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'· ABSTRACT 

We study computationally the stability, under gravitational and 

surface forces, of a liquid in a circular cylindrical container with a 

concave spheroidal bottom, for the case in which the volume of liquid 

is sufficiently small so that the bottom is not covered entirely. We 

assume the gravitational field to be directed along the axis of symmetry 

of the container, and for a specific container shape we compute the 

critical Bond number as a function of liquid volume for contact angles 

y = 0°, 1°, 2°, and 4°. For the casey= 0° we present graphically 

several critical equilibrium configurations and correspo~ding pertur-

bation modes. 

* Lawrence Berkeley Laboratory, Universit~ of California, Berkeley, CA 94720. 

**Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720. 
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1. STATEMENT OF THE PROBLEM 

·In this paper we present the results of a computational study of 

the stability of a liquid in a rotationally symmetric container subject 

to gravitational and surface forces. We consider vertical right cir-

cular cylindrical containers with concave spheroidal bottoms, for the 

case in which the volume of liquid is sufficiently small so that liquid 

lies only in an annular region of the container (Fig. 1). We are 

interested specifically in the case for which the contact angle y is 

zero,- or nearly zero, and our numerical results are obtained for a con-

tainer currently used for the storage of liquid fuels in National 

Aeronautics and Space Administration Centaur space vehicles, for which 

the axial ratio of the bottom is b/a = 0.724. 

A vertical·section through the axis of the container is depicted 

in Fig. 1; along with the associated cylindrical coordinate system. 

The container may be in motion, but the net external gravitational 

force is assumed to be uniform and directed parallel to the axis of 

symmetry. It is well known, that even if the gravitational force is 

directed upward, liquid may be in stable equilibrium at the container 

bottom because of the effect of surface forces. For a given liquid 

volume, stable configurations of this kind are possible only if the 

magnitude of the upward-directed gravitational force does not exceed a 

certain critical value. This critical value depends on physical para-
-

meters such as the liquid-vapor surface tension coefficient, the differ-

ence in liquid and vapor densities, the liquid-container contact angle, 
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and geometrical parameters such as the container size and shape. The 

combined effect of certain of these parameters may be represented by 

the dimensionless Bond number (see (2.11) below), whose critical value 

for our problem is a function only of th~ container shape, the 

liquid volume, and the contact angle. In this study we determine 

computationally the critical Bond number as a function of the liquid 

volume for fixed contact angle and container shape. 

Our approach is that of static analysis, i.e. we consider the 

total potential energy of the liquid-container system (in a container­

fixed frame of reference), given by 

E = o(Af - Aw cosy) + Eg (1.1) 

(cf. Reynolds and Satterlee [3], p. 394-396). Here a> 0 (the liquid-

vapor surface tension coefficient) and 0 ~ y ~ TI (the contact angle 

between the liquid vapor interface and the container wall and bottom) 

are constants determined by physical properties of the liquid and the 

container, Af and Aw are the areas of the liquid-vapor and the liquid­

container interfaces, respectively, and E is the gravitational poten­
g 

tial energy of the liquid. A configuration of liquid is in stable 

equilibrium if and only if the total potential energy (1.1) is minimal 

compared with that of any nearby configuration having the same liquid 

volume. Thus the critical Bond number for a certain volume of liquid 

is the one at which E in (1.1) ceases to have a strict local ·minimum 

with respect to all perturbations that conserve the liquid volume. In 

Section 2 below we give a summary of an analysis of this constrained 

minimization problem using methods of variational calculus. 
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2. DERIVATION OF THE DIFFERENTIAL EQUATIONS 

·secause of the axial synunetry, we can restrict ourselves to con-

sider small perturbations of initially axially synunetric configurations 

only'(we must, however, allow for perturbations that are not axially 

symmetric). We use a parametric arc-length, normal-displacement 

representation of the surfaces (cf. Concus, Crane, and Satterlee [2], 

pp.4-6). Thus we let the unperturbed liquid-vapor interface be given 

by 

l 
r = 

z = 

R(s) 

Z (s) 

in the cylindrical coordinate system of Fig. 1, where s is the arc-

(2 .1) 

length along the curve of intersection between the unperturbed liquid-

vapor interface and any plane ~ = constant. Then the equations 

l 
r = R(s) - n(s,~)Z' (s) 

s 0 (~) ~ s ~ 51(~)) 
z = Z (s) + n(s,~)R' (s) 

