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ABSTRACT OF THE THESIS

Design principles for locomotion synchronization in undulatory robot groups

by

Zhuonan Hao

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Nicholas G. Gravish, Chair

Many group of organisms that live in proximity are capable of complicated collective

movement, which occurs via periodic oscillation of the individuals. One of the fundamental

goal for swarm robotics study is to understand how effective and robust the collective behaviors

can emerge from simple principles of interaction. In this context, we characterize the motion

behaviors of swimming animals that move through lateral body undulation with multi-link robots

and demonstrate that phase adaption can be achieved through the proposed control law. Critically,

the ability to achieve phase synchronization is driven through contact interactions between

adjacent robots without the requirement for network communication or motion planning. Through

bio-inspired experiment and simulation, we demonstrate that collective in-phase and opposite-

ix



phase behaviors can arise passively through intermittent collision events, and furthermore we

provide principles for control architecture to achieve self-organization in swarms.
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Chapter 1

Introduction

Many swimming microorganisms are capable of synchronizing the body or appendage

motion by interacting with their neighbors. Recent studies suggest that both long-range hydro-

dynamic interactions [1, 2] and short-range steric interactions [3, 4] can bring about the stable

collective motions. For small organisms such as bacteria the synchronized motion of cilia [5]

and flagella [6] are driven by fluid-mechanical interactions. However, in larger organisms such as

the worm C. elegans hydrodynamic interactions are less important and instead steric hindrance

become the predominant factor for gait synchronization [7]. Even for smaller systems mechanical

contact interactions may be of importance in high-density population scenario [8]. Our studies

propose a neuromechanical hypothesis for emergent synchronization through steric contact and

we examine the group interactions in experiments with undulatory robot swarms.

C. elegans is observed to produce undulatory movements by a propagating sinusoidal

wave, traveling from head to tail [9]. Recent studies have determined that intermittent mechanical

contact is responsible for synchronization of the undulatory gaits of groups [7]. Biomechanical

and neural experiments have demonstrated that the generation of this wave is largely through local

proprioceptive reflex responses along the body that sense the local body bending and generate a

bending actuation in response [10]. Thus, the propagation of the body bending wave occurs as a
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“reflex chain” in which the wave propagation doesn’t involve communication between oscillators

and instead responds only to the bending state of the local body region. Experiments have

demonstrated this local oscillator principle by isolating regions of the body and showing that a

propagating wave is halted at a body region where bending is inhibited.

In the present work, we hypothesize that local reflex responses from body bending can

enable synchronization of bending movement between neighboring swimmers that make contact

with each other. When two undulatory swimmers make contact they will inhibit the bending

motion and thus will cause a phase disruption to the swimming gait. The ability for these

systems to adjust each other’s phase through contact may give rise to synchronization phenomena.

Critically this process would not require communication between the systems and thus could

greatly simplify coordination of robot groups. In the following we will demonstrate theoretically

and experimentally that local oscillators with proprioceptive feedback enable synchronization.

We further demonstrate how an inhibitory versus excitatory proprioceptive gain controls whether

robots synchronize to in-phase versus opposite-phase motion. We lastly demonstrate how this is

useful for emergent coordination of snake-like robots to traverse narrow gaps.
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Chapter 2

Modelling and Control of Undulatory

Swarm System

Drawing inspiration from biology, we envision a multi-link robotic locomotor (snake-like)

to simulate the undulatory swimming in C.elegans swarms. The simple low-DoF robot has

been extensively studied and modelled in the context of wheeled, frictional, fluid, and granular

locomotion at various levels of detail [11, 12, 13, 14]. The chapter mainly covers mechanical

design of snake-like robot and control architectures of undulatory locomotion.

2.1 Design of snake-like robot

Undulatory locomotors can be emulated with multi-link articulated robots composed of

n links connected with n− 1 actuated joints (Figure 2.1 (a)). Though the structural analogue

compromises with continuous deformation nature of many swimming animals, the simplification

bypasses the control difficulty of soft matters and caters our interests on the emergence of

collective behavior. Besides, the rigid entities are friendly to batch manufacture and assembly

with the assistance of rapid prototyping, satisfying our needs for group robot experiments (Figure

3



2.1 (b)).The multi-link robot can propel itself by generating a travelling wave along its body

through body-enevvioreent interaction with environment. Given that the study emphasizes on

the influence of mechanical contact, forward driving force is not necessary to be produced by

hydro–environment. Instead, we design scale appendages on the bottom surface to generate

anisotropic friction between robot body and the ground medium (Figure 2.1 (c)). Some essential

geometric values (Figure 2.1 (d)) are listed in Table 2.1. In the following works, the simple 3-link

and 4-link models are adopted for demonstration.

α1 α2

a） b）

c）

Scale

L L

W

H

d）

longitudinal

lateral

Figure 2.1: Mechanical model of undulatory robotic locomotor. (a) The continuous deformable
body can be modeled as multi-link robot. (b) Three-link robot is composited of three 3D-printed
body links and two actuated motors. (c) Scale appendages on bottom surface provide anisotropic
friction interacting with grass ground. (d) Robot geometry parameter illustration.

Table 2.1: Robot geometry table

Parameter Value
W 0.015 m
L 0.162 m
H 0.025 m
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Figure 2.2: Robot group interacts inside the rectangular field.

The swarm system is designed to observe the collective behavior of two or more three-link

robots interacting within a confined area. The locomotion space is created as a rectangular field

with exact channel length (CL) of 1m and adjustable channel width (CW) varying from 0.10m to

0.25m to accommodate robot swarms (Figure 2.2).

2.2 Body oscillation control

Periodic locomotion pattern of robot comes from the actuated joint with with either

position control through appropriate feedback, or commanded torque through motor’s current.

