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ABSTRACT OF THE DISSERTATION

Optical Map-Based Genome Scaffolding

by

Weihua Pan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2019

Dr. Stefano Lonardi, Chairperson

De novo genome assembly is one of the most critical problems in computational

biology. Due to the limitations of current sequencing technologies, the de novo assembly is

typically carried out in two stages, namely contig (sequence) assembly and scaffolding. The

scaffolding process can vastly improve the assembly contiguity and can produce chromosome-

level assemblies. Despite significant algorithmic progress, the scaffolding problem can be

challenging due to the high repetitive content of eukaryotic genomes, possible mis-joins in

assembled contigs and the inaccuracies of the linkage information.

Different types of linkage information such as paired-end/mate-pair/linked/Hi-C

reads or genome-wide maps (optical, physical or genetic) are used to carry out the scaffolding

process. Optical maps (in particular Bionano Genomics maps) have been extensively used in

many recent large-scale genome assembly projects (e.g., goat, apple, barley, maize, quinoa,

sea bass, among others).

In this dissertation, we address some of the computational issues associated with

genome scaffolding when optical maps are used. We propose novel algorithms for scaffolding,
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chimeric detection, and assembly reconciliation. First, we introduce a novel chimeric removal

tool called Chimericognizer. Chimericognizer takes advantage of one or more Bionano

Genomics optical maps to accurately detect and correct chimeric contigs. Experimental re-

sults show that Chimericognizer is very accurate, and significantly better than the chimeric

detection method offered by the Bionano Hybrid Scaffold pipeline. Chimericognizer can

also detect and correct chimeric optical molecules.

Second, we describe a novel method called Novo&Stitch that can take advantage

of optical maps to accurately carry out assembly reconciliation. Experimental results

demonstrate that Novo&Stitch can double the contiguity (N50) of the input assemblies

without introducing mis-joins or reducing genome completeness.

Third, we introduce a scaffolding algorithm called OMGS that for the first time

can take advantages of multiple optical maps. OMGS solves several optimization problems

to generate scaffolds with optimal contiguity and correctness. Extensive experimental results

demonstrate that our tool outperforms existing methods when multiple optical maps are

available, and produces comparable scaffolds using a single optical map.
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Chapter 1

Introduction

The number of eukaryotic species on this planet is estimated to be about 8.7

million [52] but only a few thousand had their genomes sequenced. Prokaryotes are also

likely to number in the millions. Obtaining the complete genome sequence for a species is

a fundamental first step in understanding its cellular and molecular processes. However,

the current sequencing technology does not allow life scientists to read each chromosome

from the beginning to the end. Sequencing instruments can only read short DNA fragments,

called reads.

There are three generations of sequencing technologies. The first-generation se-

quencing, also called Sanger sequencing, was used from the 1970s to the 1990s. Sanger

sequencing produced a scientific revolution in biology and led to the Human Genome Project

[87, 17]. Sanger sequencing generates ≈1000bp-long reads with low throughput, high cost,

but good accuracy. Because of the limitations of Sanger sequencing, the Human Genome

Project took 13 years to complete at a cost of almost US$3 billion. In the mid-to-late 2000s,
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second-generation sequencing technologies (Solexa, Illumina, ABI Solid) quickly replaced

Sanger sequencing, especially for re-sequencing applications (e.g., RNA-Seq). The second

generation has much higher throughput and substantially lower cost [28]. However second-

generation sequencing reads are much shorter (100–250bp) than Sanger’s DNA sequence

with higher error rate (about 1%). In recent years, the third-generation sequencing tech-

nologies emerged [72, 68, 47, 55, 86]. The third-generation sequencing technology includes

single-molecule real time (SMRT) sequencing from Pacific Biosciences (PacBio) [67] and

nanopore-based sequencing from Oxford Nanopore Technologies [36]. Third-generation se-

quencing technologies produce reads averaging 10kbp in length, with many reads over 100kb

and some reaching over 1Mb [75]. However, the error rate of third-generation technologies is

much higher (typically 15%) than the second generation.

Genome assembly is the computational problem of assembling the reads into a

complete genome sequence. There are two “flavors” of this problem, namely reference-based

genome assembly and de novo genome assembly. In reference-based genome assembly one

has to assemble reads for an organism using a evolutionarily related genome as a reference;

in de novo genome assembly the problem is to assemble reads of a new species from “scratch”

using only the overlaps between reads.

Genome assembly is considered one of the most fundamental problems in computa-

tional biology. Due to the current limitations of sequencing instruments, the assembly process

is typically carried out in two stages, namely contig (sequence) assembly and scaffolding.

Contig assembly is the step assembling reads into longer DNA sequences called contigs

according to the overlaps between reads. Existing methods for contig assembly can be
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classified into two major categories: overlap graph based methods [30, 56, 57, 6, 35, 32, 5, 83]

and de Bruijn graph based methods [64, 96, 79, 65, 34, 91, 44, 79, 11, 97, 49]. Overlap

graph based algorithms assemble reads by first constructing the overlap graph. In the

overlap graph each vertex represents a read, and each edge represents an overlap between

reads. De Bruijn graph based algorithms assemble reads by constructing first a de Bruijn

graph. In a de Bruijn graph, each vertex represents a length-k substring (called k -mer),

and each edge connects consecutive k -mers in the input read (i.e., two k-mers overlapping

k − 1 bases). Both of the overlap graph based methods and de Bruijn graph based methods

report maximal simple paths of vertices without branches as contigs [59, 98].

Scaffolds are arrangements of oriented contigs with gaps representing the estimated

distance separating them. Gaps indicate genome regions not covered by any contig. Since

eukaryotic genomes are very repetitive and repeats are hard (if not impossible) to assemble,

assemblies often miss these repetitive regions which are represented as gaps. A chimeric

contig is contig that has been incorrectly assembled from reads originating from non-adjacent

regions of the genome. Irrespective on the type of sequencing technology or the contig

assembly algorithms employed, mis-joins are hard to avoid.

The scaffolding process can vastly improve the assembly contiguity and can pro-

duce chromosome-level assemblies. Despite significant algorithmic progress, the scaffolding

problem can be challenging due to the high repetitive content of eukaryotic genomes, possible

mis-joins in assembled contigs and the inaccuracies of the linkage information.

Since contigs are not expected to overlap, scaffolding relies on additional linkage

information. Several protocols have been developed to generate different kinds of linkage
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information. The most common type of linkage information is in the form of paired-end/mate-

pair reads. Paired-end reads are pair of sequenced reads from both ends of the same DNA

molecule (tipically ≈ 500 base pairs). Mate-pair reads are paired-end reads for which the

DNA molecule is much longer (1kbp to 100kbp). For the assembly of large eukaryotic

genomes, multiple libraries of mate-pair reads (with different insert sizes) are used to span

repetitive regions.

By carrying out sequence alignment, one can anchor paired-end/mate-pair reads to

assembled contigs. Since the relative orientations and approximate distances of each pair of

reads are known, two contigs anchored by paired-end/mate-pair reads can be oriented and

the distance between the contigs can be estimated. However, the distance between each pair

of reads is relatively small (hundreds of base pairs), which prevents one to scaffold contigs

with large gaps [66, 41, 29, 70, 26, 22, 19, 9, 79, 78]. To solve this problem, long-range

linkage information need to be used. Genetic maps provide the order and gentic distances of

single-nucleotide polymorphism (SNP) sites, so that the contigs anchored by SNPs can be

scaffolded [85]. Hi-C data provides the approximate spacial distances between each pair of

regions of genome. Although theoretically two regions in large genomic distance could be

very close to each other in space, in most situations, the spacial distance is a good estimation

of genomic distance, so that the gaps between contigs can be estimated [10].

The optical map is another type of genome-wide map, which can provide accurate

distances between genetic markers. Since its emergence over twenty years ago [74], optical

mapping has undergone a transition from laboratory technique to commercially available

data generation method. The optical mapping technologies currently on the market (e.g.,
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BioNano output:
DNA (green)
with tags (red)
are imaged
and alignedFluorophoreTarget DNA

Optical mapping
Nick site: enzymes nick and label DNA at specific sites

Figure 1.1: BioNano Genomics optical mapping (source [28])

BioNano Genomics Irys systems, OpGen Argus) allow life scientists to produce genome-wide

maps by fingerprinting long DNA molecules (up to 1 Mb), via nicking restriction enzymes.

Linear DNA fragments are stretched on a glass surface or in a nano-channel array, then the

locations of restriction sites are identified with the help of dyes or fluorescent labels (see

Figure 1.1). The results are imaged and aligned to each other to map the locations of the

restriction sites relative to each other. While the assembly process for optical molecules

is highly reliable, there is clear evidence that a small fraction of the optical molecules is

chimeric [38].

An optical map is composed by a set of optical map molecules, each of which is

represented by an ordered set of positions for the restriction enzyme sites. By digesting in

silico the assembled contig using the same restriction enzyme used to produce the optical

map and matching the sequence of distances between adjacent sites, one can align assembled

contigs to an optical map. High-quality alignments allow some of the contigs in the assembly

to be anchored at specific coordinates on the optical map. In addition, contigs can be

oriented with respect to each other. When multiple contigs align to the same optical map

molecule, an estimate of the distance between them can be obtained. If the distance is

positive, a gap is introduced and a scaffold can be formed [76, 84]. When the distance is

negative (i.e., contigs are overlapping), it may be possible to stitch them. Optical maps can
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also be used to detect and break chimeric contigs. When only a fraction of a contig aligns

to a molecule, the “overhang” of the contig that is not aligned to molecule is likely to be

improperly assembled [84] (see Figure 2.2 for an example).

The focus of this dissertation is to develop innovative algorithmic solutions for

improving de novo genome scaffolding with the help of optical maps. Specifically, we provide

new methods to generate scaffolds with higher contiguity and smaller number of errors (e.g.,

mis-joins) using BioNano optical maps.

In Chapter 2, we describe a novel chimeric removal tool called Chimericognizer.

Chimericognizer takes advantage of one or more Bionano Genomics optical maps to

accurately detect and correct chimeric contigs. Experimental results show that Chimericog-

nizer is very accurate, and significantly better than the chimeric detection method offered

by the Bionano Hybrid Scaffold pipeline. Chimericognizer can also detect and correct

chimeric optical molecules.

In Chapter 3, we introduce a novel method called Novo&Stitch that can take

advantage of optical maps to accurately carry out assembly reconciliation. Experimental

results demonstrate that Novo&Stitch can double the contiguity (N50) of the input

assemblies without introducing mis-joins or reducing genome completeness.

In Chapter 4, we describe a scaffolding algorithm called OMGS that for the first

time can take advantages of multiple optical maps. OMGS solves several optimization prob-

lems to generate scaffolds with optimal contiguity and correctness. Extensive experimental

results demonstrate that our tool outperforms existing methods when multiple optical maps

are available, and produces comparable scaffolds using a single optical map.
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Chapter 2

Chimericognizer: Accurate

Detection of Chimeric Contigs via

Bionano Optical Maps

In this chapter, we focus on the problem of detecting and correcting the chimeric

contigs. A chimeric contig is contig that has been incorrectly assembled from reads originating

from non-adjacent regions of the genome. Irrespective on the type of sequencing technology

or the contig assembly algorithms employed, mis-joins are hard to avoid. Failing to recognize

and correct chimeric contigs can have dramatic consequences in downstream steps in the

assembly pipeline, e.g., scaffolding or construction of pseudo-molecules. Therefore, chimeric

removal can been seen as a pre-processing step of scaffolding.

While most of the sequencing projects carry out a chimeric detection/correction

step before the scaffolding step, it is clear that this step is carried out manually by visually

7



inspecting the alignments of the contigs on the optical map (e.g., using IrysView for

BioNano maps). Our experience in carrying out this step many times for the cowpea (Vigna

unguiculata) and potato late blight pathogen (Phytophthora infestans) genome projects

currently under way at UC Riverside, is that manual chimeric detection/correction is tedious

and error-prone. In response to this need, here we introduce Chimericognizer, a tool that

can detect large-scale mis-joins in either assembled contigs or Bionano optical molecules. The

presence of mis-joins induces conflicts in high-quality alignments between contigs and optical

molecules [38] (see Figure 2.2). The quality of an alignment depends on the consistency

of shared distances between adjacent restriction enzyme sites and the total length of the

alignment. Due to the requirement for high-quality alignments, Chimericognizer can

detect mis-joins only on assembled contigs that are sufficiently long to be reliably aligned, e.g.,

50 Kbp or longer. Contigs produced from the assembly of third-generation sequencing data

(e.g., PacBio and Oxford Nanopore) generally meet this criterion. In this case, the detection

of chimeric contigs appears straightforward if one assumes that optical maps are error-free

and all the alignment conflicts are caused by mis-joins in the contigs. Unfortunately, since

optical maps are obtained via an assembly process similar to sequence assembly, optical

molecules can also be chimeric. According to [38], in about “7% of the (alignment) conflicts,

the consensus map (optical map) was wrong”. Mis-joins in optical molecules typically occur

in repetitive regions of the genome, which induce long stretches of regularly-spaced restriction

enzyme sites.

Chimericognizer depends on the availability of multiple assemblies and one (or

more) Bionano optical map to accurately detect chimeric contigs and reduce the possibility
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of incorrectly splitting non-chimeric contigs. Multiple assemblies can be obtained by either

running several assembly tools or by using one assembler with multiple parameter settings

on the same input data.

2.1 Methods

The algorithm used by Chimericognizer has three phases. The algorithm pipeline

is illustrated in Figure 2.1. The first phase has three steps. In step 1, we concatenate

all the available genome assemblies and in silico-digest them using the same restriction

enzyme(s) used to produce the Bionano optical map(s). Then, we align digested contigs

to their corresponding optical map using Bionano Genomics’ RefAligner. In step 2, we

remove alignments either i) when they have a confidence lower than a minimum threshold

or ii) when there is another alignment between the same contig and the same molecule

with higher confidence. In step 3, we unify the coordinates of alignments when multiple

optical maps are available. Due to imprecisions in optical mapping, the distances between

restriction enzyme sites in optical maps can be inflated. To compensate for the inflation,

RefAligner has to amplify the distances of restriction enzyme sites on the contigs by

a scaling factor so that accurate alignments can be produced. Since this scaling factor is

different for each optical map, in order to make the coordinates comparable across maps, we

have to normalize them by the appropriate scaling factor.

