affected by a subject’s expectations, environmental
context, the availability of environmental control, and the thermal and perceived air quality
history  of  the  subjects  [2,22–24].  For  example,  Chun  et  al.  [22]  studied  the  effect  of
measured thermal history (24 h) on thermal sensation when subjects were exposed to similar
conditions  in  a climatic  chamber.  This study found that  subjects  exposed to  higher  daily
temperatures tended to respond with ‘cooler’ thermal sensations than subjects with lower
daily temperature exposures. They also found that occupants who used air-conditioning at
home were more sensitive than those who did not. Lower thermal acceptability was reported
in a field study if occupants were previously exposed to air-conditioned spaces [25] and the
presence  of  air  conditioning  may  lead  to  narrower  range  of  conditions  for  thermal
acceptability [26]. Fang et al.  [27] have suggested that a short-term increase of temperature
and humidity would reduce a subject’s evaluation of perceived air quality as acceptable. 

Existing  prediction  tools  for  thermal  or  perceived air  quality  satisfaction  are  either
designed for specific spaces or lack the ability to include subject’s environment exposure
characteristics, history and expectations [28–31]. 

We performed an experiment in which fifteen subjects carried, for seven days each, a
portable  sensor  that  continuously measured  and recorded their  local  air  temperature (Ta),
relative humidity (RH) and carbon dioxide concentration (CO2). Detailed information about
the experimental design and results for carbon dioxide exposures were previously reported
[32]. Here, we focus on the instantaneous assessments by participants of the thermal and
perceived air quality acceptability of the spaces they occupied. Several factors may affect
acceptability  beside  air  temperature,  humidity,  and  CO2.  We  analyzed  the  influence  on
acceptability of short-term changes in the physical environmental parameters, subject’s daily
temperature,  humidity and CO2 exposure,  locations  (home,  outdoor,  restaurant,  transport,
workplace), presence of air conditioning and occupant’s sleeping ventilation habits at home.
The advantages of a longitudinal design include the ability to trace the history of individual
exposure to environmental parameters and the possibility to study the influence of personal
expectations in various environments, which is a novel step towards identifying important
confounding factors that influence a subject’s TA and PAQA responses. 

The objectives of this study are (i) to identify if location, use of air conditioner when 
sleeping, air conditioning status, and thermal and air quality history influence thermal and 
perceived air quality acceptability (TA and PAQA), and (ii) to assess from among several 
alternatives which parameters and simulation algorithms effectively predict TA and PAQA. 

2 Methods

2.1 Subjects 

Fifteen  subjects,  who  were  students  and  professional/office  workers  living  in
Singapore,  participated  in  this  study.  The  participants’  demographic  attributes  and  air-
conditioner usage habits at home were collected, including age, sex, body height and weight,
number  of  air-conditioner  units  at  home and their  sleeping ventilation  (SV)  status.  With
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respect to sleeping ventilation, subjects were categorized as sleeping in an air-conditioned
bedroom (AC group) or in a naturally ventilated bedroom with window open (NV group),
while  those  who  experienced  both  ventilation  practices  during  the  monitored  period  are
classified into a mixed (MX) group. The thermal environment for sleeping reflects a high
degree of autonomous choice, which can potentially reflect an individual’s preferred status
for  ventilation  and  thermal  environmental  control.  It  is  also  noted  that  the  “AC group”
classification  refers  to  participants  who  slept  in  an  air-conditioned  bedroom;  it  does  not
necessarily imply that the AC group participants continuously operate their air-conditioner at
home.

2.2 Physical measurements

Each participant carried a portable sensor, which continuously recorded air temperature
(°C), relative humidity (%) and carbon dioxide mixing ratio (ppm) at 1-minute intervals, for
seven consecutive days.  In case of sensor failure, participants were encouraged to extend
their  participation  to  realize  a  cumulative  seven-day log;  the  result  was  a  discontinuous
record for some participants. The subjects were instructed that the sensor should be carried or
kept near the participant at all times during the measurement period. The real-time continuous
measurement  revealed  information  about  environmental  conditions  in  relation  to  the
participant’s activity patterns and their exposure to environment parameters.  The chosen data
logger was CM-0018 (CO2Meter Inc., Ormond Beach, FL, USA) with manufacturer-reported
sensor accuracy being the greater of  ±30 ppm or ±3% of the measured value for CO2, ±0.4
°C for air temperature and ±3% for relative humidity [33]. The results presented in this study
were rounded to the nearest 0.1 °C, 1%, and 10 ppm.  