The joint undergoes periodic actuation signal such that α(t) = α(t +T ), where T is the time of

repetition. The implementation process can be classified broadly into two types: time-dependent

(open-loop) and autonomous (closed-loop):

Time-dependent Autonomous

ẋ(t) = f (x, t) ẋ(t) = f (x, ẋ)

f (x, t) = f (x, t +T ) x(t) = x(t +T )

Time-dependent forcing is arguably the most prevalent method of joint actuation and

consists of open-loop trajectories, and feedback controlled trajectory tracking. A common method

of actuating many robot joints employs a simple proportional position-feedback control scheme
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as:

f (x, t) = K(xre f (t)− x). (2.1)

In time-dependent actuation the system is “locked in” to a customized actuation phase and the

control system or the open-loop dynamics will track this phase. If we ignore higher-level control

methods and assume that the system is driven with an invariant reference trajectory, then gait

compatibility will on be achievable through appropriate spatial rearrangement [15].

Autonomous forcing is prevalent in the areas of central pattern generators (CPGs) and

limit cycle oscillator actuation schemes. In this mode of actuation the motor command signal

is only dependent on the instantaneous state of the motor. For example a common limit cycle

oscillator used to drive oscillatory movements in robots is:

f (x, ẋ) =−kx+(ε− cx2)ẋ. (2.2)

a generic second order Van Der Pol oscillator [16]. Systems that are driven through autonomous

feedback from impulsive contact interactions can slip and drift in their actuation phase and thus

have the capacity for gait compatibility by directly synchronizing their gaits [17]. The capacity for

phase drift of limit cycle oscillators is a defining feature of myriad synchronization phenomena in

biological and mechanical systems.

Give that many autonomous control realized through second order systems are highly

associated with the body mechanics, a preliminary study on robot dynamics are essentially

required before the model-based control architectures design [18]. The computation model

may become significantly complicated and expensive with the increasing complexity of body

structure. Besides, many systematic parameters, for example nonlinearity and damping coefficient

in Van Der Por equation, are always under a fine tuning process in order to attain a reliable limit

cycle behavior. Therefore, we expect to execute a model-free control scheme for robot joints

combining the simplicity of position-feedback loop and self-sustained ability of autonomous

6



system. The knowledge of limit cycle models and CPGs networks make major contribution to the

establishment of the self-organized system.

2.2.1 Limit cycle systems for motor actuation

Limit cycle system, a.k.a. oscillator system, is an autonomous dynamical system with

the defining property of limit cycle attractor(s) [19]. The concept has been extensively used in

robotics fields for its structural stability: (a) the systems can produce the periodic oscillations

spontaneously, (b) the oscillation amplitude is robust and resistant against transient perturbation

with asymptotic return trajectory, and (c) the oscillation phase is marginal stable. One can easily

change the phase point along the rotation direction. Lots of studies have been accomplished to

introduce oscillator models into robot control architecture [20, 21].

Interestingly, in contrast to second order oscillators, phase oscillators define straightfor-

wardly in the phase space with concise form:

φ̇ = ω+ p(φ). (2.3)

The simplified model facilitate the investigation of synchronization effect among interacting

oscillators, i.e. Kuramoto oscillators [22]. By introducing radius and even frequency evolution

into the dynamic, phase oscillators have a wide range of application on practical control problems.

An heuristic example of robot dog PUPPY II fulfills an adaptive frequency walking gait through

Hopf oscillator [23]. The controller takes the form of:

φ̇ = ω− 1
r

sinφy

ṙ = (µ− r2)r+ cosφy

ω̇ =−1
τ

sinφy

(2.4)

where r, φ and ω represent states of amplitude, phase and frequency respectively. The sensory

7



input y modulates the oscillation status in response to external stimuli, and the oscillatory output:

u = r cosφ (2.5)

is used as position point for motor. The framework elaborates how oscillator models can be

exploited to generate adaptive oscillation regrading system-environment interactions.

2.2.2 Central pattern generators (CPGs) for undulatory locomotion

For multi-link robot, the communication between joints play a crucial role in the lo-

comotion patterns. A failure on communication may result in disordered motion behaviors.

CPGs network, as a decentralized control architecture, are introduced to tackle the joint-joint

communication problem.

The concept of CPGs are firstly raised last century by the inspiration of some neurobiolog-

ical observations: both invertebrate and vertebrate animals are capable of generating periodical

activities, such as chewing and breathing, without any demands of sensory information [24].

The nature of animals motivates roboticist to extensively investigate control mechanisms of bio-

inspired robots to attain better locomotor skills. The CPGs networks have been further developed

with the incorporation of neuronal oscillator models to produce various locomotion patterns

[25]. A paradigm of CPGs on undulatory robots presents a well-designed control architecture for

generating swimming locomotion as [26]:

θ̇i = 2πνi +∑
j

wi j sin(θ j−θi−φi j). (2.6)

the time evolution of ith oscillator’s phase θi, is determined by the intrinsic frequency νi and

inter-CPG couplings concerning the weights wi j and the phase biases φi j.

8



Chapter 3

Collision-driven Adaptive Phase Control

Scheme

The generation of periodic shape change in snake-like robots comes from the harmonic

actuation source. Chapter 2 shows that the common method to generate autonomous oscillations

is to actuate as limit cycle system. Inspired by the structural simplicity of adaptive frequency

oscillators in section 2.2.1, we firstly propose an adaptive phase control architecture through

functional modification on Hopf oscillator. A toy model is then utilized to provide physical

evidence of phase adaption and mathematical validation of convergence under proposed control

framework. Besides, phase return map is introduced to evaluate the performance of the controller.

Lastly, the design principles of phase adaption between collision-coupled oscillators are discussed

in detail.

9



3.1 Amplitude-controlled phase oscillator: Hopf oscillator

Hopf oscillator defines in Phase-Radius coordinate system (PRCS) with an evolution law

for both oscillatory phase φ and amplitude r in the following way:

φ̇ = ω(= const),

ṙ = (µ− r2)r.
(3.1)

where parameter ω and µ govern the intrinsic frequency and steady oscillatory amplitude, respec-

tively. With appropriate transformation, the system can be equivalently converted to Cartesian

coordinate system (QCS):

ẋ = (µ− x2− y2)x−ωy,

ẏ = (µ− x2− y2)y+ωx.
(3.2)

The system possesses the following properties: (a) frequency is invariant, (b) amplitude

asymptotically converges to
√

µ, and (c) oscillatory output signals x = r cosφ and y = r sinφ are

harmonic, which can be used for motor actuation.

