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INVESTIGATION
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and Locus-Specific Mutation
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ABSTRACT We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-
fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about
reproduction under pure hermaphroditism, gynodioecy, and a model developed to describe the self-fertilizing killifish Kryptolebias
marmoratus. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus
identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens sampling
formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters.
Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate
distribution that is itself estimated from the data using a Dirichlet process prior model. Our sampler is designed to accommodate
additional information, including observations pertaining to the sex ratio, the intensity of inbreeding depression, and other aspects of
reproduction. It can provide joint posterior distributions for the population-wide proportion of uniparental individuals, locus-specific
mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual. Further,
estimation of all basic parameters of a given model permits estimation of functions of those parameters, including the proportion

of the gene pool contributed by each sex and relative effective numbers.

KEYWORDS selfing rate; Ewens sampling formula; Bayesian; MCMC; mating system

NBREEDING generates genome-wide, multilocus disequi-

libria of various orders, transforming the context in which
evolution proceeds. Here, we address a simple form of in-
breeding: a mixture of self-fertilization (selfing) and random
outcrossing (Clegg 1980; Ritland 2002).

Various methods exist for the estimation of selfing rates
from genetic data. Wright’s (1921) fundamental approach
bases the estimation of selfing rates on the coefficient of in-
breeding (Fis), a summary of the departure from Hardy-
Weinberg proportions of genotypes for a given set of allele
frequencies. The maximum-likelihood method of Enjalbert
and David (2000) detects inbreeding from departures of
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multiple unlinked loci from Hardy-Weinberg proportions,
estimating allele frequencies for each locus and accounting
for correlations in heterozygosity among loci [identity dis-
equilibrium (Cockerham and Weir 1968)]. David et al.
(2007) extend the approach of Enjalbert and David (2000)
to accommodate errors in scoring heterozygotes as homozy-
gotes. A primary objective of InStruct (Gao et al. 2007) is the
estimation of admixture. It extends the widely used program
structure (Pritchard et al. 2000), which bases the estimation
of admixture on disequilibria of various forms, by accounting
for disequilibria due to selfing. Progeny array methods (see
Ritland 2002), which base the estimation of selfing rates on
the genetic analysis of family data, are particularly well
suited to plant populations. Wang et al. (2012) extend this
approach to a random sample of individuals by reconstruct-
ing sibship relationships within the sample.

Methods that base the estimation of inbreeding rates on the
observed departure from random union of gametes require
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information on expected Hardy-Weinberg proportions.
Population-wide frequencies of alleles observed in a sample
at locus I ({p;}) can be estimated jointly in a maximum-
likelihood framework (e.g., Hill et al. 1995) or integrated
out as nuisance parameters in a Bayesian framework (e.g.,
Ayres and Balding 1998). Similarly, expected locus-specific
heterozygosity,

d=1-> pi, o))
i

can be obtained from observed allele frequencies (Enjalbert
and David 2000) or estimated jointly with the selfing rate
(David et al. 2007).

Here, we introduce a Bayesian method for the analysis of
mixed-mating systems that accounts for genetic variation
through coalescence-based models and uses the Ewens
sampling formula (ESF) (Ewens 1972) in determining like-
lihoods. Our approach replaces the estimation of allele fre-
quencies or heterozygosity (Equation 1) with the estimation
of a locus-specific mutation rate (#*) under the infinite-
alleles model of mutation. We use a Dirichlet process prior
(DPP) to determine the number of classes of mutation
rates, the mutation rate for each class, and the class mem-
bership of each locus. We assign the DPP parameters in a
conservative manner so that a new mutational class is cre-
ated only if sufficient evidence exists to justify doing so.
Further, while other methods assume that the frequency in
the population of an allelic class not observed in the sample
is zero, the ESF provides the probability, under the infinite-
alleles model of mutation, that the next-sampled gene rep-
resents a novel allele [see (21a)].

To estimate the probability that a random individual is uni-
parental (s*), we exploit identity disequilibrium (Cockerham
and Weir 1968), the correlation in heterozygosity across loci.
This association, even among unlinked loci, reflects that all
loci within an individual share a history of inbreeding back to
the most recent random outcrossing event. Conditional on
the number of generations since this event, the genealogical
histories of unlinked loci are independent. For each diploid
individual in the sample, our method models coalescence
events at each locus back to the most recent point at which
all remaining lineages reside in distinct individuals. The ESF
provides the exact likelihood of the ancestral allele frequency
spectrum at that point, obviating the need for further gene-
alogical reconstruction. This approach permits computation-
ally efficient analysis of samples comprising large numbers of
individuals and large numbers of loci observed across the
genome.