0 ~ ~ ~ 2'IT (2.2) 

describe a surface obtained by moving each point of the unperturbed 

liquid~vapor interface the distance n(s,~) along the normal at (s,~), 

cf. Fig. 2. In this way the constants s
0

, s1 and the functions 

s 0 (~), s 1 (~) are determined by the unperturbed liquid-vapor interface 

and by, respectively, the unperturbed and the perturbed three-phase 

contact lines. Since clearly siC~)- si, i = 0, 1, may assume any sign 

we must imagine the functions R(s) and Z(s) in (2.2) to be cQntinued 

to some interval containing.s
0 
~ s ~ s 1 in its interior, cf. the dotted 
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continuation of the unperturbed surface to the left in Fig. 2. 

(The continuation may be done in several ways, perhaps most conveniently 

by using the fact that R(s) and Z(s) will be analytic functions for 

equilibriUm configurations, cf. (2.9) below.) 

In a way similar to (2. 2), the container .wall and bottom are 

described by 

. l r = R(s) w(s)Z' (s) 
21T (2. 3) 

z = Z(s) + w(s)R'(s) 

in SO]lle. neighborhoods of 'the unperturbed contact lines s = s 0 and s = s1. 

Then clearly w(s 0) = w(s 1) = 0. The function w(s) will depend on the 

shape of the container wall and bottom and, implicitly, the shape of 

the unperturbed liquid-vapor interface •. ~he representation (2.3) is 

convenient ·for the purpose of deriving the differential equations; 

however, in the actual computations we must, of course, make use of the 

known~ configuration-independent shape of the container, cf. (3.4) and 

(3.5) below" 

The increments of the total potential energy E and the liquid 

volume V caused by the perturbation n(s,~) in (2.2) may then be computed. 

We obtain in a straightforward way 

= 

21T s (~) 

J J {o(fA(!)_,s) - fA(.Q_,s)) + pg fg(n,s)}. ds d~ 
o s 0 (~) 

21T 

j J { cr(cosy · fA (_!,s) - fA (Q,s)) + pg fg(_!,s)} ds d~ 
0 ~~ (2.4) 



-7-

27T 

ov Cn) !! 
0 l'l<P 

where we have put 

T 
~ = ~(s,¢) = (n(s,¢), ns(s,¢), n¢(s,¢)) , 

~ = ~(s) = (w(s), w1 (s), O)T 

l'l<P =the interval (so(<f>), so) u (sl' sl(<f>))' 

and where the functions fA(~,s), fv(~,s),and fg(~,s) are given by 

(denoting R = R(s) and Z = Z(s) for brevity) 

fA(1,s) = {CR- nZ 1
)

2(n; + (1 + n(R 11 Z1 
- Z11 R1

))
2

) + 

+ n~ (1 + n(R 11 Z1 
- Z11 R1

))
2} !.z 

fV (_:!, S) = T) { 1 + !(R I I Z I - Z I I R I ) } (R _ ~ 1 ) 

(2.5) 

(2. 6) 

fg(~,s) = (Z + ~ 1 ) fv(~,s) . (2. 7) 

In (2.4) p, the liquid density (or, more precisely, the difference 

between the liquid and vapor densities), is assumed to be constant, and 

g is the gravitational constant (which may assume any value) defined so 

that g > 0 if the gravitational force pulls toward the negative z-axis. 

The condition, that all first-order n-terms in oE(n) as given by 

(2.4) should vanish for all n such that oV(n) = 0 in (2.5) is then 

afA af afv 
o anCQ_,s) + pg arf"CQ_,s) - I. arl(Q_,s) = 0 

in s0 ~ s ~ s
1 

, with the side-conditions (2.8) 
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where ~- is a constant (the Lagrange multiplier). Putting here 

B = pg/o, H = A/o,an~ using (2.7) and the identity 

R'(s) 2 
+ Z'(s) 2 = 1 

(which holds because s is the arc-length) (2.8) becomes the Euler -

Lagrange boundary value problem for the equilibrium liquid-vapor 

interface 

R'' = -Z'(BZ- H- Z'/R) 

Z'' = R'(BZ- H- Z'/R) 

= = o, 

= = tany 

(2.9) 

In general, the requirement that (2.9) should have a solution for a 

given container shape will restrict the B, H, and V - values to some 

two-dimensional subset of the (B,H,V) - space. 