2.3 Subjective acceptability survey

An  online  survey  was  developed  and  utilized  to  elicit  and  record  each  subject’s
instantaneous evaluation of thermal acceptability (TA) and perceived air quality acceptability
(PAQA). The subjects used their smartphone to respond to the survey throughout each day. A
response  was  requested  after  each  environment  change  (i.e.,  considering  home,  outdoor,
transit,  and  office  environments).  However,  the  thoroughness  of  the  response  rate  was
constrained  by  each  participant’s  availability  and  willingness  to  record  their  responses.
Subjects’ TA and PAQA responses include both the first exposure on changing environments
and a habituated assessment  at  the same location.  The subject  marked their  acceptability
response on a continuous scale from clearly acceptable (+1) to just acceptable (+0.01) and
from just unacceptable (-0.01) to clearly unacceptable (-1). The gap between just acceptable
and just unacceptable requires subjects to distinguish between acceptable and unacceptable
without a neutral choice. Results of the subjective survey are subsequently analyzed in two
ways: 1) thermal and perceived air quality acceptability (TA and PAQA) as a continuous scale
within  the  ranges  noted  above  and  2)  thermally  and  perceived  air  quality
acceptable/unacceptable  vote  indicating  a  dichotomous  scale  either  “Acceptable”  or
“Unacceptable”  response  based  on a  positive  or  negative  sign  from the  response  on  the
continuous scale. 

2.4 Activity schedule record

Participants  were  also  asked  to  record  their  daily  activity  schedule  and  the
characteristics of each perceived environment during the measurement period, including the
time of entry in each place, their activity (walking, sleeping, working, etc.), air-conditioning
status  (on  or  off)  and a  description  of  the  type  of  location  (including home,  workplace,
outdoor, restaurant and transport; places not in these categories were classified as ‘other’ and
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were to be specified by the participant in a remark section). None of the participants had a
private car and so the category “transport” would generally mean public transportation such
as metro (light rail),  taxi or bus. In Singapore, these transport spaces are consistently air-
conditioned. 

2.5 Statistical analysis 

A local polynomial non-parametric regression fitting method, the ‘loess’ function in R
programming,  was  applied  to  visualize  the  non-linear  association  between  the  evaluated
acceptabilities  (TA  and  PAQA)  and  potential  predictor  variables.  The  non-parametric
Wilcoxon rank sum test, also known as the Mann-Whitney test, was used to assess the effect
of categorical variables on acceptability. For all tests, the results were considered statistically
significant when p < 0.05. The statistical analysis was carried out using R software version
3.2.3 [34].

To predict TA and PAQA, two approaches were used: (i) multivariable linear regression
(MLR);  and  (ii)  a  machine-supervised  learning  algorithm  named  Gaussian  process  [35]
(‘gausspr’  functions  in  the  R  programming  software).  Linear  regression  allows  direct
interpretation  between  predictors  and  outputs.  The  Gaussian  process  is  a  non-parametric
model  benefit  for  small  dataset  and  it  allows  precise  trade-off  between  fitting  data  and
smoothing, but the relationships between inputs and outputs cannot be explicitly interpreted.
One  of  the  key  advantages  of  the  Gaussian  process  is  that  it  does  not  require  a  prior
assumption about the specific functional form (e.g., linear or logarithmic) for the relationship
between the independent and dependent variables.

Different combinations of potential predictor variables were used in the acceptability
prediction model tests. Model performance was quantified by the coefficient of determination
(r2), mean square error (MSE) and mean absolute error (MAE) between the surveyed and
predicted  acceptabilities.  The  calculated  r2 is  a  number  that  identifies  the  proportion  of
variance  in  the  dependent  variable  that  is  predictable  from  the  independent  variable
(expressed  in  Equation  1).  MSE is  a  risk  function  to  assess  the  quality  of  predictor  by
comparing  the  difference  between  observed  “O”  and  predicted  “P”  values  (expressed  in
Equation  2).  MAE  is  a  more  robust  measure  of  the  average  magnitude  of  prediction
difference without considering the error’s direction (expressed in Equation 3). A 500-fold
cross-validation was applied in each test, randomly partitioning the data into two sets of 70%
for training and 30% for validation, and repeating the training and validation process 500
times. The estimators (r2, MSE and MAE) were averaged over the 500 runs to enhance model
stability [36,37]. A good simulation model is justified by smaller values of MSE and MAE
along with a higher r2 value. 

r2
=1−

∑
i

(Pi−Ó)
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3 Results and Discussion

3.1 Measurement results

Table 1 shows the overall results of measured parameters and surveyed acceptability
(TA and PAQA) classified among five different categories of locations. Measurement samples
at locations not described by the five categories are excluded because of limited data. The
cumulative data count suggested that participants’ time-location budget was apportioned on
average as follows: home (61%), workplace (26%), outdoor (4%), restaurant (4%), transport
(3%), and other (2%). On average, 96% of subjects’ time was spent indoors. 