After pre-processing, we identify possible conflicts between contigs and molecules.

For each alignment a between an optical molecule o and a contig c, we compute the left

overhang lo and right overhang ro from o and the left overhang lc and right overhang rc from
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c. The left-end of alignment a is declared a conflict site if i) both lo and lc are longer than

some minimum length (default 50 kbp) and ii) at least one restriction enzyme sites appear

in both lo and lc. A symmetric argument applies to the right-end of the alignment (which

determines the values for ro and rc). The example in Figure 2.2A illustrates a conflicting

alignment between an optical molecules (green) and an assembled contigs (blue). Observe

that a) lo is approximately 0.37 Mb and lc is approximately 0.27 Mb and b) the green

overhang and the blue overhang contain several restriction sites. Since conditions i) and ii)

are satisfied, this is an alignment conflict. Once a conflict site is recognized, the location

on the optical molecule and the contig are stored as a pair of candidate chimeric sites (red

arrows in Figure 2.2A). Figure 2.2B illustrates a likely chimeric optical molecule, where

again the candidate locations for splits are indicated by the red arrows (here lo is the optical

molecule left overhang, lc is the contig left overhang, ro is the optical molecule right overhang,

and rc is the contig right overhang). Observe that the 1.5 Mb-long region between the two

red arrows contains regularly-spaced restriction enzyme sites, indicating a repetitive region

of the genome. It is likely the the Bionano Assembler created a mis-join in the optical map

in that region.

In the second phase, high-confidence chimeric sites are selected from the list of

candidate sites. The relevance of each candidate site is first quantified, then a maximum

parsimony strategy is applied. Among all the candidate sites, we find the subset with

minimum total relevance which can resolve all the conflicts. We model this problem as a

weighted vertex cover problem on a conflict graph in which a vertex represents a candidate site

and an edge indicates that the two sites conflict with each other. Each vertex v in the conflict
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graph is weighted by its relevance cov(v)/ (1 + t(v)) where t(v) =
∑

u∈N(v) qg(u)/
∑

i qi, cov(v)

is the number of alignments covering the candidate chimeric site corresponding to v, N(v)

is the set of vertices connected to v, g(u) is the optical molecule or contig corresponding to

u, and qi is the quality score for contig/molecule i. The variable i ranges from 1 to the sum

of the number of contigs plus the number of optical molecules. Values qi are provided by

the users. By default all optical molecules are given quality 1.5 and all contigs are given

quality 1. The value of cov(v) is the main factor in deciding whether to cut the contigs or

the molecule in order to resolve an alignment conflict. When cov(v) is a tie, the denominator

in the relevance formula breaks the tie based on the “trust” users have on the optical map

vs. the assemblies.

While building the conflict graph, candidate chimeric sites which are close to each

other (i.e., when their distance is smaller than a minimum threshold) are merged into the

same vertex. Then, among the set of vertices which covers all the edges, we identify the

subset with the smallest total weight. To speed up the process, we find the minimum

vertex cover of each connected component of the conflict graph. We run the exhaustive

(optimal) algorithm on small components and Clarkson’s 2-approximation algorithm on

larger components [16]. In the third phase, contigs and molecules are cut at the chimeric

sites determined by the solution of the minimum vertex cover.

2.2 Experimental results

To assess the performance of Chimericognizer, we used real and synthetic

datasets for cowpea (Vigna unguiculata) along with two Bionano Genomics optical maps.
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We also tested Chimericognizer on a fruit fly (Drosophila melanogaster) dataset [80],

for which a high-quality reference genome is available. To the best of our knowledge, the

Bionano Hybrid Scaffold pipeline is the only available tool that solves exactly the same

problem addressed by Chimericognizer. Other chimeric detection methods are available,

but they either require additional data or focus on different types of mis-joins. For example,

Missequel can detect mis-joins that are much shorter than our tool, but it requires short

reads in addition to an optical map [53].

2.2.1 Experimental results on cowpea assemblies

We tested our tool on synthetic and real data of cowpea (Vigna unguiculata).

Cowpea is a legume crop that is resilient to hot and drought-prone climates, and a primary

source of protein in sub-Saharan Africa and other parts of the developing world. Cowpea is

a diploid with a chromosome number 2n = 22 and an estimated genome size of 620 Mb. The

genome has very low heterozygosity, in practice it can be consider haploid. We sequenced

an elite African variety (IT97K-499-35) using single-molecule real-time sequencing (Pacific

Biosciences RSII). A total of 87 SMRT cell yielded about 6M reads for a total of 56.84 Gbp

(91.7x genome equivalent). The raw PacBio reads are available in the public domain at

NCBI SRA sample SRS3721827 (study SRP159026).

To test Chimericognizer we generated multiple assemblies from the PacBio data

described above with a mix of parameters, polishing qualities and assembly tools. We used

Canu [7, 42], Falcon [14] and ABruijn [46] to generate eight assemblies. Canu was

run with different parameters to generate six of the eight assemblies (parameters shown in

Table 2.1). Canu4, Canu5 and Canu6 were polished with Quiver. We used two Bionano
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Genomics optical maps. The first optical map was obtained using the BspQI nicking enzyme

(which recognizes “GCTCTTC”), while the second was obtained using the BssSI nicking

enzyme (which recognizes “CACGAG”). The BspQI optical map had 508 assembled optical

molecules with a molecule N50 of 1.62 Mb and a total length of 622.21 Mb. The BssSI

optical map had 743 assembled optical molecules with a molecule N50 of 1.02 Mb and

a total length of 577.76 Mb. Both optical maps were assembled at UC Davis using the

Bionano IrysSolve Assembler. In all the experiments, Chimericognizer was run using

default parameters (-a 1.5 -b 1 -d 25 -e 50000 -h 50000 -r 80000). Please refer to

the README at https://github.com/ucrbioinfo/Chimericognizer for details about

these parameters. Bionano Hybrid Scaffold was run using default parameters, i.e.,

we executed the script hybridScaffold.pl (v.4741) with the parameters in the XML file

hybridScaffold config.xml

Table 2.2 shows the assembly statistics after the removal of chimeric contigs via

Chimericognizer compared to the manually-curated assemblies (carried out by an expert

several months before we developed Chimericognizer). The manual curation involves

detecting chimeric contigs by visually inspecting the alignments using Bionano IrisView. For

a genome of the size of cowpea, it takes about three hours for each assembly. The process

is tedious and error-prone. First, observe in Table 2.2 that there is almost no difference

between Chimericognizer’s statistics using one vs. two optical maps. We believe that the

second optical map does not help in this case because the number of input assemblies is

sufficiently high (experiments below seem to support this hypothesis). Second, note that

the N50 is higher for Chimericognizer’s assemblies compared to the manually-curated
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assemblies, indicating that the expert was overly aggressive in splitting contigs. Since there is

no “ground truth” on this dataset (i.e., no high-quality reference genome), we evaluated these

results using other independent metrics. First, we mapped ≈200M paired-end Illumina reads

using BWA. A comparative lower percentage of mapped reads (particularly properly-paired)

would indicate an assembly that still contains chimeric contigs. Table 2.2 shows there is

almost no difference between Chimericognizer’s and the expert’s assemblies in terms of

mapped reads. Second, we compared the assemblies against the high-density genetic map

available from [54]. To evaluate whether the assemblies contained residual chimeric contigs,

we BLASTed the 121bp-long sequence surrounding the 51,128 SNPs provided in [54] against

each assembly, then we identified which contigs had SNPs mapped to them, and what linkage

groups (chromosomes) of the genetic map those mapped SNPs belonged to. Chimeric contigs

are revealed when their mapped SNPs belong to more than one linkage group. The last

row of each panel in Table 2.2 reports the total size of contigs in each assembly for which

i) they contain at least one SNPs and ii) all mapped SNPs belong to the same linkage

group (i.e. likely to be non-chimeric). Observe in Table 2.2 that Chimericognizer’s

assemblies have higher agreement with the genetic map than the expert’s assemblies. Finally,

Chimericognizer determined that the expert missed 23/28 chimeric contigs in the eight

assemblies using BspQI/BssSI, respectively, and 40 chimeric contigs when using both maps

(some examples are shown in Figure 2.4).

We also test Chimericognizer on synthetic datasets. To generate synthetic

datasets with artificial chimeric contigs, we first used Chimericognizer to remove and

split possible chimeric contig from the eight assemblies described above. For each of the
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eight chimeric-free assemblies, we injected artificial chimeric contigs by pairwise joining 2%

of the contigs selected at random. We create mis-joins only for contigs longer than 500 Kbp.

Results of these simulations for Chimericognizer are reported in Table 2.3 (two optical

maps) and Table 2.4 (one optical map). Results of these simulations for Bionano Hybrid

Scaffold are reported in Table 2.5. To generate synthetic datasets with artificial chimeric

optical molecules, we first used Chimericognizer to remove and split possible chimeric

molecules from the two optical maps described above. For each of the two chimeric-free

optical maps, we created a corresponding synthetic optical map by pairwise joining 0.5% of

the molecules selected at random. We created mis-joins only on molecules longer than 1 Mbp.

These synthetic optical maps were given in input to Chimericognizer along with the eight

original cowpea assemblies. To produce a more realistic simulation we decided to use the

original cowpea assemblies instead of chimeric-free assemblies. Results of these simulations

are reported in Table 2.6. Then we used Chimericognizer and Bionano Hybrid Scaffold to

detect these synthetic chimeric contigs. To evaluate the performance of Chimericognizer

and Bionano Hybrid Scaffold on the datasets containing synthetic chimeric contigs, we

measured precision and recall by comparing its results to the “ground truth”. The same

approach was used to measure the performance of these tools on the datasets containing

synthetic chimeric optical molecules. Figure 2.3 illustrates how we computed true positives,

false negatives, false positives and true negatives. When a contig contains a known mis-

join (TOP, condition positive), a tool may decide to cut it (true positive) or not (false

negative). When a contig does not contain a mis-join (BOTTOM, condition negative), a

tool may decide to cut it (false positive) or not (true negative). Precision is defined as
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TP/(TP+FP). Sensitivity is defined as TP/(TP+FN). For Bionano Hybrid Scaffold

the list of contigs classified as positives are those marked cut in the 7th and 8th column

(corresponding to ref leftBkpt toCut and ref rightBkpt toCut, respectively) of output

file conflicts cut status.txt. For Chimericognizer the list of contigs classified as

positives are those that are listed in the output file qry cuts.txt. Among these, we

determined which ones are true positive by matching them against the “ground truth”.

Experimental results for Chimericognizer are reported in Table 2.3 and 2.4, while

the results for Bionano Hybrid Scaffold are summarized in Table 2.5. These are average

values over ten synthetic datasets generated as described above. First, observe that Bionano

Hybrid Scaffold missed all the chimeric contigs. In the case of Chimericognizer, using

two optical maps the precision is very close to 100% while the sensitivity is always higher than

94%. The precision with one optical map is as good as two optical maps, but the sensitivity

is worse (around 80%). We also generated a synthetic dataset in which we injected chimeric

molecules in the optical map. Table 2.6 shows that the Chimericognizer’s precision is 100%

and the sensitivity varies between 77% and 93%. As said, the accuracy of Chimericognizer

depends on the availability in multiple assemblies. To study Chimericognizer’s performance

as a function of the number of available assemblies, we randomly selected a subset of the

assemblies then generated datasets containing synthetic chimeric contigs as described above.

Table 2.7 and 2.8 report average values over ten synthetic datasets for each choice of

the subset size. With one optical map and one assembly, Chimericognizer recognizes

chimeric contigs and sites with relatively low precision (about 68%). The precision improves

significantly (97-99%) when either two optical maps or two assemblies are used. Note that
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the precision increases with the number of assemblies, while the sensitivity increases with

the number of optical maps. Also observe that having more than one assembly is critical

when Chimericognizer can only rely on one optical map.

2.2.2 Experimental results on fruit fly assemblies

We also tested the performance of Chimericognizer and Bionano Hybrid

Scaffold on the Drosophila melanogaster (ISO) dataset from [80].

We downloaded three D. melanogaster assemblies generated in [80] (https://

github.com/danrdanny/Nanopore_ISO1). The first assembly (295 contigs, total size =

141 Mb, N50 = 3 Mb) was generated using Canu [7, 42] on Oxford Nanopore (ONT) reads

longer than 1kb. The second assembly (208 contigs, total size = 132 Mb, N50 = 3.9 Mb) was

generated using MiniMap and MiniAsm [43] using only ONT reads. The third assembly

(339 contigs, total size = 134 Mb, N50 = 10 Mb) was generated by Platanus [39] and

DBG2OLC [94] using 67.4x of Illumina paired-end reads and the longest 30x ONT reads.

The first and third assemblies were polished using nanopolish [48] and Pilon [90].

The Bionano Genomics optical for D. melanogaster map was provided by the

authors of [80]. This optical map (363 molecules, total size = 246 Mb, N50 = 841 kb)

was created using IrysSolve 2.1 from 78,397 raw Bionano molecules (19.9 Gb of data

with a mean read length 253 kb). We used release 6.21 of the D. melanogaster genome,

downloaded from FlyBase (http://www.flybase.org). Chimericognizer was run using

parameters (-a 0.5 -b 1.0 -d 25 -e 100000 -h 100000 -r 80000). Please refer to the

README at https://github.com/ucrbioinfo/Chimericognizer for details about these

parameters. Bionano Hybrid Scaffold was run with using default parameters, i.e., we
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executed the script hybridScaffold.pl (v.4741) with the parameters defined in the XML

file hybridScaffold config.xml

To evaluate the performance of Chimericognizer and Bionano Hybrid Scaf-

fold on D. melanogaster assemblies, we measured precision and sensitivity by comparing

its results to the “ground truth” (reference genome). To determine which contigs were truly

chimeric (i.e., the true positive set), we first selected all contigs from the three assemblies

which (i) could be aligned to the optical map via Refaligner with a minimum confidence

of at least 25 and (ii) had at least one BLAST alignment (v2.7.1, default parameters) to

the reference genome with an e-value lower than 1e-50 and an alignment length higher than

8 kbp. A total of 73 contigs satisfied these two conditions. Among all the contigs that

satisfied (i) and (ii), we defined a contig C to be a true chimeric contig if C had at least two

alignments which satisfied any of the following three conditions: (1) C aligned to different

chromosomes; (2) the orientation of C’s alignments were different; or (3) the difference

between the distance of alignments on the contig and the distance of alignments on the

reference sequence was larger than 100 Kbp. A total of 6 contigs were identified as chimeric

(out of 73). Precision and Sensitivity were defined as for cowpea (Section 2.2.1).