We address the estimation of rates of inbreeding and other
evolutionary processes in populations undergoing pure her-
maphroditism, androdioecy (hermaphrodites and males), or
gynodioecy (hermaphrodites and females). Application of the
method to simulated data sets demonstrates its accuracy in
parameter estimation and in assessing uncertainty. We apply
the method to microsatellite data from the self-fertilizing
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killifish Kryptolebias marmoratus (Mackiewicz et al. 2006;
Tatarenkov et al. 2012) and the gynodioecious Hawaiian en-
demic Schiedea salicaria (Wallace et al. 2011) to illustrate the
simultaneous inference of various biologically significant as-
pects of mating systems in nature, including levels of inbreed-
ing depression, population proportions of sexual forms, and
effective numbers.

Evolutionary Model

We use the ESF (Ewens 1972) to determine likelihoods
based on a sample of diploid multilocus genotypes. By
subsampling a single gene from each locus from each dip-
loid individual, we could apply the ESF to the reduced
sample to determine a likelihood function with a single
parameter: the mutation rate, appropriately scaled to ac-
count for the acceleration of the coalescence rate caused
by inbreeding [6* (Fu 1997; Nordborg and Donnelly
1997)]. Consideration of the full sample of diploid geno-
types yields information about an additional parameter:
the probability that a random individual is uniparental
(uniparental proportion s*).

We describe the dependence of composite parameters s*
and 0* on the basic parameters of the iconic mating systems
pure hermaphroditism and gynodioecy. In addition, we de-
velop the Kryptolebias model, based on the mating system of
the killifish K. marmoratus, in which only males fertilize eggs
that are not self-fertilized by hermaphrodites (Furness et al.
2015). Although this mating system and that of the worm
Caenorhabditis elegans have been described as androdioe-
cious, we reserve this botanical term for plant systems com-
prising hermaphrodites and female steriles (males), with
pollen from both sexes capable of fertilizing seeds that are
not set by self-pollen.

Rates of coalescence and mutation

Here, we describe the structure of the coalescence process
shared by our pure hermaphroditism, Kryptolebias, and gyno-
dioecy models.

Relative rates of coalescence and mutation: We use s* to
denote the uniparental proportion (probability that a random
individual is uniparental) and 1/N* to denote the rate of
parent sharing (the probability that a pair of genes residing
in distinct individuals descend from the same individual in
the immediately preceding generation). These quantities de-
termine the coalescence rate and the scaled mutation rate of
the ESF.

A pair of lineages residing in distinct individuals derive
from a single parent (P) in the preceding generation at rate
1/N*. They descend from the same gene (immediate coales-
cence) or from distinct genes in P with equal probability. In
the latter case, P is itself either uniparental (probability s*),
implying descent once again of the lineages from a single
individual in the preceding generation, or biparental, imply-
ing descent from distinct individuals. The ancestry of a pair of



lineages residing in a single individual rapidly resolves either
to coalescence, with probability

[the classical coefficient of identity (Wright 1921; Haldane
1924)], or to residence in distinct individuals, with the com-
plement probability. The total rate of coalescence of lineages
sampled from distinct individuals corresponds to

A+f)/2_ 1
N*  N*(2-s*)

(2)

Our model assumes that coalescence and mutation occur on
comparable timescales,

lim4Nu=260

N— oo

u—0
N* 3)

lim —=E,

N—

N+r—x

for u the rate of mutation under the infinite-alleles model and
N an arbitrary quantity that goes to infinity at a rate compa-
rable to N* and 1/u. Here, E represents a measure of effective
population size (the “inbreeding effective size” of Crow and
Denniston 1988), scaled relative to a population comprising
N reproductives.