Table 1. Overview of measured and surveyed data in different environments. a

Home
(N = 90963)

Outdoor
(N = 6610)

Restaurant
(N = 6095)

Transport
(N = 4938)

Workplace
(N = 38384)

Percentile Ta RH CO2 Ta RH CO2 Ta RH CO2 Ta RH CO2 Ta RH CO2

10% 26.2 56 430 26.4 59 410 24.4 53 410
26.
0

43 450
24.
1

47 410

25% 27.9 61 510 28.1 65 420 26.3 56 450
27.
1

49 760
25.
1

53 450

50% 29.7 65 720 29.7 70 470 27.5 60 590
28.
4

55 1330
26.
0

56 510

75% 30.9 70 1070 31.0 75 550 29.9 67 780
29.
8

62 2150
26.
8

60 600

90% 31.6 74 1520 31.8 81 740 31.4 71 1250
30.
9

71 3050
27.
7

90 870

Number of surveyed acceptable / unacceptable choice b

Thermally Accept. 115 (82%) 9 (50%) 39 (85%) 83 (55%) 159 (83%)
Thermally Unaccept. 26 (18%) 9 (50%) 7 (15%) 69 (45%) 32 (17%)

PAQ Accept. 118 (84%) 13 (76%) 37 (82%) 55 (36%) 173 (91%)
PAQ Unaccept. 22 (16%) 4 (24%) 8 (18%) 97 (64%) 18 (9%)

a Symbols (units): Ta = air temperature (°C); RH = relative humidity (%); CO2 = carbon dioxide mixing ratio (ppm); N = 
number of measurements in indicated microenvironment; sampling time resolution = 1 min.
b Aggregate number (percentage) of responses for thermally and perceived air quality (PAQ) acceptable (0.01 to 1) / 
unacceptable (-0.01 to -1) choices at the indicated location. 

Consistent with its  tropical  location,  outdoor environmental conditions in  Singapore
were consistently warm (10th percentile, median, 90th percentile of Ta  = 26.4, 29.7, 31.8 °C)
and humid (RH = 59%, 70%, 81%). About two-thirds of the samples acquired at home were
not air-conditioned and the corresponding physical parameters (28.2, 30.6, 31.7  °C; 62%,
69%, 75%) were comparable to the outdoor values. The surveyed residences, especially for
those  public  housing  units  constructed  by  the  Housing  Development  Board,  were  only
equipped with air-conditioning in the bedrooms; other parts of these apartments are typically
served by naturally ventilation. In the air-conditioned bedrooms, the temperature (24.8, 27.8,
30.2  °C)  and  relative  humidity  (52,  61,  67%)  were,  on  average,  2.6  °C  and  9% lower,
respectively,  than the residential spaces that were not air-conditioned. The  carbon dioxide
mixing ratio at home with AC on was considerably higher (560, 1000, 2230 ppm) than in the
cases without air-conditioning (410, 570, 1260 ppm). Similarly, the restaurant environment
included  both  AC  (N =  3623)  and  non-AC  (N =  2472)  samples.  Likewise,  sampled
temperature (23.1, 25.0, 29.9  °C), relative humidity (52%, 59%, 70%) and CO2 level (500,
710, 1430 ppm) at AC restaurants were lower, lower, and higher, respectively, than at the
non-AC restaurants (26.4, 29.8, 32.1 °C; 54%, 63%, 73%; and 390, 440, 670 ppm). Overall,
in the non-AC restaurants, average temperature and humidity were 2.8 °C and 3.1% higher
but CO2 levels were 330 ppm lower than in the AC restaurants. All samples from workplace
and transport environments were air-conditioned. The temperatures and CO2 mixing ratios in
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workplace were 24.1, 26.0, 27.7 °C and 410, 510, 870 ppm respectively. In transport, the
sampled  humidity  (43%,  55%,  71%)  was  found  to  be  comparable  with  the  workplace;
however, higher temperatures (26.0, 28.4, 30.9 °C) and CO2 mixing ratios (450, 1330, 3050
ppm) were recorded. The 90th percentile level of CO2 in transport environments is particularly
striking;  it  is  likely  associated  with  a  generally  high  occupant  density  especially  during
commute times on buses and in the rail mass rapid transit system (MRT). A detailed analysis
of the CO2 levels encountered and their potential significance has been reported by Gall et al.
[32]. Table 1 also summarizes the surveyed subjects’ assessment of thermal and perceived air
quality acceptable/unacceptable choice. The thermal environment and perceived air quality
were found to be acceptable for more than 80% of responses at  all  locations,  except  for
outdoor (proportion of respondents’ acceptable choices were 50% for thermal environment
and 76% for air quality) and in transport (thermal environment: 55%, air quality: 36%).  