3.2 Collision-driven adaptive phase Hopf oscillator

In Equation 3.1, oscillator phase φ grows uniformly in time with evolution rate ω. However,

phase is not necessarily proportional with time under our control architecture. Here, we propose

a generic perturbation term pφ acting on the phase to decouple the relationship with time:

φ̇ = ω+ pφ,

ṙ = (µ− r2)r.
(3.3)

10



furthermore, we found the perturbation pφ can be expressed with:

pφ = γ g(φe,φ). (3.4)

where function g(φe,φ) allows the oscillator to proactively receive the physical collision informa-

tion from the external environment and adjust internal phase φ with the knowledge of estimated

phase φe, and gain γ scales the adaption effect. Here we declare g(φe,φ) as adaptive function and

γ as proprioceptive gain respectively. They are all of central importance on collective motion

patterns.

The system output

x = r cosφ. (3.5)

is likewise used as position point for motor. We realize that the derivation of x, i.e. ẋ, represents

velocity information in a physical sense. For most of servo motors, both position and velocity are

measurable states. Besides, through Equation 3.2, state y and ẏ are also accessible as long as x

and ẋ are provided. Two feasible approaches are demonstrated in Figure 3.1.

SLP
(1 layer)
100 neurons

x

𝑥
y

Surface 
fitting

100 coefficients

Figure 3.1: Two approaches to Estimate state y with states x and ẋ: (a) surface fitting, (b) single
layer perceptron (SLP).

Therefore, the challenging problem is to design an appropriate input signal φe as the

estimated phase to perturb phase dynamic with internal phase φ. The detail will be intuitively

11



explained by a physical toy model.

3.2.1 Toy model: contact coupled blocks

Recall our purpose is to adapt agent phase between two or more snake-like robots, the

interaction process can be simplified with contact coupled blocks, envisioning each of them

represents one of snake-like robot and is actuated with proposed adaptive phase controller (Figure

3.2 (a)).

δ

1 2

r r
ϕ�

δ

�

y

ϕ�

a) b)

Figure 3.2: The motion of blocks can be equivalently describe by limit cycle diagram. (a)
Contact coupled blocks. (b) Limit cycle diagram.

Assume each block (blue and red) is actuated by Hopf oscillator (Equation 3.1) and

performs harmonic motion around respective equilibrium position by taking position x = r cosφ.

They are initially separated by a specific distance δ and strike each other when position overlap-

ping. The motion behavior can be equivalently described in the limit cycle diagram, where two

phase points move along clockwise direction (Figure 3.2 (b)). We construct the phase dynamic

with perturbation as:

φ̇1 = ω+ γ g(φe1,φ1),

φ̇2 = ω+ γ g(φe2,φ2).

(3.6)

We expect the estimated state φei can sense the external collision events, and then act as

12



the feedback to adjust internal phase φ simultaneously. Besides, the adjustment effect should be

deactivated for no collision scenarios so that it works “in step” with outside process only.

Given that collision causes the sudden change in motion behavior of two or more bodies

due to exerting forces, the motion variables, e.g. position, velocity and acceleration, are exploitable

for the kinematics analysis. Besides, the actuated motor always provides the better accuracy

for the position and velocity measurement, therefore we attentively propose the mapping F to

estimate phase φei with measured position x and velocity ẋ:

F : (x, ẋ)→ φe (3.7)

Recall the relationship between Phase-Radius coordinate system (PRCS) and Cartesian

coordinate system (QCS) can be always converted by an appropriate transformation T:

[φ,r]T = T(x,y). (3.8)

A common used trick is realized by polar coordinate transformation Tp:

Tpφ
: φ = tan−1(

y
x
) mod 2π,

Tpr : r =
√

x2 + y2.

(3.9)

Considering the nonlinearity of Equation 3.2, phase oscillators do not admit second-order

relation ẋ = y, or a physical “position-velocity” relationship. However, as mentioned, x and ẋ can

be used to estimate state y as mapping G, i.e.,

ẋ = (µ− x2− y2)x−ωy⇔ y =G(x, ẋ). (3.10)

Therefore, mapping F can be realized through the combination operation of mapping G

13



and Tpφ
, i.e.,

φe = F(x, ẋ) = Tpφ
(x,y) = Tpφ

(x,G(x, ẋ)). (3.11)

3.2.2 Collision assumptions

Typically, collision in the context can be divided into two types, 1) “head-on” collision

(Figure 3.3 (a)): two objects collide with different velocity direction, and 2) “rear-end” collision

(Figure 3.3 (b)): two objects collide with the same velocity direction but different velocity

magnitude (the rear move faster than the front).

δ

x1 x2

�� ��

=

Collision point

δ

x1 x2

�� ��

=

Collision point

a) b)

Figure 3.3: Two types of collision model. (a) Head-on collision. (b) Rear-end collision.

According to the definition of collisions, the contact condition can be described with

physical symbols as below:

Head-on collision Rear-end collision

x1 = x2 x1 = x2

ẋ1ẋ2 < 0 ẋ2 ≤ ẋ1 < 0 or ẋ1 > ẋ2 ≥ 0

We assume each position controlled joint is with enough stiffness such that when head-on

collision happens, two objects stop moving immediately until separation, i.e. velocity drops to 0,

and when rear-end collision happens, the high speed object tether the low speed object and move

14



together with the low speed object until separation. Therefore, the in-contact condition can be

described as:

Head-on collision Rear-end collision

x∗i = x−i x∗h = x∗l

ẋ∗i = 0 ẋ∗h = ẋ∗l

Note: superscript ‘*’ and ‘-’ represent during and before collision state, subscript ‘h’ and

‘l’ represent high speed and low speed object.

By the study of mapping G : (x, ẋ)→ y (Figure 3.4), we find state y is close to 0 when

velocity state ẋ≡ 0.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.4: G : (x, ẋ)→ y.