The equations (2.9) have the following invariance property: if 

~ is any positive constant and if we put 

R(s) 1 I R(~s), 
- 1 -
Z(s) = I Z(~s), w(s) = 1 I w(~s) (2 .10) 

then R and Z will satisfy (2. 9) with B replaced by B = Bt 2 , H 

replaced by H = H~ and w replaced by w The transformation (2.10) 

means simply that R , 7 ,and w describe a liquid~tank configuration 

obtained by uniformly enlarging the original one by a factor 1/~. 

Therefore, if we define dimensionless constants B
0 

and H
0 

by 

2 
B = B a 2 = a pg 

0 0 

a A 
H

0 
= H a= 0 (2.11) 

• 
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where a is the container radius, B.g (the Bond number) and H0 will be 

invariant under uniform re-scalings of equilibrium liquid-tank config­

urations. We will therefore present the results of our computations 

below in terms of the B
0 

in (2 .11) in order to facilitate their use for 

arbitrary-sized containers. 

We assume now that the liquid-vapor interface (2.1) satisfies the 

Euler...:Lagrange equations (2.9). Then the condition, that all second 

order n-terms give a non-negative contribution to oE(n) in (2.4) for 

all n such that in (2.5) oV(n) = 0, may be written as 

21T s 

J / { R(s)n; 
1 2 2l 

+ R(s) n<l> + A(s)n 1 ds d<f> 

0 so 

21T 

+ j { o.onCso,<l>)2 + o.ln(sl,<l>)2 } d<f> 
0 

for all n = n(s,<f>) such that 

21T 51 J f R(s) n(s,<f>) ds d<f> = 0 

0 so 

In (2.12) we have denoted 

~ 0 

+ 

A(s) = -2R'' + s{RR' - ZZ' + ZR(R''Z' - Z''R')} + 

+ H{Z'- R(R''Z'- Z''R')} 

and 

(-l)i d 1 o.i = 2- - cosy · fA (!_(s) ,s) 
tan y ds 

- Hfy(!_(s),s) ~ s=s. 
1 

i = 0, 1 . 

(2 .12) 

(2 .13) 

(2.14) 

(2.15) 
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It can be shown that if (2.12) (with the side-condition (2.13)) holds 

with strict inequality for all nonzero functions n(s,~) then in fact 

E will be locally minimal at n = 0, i.e. the configuration described by 

the R(s) and Z(s) in (2.9) is a stable one. It can further be shown 

that if (2.12) (under (2.13)) does not hold for all n, then E cannot 

be locally minimal at n = 0 and the configuration is an unstable one. 

Thus the critical value of B will be the value at which the transition 

between these two cases occurs (provided that the corresponding solu-

tions R(s), Z(s) to (2.9) describe an equilibrium liquid-vapor interface 

that is physically realizable, which may not always be the case - see 

the end of this Section). When B is critical ih this sense, (2 .12) 

still _holds (under (2.13)) but there exists some non-zero n = n(s,~) for 

which (2.12) holds with equality. 

The inequality (2.12)-(2.13) may be analysed in terms of an 

associated sequence of eigenfunctions of the form 

co 

co 

{lJik (s) cosk¢ } 
i=l,k=O 

(2.16) 

with eigenvalues {Aik}i=l,k=O 

eigenvalue problems 

These are given by the solutions to the 

R(s.)lJ!k(s.) = (-l)jaJ.lJ
1
.k(s.) 

J ]. J J 
j = 0, 1 
k = 0, 1, 2, 
i = 1, 2, 3, 

(2 0 1 7) .. 
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where A(s), a 0 , and a 1 were introduced in (2.14)-(2.15). It can be 

shown from (2.17) that the eigenvalues increase with the index k. It 

further follows from (2.16) that all eigenfunctions but those with k = 0 

in (2 .16) satisfy trivially the condition (2 .13). Then it follows, that 

(2.12) under the side-condition (2.13) holds if and only if (assuming 

Aik to be ordered increasingly with i) 

(2.18) 

where, because of (2.13), f31 and f3 2 are the solutions to 

, .{ f31 (1-110' R) + f32 (1-120' R) = 

2 . 2 
81 C111o' 1110) + 82C11 2o• 11 2o) 