Figure 1 presents a boxplot of TA and PAQA assessments in the five different location
categories. Higher thermal acceptability was found in workplaces, restaurants and at home,
respectively, with median values of 0.34, 0.38 and 0.51. A lower median TA was observed in
transport (0.02) and half of the outdoor TA votes were “unacceptable” with a median value of
0.03. A higher thermal acceptability at home, when a similar warm temperature is recorded as
outdoors, might be related to the lack of direct solar radiation, other radiant heat transfer
effects, subjects’ metabolic rate (likely systematically higher when outdoors than when at
home),  and  subjects’ behavioral  adjustments  such  as  operating  a  fan  and  wearing  less
clothing. Being thermally dissatisfied outdoors is an expected outcome in Singapore with its
warm and humid climate. A lower TA satisfaction rate in transport could be explained by
relatively high temperature (compared to workplaces, for example) and other factors such as
close proximity among occupants, especially during peak travel times [38]. For perceived air
quality  acceptability,  high  median  PAQA  value  was  observed  at  home  (0.59),  at  the
workplace (0.58), in restaurants (0.55) and outdoors (0.46); a much lower median PAQA (-
0.22)  was  reported  in  transport.  The  high  CO2 mixing ratio  in  transport  (10th percentile,
median, 90th percentile = 450, 1330, 3050 ppm) could be one contributor to unacceptable air
quality, but this interpretation may not equivalently hold when applied to other locations. For
example, no unacceptable votes for perceived air quality were recorded at home when the air-
conditioning was turned on with high CO2 mixing ratio (560, 1000, 2230 ppm). 

6



Figure 1. Overview of subject’s assessments of thermal acceptability (TA) and perceived air
quality acceptability (PAQA) in various places. In each box, the central mark is the median,

the edges denote 25th and 75th percentiles, and whiskers extend to ±1.5 times the inter-quartile
range.  

3.2 Individual differences in exposure and acceptability

Figure 2 shows temperature, relative humidity, CO2 mixing ratio, TA, PAQA and the
percentage  of  time spent  in  recorded locations  for  each participant.  The number of  each
individual’s effective monitoring days and thermal and perceived air quality acceptable votes
are summarized in the supporting information (Table S1). Each participant was assigned a
reference name, from left to right, associated with their sleeping ventilation status (AC, NV
or MX),  sex (M or  F)  and a  reference  number.  The personal  daily average  temperature,
relative  humidity  and  CO2 exposure  were  plotted  in  Figure  2  using  a  red  dot,  which  is
determined by averaging the physical parameter values for each monitoring day of the survey
period.  The  evidence  presented  in  this  figure  illustrates  that  personal  exposure  to  the
monitored  parameters,  time  spent  in  each  location,  and  acceptability  responses  can  be
significantly different. This observation is not surprising since living style and environmental
exposure patterns are distinct among individuals, as would be their subjective satisfaction
with the environments they inhabit. 

Figure 2. Individual distributions of temperature, relative humidity, CO2 mixing ratio,
thermal acceptability, perceived air quality acceptability and sample locations. Statistical
meanings for box and whiskers are the same as marked in Fig 1. The red dot in each box

represents the individual’s average daily environmental exposure to temperature, humidity
and CO2 level.
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The AC group who slept with air-conditioning operating tended to be exposed to lower
air temperatures and relative humidities, but higher CO2 levels than the NV group, since most
of the participants spent 50% or more of their time at home. In addition, average daily CO2

exposure for the AC group was substantially higher than the recorded median CO2 mixing
ratio during the experiment; the likely explanation is that the highest home CO2 levels for the
AC group occurred while sleeping  [32]. Regarding acceptability responses, the MX group
was observed to record higher TA and PAQA than the other two groups. In general, the NV
group recorded higher thermal acceptability than did the AC group. Two exceptions were
subjects “NV-M-01” and “AC-M-03.” A majority of surveyed acceptability ratings by “NV-
M-01” occurred  in  the  transport  environment  (with  lower  satisfaction  rate);  acceptability
votes by “AC-M-03” were dominated at home and workplace (with higher satisfaction rate). 

Figure S1 in the supporting information presents the Figure 1 data reassessed with the
exclusion of “NV-M-01.” This adjustment increased the median TA and PAQA in transport
from 0.02 to 0.27 and from -0.22 to 0.54 (p<0.01); the percentage of thermal and perceived
air quality acceptable votes in transport was improved from 55% to 74% and from 36% to
72%, respectively. 

3.3 General relationships between environmental parameters and acceptability

Figure  3  illustrates  the  relationships  between  the  surveyed  subject’s  acceptability
assessments (TA, PAQA) and measured environmental parameters (temperature,  humidity,
and CO2 level). The sample data from “NV-M-01” is excluded to avoid biased interpretation
from a single subject where nearly all assessments occurred in a single location category.
Strong  relationships  between  acceptability  (both  TA  and  PAQA)  and  the  measured
environmental  parameters  were  not  observed  in  the  tested  conditions.  The  weighted-
regression lines suggest generally acceptable conditions within the sampled temperature and
relative  humidity  ranges  (22.5–32.5  °C  and  40–80%).  A dome  shaped  trend  was  found
between TA and temperature,  where  the  highest  weighted TA (0.49)  was observed when
temperature  was  27.8  °C.  It  makes  sense  that  thermal  acceptability  would  decline  when
subjects are exposed to environments that are either too warm or too cool. However, as can
be observed in Figure 3, thermal acceptability was widely dispersed over the spectrum of
acceptability responses at 27.8 °C, and it appears that further environmental and personal
information  would  be  needed  to  improve  predictability.  Evidence  in  Figures  2  and  3
demonstrates that relationships were not robust between acceptabilities (especially TA) and
the measured parameters alone. Some clustering of the data such as environment locations,
air-conditioning  operation  status  and  sleeping  ventilation  groups  could  be  valuable  in
clarifying the relationships between acceptabilities and the physical parameters.  
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Figure 3. Overall relationships between assessed acceptabilities (TA, PAQA) and
environmental parameters (Ta, RH, CO2).  The regression line was fitted locally by weighted