Therefore, through Equation 3.9, the estimated phase φe become around either 0 or pi in

collision process. However, canonical phase dynamic φ̇ = ω, cannot immediately change phase φ

to 0 or pi. That allows us to attentively construct the adaptive function by the difference between
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estimated phase and internal phase. We can employ a sin function to normalize this difference:

φ̇1 = ω+ γ sin(φe1−φ1),

φ̇2 = ω+ γ sin(φe2−φ2).

(3.12)

Noticeably, the adaptive function is void when no collision because estimated phase φe

almost equal to internal phase φ. Only when estimated phase φe have a sudden change caused by

collision, the adaptive function is activated.

3.2.3 Collision Dynamic Analysis

Collision dynamic analysis is useful for phase convergence study with the assistance of

limit cycle diagram. Because the rear-end collision only have little influence on phase disruption,

the interactions driven by head-on collision will be discussed in this section. Considering the

interaction between two contact coupled Hopf oscillators controlled by dynamics Equation 3.12,

we introduce an intermediate variable

φd = φ1−φ2. (3.13)

to represent phase difference between two oscillators. The derivative of φd is also an accessible

variable with:

φ̇d = φ̇1− φ̇2

= sin(φe1−φ1)− sin(φe2−φ2). (3.14)

The collision process can be equivalently reflected onto limit cycle diagram. According

to the relative position of collision points, i.e., the position relationship between collision position

(black dashed line) and equilibrium position (red and blue dashed lines), we divide the head-on
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collision into below four different scenarios.

Scenario 1: collision position is on the left of all equilibrium positions, cf., Figure 3.5.

Collision position Contact condition Separation condition

x <−δ

2

r cos(π−φ
−
2 )− r cos(φ−1 −π) = δ (a) φ

+
2 = 2π−φ

−
2

⇔ r cosφ
−
1 − r cosφ

−
2 = δ (b) sinφ

+
1 < sinφ

+
2

ϕ�
−

ϕ�
−

δ

ϕ�
+

ϕ�
+

δ

x

y

x

y

Figure 3.5: Collision position is on the left of all equilibrium positions. The contact condition
(left) and separation condition (right).

Assume phase φ1 is advanced to φ2 before collision, i.e.,

φ
−
d = φ

−
1 −φ

−
2 > 0, (3.15)

collision assumptions in section 3.2.2 lead to:

φe1 = φe2 = π. (3.16)
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Then, Equation 3.12 and 3.14 can be rewritten as:

φ̇1 = ω+ γ sinφ1,

φ̇2 = ω+ γ sinφ2,

φ̇d = γ (sinφ1− sinφ2).

(3.17)

Integrate φ1 and φ2 over collision period [t−, t+],

∫
φ
+
1

φ
−
1

1
ω+ γ sinφ1

dφ1 =
∫

φ
+
2

φ
−
2

1
ω+ γ sinφ2

dφ2, (3.18)

i.e.

tan−1(
ω tan φ

+
1
2 + γ√

ω2− γ2
)− tan−1(

ω tan φ
−
1
2 + γ√

ω2− γ2
) = tan−1(

ω tan φ
+
2
2 + γ√

ω2− γ2
)− tan−1(

ω tan φ
−
2
2 + γ√

ω2− γ2
).

(3.19)

Apply contact and separation conditions,

φ
−
2 ∈ [cos−1(−δ

r
),π],

φ
+
2 = 2π−φ

−
2 ,

φ
−
1 = cos−1(

δ

r
+ cosφ

−
2 ) ∈ [π,

3π

2
]

= 2π− arccos(
δ

r
+ cosφ

−
2 ).

(3.20)

then we have,

φ
+
1 = f (φ−2 ,φ

+
2 ,φ

−
1 ) = 2tan−1(

tanζ1
√

ω2− γ2− γ

ω
), (3.21)
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where,

ζ1 = tan−1(
ω tan φ

+
2
2 + γ√

ω2− γ2
)− tan−1(

ω tan φ
−
2
2 + γ√

ω2− γ2
)+ tan−1(

ω tan φ
−
1
2 + γ√

ω2− γ2
).

Scenario 2: collision position is on the right of all equilibrium positions, cf., Figure 3.6.

Collision position Contact condition Separation condition

x > δ

2

r cos(2π−φ
−
1 )− r cosφ

+
2 = δ (a) φ

+
1 = 2π−φ

−
1

⇔ r cosφ
−
1 − r cosφ

−
2 = δ (b) sinφ

+
1 < sinφ

+
2

ϕ�
−

ϕ�
−

δ

x

y

ϕ�
+

ϕ�
+

δ

x

y

Figure 3.6: Collision position is on the right of all equilibrium positions. The contact condition
(left) and separation condition (right).

Assume phase φ2 is advanced to φ1−2π before contact, i.e.

φ
−
d = φ

−
1 −φ

−
2 −2π < 0, (3.22)
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collision assumptions in section 3.2.2 lead to:

φe1 = φe2 = 0. (3.23)

Then, Equation 3.12 and 3.14 can be rewritten as:

φ̇1 = ω− γ sinφ1,

φ̇2 = ω− γ sinφ2,

φ̇d = γ (sinφ2− sinφ1).

(3.24)

Integrate φ1 and φ2 over collision period [t−, t+],

∫
φ
+
1

φ
−
1

1
ω− γ sinφ1

dφ1 =
∫

φ
+
2

φ
−
2

1
ω− γ sinφ2

dφ2, (3.25)

i.e.

tan−1(
−ω tan φ

+
1
2 + γ√

ω2− γ2
)− tan−1(

−ω tan φ
−
1
2 + γ√

ω2− γ2
) = tan−1(

−ω tan φ
+
2
2 + γ√

ω2− γ2
)− tan−1(

−ω tan φ
−
2
2 + γ√

ω2− γ2
).

(3.26)

Apply contact and separation conditions,

φ
−
1 ∈ [2π− cos−1(

δ

r
),2π],

φ
+
1 = 2π−φ

−
1 ,

φ
−
2 = cos−1(cosφ

−
1 −

δ

r
) ∈ [0,

π

2
],

(3.27)

then we have,

φ
+
2 = f (φ−1 ,φ

+
1 ,φ

−
2 ) = 2tan−1(

tanζ2
√

ω2− γ2− γ

−ω
), (3.28)
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where,

ζ2 = tan−1(
−ω tan φ

+
1
2 + γ√

ω2− γ2
)− tan−1(

−ω tan φ
−
1
2 + γ√

ω2− γ2
)+ tan−1(

−ω tan φ
−
2
2 + γ√

ω2− γ2
).