0 

(2.19) 
1 

In (2.19) we have denoted 

2'1T 51 

(f,g) = j j f(s,<j>) g(s,<j>) ds d<j> 

0 

In all the cases studie·d below it will in fact hold 

I C1-1 10 , R) I » I (1-1 20 , R)l and (A 20 - A10) » (All - A10) > 0, so that the 

miRimum in (2.18) is attained at A11 • Thus, the critical value of B 

is determined by the condition All = 0 (with the above mentioned 

restriction concerning non-realizable equilibrium configurations). By 

(2.14), (2.15), and (2.17), we obtain that this condition is equivalent 

to requiring that the Jacobi-Legendre boundary value problem 
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- Rll'' (s) - R'll' (s) + {t- 2R'' + B{RR' - ZZ' + ZR(R''Z' - Z''R')} + 

+ H{Z' - R(R"Z' - Z"R')}} ll(S) = 0, 

(-l)i tanY·ll'(s.) = 
1 

(2. 20) 

"ll (si) 

should have a non-trivial solution ll(s). 

s=s. 
1 

i = 0, 1, . 
(2~21) 

We remark that the formulas (2.12) and (2.15) in the above dis-

cussion are meaningful only if the contact angle y is strictly positive. 

However, one of our principal interests is the limiting case y = 0. 

Therefore a special analysis is needed in order to determine the proper 

limiting form of the above conditions (2.19)-(2.20) when y + 0. It can 

be shown (Karasalo [4]) that if w'' (s.) < 0, i = 0, 1, then the dif-. 

ferential equation (2.20) with the fixed end-point boundary conditions 

(2. 22) 

is the correct one to use when y = 0. Furthermore it holds when y = 0 

that if in the set of solutions R(s), Z(s) to (2.9) obtained by keeping 

the volume fixed and varying B (and H, cf. the comment after (2.9) above) 

w''(s 0) or w''(s1) change sign as functions of Bat some vaiue of B, 

then this B-value is critical even if (2.20)-(2.22)lacks nontrivial 

solutions. This is so because only solutions R(s), Z(s) for which 

w' '(s0) ~ 0 and w'' (s1) ~ 0 hold are permissible for y = 0 due to the 

constraints imposed by the container geometry. Our computations show, 

in fact, for the Centaur space vehicle example, that small liquid 

• 
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volumes become unstable because of the conditions (2.20)-(2.22), 

whereas the stability of large liquid volumes is decided by the con-

straint w''(s1) ~ 0. The transition between these two conditions occurs 

at a certain well defined volume, cf. (3.6)-(3.7) below. 

3. COMPUTATIONAL PROCEDURE 

With a given liquid volume in a given container of the shape 

shown in Fig. 1 we associate a dimensionless fi111 height, defined as 

follows: let zV be such that the given volume V coincides with the 

' volume bounded by the container wall and bottom and the plane z = zv 

Then the fill height for the volume V in the container with · 

.radius a is 

(3.1) 

We shall compute the critical Bond number B0c (cf.(2.11)) as a 

function of hv. Obviously, by (2.10)-(2.11) and (3.1), these quantities 

are invariant under uniform re-scalings of the container, and we can 

therefore restrict our computations to a container with a specific 

radius, e.g. a= 1. We are interested only in the fill-height range 

0 < hv < b/a, i.e. only in volumes that are smaller than that of the 

annular crevice at the container bottom. 

Before describing our computational algorithm in detail we shall 

give the explicit form of the boundary conditions (2.21) at s = s0 and 

s = s
1

, respectively. In a neighborhood of s = s 0 there holds by 

(2.3), since the bottom is an ellispoid of revolution (cf. Figs.l and 2) 
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2 (Z(s) + w(s)R'(s)) 
b2 

Similarly, in a neighborhood of s = s1 we have 

R(s) - w(s)Z'(s) =a 

= 1 . 