least squares and 95% confidence intervals are shown as shaded areas in the plots. 

3.4 Influence of location and sleeping ventilation on acceptability responses 

Figure 4 illustrates the relationships between (i) TA and air temperature, and (ii) PAQA
and CO2 mixing ratio  when data  are  clustered  by location  and by the  subject’s  sleeping
ventilation habits (and excluding subject “NV-M-01”). The outdoor environment is excluded
owing to insufficient data, and the MX sleeping ventilation group is also removed for simpler
visualization. 

Overall, the data suggest that lower thermal acceptability was associated with higher air
temperature  at  home,  when  the  air-conditioner  was  likely  turned  off.  However,  in  air-
conditioned transport and workplace environments, the data suggest that lower temperatures
did not necessarily correlate with improved thermal acceptability. The percentage of subject
ratings of thermally acceptable vote was less than 80% when temperature was lower than 25
°C  in  the  workplace.  The  workplace  temperature  corresponding  to  the  highest  thermal
acceptability for both AC and NV groups was found to be 25.8 °C. Since the typical set-point
in commercial buildings in Singapore is reported to be 23 °C  [39], and the annual mean
outdoor air temperature during the hours 7 AM to 7 PM in Singapore is 29 °C, with little
seasonal  variation  [40],  large  energy  savings  could  be  realized  by  raising  the  indoor
temperature set-point to 26 °C  [40,41]. The findings here imply that energy savings of an
increased  temperature  set  point  may  be  accompanied  by  improved  thermal  comfort  in
Singapore  workplace  environments.  Dissatisfaction  regarding  overcooled  working
environments  has  been  previously  reported  for  Singapore  offices  [42,43].  Yet,  such
conditions  were  not  common  in  our  surveyed  database,  for  which  the  median  recorded
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workplace temperature was 26 °C (Table 1). In the transport location category, the thermally
acceptable choice declined to below 60% when temperature was below 25 °C or above 31 °C.

Further analysis of the sleeping ventilation groups showed lower median TA for the AC
sleeping group as compared to the NV sleeping group at restaurants (Wilcoxon test, p<0.001),
in transport (p=0.002) and in workplace (p<0.001) environments, while the difference found
at home (p=0.42) was statistically insignificant. In workplaces and in other environments
where  personal  environmental  control  is  not  available,  subjects  who  sleep  with  air-
conditioning reported less satisfaction with TA and PAQA than those who sleep without air-
conditioning. These results are aligned with the findings of Chun et al.  [22]. It may be that
the  AC group was  accustomed  to  controlling  their  sleeping  environment,  and  may have
higher  expectation  than  the  NV group  in  environments  with  individually  uncontrollable
ventilation and thermal conditions. Another reason could be a dependency (“addiction”) of
those accustomed to air conditioning while sleeping to a higher level of thermal control for
the other environments that they occupy [44]. 

A high percentage of responses reported that air quality was acceptable both at home
(84%) and in  workplaces  (91%) for  both  the  AC and NV groups.  No clear  relationship
between PAQA and CO2 mixing ratio is observed. Similarly, an association between PAQA
and CO2 mixing ratio was not found in restaurants; however, a higher median PAQA was
found  for  the  NV group  in  this  setting  as  compared  with  the  AC  group  (p=0.008).  A
speculative explanation is that the AC group might be adversely sensitive to the restaurant
environment especially without air conditioning, when the conditions are warm (26.4, 29.8,
32.1 °C) and humid (54%, 63%, 73%), whereas the NV group, with lower expectations for
environmental control, found the thermal and perceived air  quality conditions to be more
acceptable in restaurants regardless of air-conditioning status. 

In the case of transport environments, lower median PAQA was reported by the AC
group (p=0.09) as compared to the NV group and no clear trend was found between PAQA
and CO2 mixing ratio. Although the CO2 mixing ratio did not assist in visualizing a trend in
PAQA, it was found to be an important predictor variable for PAQA simulations using the
Gaussian process (see §4). 
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Figure 4. Relationships between (left frames) thermal acceptability (TA) and temperature and
(right frames) perceived air quality acceptability (PAQA) and CO2 mixing ratio.  Responses
are classified according to location of the response and the sleeping environmental condition

(air conditioned [AC] versus naturally ventilated [NV]) of the subjects. 
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3.5. Thermal and air quality history

In exploring the factors that could potentially influence rated thermal and perceived air
quality acceptabilities, we considered the recent history of exposure as a factor.  In specific
analyses, we considered the environment parameter’s change between the current time and a
time 5, 10, or 15 minutes earlier. 