In large populations, switching of lineages between uni-
parental and biparental carriers occurs on the order of gen-
erations, virtually instantaneously relative to the rate at which
lineages residing in distinct individuals coalesce (Fu 1997;
Nordborg and Donnelly 1997). Our model assumes indepen-
dence between the processes of coalescence and mutation
and that these processes occur on a much longer timescale
than random outcrossing:

1
1—s*>u, —
s* > u, N )

Using (2), we obtain the probability that the most recent event
in the ancestry of m lineages, each residing in a distinct indi-
vidual, corresponds to mutation,

. um 0%
A T+ m—1
um + (rg)/[N*(Z—s*)}
in which
. . } . . N* N
0" = 11m2N"u(2 —s“) = lim4Nu— (1 —s"/2>

N—x N— o N
u—0 u—0

—0(1-5*/2)E, (5)

for 6 and E defined in (3). In inbred populations, the single
parameter of the ESF for an allele frequency spectrum

comprising genes sampled from separate individuals corre-
sponds to 6*.

Uniparental proportion and the rate of parent sharing: In
a purely hermaphroditic population comprising Ny, reproduc-
tives, the rate of parent sharing (1/N*) corresponds to 1/Ny
and the uniparental proportion (s*) to

ST

H=5 1% (62)

for s the fraction of uniparental offspring at conception and 7
the rate of survival of uniparental relative to biparental off-
spring. For the pure-hermaphroditism model, we assign the
arbitrary constant N in (3) as Ny, implying

_ M

E
H=N

=1. (6b)
Under the Kryptolebias model, involving reproduction by Ny,
hermaphrodites and N, males, the uniparental proportion
(s*) is identical to the case of pure hermaphroditism (Equa-
tion 6),

ST

THrlos 72

SL
Because only males fertilize eggs that are not self-fertilized by
hermaphrodites, a random gene derives from a male in the
preceding generation with probability

1—SL
5

The rate of parent sharing (1/N*) corresponds to

[(1-s1)/2]?
Nm ’

1 [(1+s1)/2)

N Ny (75)

+

which in the absence of inbreeding (s;, = 0) agrees with the
classical harmonic mean expression for effective popula-
tion size (Wright 1969). For the Kryptolebias model, we
assign the arbitrary constant N in (3) as the number of
reproductives (N, + Np,), implying a scaled rate of coales-
cence of

l:Nh + Nm _ [(1 +5L)/2]2 + [(1_51:)/2]2 (70)
E;, Ni, 1-—pm Pm '
for
Nm
Pm = m» (8a)

the proportion of males among reproductives. Relative effec-
tive number E;, € (0, 1] takes its maximum under equality
between the total number of reproductives (N}, + Ny,) and
effective number Nj,, determined by the rate of parent shar-
ing. At E; = 1, the probability that a random gene derives
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from a male parent corresponds to the proportion of males
among reproductives:

1_5L_

2 Pm- (8b)

In gynodioecious populations, in which N, hermaphrodites
and N females (male steriles) reproduce, the uniparental
proportion (s*) corresponds to

TN] hg

56 = TNES + Np(1—35) + N¢o’ (%2)

in which o represents the seed fertility of females relative to
hermaphrodites and s is the proportion of seeds of hermaph-
rodites set by self-pollen. A random gene derives from a fe-
male in the preceding generation with probability

(1-sg)F
2 b

for

Nio

F=—rr— ———
Ny(1-3) + N¢o’

(9b)

the proportion of biparental offspring that have a female
parent. The rate of parent sharing (1/N*) corresponds to

1 [1-(1-se)F/2)” . [(1—sG)F/2]2.

Ng Ny N (5c)

We assign the arbitrary constant N in (3) as (N + N¢), im-
plying a scaled rate of coalescence of

2 2
1 Ny +N;_ [1-(1-sc)F/2] N [(1-sg)F/2] od)
Eg Ng 1—ps ps

for

N¢

= , 10a
Ny, + N¢ ( )

J2

the proportion of females among reproductives. As for the
Kryptolebias model, Eg € (0, 1] achieves its maximum only
if the proportion of females among reproductives equals
the probability that a random gene derives from a female
parent:

(1 - SG)F

5 (10b)

= Pf¢-

Likelihood

We here address the probability of a sample of diploid multi-
locus genotypes.