Scenario 3: collision position is on the middle of left equilibrium position and origin posi-

tion, cf., Figure 3.7.

Collision position Contact condition Separation condition

−δ

2 ≤ x < 0
r cos(2π−φ

−
1 )+ r cos(π−φ

+
2 ) = δ (a) φ

+
2 = 2π−φ

−
2

⇔ r cosφ
−
1 − r cosφ

−
2 = δ (b) sinφ

+
2 × sinφ

+
1 < 0

ϕ�
−

ϕ�
−

δ

x

y

ϕ�
+

ϕ�
+

δ

x

y

Figure 3.7: Collision position is on the middle of left equilibrium position and origin position.
The contact condition (left) and separation condition (right).

Collision assumptions in section 3.2.2 lead to:

φe1 = 0,φe2 = π. (3.29)
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Then, Equation 3.12 and 3.14 can be rewritten as:

φ̇1 = ω− γ sinφ1,

φ̇2 = ω+ γ sinφ2,

φ̇d =−γ (sinφ1 + sinφ2).

(3.30)

Integrate φ1 and φ2 over collision period [t−, t+],

∫
φ
+
1

φ
−
1

1
ω− sinφ1

dφ1 =
∫

φ
+
2

φ
−
2

1
ω+ sinφ2

dφ2, (3.31)

i.e.

tan−1(
−ω tan φ

+
1
2 + γ√

ω2− γ2
)− tan−1(

−ω tan φ
−
1
2 + γ√

ω2− γ2
) = tan−1(

ω tan φ
+
2
2 + γ√

ω2− γ2
)− tan−1(

ω tan φ
−
2
2 + γ√

ω2− γ2
).

(3.32)

Apply contact and separation conditions,

φ
−
2 ∈ [

π

2
,cos−1(−δ

r
)],

φ
+
2 = 2π−φ

−
1 ,

φ
−
1 = cos−1(cosφ

−
2 +

δ

r
) ∈ [

3π

2
,2π],

(3.33)

then we have,

φ
+
1 = f (φ−2 ,φ

+
2 ,φ

−
1 ) = 2tan−1(

tan(ζ′1)
√

ω2− γ2− γ

−ω
), (3.34)

where,

ζ
′
1 = tan−1(

ω tan φ
+
1
2 +1

√
ω2−1

)− tan−1(
ω tan φ

−
1
2 +1

√
ω2−1

)+ tan−1(
−ω tan φ

−
2
2 +1

√
ω2−1

).
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Scenario 4: collision position is on the middle of right equilibrium position and origin

position, cf., Figure 3.8.

Collision position Contact condition Separation condition

0≤ x≤ δ

2

r cos(2π−φ
−
1 )+ r cos(π−φ

+
2 ) = δ (a) φ

+
1 = 2π−φ

−
1

⇔ r cosφ
−
1 − r cosφ

−
2 = δ (b) sin(φ+1 )× sin(φ+2 )< 0

ϕ�
−

ϕ�
−

δ

x

y

ϕ�
+

ϕ�
+

δ

x

y

Figure 3.8: Collision position is on the middle of left equilibrium position and origin position.
The contact condition (left) and separation condition (right).

Collision assumptions in section 3.2.2 lead to:

φe1 = 0,φe2 = π. (3.35)
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Then, Equation 3.12 and 3.14 can be rewritten as:

φ̇1 = ω− sinφ1,

φ̇2 = ω+ sinφ2,

φ̇d =−γ (sinφ1 + sinφ2).

(3.36)

Integrate φ1 and φ2 over collision period [t−, t+],

∫
φ
+
1

φ
−
1

1
ω− sinφ1

dφ1 =
∫

φ
+
2

φ
−
2

1
ω+ sinφ2

dφ2, (3.37)

i.e.

tan−1(
−ω tan φ

+
1
2 + γ√

ω2− γ2
)− tan−1(

−ω tan φ
−
1
2 + γ√

ω2− γ2
) = tan−1(

ω tan φ
+
2
2 + γ√

ω2− γ2
)− tan−1(

ω tan φ
−
2
2 + γ√

ω2− γ2
).

(3.38)

Apply contact and separation conditions,

φ
−
1 ∈ [

3π

2
,2π− cos−1(

δ

r
)],

φ
+
1 = 2π−φ

−
1 ,

φ
−
2 = cos−1(cosφ

−
1 −

δ

r
) ∈ [

π

2
,π],

(3.39)

then we have:

φ
+
2 = f (φ−1 ,φ

+
1 ,φ

−
2 ) = 2tan−1(

tanζ′2
√

ω2− γ2− γ

ω
), (3.40)
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where,

ζ
′
2 = tan−1(

−ω tan φ
+
1
2 + γ√

ω2− γ2
)− tan−1(

−ω tan φ
−
1
2 + γ√

ω2− γ2
)+ tan−1(

ω tan φ
−
2
2 + γ√

ω2− γ2
).

3.2.4 Phase return map

The above analysis takes into account the change of individual oscillator phase from

collision to collision, which motivates us to study overall phase difference change between the

two collision-coupled oscillators. Phase return map is introduced here to examine the asymptotic

behavior of ∆φ. With the closed form expression of both before and after collision phase, the

phase difference changes from the end of the nth contact to the n+1th contact can be characterized

with mapping R:

R : ∆φ
n = φ

n
1−φ

n
2 −→ ∆φ

n+1 = φ
n+1
1 −φ

n+1
2 (3.41)

The phase return map can be generated through the numerical integration as demonstrated

in section 3.2.3. One can easily address the evolution of ∆φ along the return map with the

reference line ∆φn+1 = ∆φn. For example (Figure 3.9), the contact coupled blocks may start

with initial phase difference ∆φ0 of 2.5, the first-time collision leads the after-collision phase

difference ∆φ1 = 2. Because the nature of intermittent contact, the phase difference ∆φ can

maintain the same before the second-time collision. With the assistant line of ∆φn+1 = ∆φn, the

second-time collision starts with ∆φ1 = 2 and ends with ∆φ2 = 1. Keep doing so, we finally find

∆φ asymptotically converge to 0, which indicates the in-phase synchronization is guaranteed.