Experimental results are reported in Table 2.9 for Chimericognizer, and Ta-

ble 2.10 for Bionano Hybrid Scaffold. Chimericognizer correctly identified five of

them and did not report any false positives (see Table 2.9). Bionano Hybrid Scaffold

detected five chimeric contigs, but none of them was correct (see Table 2.10).
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Figure 2.1: Algorithmic pipeline of Chimericognizer

CANU assembly corMhapSensitivity corMaxEvidenceErate corOutCoverage Quiver

1 high default default
2 high 0.15 100
3 normal 0.15 100
4 high default 100 X
5 low default default X
6 low default 100 X

Table 2.1: Parameter choices for Canu v1.3: three assemblies were polished with Quiver
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(A)

(B)

Figure 2.2: Examples of a conflicting alignment between an optical molecule (green) and an
assembled contig (blue); vertical lines indicate the location of restriction enzyme sites; (A) a
chimeric contig (blue) and its candidate location for a split indicated by the red arrow (lo is
the optical molecule left overhang, lc is the contig left overhang; the left end of alignment is
declared a conflict site if i) both lo and lc are longer than some minimum length (default
50 kbp) and ii) at least one restriction enzyme sites appear in both lo and lc; both conditions
are satisfied in this case); (B) a chimeric optical molecule (green) and candidate locations for
splits indicated by the red arrows (lo is the optical molecule left overhang, lc is the contig
left overhang, ro is the optical molecule right overhang, rc is the contig right overhang)

2.3 Conclusions

In this chapter, we presented a tool called Chimericognizer that takes advantage

of one or more Bionano Hybrid Scaffold optical maps to accurately detect and correct

chimeric contigs. Experimental results show that Chimericognizer is very accurate, and

significantly better than the chimeric detection method offered by the Bionano Hybrid

Scaffold pipeline. Chimericognizer can also detect and correct chimeric optical molecules.
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Figure 2.3: Illustrating how we computed true positives, false negatives, false positives and
true negatives; when a contig contains a mis-join (TOP, condition positive), Chimericog-
nizer may decide to cut it (true positive) or not (false negative); when a contig does not
contain a mis-join (BOTTOM, condition negative), Chimericognizer may decide to cut it
(false positive) or not (true negative); precision is TP/(TP+FP), sensitivity is TP/(TP+FN)
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(A)

(B)

(C)

Figure 2.4: A few examples of chimeric contigs missed by the human expert, but correctly
identified by Chimericognizer
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Chimericognizer with two optical maps
ABruijn Falcon Canu1 Canu2 Canu3 Canu4 Canu5 Canu6

contig N50 (bp) 2,084,664 2,918,725 3,427,506 3,175,625 2,798,135 5,633,882 5,312,333 4,757,094
contig L50 69 47 42 48 50 28 27 31
total assembled (bp) 478,230,679 511,933,729 504,711,938 516,558,510 515,964,327 511,101,122 506,285,539 517,496,317
# contigs 516 1,826 1,061 1,099 1,125 948 879 948
# contigs ≥100kbp 410 399 287 340 316 269 201 277
# contigs ≥1Mbp 149 115 125 135 141 94 98 103
# contigs ≥10Mbp 0 1 2 4 2 10 9 10
longest contig (bp) 9,801,038 10,554,495 14,090,735 14,331,160 12,496,821 17,211,165 18,473,372 18,498,533

Illumina reads, % mapped (202M) 99.72399% 99.58149% 99.97449% 99.97389% 99.97389% 99.97743% 99.97343% 99.97763%
Illumina reads, % properly paired (202M) 92.29997% 91.94896% 92.54645% 92.63437% 92.62722% 92.64222% 92.62153% 92.64414%
Illumina reads, % mapped, MapQ≥30 (202M) 64.20883% 59.48734% 64.65541% 63.00774% 63.47912% 64.80935% 64.85658% 64.59832%

total length with 100% consistent LG (bp) 425,557,449 344,074,378 421,565,015 418,588,863 409,262,310 425,812,490 423,058,141 420,659,561

Chimericognizer with one optical map
ABruijn Falcon Canu1 Canu2 Canu3 Canu4 Canu5 Canu6

contig N50 (bp) 2,084,664 3,000,247 3,427,506 3,175,625 2,798,135 5,633,882 5,312,333 4,757,094
contig L50 69 46 42 48 50 28 27 31
total assembled (bp) 478,230,679 511,933,729 504,711,938 516,558,510 515,964,327 511,101,122 506,285,539 517,496,317
# contigs 510 1,814 1,059 1,098 1,125 947 879 947
# contigs ≥100kbp 407 391 286 340 316 268 201 277
# contigs ≥1Mbp 149 115 125 135 141 94 98 103
# contigs ≥10Mbp 0 1 2 4 2 10 9 10
longest contig (bp) 9,801,038 10,554,495 14,090,735 14,331,160 12,496,821 17,211,165 18,473,372 18,498,533

Illumina reads, % mapped (202M) 99.72400% 99.58149% 99.97449% 99.97389% 99.96996% 99.97743% 99.97343% 99.97763%
Illumina reads, % properly paired (202M) 92.29986% 91.94953% 92.54646% 92.63438% 92.62728% 92.64221% 92.62152% 92.64384%
Illumina reads, % mapped, MapQ≥30 (202M) 64.20894% 59.48738% 64.65538% 63.00775% 63.47915% 64.80937% 64.85659% 64.59879%

total length with 100% consistent LG (bp) 425,557,449 344,074,378 421,565,015 418,588,863 409,262,310 425,812,490 423,058,141 420,659,561

Chimeric contigs detected/removed manually by an expert
ABruijn Falcon Canu1 Canu2 Canu3 Canu4 Canu5 Canu6

contig N50 (bp) 1,896,002 2,869,362 3,280,469 2,797,949 2,666,731 5,340,274 4,859,617 4,498,063
contig L50 74 49 42 51 55 29 30 32
contig NG50 (bp) 1,330,435 1,737,012 2,431,239 1,949,515 2,068,575 3,451,071 3,767,556 3,417,577
contig LG50 119 73 63 73 77 42 43 45
total assembled (bp) 478,230,679 511,933,729 503,187,311 516,537,734 515,949,175 507,773,747 506,154,442 516,817,613
# contigs 538 1,820 1,038 1,110 1,140 897 894 928
# contigs ≥100kbp 437 404 299 354 334 278 220 288
# contigs ≥1Mbp 151 118 128 142 145 103 104 107
# contigs ≥10Mbp 0 1 2 2 0 9 7 8
longest contig (bp) 8,846,014 10,554,495 14,090,735 14,331,160 9,775,097 17,211,165 18,473,372 18,498,533

Illumina reads, % mapped (202M) 99.72397% 99.58150% 99.94933% 99.97389% 99.94468% 99.97474% 99.96894% 99.97707%
Illumina reads, % properly paired (202M) 92.30106% 91.95107% 92.52969% 92.63057% 92.62330% 92.59763% 92.59433% 92.64181%
Illumina reads, % mapped, MapQ≥30 (202M) 64.21367% 59.49035% 64.38425% 63.00587% 63.22414% 62.84466% 64.35764% 63.50279%

total length with 100% consistent LG (bp) 379,029,914 312,593,019 356,505,616 349,534,672 347,586,448 425,812,490 331,956,528 338,556,993

Table 2.2: Assembly statistics of the eight cowpea assemblies after chimeric contigs were
removed (top) by Chimericognizer using two optical map, (middle) by Chimericognizer
using one optical map, and (bottom) by an expert; reads were mapped with BWA

ABruijn Falcon Canu1 Canu2 Canu3 Canu4 Canu5 Canu6

# TP 10.8 35.5 21.0 20.8 22.4 17.8 17.2 18.0
# TP + FP 10.8 35.9 21.7 20.8 23.0 18.6 17.3 18.0
# P 11.0 37.0 22.0 22.0 23.0 19.0 18.0 19.0
precision 100.00% 98.92% 96.79% 100.00% 97.45% 95.70% 99.44% 100.00%
sensitivity 98.18% 95.95% 95.45% 94.55% 97.39% 93.68% 95.56% 94.74%
avg position error (bp) 16,704 26,380 32,054 18,426 19,415 38,338 17,753 18,809

Table 2.3: Performance statistics for Chimericognizer on the eight cowpea assemblies
injected with synthetic chimeric contigs (i.e., 2% of the contigs longer than 500 Kbp selected
at random where joined) and two optical maps; values in this table are the averages over ten
experiments; TP, FP and P represent true positive, false positive and positive, respectively;
avg position error is the average distance in base pairs between Chimericognizer’s cutting
position and the true mis-join position
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ABruijn Falcon Canu1 Canu2 Canu3 Canu4 Canu5 Canu6

# TP 9.5 30.8 17.5 18.8 18.9 15.3 14.6 14.5
# TP + FP 9.5 31.7 17.5 19.2 19.7 15.3 14.6 14.5
# P 11.0 37.0 22.0 22.0 23.0 19.0 18.0 19.0
precision 100.00% 97.17% 100.00% 98.04% 96.05% 100.00% 100.00% 100.00%
sensitivity 86.36% 83.24% 79.55% 85.45% 82.17% 80.53% 81.11% 76.32%
avg position error (bp) 17,560 27,969 18,506 21,778 73,255 19,853 16,693 22,266

Table 2.4: Performance statistics for Chimericognizer on the eight cowpea assemblies
injected with synthetic chimeric contigs (i.e., 2% of the contigs longer than 500 Kbp
selected at random where joined) and one optical map (BspQI); values in this table are
the averages over ten experiments; TP, FP and P represent true positive, false positive
and positive, respectively; avg position error is the average distance in base pairs between
Chimericognizer’s cutting position and the true mis-join position

ABruijn Falcon Canu1 Canu2 Canu3 Canu4 Canu5 Canu6

# TP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# TP + FP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# P 11.0 37.0 22.0 22.0 23.0 19.0 18.0 19.0
precision n/a n/a n/a n/a n/a n/a n/a n/a
sensitivity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
avg position error (bp) n/a n/a n/a n/a n/a n/a n/a n/a

Table 2.5: Performance statistics for Bionano Hybrid Scaffold on the eight cowpea
assemblies injected with synthetic chimeric contigs (i.e., 2% of the contigs longer than
500 Kbp selected at random where joined) and one optical map (BspQI); values in this table
are the averages over ten experiments; TP, FP and P represent true positive, false positive
and positive, respectively; avg position error is the average distance in base pairs between
Bionano Hybrid Scaffold’s cutting position and the true mis-join position

one optical map two optical maps
BspQI BssSI BspQI BssSI

# TP 2.3 3.4 2.8 3.7
# TP + FP 2.3 3.4 2.8 3.7
# P 3.0 4.0 3.0 4.0
precision 100.00% 100.00% 100.00% 100.00%
sensitivity 76.67% 85.00% 93.33% 92.50%

Table 2.6: Performance statistics for Chimericognizer on cowpea datasets composed by
one or two synthetic optical maps and eight real assemblies; for the “one optical map” column,
we injected chimeric optical molecules in either BspQI or BssSI, ran Chimericognizer on
that optical map, and measured precision/sensitivity on the molecules of that optical map;
for the “two optical maps” column, we injected chimeric optical molecules in both optical
maps, ran Chimericognizer with two optical maps, and measured precision/sensitivity
on molecules of each optical map separately; values in this table are the averages over ten
experiments; TP, FP and P represent true positive, false positive and positive, respectively
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# assemblies 1 2 3 4 5 6 7 8

# TP 20.2 39.3 56.9 78.7 107.0 121.5 142.5 163.5
# TP + FP 22.4 40.1 57.6 80.5 108.5 123.6 144.4 166.1
# P 21.6 41.6 60.2 83.0 112.5 127.7 149.1 171.0
precision 89.35% 97.86% 98.75% 97.70% 98.59% 98.33% 98.69% 98.44%
sensitivity 93.34% 94.39% 94.55% 94.81% 95.05% 95.06% 95.59% 95.61%
average position error (bp) 121,396 17,935 20,852 18,905 29,384 25,395 33,402 24,274

Table 2.7: Performance statistics for Chimericognizer on synthetic cowpea datasets
composed of a variable number of assemblies and two optical maps; values in this table
represent the total for all assemblies selected (averaged over ten experiments); TP, FP and
P represent true positive, false positive and positive, respectively; avg position error is the
average distance in base pairs between Chimericognizer’s cutting position and the true
mis-join position

# assemblies 1 2 3 4 5 6 7 8

# TP 18.3 34.7 50.1 66.7 85.8 106.6 122.7 139.9
# TP + FP 25.8 38.2 51.9 68.1 87.1 108.1 124.1 142.0
# P 22.3 42.4 63.8 83.5 103.0 131.2 151.8 171.0
precision 68.43% 91.06% 96.64% 98.00% 98.56% 98.67% 98.87% 98.52%
sensitivity 81.49% 82.69% 78.76% 80.36% 83.22% 81.25% 80.85% 81.81%
average position error (bp) 270,414 102,461 19,633 41,662 21,143 25,795 25,468 29,249

Table 2.8: Performance statistics for Chimericognizer on synthetic cowpea datasets
composed of a variable number of assemblies and one optical map (BspQI); values in this
table represent the total for all assemblies selected (averaged over ten experiments); TP, FP
and P represent true positive, false positive and positive, respectively; avg position error is
the average distance in base pairs between Chimericognizer’s cutting position and the
true mis-join position

# TP 5
# TP + FP 6
# P 6
precision 83.33%
sensitivity 83.33%

Table 2.9: Performance statistics for Chimericognizer on the D. melanogaster dataset
(composed by one optical map and three assemblies); TP, FP and P represent true positive,
false positive and positive, respectively
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# TP 0
# TP + FP 5
# P 6
precision 0.00%
sensitivity 0.00%

Table 2.10: Performance statistics for Bionano Hybrid Scaffold on the D. melanogaster
dataset (composed by one optical map and three assemblies); TP, FP and P represent true
positive, false positive and positive, respectively
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Chapter 3

Novo&Stitch: Accurate

Reconciliation of Multiple de novo

Genome Assemblies via Optical

Maps

In this chapter, we focus on the assembly reconciliation problem, which is a part of

the de novo genome assembly pipeline.