The effects of an environment parameter’s change on TA and PAQA  are presented in
Figures 5 and 6. Figure 5 illustrates the thermal acceptability against the temperature increase
during  15 minutes  for  the  AC sleeping  group while  in  an  indoor  environment  with  air-
conditioning off. Any acceptability responses not associated with a continuous past 15-minute
monitoring data were excluded from the analysis. With binning at ±0.5 °C, the proportions of
subject  responses  indicating  thermally  acceptable  conditions  in  response  to  temperature
changes over 15 minutes of 0, +1, +2 and +3 °C were 65%, 50%, 33% and 0%, respectively.
These data indicate that, in Singapore, a short-term transition to a warmer condition tends to
decrease  thermal  satisfaction.  The  explanation  is  supported  by  evidence  from  previous
discussion, where an unacceptable thermal choice is more likely to occur for the AC sleeping
group when these subjects, who live in a climate that is consistently warm and humid, are in
uncontrollable environments and experience an increase of temperature. 

 

Figure 5. Thermal acceptability trends to prior 15-minute temperature difference for AC
sleeping ventilation (SV) group at AC turned off condition. Regression line and shading are

defined in Fig 3.

Figure 6 presents the PAQA responses for two participants (NV-M-01 and NV-M-02)
plotted against the CO2 mixing ratio increase experienced across a 15-minute time step. The
motivation  is  to  explore  individual  reactions  to  a  CO2 mixing  ratio  change,  considering
subjects of the same sex and sleeping ventilation habit.  The filled color of the scatterplot
shows the most recent measured CO2  mixing ratio (i.e.,  at  the PAQA response time).  By
inspection, subject NV-M-01 was sensitive to and dissatisfied with a high CO2 mixing ratio
environment. In contrast, subject NV-M-02 was more tolerant, reporting a high PAQA across
a wide range of CO2 mixing ratio regardless of concentration variation. 
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Figure 6. Personal perceived air quality acceptability (for subjects NV-M-01 and NV-M-02)
in relation to change in CO2 mixing ratio experienced during a 15-minute period. Regression

line and shading are defined in Fig 3.

4 Simulation models

Thermal and perceived air quality acceptability simulations were performed by multiple
linear regression (MLR) and Gaussian process (GP). Sensitivity tests, using GP, on different
combinations of variables are summarized in Table 2. Additional tests, using both MLR and
GP, with more parameter combinations are presented in the supporting information, Table S2.
The  tested  variables  included  the  measured  physical  parameters  (Ta,  RH and  CO2),  the
clustering factors (sleeping ventilation (SV), air-conditioning status (AC) and location (Loc))
and the former 5 (ΔTa_5, ΔRH_5, ΔCO2_5), 10 and 15 min physical parameter differences. Also,
the environmental changes of air-conditioning status and location in past 5 (AC_5, Loc_5), 10
and 15 min are considered. The subject identification, “ID”, was used.

From Table S2, it is clear that the Gaussian process (GP) has a systematic superior
predicting performance than multiple linear regression (MLR). This outcome may be due to
the GP ability to model non-linear (and non-monotonic) relationships between acceptabilities
and the explanatory variables (e.g., Figures 3 and 4). In Table 2, tests 1 – 3 (T1-T3) suggested
that the single predictor of temperature, humidity and CO2 mixing ratio did not show good
acceptability predictions. Despite an improvement found in T4 by using all three parameters,
the simulation performance was still not promising for TA (r2, MSE, MAE; 0.17, 0.18, 0.35)
and PAQA (0.26, 0.19, 0.35). Adding the environmental parameter changes in the previous 5,
10 and 15 minutes  in  T8 did not  improve simulation results  as  compared with  T4.  This
outcome  suggests  that  acceptability  responses  from this  subject  group  may  not  only  be
initiated by physical parameter changes, which is also evidenced in the “NV-M-02” data in
Figure 6. In tests T9 – T13, significant model improvement was found by introducing the
clustering  factors,  especially  for  location  and  sleeping  ventilation  mode,  where  the  best
simulation was made by including SV, AC and Loc in T13, which improved r2 to 0.27 from
0.17  for  T4.  Knowing  the  location,  a  subject’s  sleeping  ventilation  habit,  and  the  air-
conditioning operation status improved prediction abilities; however, these may not be easily
determined if used in practical application (i.e., outside of a research project). Incorporating
the additional information would require extra effort and would rely on a participant’s self-

13



report. The needed information is not likely to be automatically identified by any existing
sensor.  Even if  it  is  possible that  such parameters could be autonomously determined by
future technologies, the efficiency and accuracy in collecting such information could vary
across  individuals  and  could  introduce  additional  sources  of  error  in  acceptability
simulations. 