By differentiating these expressions twice and using (2.9), (2.21) 

(3.2) 

(3. 3) 

becomes after some straightforward manipulations (we put Z. = Z(s.), 
1 1 

R. = R(s.), i = 0, 1, for brevity) 
1 1 

+ 
. Z' } 

cosy· (BZ - H - _Q_) 
0 R 

0 
(3.4) 

(3.5) 

Our computations are carried out for the case b/a = 0.724 and 

proceed in two principal steps. In the first of these (which requires 

the main part of the computational effort) we determine successively 
':'; 

some 50-60 points on the curve B0c = s0c(hy) at non-equidistant values 

of hv. Each of these points is obtained in the following manner: 

a) We choose a fixed point R = a = 1, Z = z1 at the cylindrical 

container wall and "guess" a corresponding pair of values for B0 and 

H0 in a way to be specified below. 

b) We put R(s 1) =a= 1, Z(s1) = z1, R'(s1) = siny, Z'~s 1 ) =cosy 

to satisfy the boundary conditions at s = s1 in (2.9) (we may choose 

s 1 arbitrarily, e.g. s 1 = 1). We further choose a pair of values 

~· (s 1), ~(s 1 ), not both zero, consistent with the boundary condition 

. . 

·. 
'·· 

• 
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(3.5) (except for the large hy cases for y = 0, cf. (3.6) below). 

c) We solve simultaneously the differential equations (2.9} and (2.20) 

numerically, integrating from s = s 1 backwards with a standard fourth­

order Runge-Kutta scheme. The stepsize of the integration is kept 

constant except for the last step which is adjusted (using a secant 

method) so as to make the last computed point of the solution to (2.9) 

lie on the container bottom profile (for the case y = 0 we adjust the 

last step so as to ·make' the normal of the computed solution to (2.9) 

at s = s 0 intersect the bottom profile at an angle of TI/2). Thus we 

have ensured w(s 0) = 0 (w'(s0) = 0 in the casey= 0). 

·' d) We compute the discrepancies in the boundary condition (3.4) and 

the remaining boundary condition at s = s 0 in (2.9). We adjust B0 and 

H0 '(using eventually a Newton-type method to obtain the corrections) and 

repeat from b) above until the corrections in B0 and H0 are less than 

a prescribed tolerance. 

e) We make a final integration computing this time also the liquid 

volume V, simply by adding the appropriate extra differential equation 

to the others. Then the corresponding hv-value is obtained using 

(3.1). 

We repeat the steps a)-e), using a set of some 50-60 regularly spaced 

z1-values. To obtain the.initial "guesses" for B0 and H0 in a), we 

extrapolate the functions BOc = B0c(Z1) and H0c = H0c(Z1) to the next 

z1-value, fitting two quadratic polynomials in z1 through the. three 

closest previously computed values of log!Bocl and log!Hocl• respectively. 
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linear in z1, and the accuracy in the guessed values was found to be 

very good (the "guesses" have in general 3-4 correct decimals when the 

spacing of the z1-values is 0.02a). 

For all the contact angles studied, the computed points o~ 

the curve B0c = B0c(hv) indicate that logiBocl is only mildly nonlinear 

as a function of hv. The second main step of our computation is to 

fit a cubic spline through the computed points on the curve logiB0cl_= 

logiB0cChv)l. In this way we obtain a convenient and satisfactorily 

accurate representation of the sought function B0c = B0c(hv) throughout 

the entire hv-interval of interest. 

We have studied the contact angle values y = 4°, 2°, 1°, and 0°, 

the' last of these values being the case of main interest. In the case 

y = 0 we find that the above algorithm must be modified in the following 

way: When, in step·a) above, z1 > Zi (corresponding to~> hv, where 

Zi = 0.7014 and hV = 0.5031 with four correct decimals), then the 

condition 

w1 1 (s ) ~ 0 
1 

(which expresses the condition that the equilibrium liquid-vapor 

.(3.6) 

interface must lie· inside the container for s < s1, cf. the discussion 

at the end o£ Section 2) places a more restrictive bound on B0 than 

the conditions under d) above. By (3.3), (3.6) is equivalent to 

R I I (s ) = 
1 

(3.7) 

. . 
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Hence, when y = 0 and z1 > Zi we solve, in steps b) and c) above, 

only the differential equations (2.9) and adjust, in step d), s
0 

and 

H0 so as to satisfy w(s0) = 0 and s0z1 - H0 - 1 = 0 (using again a 

Newton-like method obtain the corrections). 

4. NUMERICAL RESULTS 

Table 1 shows the cubic spline approximations to the functions 

B0c = B0c(hy) for the contact angle values y = 0°, 1°, 2°, and 4° 

(for the case b/a = 0.724). The relative error in each entry shown is 

less than 10-4, as estimated from repeated computations with different 

stepsizes in the ·numerical integration and different spacings for the 

z1-values used in step a) in the computational algorithm (cf. Section 3). 