Noticeably, the perpendicular distance from the curve points to line ∆φn+1 =∆φn represent

the convergence speed. From this perspective, ∆φ has trivial convergence tendency for the large

phase difference region, especially 0 and π, as a result of periodicity of sin function. The system

therefore contain a stable anti-phase region.
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Besides, the shape of phase return map is sensitive to initial separation distance δ, propri-

oceptive gain γ, and even the form of adaptive function g(◦,◦), which provides us an insight into

design principle for phase adaption.

Figure 3.9: Phase return map reveals the asymptotic behavior of phase difference. Plot with
numerical integration for parameter δ = 0,ω = π,γ = 0.4ω.

3.3 Design principles

Section 3.2 presents a successful design structure for phase adaption of contact coupled

oscillators. By the means of phase return map, synchronization process is also reflected on

attracted curve. In this section, we discuss some design-level factors that contribute substantially

to the shape of phase return map.

3.3.1 Adaptive function

Recall the adaptive function, g(φe,φ), measures the difference between estimated phase

and kinematic phase in Equation 3.4, a trigonometric function sin(φe−φ) has been implied in

section 3.2 to regulate the kinematic phase in actual system. The periodicity and boundedness of
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the function guarantee a smooth phase evolution. However, the periodicity nature results in an

obvious defect: the system has the same regulation effect for both large (close to π) and small

(close to 0) phase difference region. In other words, the curve of phase return map is concave. The

convexity can be changed by taking alternative function form, e.g., linear function or exponential

function (Figure 3.10). But in practice, these functions may break down the motors due to the

loss of boundedness unless fine tune an appropriate proprioceptive gain.

Figure 3.10: The convexity of curve changes with the adaptive function.

3.3.2 Proprioceptive gain

The feedback adaptive function, g(φe,φ), is multiplied by a single proprioceptive gain term

γ. In section 3.2, positive gain allows in phase behavior to emerge within finite collision events. In

fact, two oscillators that make contact will synchronize to in-phase or anti-phase status dependent

on the sign and magnitude of γ. Figure 3.11 illustrates results from numerical integration of

collision dynamics using Equation 3.6. When 0 < γ < ω we observe that oscillator phases always

achieve synchronization. The magnitude of γ controls speed of the synchronization process.

However, if γ exceeds ω the synchronization dynamics break down because the oscillatory motion
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is no longer smooth. When γ < 0 the oscillator is driven to anti-phase synchronization and a γ = 0

puts the control into a purely feedforward form with no feedback and the dynamics equations can

be integrated to resolve the time-dependent actuation.

Figure 3.11: The curvature of curve depends on the proprioceeptive gain.

3.3.3 Equilibrium separation distance

δ = 0

δ = 0.1

δ = 0.2

anti-phase

region

effective adaption region

Figure 3.12: Spatial layout determine the anti-phase region and effective adaption region.

Equilibrium separation distance, δ, is used to determine contact and separation condition
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in section 3.2., which play a crucial role for phase compatibility. δ have an influence on both

anti-phase region and effective adaption region (Fiure 3.12). However, it is not controllable in

practical control scheme. Therefore, we demonstrate the effect in section 4.3 with several exact

spatial layouts.

3.4 Summary

Based on the oscillator theories, the chapter develops the collision-driven adaptive phase

controller on a toy model. The analysis of collision dynamic works out the closed-form expression

of individual phases. By means of phase return map, we visualize the synchronization process

and study the effect of some crucial system parameters. However, all the work so far is subjected

to the single joint control instead of entire robot body. In next chapter, we increase the control

complexity by looking into the practical application on multi-link robot and study how these

factors make a difference on collective behavior.
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Chapter 4

Experimental and Simulation

Demonstrations

Chapter 3 proposes a collision-drive adaptive phase algorithm in regard of single robot

joint. In actual swarm system, the individual robot is composed of multiple joints with specific

phase shift to maintain some locomotion pattern in the moving process. In this chapter. We will

move to the control scheme for the entire undulatory robot system in given situations. Considering

in a confined space (Figure 4.1 (a)), there lives a group of undulatory swimmers. Assuming the

only interactions between them are passive body contact with individual’s neighbors, we were

trying to study how effective and robust the group behavior can emerge from this type of simple

interaction in close proximity. We simplified each swimmer into a 3-link rigid body robot with

two rotational joints (Figure 4.1 (b)). For the robot actuation, we introduced CPG-based collision-

driven adaptive phase oscillator as the joint controller to capacitate the robot proprioceptive ability.

Robot could understand the local contact events and actively adjust the swimming pattern by

phase adaptation according to its neighbors’ behavior without any sensory feedback, realizing

in-phase or opposite-phase configurations.
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a) b)

c)

Δy

d

d

Δx

d)
α2

α1

Figure 4.1: Motivation and overview for contact compatibility among undulatory swimmers.

4.1 Control Scheme for Undulatory Locomotion

The bio-inspired n-link robot can accomplish body undulations through oscillatory net-

works, comprising of n−1 actuated joints that oscillate with a positive phase lag between neighbor

links from head to tail. A complete travelling wave are expected to generate through a set of

position points α1,α2, ...,αn−1, whose phases φ1,φ2, ...,φn−1 uniformly distribute around one

cycle, using following equation:

αi = ri cos(φi) i = 1,2, ...,n−1 (4.1)

where ri and φi are governed by proposed Collision-driven adaptive phase oscillator:

φi = ω+ γ×g(φei,φi)

ri = ri(µ− r2
i )

(4.2)

The framework enables the phase adaption effect to emerge between different joints

through collisions. However, for a single robot agent, the joint-joint relationship is arrayed by the

initial conditions of each phase state. The collision sensitive nature can easily break down the
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Input
ϕei = 𝔽(αi, αi), ϕi Output

αi = ri cos(ϕi)

Controller

Figure 4.2: Control scheme for multi-link robot.

relationship in the process of robot interaction. It is difficult to retain a stable traveling wave under

extreme collision scenario because the phase states are perturbed by the adaption effect frequently.