As said, despite significant algorithmic progress, the de novo genome assembly

problem remains challenging due to the high repetitive content of eukaryotic genomes,

short read length, uneven sequencing coverage, non-uniform sequencing errors and chimeric

reads. Several de novo genome assembly tools are available, for both second and third

generation sequencing data. Most assemblers for second generation sequencing data rely

27



on the de Bruijn graph (e.g., [64, 96, 79, 65, 34, 91, 44, 79, 11, 97, 49]) which allows one to

avoid the pairwise overlap step on the massive number of short reads in input. Assemblers

for third generation sequencing data mainly use the overlap graph to store prefix-suffix

overlaps between the long (noisy) reads in input [30, 56]. Not only are these assembly tools

fundamentally different at the algorithmic level, but their designers have made different

choices in the tradeoff between maximizing assembly contiguity (e.g., N50) and minimizing

the probability of misassemblies (e.g., misjoins). In addition, often these assembly tools have

dozens of parameters that allow one to adjust these trade-offs, but these parameters can be

difficult to optimize for a specific input dataset and target genome. As a result, it is common

practice to generate as many assemblies as possible within the time frame of the sequencing

project using different assemblers and/or parameter settings, and try to identify the highest

quality assembly based on assembly statistics. However, it is surprisingly difficult to identify

the “best” assembly. For instance, the assembly with the highest N50 is likely to be the one

with most chimeric contigs.

The concept of assembly reconciliation has been proposed recently as a more appeal-

ing alternative. Instead of selecting the best assembly, assembly reconciliation algorithms try

to take advantage of all the individual assemblies. They produce a higher quality consensus

assembly by merging all of the candidate assemblies, so that the contiguity of the assembly

increases without introducing misassembles. The problem of assembly reconciliation is

also quite challenging. While several assembly reconciliation tools are available (see, e.g.,

[100], [45], [93], [89], [51], [82], [2], [88], [40], [81], [27], [24], [37], [13], [73], [31], [23]), our

research group have recently demonstrated that none of these tools can consistently generate
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a “reconcilated” assembly which has a significantly higher quality than the assemblies given

in input [1].

Here, we introduce an assembly reconciliation algorithm called Novo&Stitch that

takes advantage of optical maps to accurately carry out assembly reconciliation. One or more

optical maps are used to obtain coordinates for the contigs, which are then stitched based

on their alignments. The presence of the optical map dramatically reduces the complexity

of the problem and the possibility of a misjoin.

3.1 Problem definition

Optical mapping technology allows life scientists to produces genome-wide maps by

fingerprinting long DNA molecules, typically via nicking restriction enzymes. Linear DNA

fragments are stretched on a glass surface or in a nanochannel array, then the locations of

restriction sites are identified with the help of dyes or fluorescent labels. An optical map is

composed by a set of optical map molecules, each of which is represented by an ordered set

of positions for the restriction enzyme sites.

In the following, we will use S = {s1, s2 . . . sn} to denote the set of contigs in the

genome assembly, where each si is a string over the alphabet {A,C,G, T}. Given our interest

in assembly reconciliation, S is going to be the union of multiple assemblies, obtained from

multiple assemblers and/or parameters settings. In other words, S is expected to be highly

redundant, i.e., regions of the genome are expected to be covered by multiple contigs. We

will use M = {o1, o2, . . . om} to denote the optical map, where each optical map molecule

oj is an ordered set of integers, corresponding to the distances in base pairs between two
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adjacent restriction enzyme sites on molecule oj . By digesting in silico the contig si using

the same restriction enzyme used to produce the optical map and matching the sequence of

adjacent distances between sites, one can align the contigs in S to optical map M . High

quality alignments allow some of the contigs to be anchored at specific coordinates on the

optical map. In addition, contigs can be oriented with respect to each other. When multiple

contigs align to the same optical map molecule, an estimate of the distance between them

can be obtained. If the distance is positive, a gap is introduced and a scaffold can be formed

[76]. When the distance is negative (i.e., contigs are overlapping), it may be possible to

stitch them.

Given our interest in merging multiple assemblies, here we focus on the case

when contigs are overlapping. A series of practical factors make the problem of stitching

overlapping contigs non-trivial. These factors include imprecisions in optical maps (e.g.,

mistakes in the optical map assembly), inaccurate alignment between contigs and optical

molecules, and multiple anchoring positions for the same contigs that are not consistent with

each other. As a consequence, it is appropriate to frame this problem as an optimization

problem.

As said, we are given multiple assemblies represented by a set of contigs S, an

optical map M and a set of alignments A = {a1,1, a1,2, . . . an,m} of S to M , where ai,j is

the alignment of contig si to optical map molecule oj . The problem is to stitch overlapping

contigs based on A and obtain a new set of longer contigs T = {t1, t2, . . . tk} such that (i)

T covers the same portion of the genome covered by S, (ii) k is as small as possible and

(iii) the conflicts of T with respect to A are minimized. This optimization problem is not
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(A)

(B)

(C)

Figure 3.1: (A) Contigs of eight assemblies mapped to one optical molecule; (B) minimum
tiling path of the contigs in A; (C) final stitched contig, at the end of the iterative stitching
process

rigorously defined unless one defines precisely the concept of conflict, but this description

captures the spirit of what we want to accomplish. Even if the notion of conflict could be

made precise, this multi-objective optimization problem would be hard to solve. Instead of

solving this problem, we propose an iterative method that accomplishes a similar objective.

3.2 Methods

The proposed stitching method is an iterative algorithm. Each iteration is composed

of three phases: data reduction, stitching and post-processing. The real example in Figure 3.1

will help understanding the phases. In (A) eight assemblies of cowpea were concatenated

and aligned the contigs (blue) on the optical map (green) (see “Experimental results” for

details on these assemblies). Observe that among the eight assemblies, contigs produced

by some assemblers can extend much further than others. In the first phase, the smallest
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Figure 3.2: Pipeline of the proposed algorithm

subset of contigs that cover the same genomic region of the eight assemblies is selected (B

in the figure). In the second phase, the two contigs in (B) are stitched to produce (C) in

the figure. Observe that in this case the resulting 22Mb contig is much longer than the

expected 12.5Mb due to additional stitching that occurred in later iterations. In the third

phase, stitched contigs are checked for consistency, then the entire process is iterated. The

pipeline of the algorithm is illustrated in Figure 3.2.

3.2.1 Phase 1: Coordinate unification, conflict resolution and MTP

At high level, phase one has three major steps. More details of each step are

provided below. In step 1, we align in silico-digested chimeric-free contigs to the optical map

(e.g., for a Bionano optical map, we use RefAligner), but not all alignments are used. We

only consider alignments that (i) exceed a minimum confidence level (typically confidence

25 in the case of RefAligner) and (ii) do not create conflict with each other (see below for

details). Since some contig can have high-quality conflict-free alignments to more than one
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optical molecule (which could indicate alternative overlaps), a “unification” step is necessary

(step 2, see below for details). Finally in step 3, we compute the minimum tiling path (MTP)

of the contigs. Formally, let S be the initial set of contigs, and M be the optical map. Let

A = {a1,1, a1,2, . . . an,m} be the set of high-quality conflict-free alignments of S to M , where

ai,j is the alignment of contig si to optical map molecule oj . Let R = {r1, r2, . . . rk} be the

set of intervals of M covered by the contigs S through the set of alignments A. A minimum

tiling path of S is the smallest set P ⊆ S such that P covers every intervals in R.

Our algorithm for reducing false alignments relies on a conflict graph. The conflict

graph is an undirected hypergraph in which each vertex represents an alignment, and each

hyperedge connects four vertices when the corresponding four alignments conflict with each

other. Nodes of the hypergraph are weighted by the confidence of the alignment. Let us call

ai,p, ai,q, aj,p, aj,q the alignments of contig p and q on optical molecule i and j, respectively.

We say that ai,p, ai,q, aj,p, aj,q is a conflict if any of them have an orientation conflict or

a coordinate conflict. An orientation conflict occurs when the orientations of ai,p and aj,p,

and the orientations of ai,q and aj,q are neither both 5’ to 3’ nor both 3’ to 5’ (depending

on whether i and j are from the same strand of the genome or not). A coordinate conflict

occurs when the distance between ai,p and aj,p is significantly different from the distance

between ai,q and aj,q. When four alignments have a conflict, at least one must be a false

alignment. We model the problem of removing false alignments as a weighted vertex cover

problem on the conflict hypergraph.

Since the weighted vertex cover problem on hypergraph is NP-hard, we use an

approximation algorithm. We formulate weighted vertex cover as an integer program, as
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follows

minimize
∑
i∈V

wixi

subject to xi + xj + xk + xl ≥ 1 for every hyperedge (i, j, k, l) ∈ E

xi ∈ {0, 1} for every vertex i ∈ V

(3.1)

where V and E are the vertex set and hyperedge set of the conflict hypergraph, respectively.

In order to solve the integer program we relax it to a linear program, and solve

the linear program by standard software packages (e.g., GLPK or CPLEX). The solution of

the linear program is transformed into an integer solution as follows. We sort each variable

xi > 1/4 in decreasing order and we add the corresponding vertex to the solution if the new

vertex covers at least one hyperedge that was not covered before. This greedy algorithm is a

4-approximation algorithm (see below), which is the best known approximation achievable

in polynomial time for hypergraph with hyperedges of constant size [12].

Theorem 1 The LP-based greedy algorithm for the weighted vertex cover on hyper-

graph gives an approximation ratio of 4.

Proof. Let C be a vertex cover. Consider a hyperedge (i, j, k, l) ∈ E. Since

xi + xj + xk + xl ≥ 1, either xi ≥ 1 or xj ≥ 1 or xk ≥ 1 or xl ≥ 1. Therefore, (i, j, k, l) is

covered. If C∗ is an optimum vertex cover, then w(C) ≤ 4w(C∗) because

w(C∗) ≥
∑
i∈V

wix
∗
i ≥

∑
i∈S

wix
∗
i ≥

1

4

∑
i∈S

wi ≥
1

4

∑
i∈C

wi = w(C)/4

First inequality: LP is a relaxation of ILP. Second inequality: S ⊆ V . Third inequality:

x∗i ≥ 1/4 for all i ∈ S. Fourth inequality: C ⊆ S.
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Details of the approximation algorithm are shown in Algorithm 1. In Novo&Stitch,

the conflict graph is first divided into connected components. The approximation algorithm

is run on connected components with more than twenty vertices. For components with at

most twenty nodes, we run the exhaustive (optimal) algorithm.

Algorithm 1 Greedy algorithm for weighted vertex cover problem on hypergraph

1: procedure LP Round Greedy(V,E)

2: Compute the optimum solution x∗ to LP relaxation (2).

3: S = {i ∈ V : x∗i ≥ 1/4}

4: C = ∅

5: E
′

= E

6: for i ∈ S do

7: ifnew = False

8: for e ∈ E′ do

9: if i ∈ e then

10: ifnew = True

11: remove e from E
′

12: if ifnew = True then . pick i if it appears in at least one new superedges

13: add i to C

14: return C

Our algorithms for computing the MTP and coordinate unification use the associa-

tion graph between optical molecules and contigs. The association graph is an undirected

graph in which each vertex represents an optical molecule and an edge indicates that the
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two molecules share at least one contig aligned to both of them. The weight of edge (oi, oj)

between molecule oi and oj is obtained from the confidences of the alignment of all com-

mon contigs, that is 1/
∑

s∈Si∩Sj
(conf(s, oi) + conf(s, oj)) where Si and Sj are the sets of

contigs aligned to oi and oj , respectively, and conf(s, o) is the confidence score provided

by RefAligner between contig s and molecule o. The confidence score represents the

quality of the alignment (higher is better). For the MTP and unification step, we do not use

association graph directly, rather the minimum spanning forest (MSF) of the association

graph. By construction, MSF identifies the most reliable alignments (i.e., highest total

confidence) between contigs and molecules.

We first unify the coordinates of all contigs with respect to the molecules they are

aligned to using the MSF of A, as follows. We traverse each MST, starting from the vertex

that represents the molecule that has the highest total alignment confidence score (for the

contigs aligned to it). That node becomes the root of the MST and it defines the origin of

the coordinate system. As we traverse the MST, we assign the coordinates of each contig on

a molecule based on average position of all the common contigs. Specifically, the position of

molecule x with respect to molecule r is (1/|C|)
∑

c∈C(mid(x, c)−mid(r, c)) where C is the

set of contigs aligned to both r and c, and mid(m, c) gives the middle points of contig c’s

alignment on molecule m.

Once the unification process is complete, we rebuild the association graph using the

updated coordinates. At this stage we also remove contigs which are completely contained in

other contigs, since they will not be used in the stitching. In order to compute the MTP we

build another graph, called overlap graph. The overlap graph O is an unweighted directed
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acyclic graph (DAG) in which vertices represent contigs and directed edges indicate overlaps

between the corresponding contigs (oriented left to right along the coordinates induced by

the alignment). Each optical molecule induces an overlap (sub)graph for the contigs aligned

to it, but since a contig can align to multiple molecules, some of the overlap subgraphs can

be connected. In order to efficiently connect the subgraphs in O, we use the MSF of A.

Recall that by construction the nodes (which are optical molecules) in the same MST of A

share common contigs. We process each minimum spanning tree in A, as we did above. As

we traverse the MST we connect the corresponding subgraphs in O. Edges are added to O

only if no cycles are introduced.

Once the overlap graph is finalized, we compute the MTP on each connected

component of the graph. In the ideal case, each connected component Oi of O (which is

a DAG by construction) is expected to have exactly one source and one sink because the

genome is one-dimensional and the chain of overlaps is expected to have exactly one leftmost

contig (source of the DAG) and exactly one rightmost contig (sink). When a connected

component Oi has one source s and one sink t, the MTP problem reduces to finding the

path from s to t with the smallest number of vertices. In practice however, Oi may have a

set OS of sources and a set OT of sinks. A simple example explains why this could happen.

Imagine three staggered contigs A,B,C of the same length. Assume these contigs overlap

two disjoint optical molecules: the first overlaps A,B,C in their prefixes, while the second

overlap only B,C on their suffixes. One should expect the overlap DAG to be A→ B → C.