Figures 3-6 show graphs of the functions in Table 1. For practical 

resons we use a logarithmic scale on the B0c -axis, -for which the curves 

are close to linear. Figure 7, showing all the graphs from Figures 3-6 

simultaneously, illustrates the almost insignificant dependence on y in 

this range. 

In Figure 8 we show the equilibrium surfaces at critical Bond 

number for the fill heights hv = 0.2(0.1)0.7 for the casey= 0°. The 

curves were plotted by numerical integration from starting points at 

the cylindrical wall using the subroutine pa,ckage GRAFPAC available 

at LBL for graphical display of the results. The starting points for 

the integrations were obtained using cubic spline fitting to ·the points on 

the curve z1 = z1 Chv), which are known as a "by product" of the 

B0c = B0c(hv) - calculation (cf. steps a) - e) of the algorithm des­

cribed inSection 3}. 
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The graphs of Figure 9 represent solutions to the Jacobi-Legendre 

equation (2.20) in the cases corresponding to the equilibrium configura-

tions shown in Figure 8. The functions shown in Figure 9 are of the 

form 

v(s) = ~(s) (4.1) 
R' (s) 

where ~(s) is a solution to (2.20) satisfying ~(s 0 ) = 0. The function 

v(s) depicts the radial dependence of the perturbation ~(s) cos¢, but 

in terms of vertical displacement (whereas ~(s) is the radial pertur-

bation profile in terms of displacement normal to the unperturbed 

surface, cf. (2.2)). The abscissa of the graphs in Figure 9 is R(s) 

and the functions are normalized so that dv/dR ~ 1 at the left end 

points. Theoretically, for 11y· > hv ~. 0. 5031 (see (3. 6)) the functions 

v(s) defined in (4.1) have a singularity at s = s 1, i.e. at R = 1, 

while for hv < hy v(s 1)is nonzero but 'finite.' Hence the graph cor­

responding to hv = 0.5 in Figure 9 in fact intersects the line R = 1, 

whereas the two graphs above it do not. 

Finally, in Figures 10-15 we show the equilibrium liquid-vapor 

interfaces of Figure 8 (solid lines) together with the equilibrium 

liquid-vapor interfaces superimposed by a small multiple of the cor-

responding v(s) as given by (4.1). These curves are of some interest 

because, theoretically, when s0 =· B0c and \i < 'hv the only possible 

initial shape of an unstable perturbation is given by v(s)coscf> (in 

terms of vertical displacement). For hv > hv it can in fact be shown 

(Karasalo [5]) that the configurations are unstable at B0 = Boc for 
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e.g_. pert"urbations that build up some suitably chosen, axially symmetric 

layer of liquid above the unperturbed contact line at the cylindrical 

wall. Notice, however, that the dashed curves in Figures 14 .and 15 

do not show such a perturbation, but they are nevertheless included 

here for completeness. These results on the initial perturbation shape 

rely, of course, on several idealizing assumptions, such as that (1.1) 

holds exactly, that it represents all boundary constraints, that 

viscosity effects need not be included, etc., and theconclusions from 

Figures 10-15 should not be drawn too far. 

The numerical results presented here have been found to be consistent 

with preliminary experimental results obtained at the NASA Lewis 

Research Center [6]. 
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Table 1. . Critical Bond nuinber, 80c' as function of fill height, hv, at 

Y.= Oo, lo, 20 
' and 4°. 

h y = oo y = 10 y = 20 . y = 40 

0.200 -480.4283 -480.3526 -,480.1183 -479.1676 .. 0.210 -412:6934 -412.6251 -412.4212 -411.5999 
0.220 -356;8787 -356.8212 -356.6472 -355.9423 
0.230 -·310.4444 -310.3955 -310.2463 -309.6393 
0.240 -271.5210 -271.4787 -271.3503 -270.8253 
0.250 -238.6539 -2.38. 6178 . -·:238.5075 -238.0536 
0.260 -210.7102 -210.6795 -210.5850 -210.1928 
0.270 -186._8042 -186.7783 -186.6978 -186.3599 
0.280 -166.2339 -166.2123 -166.1443 -165.8546 
0.290 - -148.4377 -148.4200 -148.3635 -148.1170 