Therefore, we introduce the concept of Central Pattern Generator (CPG) for the purpose of phase

regulation between different joints in each single robot (Figure 4.2):

φi = ω+ γ×g(φei,φi)+
n

∑
j=1

λi j× f (φi,φ j)

ri = ri(µ− r2
i )

(4.3)

In Equation 4.3, the adaptive function g(φei,φi) with proprioceptive gain γ ∈ [0,ω] works

as phase adaption term to actively adjust individual phase in swarm system. The function f (φi,φ j),

a.k.a. CPG function, with inter-CPG couplings λi j ∈ [0,1] governs the locomotion pattern through
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phase regulation effect between joints. The form of the functions can be considered as:

g(φei,φi) = sin(φei−φi)

f (φi,φ j) = sin(φ j−φi−∆φi j)

(4.4)

In this case, the positive gain λi j guarantees phase difference between states φi and φ j

asymptotically converges to ∆φi j no matter how severely the phase adaption effect exerts on the

joints.

4.2 Swarm configuration

In contrast to toy model, swarm robot system take account of more motion information

rather than phase states. Phase return map fail to comprehensively conclude the collective

behavior in the actual system. It is important to characterize the swarm configuration of the robot

system with the collection of motion states that reveal moving potential, such as relative lateral

separation and kinematic phase difference. In this section, we introduce two different swarm

configurations to study how the proposed control law exerts effect on the robot system and results

in various collective behaviors.

4.2.1 Dual-robot system

For dual-robot system, lateral separation ∆x and kinematic phase difference ∆φ precisely

describe the dynamic difference in both spatial and phase dimensions. Therefore, define return

map M as

M : (φ−d = φ
−
1 −φ

−
2 ,∆x−)−→ (φ+d = φ

+
1 −φ

+
2 ,∆x+)

which reveal the dynamic information in a time scale (Figure 4.3).
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Figure 4.3: Equilibrium lateral separation ∆x/λ (normalized with robot wave length λ) for robot
pairs as a function of kinematic phase difference, ∆φ. White points correspond to equilibrium
configurations where robots overlap laterally, gray points are configurations where robots pushed
out of contact. The heatmap indicates the effective energy landscape of the equilibrium points.

4.2.2 Multi-robot system

For multi-robot system, the dimensions of ∆φ and ∆x grows exponentially with the

numbers of robots, such that map M locates in a complicated hyper-plane. Given that we

simplified the continuous undulatory locomotion into discrete links oscillation, we define the

mean resultant length (MRL) to measure the length of random phase vectors in limit cycle in the

following step:

• Obtain robot phase set [φ1,φ2, ...,φn].

• Calculate

C =
n

∑
i=1

cosφi, S =
n

∑
i=1

sinφi, R2 =C2 +S2. (4.5)
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• Take R as Mean Vector Length (MRL)

Figure 4.4: Mean resultant length for robot phase as a function of motion period. MRL evolution
tendency is determined by initial condition and contact times (reflected by period). In phase
synchronization leads to the maximum MRL of 1. Robot group can also reach compatible with
a specific value MRL, where phase difference and spatial separation maintain steady.

The configuration emphasizes more on the phase adaption effect between robots. But

based on the multiple link simplification, spatial information can be also revealed implicitly

(Figure 4.3).
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4.3 Experiment and simulation results

In this section, we implement proposed control scheme under different physical envi-

ronments and observe collective behavior of robot swarms. Swarm configuration is utilized to

analyze their moving potential. The control parameters are as Table 4.1 listed.

Table 4.1: Control parameter table

Parameter Value
µ 40◦

ω π

λ 0.4
∆φ ]2π

3 , π

2 [
γ [-0.2,1.0]

Δy

Δx

a） b）

Figure 4.5: Fixed body experiment setup. (a) Two robot bodies were fixed on the guide rail in
parallel with an adjustable separation distance. (b) Experiment sketch. ∆x and ∆y (equivalent to
parameter δ in Figure 3.2) represent longitudinal and lateral separation distance respectively.

4.3.1 Two robots are fixed in an adjacent area

Two robots are fixed with specific spatial layouts (Figure 4.5) to imitate some specific

scenarios of free motion. We study how proproceptive gain γ and separation distance ∆x, ∆y
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contribute to the shape of phase return map, as a comparison with toy model. Each robot is

simplified into two rigid links with one fixed end and one oscillatory joint. The phase difference

between the two joints is initialized with ∆φ0, ranging from 0 to π with 50 intervals. We measure

the change of phase difference within one period (single collision) to generate phase return map

under different gain and spatial layouts.

b）

c）

d）

e）

a）

Figure 4.6: The curvature of phase return map depends on proprioceptive gain. Experiments
(blue points) with robot pairs were performed to estimate phase return map for varying proprio-
ceptive gain with ∆x = 0, ∆y = 0.20 , comparing with model prediction (red points) in section 3.
(a)-(e) show experiments with gain = [0.2, 0.4, 0.6, 0.8, 1.0].

Figure 4.6 illustrates that positive gain results in an in-phase synchronization process

because the curves are always below ∆φn+1 = ∆φn, with a good match of model prediction. Larger

gain help increase the curvature of return map, indicating a better adaption effect.

Figure 4.7 and 4.8 partially reproduce some similar scenarios of free motion. When two

robots are separated by a specific spatial layouts, they can still get synchronized to some extent.

The longitudinal separation ∆y do not change the shape of phase return map but always allow

behind robot can easily adapt phase to the front because of the unbalanced moment of force.
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However, the lateral separation ∆x change the phase compatibility, or the effective adaption range.

The larger ∆x leads to a narrow adaption range φL.