Subject identification was introduced in tests T14 – T17 to explore the effectiveness of
accounting  for  personal  differences  in  the  acceptabilities  simulations.  Significant
predictability  improvement  was  realized  by adding  subject  identity.  This  outcome  is  not
surprising, given how much variability is associated with individual people. However, adding
extra  predictor  variables  for  simulations  in  test  T18  did  not  necessarily  show  higher
predictive power. 

The tests T19 – T24 attempted to reduce the number of separate predictors relative to
test T17, with the goal of removing the most challenging to obtain variables: (a) the CO 2

sensor (because it is expensive and energy intensive); and (b) AC and Loc (self-recording air-
conditioning status in every location change is tedious). When all the variables were removed
(T19) a small performance reduction was found in thermal acceptability (r2 reduced from
0.34 to 0.31), while a substantial reduction was observed in simulating PAQA (r2 reduced
from 0.40 to 0.31). These results indicate that removing CO2, AC and Loc did not have a large
effect on the predictability of thermal acceptability.  Higher PAQA prediction performance
was observed when  AC and  Loc were reintroduced in T24 (r2 =0.38), but it is still weaker
than T17. These results suggest the possibility of a less expensive but efficient alternative:
longitudinally  recording  only  Ta and  RH for  predicting  a  subject’s  thermal  acceptability.
However, the CO2 mixing ratio remains a prime factor to be measured for accurate simulation
of perceived air quality if the location and current air-conditioning status are not known. 

T17 is chosen to be the representative model for further discussion because it has the
highest predictive power among all tests in Table 2. Figure 7a presents the TA and PAQA
validation data from GP models (T17). To test the effectiveness of this general model on the
ability  to  predict  acceptability  for  a  specific  individual,  Figure  7b  graphs  the  validation
performances  of  the  model  in  estimating  acceptability  of  TA  and  PAQA  from  two
representative  individual  subjects  (AC-M-01 and NV-M-01).  For  “AC-M-01”,  poorer  TA
(r2=0.18)  and  PAQA (r2=0.14)  was  predicted.  A lower  TA (r2=0.26)  but  higher  PAQA
(r2=0.43) for “NV-M-01” was observed in comparison with the general model T17 in Table 2.
Overall, the performance of the general model for predicting a specific subject’s acceptability
responses are reduced relative to the performance in predicting collective responses across all
subjects. 

Instead of a “general” cohort, an individual simulation approach (trained and validated
only using the individual samples) is proposed to test  the possibility of predictive power
improvement.   An  individual  model  is  personally  dependent  and  therefore  the  subject’s
sleeping ventilation habit and ID become trivial as predictor variables. The individual model
approach was again tested using AC-M-01 and NV-M-01 sample data (70% for training and
30% for validation). Combinations of predictor variables were tested and chosen using the
best simulation performance for each individual model, as presented in Figure 7c. For TA
simulation, predictor variables used for AC-M-01 were Ta,  RH,  CO2,  ΔTa_10 and ΔRH_10; for
NV-M-01,  these  to  variables  were  added  Loc  and  ΔCO2_10.  In  the  PAQA simulation,
parameters used for both subjects were  CO2 and ΔCO2_15;  in addition,  Ta and ΔTa_15 were
included  for  NV-M-01.  This  individual  simulation  approach  produced  insignificant
improvement at the individual level (Figure 7b vs. 7c) in each case except “TA – AC-M-01”.
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However,  the  physical  parameter  differences  (ΔTa_t,  ΔRH_t and  ΔCO2_t)  became  more
important than the clustering factors (AC and Loc). 

Since  the  general  and  individual  simulation  approaches  may  provide  similar
performance,  but  with different  predictor  variables,  the criteria  for selecting a  simulation
method would depend on the motivation of prediction. The general approach requires more
clustering factors (SV,  AC and  Loc), which may entail extra cost and error to develop the
model, while its major advantage is its freedom from additional acceptability surveys for
prediction  with  new  subjects.  In  contrast,  for  the  individualized  approach,  the  predictor
variables are easier to collect,  but each new subject has to participate in an acceptability
experiment before any prediction can be made available. These findings motivate future work
that seeks to further develop an individual acceptability simulation approach using a series of
longitudinal environment data monitored from wearable sensors. The potential applications
could be associated with, for example, smart air-conditioning systems that communicate with
portable personal sensors to achieve personal comfort environment in private places, such as
vehicles, offices or bedrooms.

Table 2. Parameter sensitivity tests on the simulation of thermal and perceived air quality 
acceptabilities using Gaussian process (GP) models.