But now assume that the quality of the alignment of B with the first molecule is poor, so in

the first molecule we get A→ C, in the second molecule we get B → C. When we merge
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them, we end up with a DAG with two sources. When either |OS | > 1 or |OT | > 1, the

MTP problem requires finding the smallest subgraph Pi of Oi such that for any source-sink

pair (s, t), s ∈ OS , t ∈ OT in which t is reachable from s in Oi, t is also reachable from s in

Pi. We call this problem the smallest sub-DAG problem, defined as follow.

Definition 2 (Smallest SubDAG) Input: A connected directed acyclic graph G =

(V,E), with source set S, and sink set T . Output: A subgraph G′ = (V ′, E′) of G

such that (i) G′ is a connected directed acyclic graph, (ii) S ⊆ V ′ (iii) T ⊆ V ′, (iv) |V ′| is

the smallest among all the subgraphs satisfying (i-iii).

Theorem 3 Smallest SubDAG is NP-hard.

Proof. We show that Set Cover ≤P Smallest SubDAG. Let 〈U,C〉 be an

instance of Set Cover, where U is the universe of sets and C represent the collection of

sets. Given 〈U,C〉 we build an instance 〈G = (V,E), S, T 〉 of Smallest SubDAG as follows.

For each element in U , build a vertex in V and in T . For each set in C, build a vertex in V .

Let S = {s} and add s to V . For each set c in C and each element e in U , if e belongs to c,

build an edge in E from the vertex corresponding to c to the vertex corresponding to e. For

each set c in C, build an edge in E from s to the vertex corresponding to c. The equivalence

between these two problems is obvious.

Given the hardness of the Smallest SubDAG problem, we propose a greedy

heuristics. First, we find the shortest path from each source to each sink. The shortest path

among all these paths is chosen as the initial path. Then, the source and sink vertices left
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are added to the solution iteratively by calculating the shortest path between them to the

current sub-DAG. Details of this greedy algorithm is shown as Algorithm 2.

3.2.2 Phase 2 and 3: Contig stitching and post-processing

In phase 2 we first compute the sequence alignments for MTP contigs that are

overlapping according to coordinates obtained in phase 1. For each pair of overlapping

contigs, we determine the best alignment between the corresponding sequence. If the best

alignment is (i) above a certain length and (ii) of sufficient quality (e-value), and (iii)

consistent with the optical map coordinates, the stitching is carried out. When stitching two

aligned contigs c1 and c2, both c1 and c2 are composed of three parts, left overhang l1, l2,

right overhang r1, r2 and common region (aligned region) m1, m2. The new stitched contig

d is formed by the concatenation of (i) the longest between l1 and l2 (ii) either m1, m2

depending which one is closer to the 5’ of its respective contig and (iii) the longest between

r1 and r2. If c2 is stitched with c1, neither c1 or c2 will be used for stitching with other

contig in this iteration. Contig d could be stitched to other contigs in later iterations.

In Phase 3, we check the correctness of the stitching by aligning the two original

contigs to the new stitched contig. The difficulty of this process stems from the possible

fragmentation of alignments. Sequence alignment tools (e.g., BLAST) can generate a large

set of alignments, most of which are not informative. To determine the best overall alignment,

we find the subset of mutually compatible alignments (from the set of all alignments) which

has the longest total length. We say that two alignments are compatible if their overlap is

smaller than a given fraction of the shorter alignment.
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Definition 4 (Optimal set of mutually compatible alignments) Input: A list A of

n alignments and their lengths, a compatibility matrix C in which C[i, j] = True if alignment

i is compatible with alignment j. Output: A subset A′ of A in which (i) for any pair of

alignments a, b ∈ A′, C[a, b] = True and (ii) the total length of the alignments in A′ is the

largest among all the subsets of A satisfying (i).

To solve this problem, we use a dynamic programming algorithm. All the alignments

are first sorted by starting positions. Let S[i] be the total length of the alignments selected

from from A[1 . . . i] that includes alignment A[i]. First we initialize S[1] to the length of first

alignment. The rest of the dynamic programming vector can be filled using the following

recurrence relation

S[i] = L[i] + max
j=1...i−1

{S[j] : C[i, j] = True}

The pseudo code of this dynamic programming algorithm is described in Algorithm 3. The

time complexity of this dynamic programming algorithm is O(n2). To speed it up, we remove

alignments shorter than a given threshold to reduce the value of n.

After the optimal compatible alignment is computed, we compute the proportion

of the two original overlapping contigs mapped to the stitched contig. If the proportion is

below a predefined threshold, the stitching is cancelled.

Phase 1, 2 and 3 are repeated iteratively until no further stitching takes place.

Recall that when we unify the coordinates, we compute the average position of all common

contigs. When a contig appear in multiple fragments, it can affect the coordinates of other

contigs, which in turn can change the detection of overlapping contigs. When we stitch

contigs, the coordinates of several contigs can change, which can reveal overlaps that were
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not detected before. That is why we use an iterative strategy: later iterations can “make up”

for stitches that were missed in earlier iterations.

The final assembly produced in output is the MTP of the latest stitched assembly.

3.3 Experimental results

We tested Novo&Stitch on multiple PacBio assemblies of (i) cowpea (Vigna un-

guiculata) and (ii) Phytophthora infestans. Both sequencing projects are currently underway

at UC Riverside. Cowpea is a legume crop that is resilient to hot and drought-prone climates,

and a primary source of protein in sub-Saharan Africa and other parts of the developing

world. P. infestans is responsible for the late blight diseases of tomato and potato. It was

the major culprit for the European potato famines of the 19th century. Worldwide the

disease causes around $6 billion of damage to crops each year.

3.3.1 Experimental results on cowpea assemblies

Cowpea (Vigna unguiculata) is a diploid with a chromosome number 2n = 22

and an estimated genome size of 620 Mb. The genome has very low heterozygosity, so

that in practice it can be considered as haploid. We sequenced an elite African variety

(IT97K-499-35) using single-molecule real-time sequencing (Pacific Biosciences RSII). A total

of 87 SMRT cells yielded about 6M reads for a total of 56.84 Gbp (91.7x genome equivalent).

To test Novo&Stitch we generated several assemblies with a mix of parameters, polishing

qualities and assembly tools. We used Canu [7, 42], Falcon [14] and ABruijn [46] to

generate eight assemblies. Canu was run with different parameters to generate six of the
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eight assemblies (parameters shown in Table 3.1). Canu1, Canu2 and Canu6 were polished

with Quiver.

CANU assembly corMhapSensitivity corMaxEvidenceErate corOutCoverage Quiver

1 low default default X
2 low default 100 X
3 high default default
4 high 0.15 100
5 normal 0.15 100
6 high default 100 X

Table 3.1: Parameter choices for Canu v1.3: three of these assemblies were polished with
Quiver

The basic statistics for the eight assemblies are provided in Table 3.2. In addition

to standard contiguity statistics (N501, L502, NG503, and LG504), total assembled size and

contig length distributions, we evaluated the assemblies using several other independent

metrics. We mapped (i) about 129K cowpea WGS contigs assembled from short reads ([54],

assembly v.0.03), (ii) about 200M 2X100 paired-end Illumina reads generated at UCR in

2014, and (iii) transcripts assembled from RNA-Seq short reads. In Table 3.2 we report the

percentage of DNA sequenced mapped with BWA with a minimum MapQ of 30. Finally,

we compared the assemblies against the high-density genetic map available from [54]. To

evaluate possible chimeric contigs, we BLASTed 121bp-long design sequence for the 51,128

genome-wide SNPs described in [54] against each assembly, then we identified which contigs

had SNPs mapped to them, and what linkage group (chromosome) of the genetic map those

mapped SNPs belonged to. Chimeric contigs are revealed when their mapped SNPs belong

1length for which the set of contigs of that length or longer accounts for at least half of the assembly size
2minimum number of contigs accounting for at least half of the assembly
3length for which the set of contigs of that length or longer accounts for at least half of the 620Mb genome
4minimum number of contigs accounting for at least half of the 620Mb genome
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Canu1 Canu2 ABruijn Falcon Canu3 Canu4 Canu5 Canu6

contig N50 (bp) 4,859,617 4,498,063 1,896,002 2,869,362 3,280,469 2,797,949 2,666,731 5,340,274
contig L50 30 32 74 49 42 51 55 29
contig NG50 (bp) 3,767,556 3,417,577 1,330,435 1,737,012 2,431,239 1,949,515 2,068,575 3,451,071
contig LG50 43 45 119 73 63 73 77 42
total assembled (bp) 506,154,442 516,817,613 478,230,679 511,933,729 503,187,311 516,537,734 515,949,175 507,773,747
# contigs 894 928 538 1,820 1,038 1,110 1,140 897
# contigs ≥100kbp 220 288 437 404 299 354 334 278
# contigs ≥1Mbp 104 107 151 118 128 142 145 103
# contigs ≥10Mbp 7 8 0 1 2 2 0 9
longest contig (bp) 18,473,372 18,498,533 8,846,014 10,554,495 14,090,735 14,331,160 9,775,097 17,211,165

WGS contigs ≥500bp, % mapped (129K) 98.27412% 98.77014% 88.30652% 97.84959% 98.30618% 98.25853% 98.23673% 98.73930%
UCR2014 reads, % properly paired (202M) 92.59433% 92.64181% 92.30106% 91.95107% 92.52969% 92.63057% 92.62330% 92.59763%
UCR2014 reads, % mapped (202M) 64.35764% 63.50279% 64.21367% 59.49035% 64.38425% 63.00587% 63.22414% 62.84466%
assembled transcripts, % mapped (157K) 92.60644% 94.83972% 94.95582% 94.16235% 92.65416% 92.52276% 92.46959% 94.85657%

total length with 100% consistent LG (bp) 331,956,528 338,556,993 379,029,914 312,593,019 356,505,616 349,534,672 347,586,448 425,812,490

Table 3.2: Assembly statistics of eight assemblies for cowpea; all reads/transcripts/BAC
assemblies were mapped with BWA, MapQ≥30; number in boldface are the best statistics
(min or max) across assemblies; for # contigs ≥100kbp and ≥1Mbp it is not obvious whether
to report min or max

to more than one linkage group. The last line of Table 3.2 reports the total size of contigs

in each assembly for which (i) they have at least one SNPs mapped to it and (ii) all SNPs

belong to the same linkage group (i.e. likely to be non-chimeric). Observe in Table 3.2 that

there is no single assembly that is the “best” in each row. Canu6 has the highest N50 and

the lowest L50, but Canu2 has the longest contig. Canu1 has the highest NG50. ABruijn

has the smallest number of contigs.

Novo&Stitch was run on the eight assemblies in Table 3.2 using two Bionano

Genomics optical maps, the first obtained using the BspQI nicking enzyme (which recognizes

“GCTCTTC”), and the second obtained with the BssSI nicking enzyme (“CACGAG”). For

each optical map we used two sets of parameters, called “strict” (-a 3000 -b 0.1 -c 10000

-d 0.5 -e 0.9 -h 25 -r 0.2) and “loose” (-a 0 -b 0.2 -c 5000 -d 0.5 -e 0.8 -h 25

-r 0.2). Please refer to the README at https://github.com/ucrbioinfo/Novo_Stitch

for details about these parameters. For convenience, in first column of Table 3.3, we copied

the best statistics across the eight assemblies in Table 3.2. Note that no individual assembly,
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best of 8 BspQI (loose) BspQI (strict) BssSI (loose) BssSI (strict)

contig N50 (bp) 4,859,617 9,944,851 9,944,851 9,584,779 9,584,779
contig L50 29 19 19 19 19
contig NG50 (bp) 3,767,556 9,944,851 8,187,172 7,956,155 7,826,863
contig LG50 42 19 24 24 24
total assembled (bp) 516,817,613 522,393,141 523,526,657 520,162,831 523,249,509
# contigs 538 791 798 791 798
# contigs ≥100kbp N/A 211 218 211 218
# contigs ≥1Mbp N/A 72 72 66 69
# contigs ≥10Mbp 9 18 18 17 17
longest contig (bp) 18,498,533 21,980,320 21,980,320 22,385,362 22,385,362

WGS contigs ≥500bp, % mapped (129K) 98.77014% 97.77496% 97.79009% 97.40359% 97.02018%
UCR2014 reads, % properly paired (202M) 92.64181% 92.57437% 92.58778% 92.47305% 92.50176%
UCR2014 reads, % mapped (202M) 64.38425% 62.20807% 62.11027% 61.82553% 61.63417%
assembled transcripts, % mapped (157K) 94.95582% 93.93669% 93.90570% 94.01125% 93.46803%

% contigs with 100% consistent LG 425,812,490 429,367,225 430,234,966 423,454,837 434,621,644

Table 3.3: Assembly statistics of Novo&Stitch on the eight cowpea assemblies using either
the BspQI or the BssSI optical map, “best of 8” is a copy the best statistics (boldface) among
the eight assemblies in Table 3.2 – no individual assembly, however, has these statistics;
see text about strict and loose parameters; all DNA sequences were mapped with BWA,
MapQ≥30

however, has these statistics. Observe in Table 3.3 that Novo&Stitch almost doubled

the N50, reduced the L50 from 29 to 19, increased the number of contigs ≥10Mb from 9 to

17-18. Mapping statistics remained unaltered, as well as the agreement with the genetic

map. Taken all together, these statistics indicate that Novo&Stitch produced a much

more contiguous assemblies, with no more chimeric contigs than the eight input assemblies.