0.300 -132.9638 -132.9499 -132.9038 -132.6967 
0.310 -119.4456 -119.4352 -119.3990 -119.2280 
0.320 -107.5834 -107.5765 -107.5497 -107.4123 
0.330 -97.1310 -97.1274 -97.1098 -97.0041 
0.340 -87.8844 -87.8843 -87.8757 -87.8004 
0.350 -79.6741 -79.6776 -79.6781 -79.6321 
0.360 -72.3581 -72.3654 -72.3752 -72.3581 
0.370 -65.8171 -65.8287 -65.8482 -65.8598 
0.380 -59.9504 -59.9666. -59.9965 --60.0369 
0.390 -54.6722 -54.6937 -54.7349 -54.8046 

0.400 -49.9096 -49.9374 -49.9908 -50.0906 
0.410 -45.6000 -45.6353 -45.7024 -45.8332 
0.420 -41.6896 -41.7341 -41.8166 -41.9796 
0.430 -38.1320 -38.1879 -38.2878 -38.4843 
0.440 -34.8869 -34.9574 -35.0769 -35.3082 
0.450 -31.9190 -32.0084 -32.1502 -32.4173 
0.460 -29.1976 -29.3120 -29.4786 -29.7822 
0.470 -26.6956 -26.8433 -27.0371 -27.3775 
0.480 -24.3887 -24.5813 -24.8043 -25.1807 
0.490 -22.2554 -22.5086 -22.7615 -23.1725 

0.500 -20.2759 -20.6107 -20.8925 -21.3355 
0.510 -18.4509 -18.8751 -19.1830 -19.6544 

'-' 
0.520 -16.8150 -17.2908 ~17.6204 -18.1156 

_:.t 0.530 -15.3484 -15.8474 -16.1930 -16.7068 
0.540 -14.0314 -14.5345 -14.8900 -15.4170 
0.550 -12.8467 -13.3417 -13.7013 -14.2359 ... 
0.560 -11.7792 -12.2587 .,..12.6174 -13.1545 
0.570 -10.8157 -11.2756 -11.6291 -12.1641 
0.580 -9.9447 -10.3828 -10.7281 -11.2570 
0.590 -9.1561 -9.5717 -9.9065 -10.4259 
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Tab.1e 1. .. (cont.) 

0.600 -8.4411 -8.8342 -9.1571 -9.6644 
0.610 -7.7920 -8.1630 -8.4730 -8.9662 
0.620 -7.2017 -7.5517 -7.8483 -8.3259 
0.630 -6.6644 -6.9942 -7.2773 -7.7384 
0.640 -6.1746 -6.4854 -6.7551 -7.1990 .. 
0.650 -5.7276 -6.0204 -6.2770 -6.7035 
0.660 -5.3192 -5.5951 -5.8390 -6.2481 
0.670 -4.9456 -5.2057 ·-5.4373 -5.8291 
0.680 -4.6035 -4.8487 -5.0686 -5.4435 
0.690 -4.2898 -4.5212 -4.7299 -5.0884 
0.700 -4.0020 -4.2204 -4.4185 -4.7610 

::.-- .. 

~·· 
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Figure 3: 8oc as a function of hv for y = oo. 
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Figure 5: B as a function of hv for y = 2°. Oc 
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Figure 6: 8oc 
as a function of ~ for y = 40. 
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Figure 8: Equilibrium surfaces at critical Bond number for y = 0°. 
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Figure 10: Solid Curve: Equilibrium surface at critical Bond number 

for y = 0° and hy = 0.2. 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbant mode from Figure 9. 
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Figure 11: Solid Curve: Equilibrium surface at critical Bond number 

for y = oo and hv = 0.3. 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbation mode from Figure 9. 
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Figure 12: Solid Curve: Equilibrium surface at critical Bond number 

for y = 0° and hv = 0.4. 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbation mode from Figure 9. 
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Figure 13: Solid Curve: Equilibrium surface at critical Bond number 

for y = oo _and hv ~.0.5. 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbation mode from Figure 9. 
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'Figure 14: Solid Curve: Equilibrium surface at critical Bond number 

for y = 0° and hy = 0.6! 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbation mode from Figure 9. 
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Figure 15: Solid Curve: Equilibrium surface at critical Bond number 

for y = 0° and hv = 0.7. 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbation mode from Figure 9. 
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