Δy

Δx
Δx

Δx
Δx

Δx

a）

b）

Figure 4.7: The phase adaption process varies with longitudinal separation. (a) Spatial layouts
for the robot pairs. ∆y = 0.20 is fixed with varying ∆x = [5,2,0,−2,−5] from left to right. (b)
The joint angle adaption process within one period (single collision). The spatially behind robot
can easily adapt individual phase to the front one.

Noticeably, the anti-phase region do not appear in any experiments. Because the anti-

phase only emerge for large phase difference cases that drive two robots collide extremely with

a very large force, the servos may not be able to generate such large force in practice. In other

words, the motor triggers some protection mechanism to avoid this happen. Two robots are

therefore less likely to reach anti-phase region. If motor can be actuated with force or current

directly, e.g. DC motors, the anti-phase phenomena is expected to happen.
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Δy Δy Δy

a）

b）

Figure 4.8: The effective adaption region differs from lateral separation. (a) Spatial layouts
for the robot pairs. ∆x = 0.0 is fixed with varying ∆y = [0.20,0.36,0.53] from left to right. (b)
Phase return map. The compatible region (left bottom) and anti phase region (top right) become
larger with the increase of lateral distance.

4.3.2 Robot pair interacts in confined area

Two complete robots are accommodated inside parallel channel for collision interactions

(Figure 4.9 (a)). They are initialized with specific phases and centering positions. The channel

width CW and proprioceptive gain γ are varying from 0.11m to 0.13m and 0 to 1 respectively. The

relative lateral separation distance ∆x and phase difference ∆φ are collected to generate swarm

configuration. Figure 4.9 (b) shows that three different compatible configurations emerge from

synchronization process: one link ahead, in phase and one link behind states. The final states

gradually converge to the three compatible regions along the gradient of the heatmap. Figure 4.9

(c) proves that 0 gain is equivalent to open loop and converge to the compatible line. Figure 4.9

(d) and (e) verifies that gain and channel width can help increase the attraction of compatible

regions.
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Figure 4.9: The compatible configuration is associated to channel width and proprioceptive
gain. (a) Robot pairs may achieve gait compatibility through collision-driven spatial translation
and phase adjustment in the confined space. (b) Normalized lateral separation ∆x/λ for robot
pairs as a function of kinematic phase difference ∆φ (Gain = 0.64, CW = 0.13). White points
indicates to compatible states where robots overlap laterally. The heat map reveals the move
potential of the system. (c) Gain = 0, CW = 0.13 (d) Gain = 0.64, CW = 0.15 (e) Gain = 0.95,
CW = 0.13.

4.3.3 Multiple robots collectively swim in confined space

In contrast to robot pair test, we build four robot system to observe the collective behavior

in swarm (Figure 4.10). We conclude that (a) The negative gain (set 1) leads to out of phase

synchronization, generating disordered group behavior, (b) The zero gain (set 2) generates

compatible motion behavior without phase adaption effect, (c) The positive gain smaller than ω

(set 3-4) is able to produce collective in-phase behavior robustly. The larger the gain is, the better

synchronization emerge, and (d) The positive gain larger than ω fail the motors for the oscillated

frequency.
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Figure 4.10: Collective behaviors hinges upon adaptive coefficient γ = Gain×ω. (a) Robot
groups are actuated with the same intrinsic frequency ω = π but different adaptive coefficient
γ = [−1,0,1,π,5] from top to bottom. (b) The steady motion pattern (from top to bottom):
disordered motion, compatible motion, partial synchronized motion, complete synchronized
motion and suppressed motion.

4.3.4 Robot pairs passability

We test the robot passiability for the narrow channel by adjusting gain value and channel

width. As Figure 4.11 and 4.12, during the first motion stage (around first 10 seconds), the robot

locate in a relative free space, the adaption effect have not significantly exerted on robot pairs.

Only when traversing the narrow channel, two robots start to interact as a result of positive or

negative gain. . The experiments illustrate adaption effect was influenced by two factors: (a)

channel width (indicating the collision possibility), and (b) proprioceptive gain. Initially, robot

pair do not have an obvious phase adaptation process because weak collision condition. However,

when the collision become extreme, phase adaptation effect become remarkable as well. Besides,

the synchronized gait also increases their moving efficiency. When we switch the gain to negative,

the collective behavior disappear (Figure 4.11 (b)).
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Figure 4.11: Robots pairs is able to traverse the narrow channel with positive proprioceptive
gain and maintain locomotion pattern after separation.

4.3.5 Energy and efficiency

Lastly, we figure out why animals prefer to the collective motion. The simulation (Figure

4.13) is carried out to test two different swimming gaits. The top group is asynchrony group

with proprioceptive gain of 0. The below group is synchrony group with positive gain. We found

that the synchrony group swims much faster than asynchrony. Besides, the synchrony group

consumes less energy than asynchrony (Figure 4.14).

4.4 Summary

The chapter presents the control scheme works effectively in robot swarm system for

phase adaption purpose. With help of swarm configurations, we develop a qualitative and

quantitative understanding of synchronization process. Synchronized gait help robot swarm

traverse narrow channel. We also look the process into energy and efficiency aspects, which
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Figure 4.12: Passability test. (a) An overhead picture of two robots challenged to move through
a narrow channel. (b) Relative phases between the two robot showing: in-phase synchronization
at 0 < γ < ω, anti-phase synchronization at γ < 0, and non-feedback at γ = 0.

might be the biological nature of collective swimming.
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Figure 4.13: Simulation: two robots traverse 15 m with synchronous gait and asynchronous gait

Figure 4.14: Energy consumption (left) and moving efficiency
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Chapter 5

Conclusions

In this study, we demonstrate that undulatory motion in biologically inspired robots can be

synchronized through contact interactions without the need for robot-robot communication. The

shape of phase return map hinge on proprioceptive gain and adaptive function. Proprioceptive

feedback inspired from neuromechanical studies of C. elegans enable emergent synchronization

and determine the pattern of collective behaviors. Robot pairs that traverse narrow channels

are able to synchronize their gait to move effectively together in confined space. Synchronized

behavior help on both energy consumption and motion efficiency. Overall these results suggest

new methods for designing feedback control of emergent synchronization in robot swarm.
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