3.3.2 Experimental results on P. infestans assemblies

We sequenced a strain of P. infestans from California called “1306”. Strain 1306 is

a diploid (other P. infestans strains are triploid or aneuploid), has 11-14 chromosomes and

an estimated genome size of 220 Mb. P. infestans 1306 was sequenced using single-molecule

real-time sequencing (Pacific Biosciences RSII). A total of 17 SMRT cells yielded about

3.1M reads for a total of 24.87 Gbp (113x genome equivalent). We tested Novo&Stitch

on six assemblies of P. infestans. We generated two assemblies with Canu v1.5, one on
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Falcon Canu10K Canufull ABruijn10K ABruijncorr ABruijntrim N&Sloose N&Sstrict
contig N50 (bp) 481,068 131,313 135,263 356,459 293,280 302,893 769,322 730,890
contig L50 107 462 473 142 171 169 74 82
total assembled (bp) 215,910,203 305,686,040 292,352,599 195,768,168 177,232,870 175,149,119 240,150,657 250,416,680
# contigs 1,364 3,496 2,863 835 888 867 1,304 1,329
# contigs ≥100kbp 445 667 725 561 539 522 398 423
# contigs ≥1Mbp 36 12 7 19 9 10 54 55
longest contig (bp) 4,206,720 1,810,393 1,813,497 2,437,907 2,004,950 1,638,783 4,930,683 4797067

miSeq reads, % mapped (47M) 98.4995% 98.6503% 98.2370% 98.0305% 98.3051% 98.2923% 98.0928% 98.0958%
miSeq reads, % properly paired (47M) 96.3825% 97.6855% 95.5383% 93.5911% 94.8410% 94.8218% 95.6384% 95.7194%
1% miSeq reads, % mapped (0.47M) 97.6510% 97.9313% 96.7831% 96.4854% 97.3612% 97.3092% 97.1461% 97.1521%

Dovetail reads, % mapped (202M) 97.7712% 97.8934% 97.6519% 97.5093% 97.6161% 97.5835% 97.4953% 97.4989%
Dovetail reads, % properly paired (202M) 38.7274% 37.5416% 37.4140% 38.6057% 38.5723% 38.4578% 37.9324% 37.7392%
0.1% Dovetail reads, % mapped (0.2M) 91.6264% 92.0876% 91.3643% 90.8826% 91.3535% 91.2612% 91.1237% 91.1447%

Table 3.4: Statistics of six input assemblies for P. infestans and two stitched assemblies
(N&S = Novo&Stitch) with strict and loose parameters; all reads were mapped with
Bwa, except for 1% of miSeq and 0.1% of Dovetail which were mapped using Blast
(e-value<1e-30)

the entire dataset (Canufull, 113x coverage) and one on PacBio reads longer than 10Kb

(Canu10K , 80.9x coverage). We generated three assemblies with ABruijn v0.4 on three

datasets, namely (i) PacBio reads longer than 10Kb (ABruijn10K , k = 17, 80.9x coverage),

(ii) all PacBio reads corrected by Canu (ABruijncorr, k = 17, 75.4x coverage) and (iii) all

PacBio reads corrected and trimmed by Canu (ABruijntrim, k = 17, 73.6x coverage). One

assembly was produced with Falcon on the whole dataset by the UC Davis core facility.

Novo&Stitch was run on the six assemblies in Table 3.4 using a Bionano Genomics

optical map. To evaluate the quality of these assemblies, we mapped about 47M miSeq reads

and 202M Dovetail read using BWA. We also mapped a fraction of those reads using Blast,

which does not penalize the mapping quality in case of alignment of a read to multiple

locations. The last two columns report the statistics of Novo&Stitch using strict and

loose parameters. Observe again, how Novo&Stitch significantly improved the contiguity

of the assembly (N50, L50, longest contig, etc.) while maintaining mapping statistics similar

to the six input assemblies.
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3.4 Conclusions

In this chapter, we presented a new assembly reconciliation tool called Novo&Stitch

for improving the contiguity of de novo genome assemblies using optical maps. Novo&Stitch

uses the alignment of contigs from multiple input assemblies to an optimal map to detect

overlaps between contigs and drive the stitching process. Experimental results on V. un-

guiculata and P. infestans clearly demonstrates that the addition of the optical map can

significantly improve the contiguity of genome assemblies. The optical map can be used

again on the improved stitched assembly to create scaffolds.
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Algorithm 2 Greedy algorithm for Smallest SubDAG problem

1: procedure GA(G = (V,E), S, T )

2: current set ← S ∪ T

3: subgraph ← G

4: for s in S and t in T do

5: path ← BFS(G, s, t) . compute the shortest path in G from s to t

6: if no vertices(path) < no vertices(subgraph) then

7: subgraph, s∗, t∗ ← path, s, t

8: current set ← current set −{s∗, t∗}

9: while current set 6= ∅ do

10: path∗ ← G

11: for x in current set do

12: for y in subgraph do

13: if x ∈ S then . x is a source

14: path ← BFS(G, x, y)

15: else . x is a sink

16: path ← BFS(G, y, x)

17: if no vertices(path) < no vertices(path∗) then

18: path∗, x∗ ← path, x

19: current set, subgraph ← current set −x∗, subgraph ∪ path∗

20: return subgraph
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Algorithm 3 Dynamic programming algorithm for optimal set of compatible alignments

1: procedure Compatible(A,L,C)

2: A′, S[1], Last[1]← ∅, L[1], NULL

3: for i← 2 to n do

4: S[i], j∗ ← L[i], 0

5: for j ← 1 to i− 1 do

6: if C[i, j] = True then

7: if S[i] < S[j] + L[i] then

8: S[i], j∗ ← S[j] + L[i], j

9: Last[i]← j∗

10: S∗ ← 0, pos∗ ← 0

11: for i← 1 to n do

12: if S[i] > S∗ then

13: S∗, pos∗ ← S[i], i

14: i← pos∗

15: while i 6= NULL do

16: A′, i← A′ ∪A[i], Last[i]

17: return A′
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Chapter 4

OMGS: Optical Map-based

Genome Scaffolding

As metioned in the Introduction, genome scaffolding tools either use paired-

end/mate-pair/linked/Hi-C reads or genome-wide maps. The first group includes scaffolding

tools for second generation sequencing data, such as Bambus [66, 41], GRASS [29], MIP

[70], Opera [26], SCARPA [22], SOPRA [19] and SSPACE [9] and the scaffolding modules

from assemblers ABySS [79], SGA [78] and SOAPdenovo2 [49]. Since the relative orientation

and approximate distance between paired-end/mate-pair/linked/Hi-C reads are known,

the consistent alignment of a sufficient number of reads to two contigs can indicate their

relative order, their orientation and the distance between them. An extensive comparison of

scaffolding methods in this first group of tools can be found in [33].

The second group uses genome-wide maps such as genetic maps [85], physical maps,

or optical maps. According to the markers provided by these maps, contigs can be anchored
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to specific positions so that their order and orientations can be determined. The distance

between contigs can also be estimated with varying degree of accuracy depending on the

density of the map.

A few scaffolding algorithms that use optical maps are available. SOMA appears

to be the first published tool that can take advantage of optical maps but it can only deal

with a non-fragmented optical map [58]. The scaffolding tool proposed in [69] was used for

two bacterial genomes Yersinia pestis and Yersinia enterocolitica, but the software is no

longer publicly available. In the last few years, Bionano optical maps have become very

popular, and have been used to improve the assembly contiguity in many large-scale de novo

genome assembly projects (e.g., goat, apple, barley, maize, quinoa, sea bass [8, 63, 18, 50]).

To the best of our knowledge, the main tools used to generate scaffolds using Bionano

optical maps are SewingMachine from KSU [76] and HybridScaffold from Bionano

Genomics (unpublished, 2016). SewingMachine seems to be favored by practitioners over

HybridScaffold.

Both HybridScaffold and SewingMachine have, however, a serious limitation:

they can only deal with one optical map at a time, forcing users to alternate or iterate

over optical maps when multiple maps are available. In this chapter, we introduce a novel

scaffolding algorithm called OMGS that for the first time can take advantage of any number

of optical maps. OMGS solves several optimization problems to generate scaffolds with

optimal contiguity and correctness.
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4.1 Problem definition

The input to the problem is the genome assembly to be scaffolded (represented by

a set of assembled contigs), and one or more optical maps (represented by a set of sets of

genomic distances). We use C = {ci|i = 1, . . . , l} to denote the set of contigs in the genome

assembly, where each ci is a string over the alphabet {A,C,G, T}. Henceforth, we assume

that the contigs in C are chimera-free.

An optical map is composed by a set of optical molecules, each of which is rep-

resented by an ordered set of positions for the restriction enzyme sites. As said, optical

molecules are obtained by an assembly process similar to sequence assembly, but we will

reserve the term contig for sequenced contigs. We use M = {mi|i = 1, . . . , n} to denote the

optical map, where each optical molecule mi is an ordered set of integers, corresponding to

the distances in base pairs between two adjacent restriction enzyme sites on molecule mi.

By digesting in silico the contigs in C using the same restriction enzyme used to produce

the optical map and matching the sequence of adjacent distances between sites, one can

align the contigs in C to the optical map M . If one is given multiple optical maps obtained

using different restriction enzymes, M will be the union of the molecules from all optical

maps. In this case, each genomic location is expected to be covered by multiple molecules

in M . As said, high quality alignments allows one to anchor and orient contigs to specific

coordinates on the optical map. When multiple contigs are aligned to the same optical map

molecule, one can order them and estimate the distance between them. By filling these gaps

with a number of N ’s equal to the estimated distance, longer DNA sequences called scaffolds

can be obtained.
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A series of practical factors make the problem of scaffolding non-trivial. These

factors include imprecisions in optical maps (e.g., mis-joins introduced during the assembly

of the optical map [38]), unreliable alignments between contigs and optical molecules, and

multiple inconsistent anchoring positions for the same contigs. As a consequence, it is

appropriate to frame this scaffolding problem as an optimization problem.

We are now ready to define the problem. We are given an assembly represented

by a set of contigs C, a set of optical map molecules M and a set of alignments A =

{a1,1, a1,2, . . . al,n} of C to M , where ai,j is the alignment of contig ci to optical map

molecule oj . The problem is to obtain a set of scaffolds S = {s1, s2, . . . sk} where each si is

a string over the alphabet {A,C,G, T,N}, such that (i) each contig ci is contained/assigned

to exactly one scaffold, (ii) the contiguity of S is maximized and (iii) the conflicts of S with

respect to A are minimized. This optimization problem is not rigorously defined unless

one defines precisely the concepts of contiguity and conflict, but this description captures

the spirit of what we want to accomplish. In genome assembly, the assembly contiguity is

usually captured by statistical measures like the N50/L50 or the NG50/LG50. The notion

of conflict is not easily quantified, and even if it was made precise, this multi-objective

optimization problem would be hard to solve. We decompose this problem into two separate

steps, namely (a) scaffold detection and (b) gap estimation, as explained below.

4.2 Methods

As said, our proposed method is composed of two phases: scaffold detection and

gap estimation. In the first phase, contigs are grouped into scaffolds and the order of contigs
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Figure 4.1: Pipeline of the proposed algorithm

in each scaffold is determined. In the second phase, distances between neighboring contigs

assigned to scaffolds are estimated. The pipeline of the proposed algorithm is illustrated in

Figure 4.1.

4.2.1 Phase 1: Detecting scaffolds

Phase 1 has three major steps. In Step 1, we align in silico-digested chimeric-free

contigs to the optical maps (e.g., for a Bionano optical map, we use RefAligner), but not

all alignments are used in Step 2. We only consider alignments that (i) exceed a minimum

confidence level (e.g, confidence 15 in the case of RefAligner); (ii) do not overlap each

other more than a given genomic distance (e.g, 20 kbp) and (iii) do not create conflict with

each other. The method we use here to select conflict-free alignments was introduced in our
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previous work [62]. In Step 2, we compute candidate scaffolds by building the order graph

and formulating an optimization problem on it. In Step 3, either the exhaustive algorithm

or a log n-approximation algorithm is used to solve the optimization problem (depending on

the size of the graph) and produce the final scaffolds.

Building the order graph

The order graph O is a directed weighted graph in which each vertex represents a

contig. Given two contigs ci and cj aligned to an optical molecule o with alignments ai and

aj , we create a directed edge (ci, cj) in O if (i) the starting coordinate of alignment ai (that

we call ai.start henceforth) is smaller than the starting coordinate of alignment aj (that

we call aj .start henceforth) and (ii) there is no other alignment ak such that ak.start is

between ai.start and aj .start and (iii) there are no conflict sites between ai.end and aj .start

on the optical molecule, as defined below. For each alignment a between optical molecule

o and contig c, we compute the left overhang lo and right overhang ro from o and the left

overhang lc and right overhang rc from c. The left-end of alignment a is declared a conflict

site if (i) both lo and lc are longer than some minimum length (e.g., 50 kbp) and (ii) at least

one restriction enzyme sites appear in both lo and lc. A symmetric argument applies to the

right-end of the alignment, which determines the values for ro and rc.

Directed edge (ci, cj) is assigned a weight equal to qual(o, ai.end, aj .start) * (conf(ai)+

conf(aj)), where (i) qual(o, ai.end, aj .start) is the quality of the region between ai.end and

aj .start on molecule o (higher is better, defined next) and (ii) conf(a) is the confidence

score provided by RefAligner alignment a (higher is better). The quantity qual(o, s, t) is

defined based on the length of a repetitive region between coordinates (s, t). Based on our
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(A)

(B)

Figure 4.2: Examples of single-site repetitive region (A) and two-site repetitive region (B)
in optical maps. Observe the small variations in the repetitive patterns in (B)

experience, assembly mis-joins on optical molecule almost always happen in repetitive regions

[38]. Given the length of repetitive region len rep(o, s, t) in base pairs (defined below), we

define the quality of o in the interval (s, t) as qual(o, s, t) = e−len rep(o,s,t)/100000. When ai

and aj have a small overlap (e.g., shorter than 20 kbp), we set len rep(o, s, t) = 0.

We recognize repetitive regions in optical molecules based on the distribution of

restriction enzyme sites. For a molecule o with n sites, let mi be the coordinate of the

i-th site for i = 1, . . . , n. As said, molecule o can be represented as a list of positions

{mi|i = 1, . . . , n}. In order to determine the repetitive regions in o, we slide a window that

covers k sites (e.g., k = 10 sites). At each position j = 1, . . . , n− k + 1, we select window

wj = {mj , . . . ,mj+k−1}. While repetitive regions in genome can be highly complex (see, e.g.,

[99]), we observed only two types of repetitive regions in optical molecules, namely single-site

repetitive region (see Figure 4.2A) and two-site repetitive region (see Figure 4.2B). It is

entirely possible that more complex repetitive regions exist: if they do, they seem rare. Based

on this observation, in order to decide whether window wj is repetitive, we first compute two

lists of pairwise distances between sites, namely Dj,1 = {mj+l −mj+l−1|l = 1, . . . , k − 1}

and Dj,2 = {mj+l+1 −mj+l−1|l = 1, . . . , k− 2} that we call distance lists, then we apply the

statistical test described next.