Genealogical histories: For a sample comprising up to two
alleles at each of L autosomal loci in n diploid individuals, we
represent the observed genotypes by
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X={X;,Xs,..., X}, (€hD)

in which X; denotes the set of genotypes observed at locus [
among the n individuals

X; = {Xn Xp, .., X}, (12)

with
X = (X1, Xi2)

the genotype at locus of individual k, which bears alleles Xj;;
and Xlk2~

To facilitate accounting for the shared recent history of
genes borne by an individual in sample, we introduce latent
variables

T={T1,T,...,Tn}, (13)

for T, denoting the number of consecutive generations of
selfing in the immediate ancestry of the kth individual, and

I={In},

for I indicating whether the lineages borne by the kth indi-
vidual at locus [ coalesce within the most recent T genera-
tions. Independent of other individuals, the number of
consecutive generations of inbreeding in the ancestry of the
kth individual is geometrically distributed,

14)

Ty ~ Geometric (s*), (15)
with T, = 0 signifying that individual k is the product of
random outcrossing. Irrespective of whether 0, 1, or 2 of
the genes at locus [ in individual k are observed, Ij; indicates
whether the two genes at that locus in individual k coalesce
during the Ty consecutive generations of inbreeding in its
immediate ancestry:

0
IU<={1

Because the pair of lineages at any locus coalesce with prob-
ability 1/2 in each generation of selfing,

if the two genes do not coalesce
if the two genes coalesce.

Pr(ly =0) = 1 1-Pr(lx =1).

= (16)

Figure 1 depicts the recent genealogical history at a locus [ in
five individuals. Individuals 2 and 5 are products of random
outcrossing (T, = Ts = 0), while the others derive from some
positive number of consecutive generations of selfing in their
immediate ancestry (T, = 2, T3 = 3, T4 = 1). Both individuals
1 and 3 are homozygotes (a«), with the lineages of individual
3 but not 1 coalescing more recently than the most recent
outcrossing event (I;; = 0,I;3 = 1). As individual 2 is hetero-
zygous (af3), its lineages necessarily remain distinct since the
most recent outcrossing event (I;; = 0). One gene in each of
individuals 4 and 5 is unobserved (*), with the unobserved



=2
I“=U

T, =0
Ip =0

T3:3
Iiz=1

T, =1
hs=1

T5:0
I =0

Figure 1 Following the history of the sample (X)) backward in time until
all ancestors of sampled genes reside in different individuals (Y;). Ovals
represent individuals and circles represent genes. Blue lines indicate the
parents of individuals, while red lines represent the ancestry of genes.
Black circles represent sampled genes for which the allelic class is ob-
served (Greek letters) and their ancestral lineages. White circles represent
genes in the sample with unobserved allelic class (*). Gray circles repre-
sent other genes carried by ancestors of the sampled individuals. The
relationship between the observed sample X; and the ancestral sample
Y, is determined by the intervening coalescence events I;. T indicates the
number of consecutive generations of selfing for each sampled individual.

lineage in individual 4 but not 5 coalescing more recently than
the most recent outcrossing event (I;; = 1,;5 = 0).

In addition to the observed sample of diploid individuals,
we consider the state of the sampled lineages at the most
recent generation in which an outcrossing event has occurred
in the ancestry of all n individuals. This point in the history of
the sample occurs T generations into the past, for

T=1 —s—mkaka.

In Figure 1, for example, T = 4, reflecting the most recent
outcrossing event in the ancestry of individual 3. As all
remaining lineages reside in distinct individuals at that point,
the ESF provides the probability of the allele frequency spec-
trum at this point.

We represent the ordered list of allelic states of the lineages
at T generations into the past by

Y={Y1,Yy,...,Y1}, a7

for Y; a list of ancestral genes in the same order as their
descendants in X;. Each gene in Y; is the ancestor of either
1 or 2 genes at locus [ from a particular individual in X;
(Equation 12), depending on whether the lineages held by
that individual coalesce during the consecutive generations
of inbreeding in its immediate ancestry. We represent the
number of genes in Y; by m; (n <m; < 2n). In Figure 1, for
example, X; contains 10 genes in five individuals, but Y; con-
tains only 8 genes, with Y}; the ancestor of only the first allele
of X;; and Y5 the ancestor of both alleles of X;5.

We assume (Equation 4) that the initial phase of consec-
utive generations of selfing is sufficiently short to ensure a
negligible probability of mutation in any lineage at any locus
and a negligible probability of coalescence between lineages

held by distinct individuals more recently than 7. In addition
to constraints on relative rates within loci (Equation 4), this
assumption may entail small numbers of observed loci rela-
tive to the population size (n < N *). Under these assump-
tions, the coalescence history I (Equation 14) completely
determines the correspondence between genetic lineages in
X (Equation 11) and Y (Equation 17).