Test
Parameters T1 T2 T3 T4 T8 T9 T10 T12 T13 T14 T17

*
T18 T19 T21 T24

Ta X X X X X X X X X X X X X
RH X X X X X X X X X X X X X
CO2 X X X X X X X X X X
SV X X X X X X
AC X X X X X
Loc X X X X X
ΔTa_5 X X
ΔRH_5 X X
ΔCO2_5 X X
AC_5 X X
Loc_5 X X
ΔTa_10 X X
ΔRH_10 X X
ΔCO2_10 X X
AC_10 X X
Loc_10 X X
ΔTa_15 X X
ΔRH_15 X X
ΔCO2_15 X X
AC_15 X X
Loc_15 X X
ID X X X X X X

T
A

GP – r2 0.01 0.02 0.07 0.17 0.15 0.21 0.17 0.25 0.27 0.31 0.34 0.29 0.31 0.32 0.33
GP – MSE 0.22 0.22 0.20 0.18 0.18 0.17 0.18 0.16 0.16 0.15 0.14 0.16 0.15 0.15 0.15
GP – MAE 0.39 0.38 0.37 0.35 0.35 0.33 0.35 0.32 0.31 0.30 0.30 0.31 0.30 0.30 0.30

PA
Q

A GP – r2 0.03 0.06 0.06 0.26 0.25 0.35 0.26 0.30 0.35 0.36 0.40 0.36 0.28 0.31 0.38
GP – MSE 0.26 0.25 0.22 0.19 0.20 0.17 0.20 0.18 0.17 0.17 0.15 0.17 0.19 0.18 0.16
GP – MAE 0.42 0.41 0.37 0.35 0.36 0.34 0.35 0.34 0.33 0.33 0.31 0.34 0.34 0.34 0.32

* Represents the best simulation model
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Figure 7. Validation performance of acceptabilities simulation models: (a) General model
validation for acceptabilities (TA and PAQA) via GP model (Test 17); (b) Personal (AC-M-01
and NV-M-01) acceptabilities sample validation by general GP-trained model (Test 17); and
(c) Personal acceptabilities sample validation by individual model with the best predictors

combination. Regression line and shading are defined in Fig 3.

6 Conclusions

Longitudinal monitoring  experiments  were  conducted  to  investigate  individual
thermal acceptability (TA) and perceived air quality acceptability (PAQA) with respect to
objective physical parameters (temperature, relative humidity, and CO2 concentration),
individual  location,  air-conditioning status,  occupants’ sleeping ventilation  habits and
personal  environmental  exposure  history.  A  thermal  and  perceived  air  quality
acceptability model with good predictive power was developed.

The  15  participants  from  Singapore’s  modern  tropical  environment  spent  an
average of 96% of their time indoors, primarily in the home (61%) and the workplace
(26%). High average satisfaction proportions were recorded for TA and PAQA at home
(82%, 84%) and in the workplace (83%, 91%); corresponding results were relatively low
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in transport environments (55%, 36%). Air temperature and relative humidity in non-air-
conditioned  homes  were  found  to  be  similar  to  the  outdoor  environment;  in  air-
conditioned homes,  corresponding average values were 2.6 °C cooler with 9% lower
relative humidity than non-air-conditioned homes.

A tenuous  relationship  was  found  between  9acceptability  scores  (both  TA and
PAQA) and the measured environmental parameters (temperature, humidity, CO2 level);
however,  knowing  the  location  of  subjects  (e.g.,  home  vs.  workplace)  made  the
associations clearer. Furthermore, the group of subjects who slept with air-conditioning
was found to generally report lower acceptability values in environments other than the
home as compared with the group that slept without air conditioning.  The overcooled
workplace  reported  in  some  prior  studies  was  not  commonly  observed  in  the  data
collected  here;  nevertheless,  this  is  not  a  representative  population  sample.  Thermal
dissatisfaction  was  observed  for  the  group  who  slept  with  air-conditioning  if  the
workplace temperature was lower than 25 °C. In addition,  a short-term transition to a
warmer condition tended to decrease thermal satisfaction for air-conditioning sleeping
group  in  non-air-conditioned  places.  However,  evidence  also  indicated  that  the
acceptabilities trend might be highly variable across subjects, even among those with
similar sleeping ventilation conditions. 

Gaussian process modelling was found to be more effective than a multiple linear
regression approach for acceptability simulations. A general modelling approach could
yield predictions for new subjects without the need for an extra acceptability survey, but
more complex predictor variables (location and corresponding air-conditioning status)
were required. Conversely, for the individual modelling approach (trained and validated
by personal data), data for each subject must be generated by way of participation in an
acceptability experiment but the required variables (time series temperature, humidity
and CO2 level) for model construction are easier to obtain. The predictive powers of the
general and individualized approaches were comparable, and the selection criteria may
depend on the specific motivation for making predictions. 

This study showed the richness of analysis and insights that can be obtained with
longitudinal  experiments  following people across  multiday periods.  The acceptability
simulation models developed here open a  topic for expanded future studies  to better
understand the factors that influence personal comfort. 
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