55



In our statistical test we assume that the values in the distance lists that belong to

repetitive regions are independent and identically distributed as a Gaussian. We further

assume that each specific distance list (Dj,1 or Dj,2) is associated with a Gaussian with a

specific mean µj,q (q ∈ {1, 2}). Finally, we assume that the variance σ2 is globally shared by

all molecules. An estimator of the mean is µj,q is µ̂j,q =
∑k−q

i=1 di/(k−q), where di ∈ Dj,q and

k is the window size. To estimate σ2, we first get an initial (rough) estimate of the repetitive

regions on all molecules. Given a particular Dj,q, let dmax and dmin be the maximum

and minimum distance in Dj,q. We declare a distance list Dj,q to be estimated repetitive

if dmax − dmin is smaller than a given distance (e.g., 1.5 kbp). We collect all estimated

repetitive lists in set R = {Dp is estimated repetitive|p = 1, . . . , P} and the estimated mean

µ̂p for each distance list Dp in the set R, where P is the total number of estimated repetitive

lists. According to the density function of Gaussian distribution, the log likelihood of one

Dp is

−|Dp|
2

log(2π)− |Dp|
2

log σ2 − 1

2σ2

∑
di∈Dp

(di − µ̂p)2.

The total log likelihood is the sum of the log likelihoods across all Dp’s in R, which is

logL(σ2) = −
∑P

p=1 |Dp|
2

log σ2 − 1

2σ2

P∑
p=1

∑
di∈Dp

(di − µ̂p)2,

after ignoring all terms not related to σ2. To maximize logL(σ2), we require that the

derivative of total log likelihood

∂ logL(σ2)

∂σ2
= 0,

that is,

−
∑P

p=1 |Dp|
2σ2

+
1

2(σ2)2

P∑
p=1

∑
di∈Dp

(di − µ̂p)2 = 0.
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After some simplification, the estimator for variance becomes

σ̂2 =

∑P
p=1

∑
di∈Dp

(di − µ̂p)2∑P
p=1 |Dp|

.

Then, we carry out the test on the statistic dmax − dmin for each Dj,q. It is

well-known that the joint density function of order statistics is

fX(i),X(j)(u, v) =
n!

(i− 1)!(j − 1− i)!(n− j)!
fx(u)fx(v)[Fx(u)]i−1[Fx(v)−Fx(u)]j−1−i[1−Fx(v)]n−j

(4.1)

for −∞ < u < v < +∞, where X(i) and X(j) are the i-th and j-th order statistics in

X1, . . . , Xn and Fx and fx are the distribution function and density function of each Xi,

respectively. Using (4.1), the joint density function of (dmax,dmin) can be expressed as

fdmax,dmin
(u, v) = n(n− 1)fdi(u)fdi(v)[Fdi(v)− Fdi(u)]n−2

for −∞ < u < v < +∞, where Fdi and fdi are the distribution function and density function

of di ∼ N(µ̂j,q, σ̂
2), respectively.

Now, let X = dmax− dmin and Y = dmin. Then dmax = X + Y and dmin = Y , and

the corresponding Jacobian determinant is

J =

∣∣∣∣∣∣∣∣
∂dmax/∂X ∂dmax/∂Y

∂dmin/∂X ∂dmin/∂Y

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1

0 1

∣∣∣∣∣∣∣∣ = 1.

Thus, the joint density function of (X, Y ) is given by

fX,Y (x, y) = fdmax,dmin
(x+ y, y)|J | = n(n− 1)fdi(y)fdi(x+ y)[Fdi(x+ y)− Fdi(y)]n−2,

where x ≥ 0 and −∞ < y < +∞. By integrating over Y , the density function of X =

dmax − dmin becomes

fdmax−dmin
(x) =

∫ +∞

−∞
n(n− 1)fdi(y)fdi(x+ y)[Fdi(x+ y)− Fdi(y)]n−2dy, x ≥ 0.
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Let now X be a random variable associated with the distribution fdmax−dmin
. If the

p-value P (X > dmax − dmin) is greater than a predefined threshold (e.g., 0.001), we accept

the null hypothesis and declare that window wj is repetitive. The repetitive regions for the

entire molecule o is the union of all the windows wj ’s recognized as repetitive according to

the test above.

Once the order graph of each optical molecule is built, we connect all the order

graphs which share the same contigs using the association graph introduced in [62]. The

association graph is an undirected graph in which each vertex represents an optical molecule

and an edge indicates that the two molecules share at least one contig aligned to both of

them. We use depth first search (DFS) to first build a spanning forest of the association

graph. Then, we traverse each spanning tree and connect the corresponding order subgraph

to the final order graph. Every time we add a new graph, new vertices and new edges might

be added. If an edge already exist, the weights of the new edges are added to the weights of

existing edges.

Generating scaffolds

Once the order graph O is finalized, we generate the ordered sequence of contigs in

each scaffold. In the ideal case, each connected component Oi of O is a directed acyclic graph

(DAG) because the genome is one-dimensional and the order of any pair of contigs is unique.

In practice however, Oi may contain cycles caused by the inaccuracy of the alignments and

mis-joins in optical molecules. To convert each cyclic component Oi into a DAG, we solve

the Minimum Feedback Arc Set problem on Oi. In this problem, the objective is to find

the minimum subset of edges (called feedback arc set) containing at least one edge of every
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cycle in the input graph. Since the minimum feedback edge set problem is APX-hard, we

use the greedy local heuristics introduced in [4] to solve it.

We then break each DAG Gi of connected component Oi into subgraphs as follows.

In each subgraph, we require that the order of every pair of vertices to be uniquely determined

by the directed edges. This allows us to uniquely determine the order of the contigs for each

scaffold. The formal definition of this optimization problem is as follows.

Definition 5 (Minimum Edge Unique Linearization problem) Input: A weighted

directed acyclic graph G = (V,E). Output: A subset of edges E′ ⊆ E such that (i) in each

connected component G′i of the graph G′ = (V,E −E′) obtained after removing E′, the order

of all vertices can be uniquely determined, and (ii) the total weights of the edges in E′ is the

minimum among all the subset of edges satisfying (i).

In Theorem 6 below, we show that the Minimum Edge Unique Linearization

problem (Min-EUL) is NP-hard by proving that it is equivalent to the Minimum Edge

Clique Partition problem (Min-ECP), which is know to be NP-hard [21]. In Min-ECP,

we are given a general undirected graph, and we need to partition its vertices into disjoint

clusters such that each cluster forms a clique and the total weight of the edges between

clusters is minimized.

Theorem 6 Min-EUL is equivalent to Min-ECP.

Proof. First, we show that Min-EUL polynomially reduces to Min-ECP. Given

an instance G = (V,E) of Min-EUL, we build an instance G′ = (V ′, E′) of Min-ECP as

follows. Let V ′ = V . For each pair of vertices u, v ∈ V ′ where v is reachable from u, define
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an undirected edge between u and v in E′. For each directed edge (u, v) ∈ E, set the weight

of the corresponding undirected edge (u, v) ∈ E′ as 1. Set the weights of the other edges in

E′ as 0. Then it is easy to see that a Min-EUL solution to G′ is equivalent to a Min-ECP

solution to G and vice versa.

Now we show that Min-ECP polynomially reduces to Min-EUL. Given an instance

G′ = (V ′, E′) (assuming G′ is connected) of Min-ECP, we build an instance G = (V,E) of

Min-EUL as follows. Let V = V ′. Pick any total linear order O of all vertices in V ′. For

each undirected edge (u, v) ∈ E′ where rank(u) < rank(v) in O, define a directed edge from

u to v in E and set its weight to be the same as its corresponding undirected edge in E′.

For any two vertices u, v ∈ V , where rank(u) < rank(v) and (u, v) 6∈ E′, add a new vertex

xuv ∈ V with rank(xuv) = rank(v) and a directed edge u to xuv of weight 1 in E. Now

for each pair of vertices u, v ∈ V where rank(u) < rank(v) and (u, v) 6∈ E, add a directed

edge u to v with weight zero in E. Then it is easy to see that a Min-EUL solution to G

corresponds to a Min-ECP solution to G′ and vice versa.

Given the complexity of Min-EUL, we propose an exponential time exact algorithm

and a polynomial time log n-approximation algorithm for solving it. To describe the exact

algorithm, we need to introduce some notations. A conjunction vertex in a DAG is a vertex

which has more than one incoming edge or outgoing edge. A candidate edge is an edge

which connects at least one conjunction vertex. In Theorem 7 below, we prove that the

optimal solution E′ of Min-EUL must only contain candidate edges. Let Ec be the set of

all candidate edges in the DAG G, for each subset E′j of Ec, we check whether the graph

G′ = (V,E −E′j) satisfies requirement (i) in Definition 5 after removing E′j from G. Among
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all the feasible E′j , we produce the set of edges with minimum total weights. To check

whether E′j is feasible, we use a variant of topological sorting which requires one to produce

a unique topological ordering. To do so, we require that in every iteration of topological

sorting, the candidate node to be added to sorted graph is always unique. Details of this

algorithm are shown as Algorithm 4.

Algorithm 4 Sketch of the algorithm for checking whether a DAG provides an unique

ordering

1: procedure Order Uniqueness Check(G = (V,E))

2: S = nodes with no incoming edges

3: while S 6= ∅ do

4: if |S| > 1 then

5: return False

6: remove a node n from S

7: for each node m with an edge e = (n,m) do

8: remove edge e from the E

9: if m has no other incoming edges then

10: insert m into S

11: return True

Theorem 7 The optimal solution E′ of Min-EUL only contains candidate edges.

Proof. For sake of contradiction, we assume that E′ contains a non-candidate edges (u, v).

Since E′ is optimal, G′ = (V,E−E′) satisfies condition (i) in Definition 5. Since both u and

v are conjunction vertices, u has only one incoming edge and v has only one outgoing edge.
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Therefore, by adding (u, v) to G′ = (V,E −E′), we still satisfy condition (i) in Definition 5.

Since the weight of (u, v) is positive, the total weight of E − E′ + {(u, v)} is larger than

E − E′. Therefore E′ − {(u, v)} is optimal, contradicting the optimality of E′.

As said, Min-EUL is equivalent to Min-ECP (Theorem 6). In addition, the

authors of [21] showed that for any instance of Min-ECP one can find an equivalent

instance of the Minimum Disagreement Correlation Clustering problem. As a

consequence, any algorithm for the Minimum Disagreement Correlation Clustering

problem could be used to solve Min-EUL. In our tool OMGS, we implemented a O(log n)-

approximation algorithm based on linear programming, originally proposed in [20]. Standard

linear programming packages (e.g., GLPK or CPLEX) are used to solve the linear program.

We use the exact algorithm for DAGs with no more than twenty candidate edges, and the

approximation algorithm for larger DAGs.

4.2.2 Phase 2: Estimating gaps

Let s = {ci|i = 1, . . . , h} be one of the scaffold generated in Phase 1 where each ci

is a contig. In Phase 2, we estimate the length li of the gap between each pair ci and ci+1 of

adjacent contigs. We estimate all gap lengths L = {li|i = 1, . . . , h − 1} at the same time

using the distances between the contigs provided by the alignments and the corresponding

order subgraphs. We assume that each li is chi-square distributed with αi degrees of freedom.

The choice of chi-square distribution is due to its additive properties, namely the sum of

independent chi-squared variables is also chi-squared distributed. Recall that each order

subgraph Ok provides an unique ordering xk = {cj |j = 1, . . . , r} of the contigs aligned to

molecule ok, while the coordinates of the alignment provide the distances between all pairs
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of adjacent contigs cj and cj+1 as yk = {dj |j = 1, . . . , r − 1}. We use the distances dj as

samples to estimate gap lengths li. If edge (cj , cj+1) in Ok is removed in the order graph O

when solving Min-EUL in Phase 1, dj will be considered not reliable and removed from yk.

In the ideal case, dj should be a sample of a single li (i.e., cjcj+1 in xk corresponds

to cpcp+1 in s). In practice however, cjcj+1 in xk will corresponds to a different pair cpcq

in s where q > p+ 1 (i.e., cp+1 . . . cq−1 are missing from the order subgraph because some

alignments with low confidence were removed in Step 1 of Phase 1). In this situation, after

subtracting the length of missing contigs from dj , dj −
∑cq−1

c=cp+1
|c| is a sample of

∑q−1
i=p li

where |c| represents the length of contig c. Since lp, . . . , lq−1 are independent chi-square

random variables,
∑q−1

i=p li is chi-square distributed with degree of freedom
∑q−1

i=p αi. Since

the density function of a chi-square random variable X with degree of freedom k is

fX(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

where Γ is the gamma function, the likelihood of
∑q−1

i=p li with observation

γ = dj −
cq−1∑
c=cp+1

|c|

is

1

2βΓ(β)
γβ−1e−γ/2,

where β =
∑q−1

i=p
αi
2 . Therefore, the log likelihood function for one sample is

log l = (β − 1) log γ − γ

2
− β log 2− log Γ(β).

The total log likelihood is the sum of the log likelihoods across all samples.

To find the αi maximizing the total log likelihood, we use the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [3]. Since the mean of a chi-square distribution equals
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its degree of freedom, we obtain the estimated gaps l̂i = α̂i. For the case in which the li are

pre-estimated as negative in the first step, the second and third steps are ignored and the

pre-estimated distances are used as final estimates.

Finally, we add dl̂ie nucleotides (represented by Ns) between each pair of contigs ci

and ci+1. When l̂i < 0, we add exactly 100 Ns between ci and ci+1, which is the convention

for a gap of unknown length.

4.3 Experimental results

We compared OMGS against KSU SewingMachine (version 1.0.6, released

in 2015) and Bionano HybridScaffold (version 4741, released in 2016) which, to the

best of our knowledge, are the only available scaffolding tools for Bionano Genomics

optical maps. All tools were run with default parameters, unless otherwise specified. We

collected experimental results on scaffolds of (i) cowpea (Vigna unguiculata) and (ii) fruit

fly (Drosophila melanogaster).

4.3.1 Experimental results on cowpea assemblies

Cowpea is a diploid with a chromosome number 2n = 22 and an estimated genome

size of 620 Mb. We sequenced the cowpea genome using single-molecule real-time sequencing

(Pacific Biosciences RSII). A total of 87 SMRT cells yielded about 6M reads for a total

of 56.84 Gbp (91.7x genome equivalent). We tested the three scaffolding tool on a high-

quality assembly produced by Canu [7, 42] with parameters corMhapSensitivity=high

and corOutCoverage=100, then polished it with Quiver. We used Chimericognizer
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to detect and break chimeric contigs, using seven other assemblies generated by Canu,

Falcon [14] and ABruijn [46] as explained in [61].

In addition to standard contiguity statistics (N501, L502), total assembled size and

scaffold length distribution, we determined incorrect/chimeric scaffolds by comparing them

against the high-density genetic map available from [54]. We BLASTed 121bp-long design

sequence for the 51,128 genome-wide SNPs described in [54] against each assembly, then we

identified which contigs had SNPs mapped to them, and what linkage group (chromosome)

of the genetic map those mapped SNPs belonged to. Chimeric contigs were revealed when

their mapped SNPs belonged to more than one linkage group. The last line of Table 4.1 and

Table 4.2 report the total size of contigs in each assembly for which (i) they have at least

one SNPs mapped to it and (ii) all SNPs belong to the same linkage group (i.e., likely to be

non-chimeric).

As said, the three scaffolding tools were run on a chimera-free assembly of cowpea

described above using two available Bionano Genomics optical maps (the first obtained

using the BspQI nicking enzyme, and the second obtained with the BssSI nicking enzyme).

Since SewingMachine can only use a single optical map, we alternated the optical maps

in input (BspQI map first, then BssSI and vice versa). SewingMachine provides two

outputs depending on the minimum allowed alignment confidence, namely ‘default’ and

‘relax’. Mode ‘relax’ considers more alignments than ’default’, but it has a higher chance of

introducing mis-joins. HybridScaffold failed on the BssSI map, so we could not test it

on alternating maps.

1length for which the set of contigs/scaffolds of that length or longer accounts for at least half of the
assembly size

2minimum number of contigs/scaffolds accounting for at least half of the assembly
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Table 4.1 shows that when using a single optical map, OMGS can generate

comparable or better scaffolds than SewingMachine and HybridScaffold. With two

optical maps, OMGS’ correctness (“contigs/scaffolds with 100% consistent LG”) and

contiguity (N50) are significantly better than other two tools. Observe that OMGS’

correctness (“contigs/scaffolds with 100% consistent LG”) is even better than the input

assembly. This can happen when contigs with SNPs belonging to same linkage group are

scaffolded with contigs that have no SNP.

We also compared the performance of OMGS, SewingMachine and Hybrid-

Scaffold when using optical maps corrected by Chimericognizer (on the same cowpea

assembly). Observe in Table 4.2 that OMGS, SewingMachine and HybridScaffold

increased the correctness but decreased the contiguity when the corrected BspQI optical map

was used. The results on the corrected BssSI optical map or both corrected optical maps did

not change significantly. But again, OMGS produced better scaffolds than SewingMachine

and HybridScaffold.

4.3.2 Experimental results on D. melanogaster assemblies

D. melanogaster has four pairs of chromosomes: three autosomes, and one pair

of sex chromosomes. The fruit fly’s genome is about 139.5 Mb. We downloaded three D.

melanogaster assemblies generated in [80] (https://github.com/danrdanny/Nanopore_

ISO1). The first assembly (295 contigs, total size 141 Mb, N50 = 3 Mb) was generated

using Canu [7, 42] on Oxford Nanopore (ONT) reads longer than 1kb. The second

assembly (208 contigs, total size 132 Mb, N50 = 3.9 Mb) was generated using MiniMap and
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One optical map
BspQI BssSI

Input SM (default) SM (relax) HS OMGS SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 5,633,882 13,154,336 13,154,336 12,211,658 14,339,314 10,620,326 10,886,079 N/A 11,536,649
contig/scaffold L50 28 15 15 17 14 18 17 N/A 15

total assembled (bp) 511,101,122 521,209,608 521,210,640 516,455,893 518,265,608 518,987,660 518,945,404 N/A 518,252,638
# contigs/scaffolds 948 863 863 877 847 849 846 N/A 832

# contigs/scaffolds ≥100kbp 269 185 185 198 170 177 174 N/A 165
# contigs/scaffolds ≥1Mbp 94 59 59 63 56 63 62 N/A 59

# contigs/scaffolds ≥10Mbp 10 20 20 21 20 18 18 N/A 17
contigs/scaffolds with consistent LG (bp) 425,812,490 404,408,642 404,409,674 381,974,417 410,552,582 425,572,265 425,530,009 N/A 424,143,108

Two optical maps
BspQI+BssSI BspQI+BssSI BssSI+BspQI BssSI+BspQI BspQI&BssSI

Input SM (default) SM (relax) SM (default) SM (relax) OMGS

contig/scaffold N50 (bp) 5,633,882 14,892,230 14,892,230 13,527,997 14,892,235 16,364,046
contig/scaffold L50 28 13 13 14 13 12

total assembled (bp) 511,101,122 525,577,823 525,198,231 525,827,900 525,105,345 521,324,385
# contigs/scaffolds 948 822 823 816 814 802

# contigs/scaffolds ≥100kbp 269 149 150 145 143 137
# contigs/scaffolds ≥1Mbp 94 46 46 48 46 44

# contigs/scaffolds ≥10Mbp 10 21 21 22 22 21
contigs/scaffolds with consistent LG (bp) 425,812,490 385,449,577 385,069,985 425,678,421 403,637,207 432,639,234

Table 4.1: Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on a
cowpea assembly using one or two optical maps. Numbers in boldface highlight the best
N50 and scaffold consistency with the genetic map for one map (BspQI and BssSI) or two
maps (‘A+B’ refers to the use of map A followed by map B, ‘A&B’ refers to the use of both
maps at the same time).

MiniAsm [43] using only ONT reads. The third assembly (339 contigs, total size 134 Mb,

N50 = 10 Mb) was generated by Platanus [39] and Dbg2Olc [94] using 67.4x of Illumina

paired-end reads and the longest 30x ONT reads. The first and third assemblies were

polished using nanopolish [48] and Pilon [90]. The Bionano optical for D. melanogaster

map was provided by the authors of [80]. This BspQI optical map (363 molecules, total

size = 246 Mb, N50 = 841 kb) was created using IrysSolve 2.1 from 78,397 raw Bionano

molecules (19.9 Gb of data with a mean read length 253 kb).

As said, all tools were run with default parameters, with the exception of OMGS’

minimum confidence, which was set at 20 (default is 15). To evaluate the performance

of OMGS, HybridScaffold and SewingMachine, we compared their output scaffolds

to the high-quality reference genome of D. melanogaster (release 6.21, downloaded from

FlyBase). We reported the total length of correct/non-chimeric scaffolds as a measure of the
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One optical map
BspQI BssSI

Input SM (default) SM (relax) HS OMGS SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 5,633,882 12,487,373 12,487,373 12,495,655 13,505,314 9,420,899 10,886,079 N/A 11,256,770
contig/scaffold L50 28 16 16 15 14 19 17 N/A 16

total assembled (bp) 511,101,122 519,785,777 519,785,777 515,519,585 518,405,022 517,678,278 517,636,022 N/A 517,318,151
# contigs/scaffolds 948 863 863 871 849 854 851 N/A 837

# contigs/scaffolds ≥100kbp 269 185 185 192 172 182 179 N/A 169
# contigs/scaffolds ≥1Mbp 94 60 60 60 58 66 65 N/A 62

# contigs/scaffolds ≥10Mbp 10 19 19 19 19 17 17 N/A 17
contigs/scaffolds with consistent LG (bp) 425,812,490 413,819,557 413,819,557 402,840,302 421,466,164 424,262,883 424,220,627 N/A 423,117,331

Two optical maps
BspQI+BssSI BspQI+BssSI BssSI+BspQI BssSI+BspQI BspQI&BssSI

Input SM (default) SM (relax) SM (default) SM (relax) OMGS

contig/scaffold N50 (bp) 5,633,882 14,354,752 14,354,752 13,527,997 14,892,235 16,364,046
contig/scaffold L50 28 14 14 14 13 12

total assembled (bp) 511,101,122 523,520,329 523,139,705 521,540,185 525,105,345 520,697,623
# contigs/scaffolds 948 823 824 817 814 805

# contigs/scaffolds ≥100kbp 269 150 151 146 143 139
# contigs/scaffolds ≥1Mbp 94 48 48 48 46 46

# contigs/scaffolds ≥10Mbp 10 21 21 21 22 21
contigs/scaffolds with consistent LG (bp) 425,812,490 402,344,751 401,964,127 420,269,616 403,637,207 431,921,182

Table 4.2: Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on a
cowpea assembly using optical maps corrected by Chimericognizer. Numbers in boldface
highlight the best N50 and scaffold consistency with the genetic map for one map (BspQI
and BssSI) or two maps (‘A+B’ refers to the use of map A followed by map B, ‘A&B’ refers
to the use of both maps at the same time).

overall correctness. To determine which scaffolds were incorrect/chimeric we first selected

BLAST alignments of the scaffolds against the reference genome which had an e-value

lower than 1e-50 and an alignment length higher than 30 kbp. We defined a scaffold S to

be chimeric if S had at least two high-quality alignments which satisfied one or more of

the following conditions: (i) S aligned to different chromosomes; (ii) the orientation of S’s

alignments were different; or (iii) the difference between the distance of alignments on the

scaffold and the distance of alignments on the reference sequence was larger than 100 Kbp.

Table 4.3 reports the main statistics for the three D. melanogaster scaffolded

assemblies. Even with one map, OMGS’ scaffolds are better than SewingMachine and

HybridScaffold.
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MiniAsm assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 3,866,686 4,494,241 4,906,224 3,866,686 4,906,224
contig/scaffold L50 9 8 8 9 8

total assembled (bp) 131,856,353 132,480,826 133,233,999 132,138,056 132,838,677
# contigs/scaffolds 208 205 203 206 206

# contigs/scaffolds ≥100kbp 85 82 80 83 83
# contigs/scaffolds ≥1Mbp 26 26 25 26 25

# contigs/scaffolds ≥10Mbp 2 2 2 2 2
non-chimeric contigs/scaffolds (bp) 131,317,873 125,305,638 132,695,519 131,174,201 132,300,197

Canu assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 3,004,953 3,004,953 3,004,953 3,918,649 5,336,340
contig/scaffold L50 11 11 11 10 7

total assembled (bp) 140,720,404 140,923,974 140,923,974 140,867,226 140,960,395
# contigs/scaffolds 295 291 291 286 280

# contigs/scaffolds ≥100kbp 111 107 107 102 96
# contigs/scaffolds ≥1Mbp 31 31 31 29 27

# contigs/scaffolds ≥10Mbp 1 1 1 1 5
non-chimeric contigs/scaffolds (bp) 140,720,404 140,923,974 140,923,974 140,867,226 140,960,395

Dbg2Olc assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 10,113,899 11,223,142 11,223,142 12,785,467 12,928,771
contig/scaffold L50 6 5 5 5 4

total assembled (bp) 134,109,164 134,164,629 134,164,629 134,162,857 134,208,377
# contigs/scaffolds 339 337 337 331 327

# contigs/scaffolds ≥100kbp 78 76 76 70 66
# contigs/scaffolds ≥1Mbp 22 22 22 17 16

# contigs/scaffolds ≥10Mbp 6 6 6 5 7
non-chimeric contigs/scaffolds (bp) 134,109,164 134,164,629 134,164,629 134,162,857 134,208,377

Table 4.3: Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on
three D. melanogaster assemblies (produced by MiniAsm, Canu, and Dbg2Olc) using
the BspQI optical map. Numbers in boldface highlight the best N50 and the best scaffold
consistency with the reference genome

4.4 Conclusions

In this chapter, we presented a scaffolding tool called OMGS for improving the

contiguity of de novo genome assembly using one or multiple optical maps. OMGS solves

several optimization problems to generate scaffolds with optimal contiguity and correctness.

Experimental results on V. unguiculata and D. melanogaster clearly demonstrate that OMGS

outperforms SewingMachine and HybridScaffold both in contiguity and correctness

using multiple optical maps.
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Chapter 5

Conclusions

In this dissertation, we addressed some of the computational issues associated

with genome scaffolding, with the help of optical maps. We proposed an algorithm

for scaffolding (OMGS), and two pre-processing algorithms aimed at either breaking

chimeric contigs (Chimericognizer), or stitching overlapping contigs for multiple as-

semblies (Novo&Stitch).

OMGS is the first tool that can take advantages of multiple optical maps at same

time to carry out scaffolding. Novo&Stitch is the first tool that can take advantage

of optical maps to accurately carry out assembly reconciliation. Chimericognizer is

significantly more accurate than the chimeric detection method offered by the Bionano

Hybrid Scaffold pipeline, and is the first tool which can correct optical maps.

Here, we list some research problems we plan to study in the future. First, we will

improve Chimericognizer by considering the conflicts between optical maps and between

assemblies. In the current version of Chimericognizer, we only solve the conflicts between
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optical map and assembly. Generally speaking, after in silico-digesting, the assemblies can

been seen as same as optical maps. So it’s reasonable to ignore the difference between optical

maps and assemblies and compare all pairs of them when detecting mis-joins. We believe

more comparisons will make detection more accurate, but more time consuming. There

more efficient algorithm will be needed.

Second, we will try to improve genome scaffolding by taking advantage of different

types of maps such as optical maps, genetic maps, Hi-C data and long reads at same time.

In current scaffolding pipeline, people apply each of them to assembly DNA sequences or

correct mis-joins alternately or iteratively. We believe that applying all the information at

same time in an optical way has a change to improve both the contiguity and correctness of

assembly.

Last but not least, we will study gap filling which is a post-processing step of

scaffolding. We plan to create a novel algorithm for gap filling scaffolds by long reads with

the help of optical maps.

5.1 Publications

This dissertation includes three peer-reviewed publications. The findings on

Novo&Stitch was presented at Conference on Intelligent Systems for Molecular Biol-

ogy (ISMB) 2018, Chicago, IL and published in Bioinformatics. The work on OMGS

was presented at Conference on Research in Computational Molecular Biology (RECOMB)

2019, Washington DC and will be published in the Journal of Computational Biology.

Chimericognizer was published in Bioinformatics.
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