Computing the likelihood: In principle, the likelihood of the
observed data can be computed from the augmented likeli-
hood by summation,

Pr(X|®%s*) =Y > Pr(X,LT|0%s*),
I T

(18)

for

0 = {03,65,....6; }. (19)
the list of scaled, locus-specific mutation rates, s* the popula-
tion-wide uniparental proportion for the reproductive system
under consideration (e.g., Equation 6 for the pure hermaphro-
ditism model), and T (Equation 13) and I (Equation 14) the
lists of latent variables representing the time since the most
recent outcrossing event and whether the two lineages borne
by a sampled individual coalesce during this period. Here we
follow a common abuse of notation in using Pr(X) to denote
Pr(X = x) for random variable X and realized value x. Sum-
mation (18) is computationally expensive: the number of con-
secutive generations of inbreeding in the immediate ancestry
of an individual (T}) has no upper limit (compare David et al.
2007) and the number of combinations of coalescence states
(Iix) across the L loci and n individuals increases exponentially
(2I) with the total number of assignments. We perform Mar-
kov chain Monte Carlo (MCMC) to avoid both these sums.

To calculate the augmented likelihood, we begin by ap-
plying Bayes’ rule:

Pr(X,I, T|®*,s*) = Pr(X,I|T, ©*,s*)Pr(T|®*,s*).

Because the times since the most recent outcrossing event T
depend only on the uniparental proportion s*, through (15),
and not on the rates of mutation @*,

z:

Pr(T|®*,s*) = | | Pr(Tk|s*).

k=1

Even though our model assumes the absence of physical
linkage among any of the loci, the genetic data X and coales-
cence events I are not independent across loci because they
depend on the times since the most recent outcrossing event
T. Given T, however, the genetic data and coalescence events
are independent across loci:

[

Pr(X,I|T, 0% s*) = [ [ Pr(X, LT, 6] ,5*).
=1

Bayesian Estimation of Inbreeding 1175



Further,

Pr(X;, L|T,6,,s*) = Pr(X;|I;, T, 6, ,s*)-Pr(I|T, 6, ,s*)
n

= Pr(X[L, 6, ,s%) ‘kH Pr(Iy|T).
=1

This expression reflects that the times to the most recent
outcrossing event T affect the observed genotypes X; only
through the coalescence states I; and that the coalescence
states I; depend only on the times to the most recent out-
crossing event T, through (16).

To compute Pr(X|I;, 6, ,s*), we incorporate latent variable
Y; (Equation 17), describing the states of lineages at the most
recent point at which all occur in distinct individuals (Figure 1),

Pr(xl|ll,el*,s*) =" Pr(X;, YilL. 6], 5%)
Y:

- Zpr(x1|Yl,1b0;,s*)Pr(Yl|Il, 0;,s*)
Y,

= Pr(X|Y;, L) Pr(Y|L;,6)),
Y,
(20a)

reflecting that the coalescence states I; establish the corre-
spondence between the spectrum of genotypes in X; and the
spectrum of alleles in Y; and that the distribution of Y;, given
by the ESF, depends on the uniparental proportion s* only
through the scaled mutation rate 01 (Equation 5).

Given the sampled genotypes X; and coalescence states I;,
at most one ordered list of alleles Y; produces positive
Pr(X;|Y;, I;) in (20a). Coalescence of the lineages at locus [
in any heterozygous individual [e.g., Xjx = (B, a) with I = 1
in Figure 1] implies

Pr(X,[Y,I;) =0

for all Y;. Any nonzero Pr(X;|Y;, I;) precludes coalescence in
any heterozygous individual and Y; must specify the observed
alleles of X; in the order of observation, with either 1 (I, = 1) or
2 (I = 0) instances of the allele for any homozygous individual
[e.g., Xix = (e, a)]. For all cases with nonzero Pr(X;|Y;, I)),

Pr(X|Y;, L)) = 1.
Accordingly, expression (20a) reduces to

Pr(X|1, 0;,s*) = >

Yi:Pr(X|Y;,I)#0

Pr(Y,|L, 6;), (20b)

asum with either O or 1 terms. Because all genesinY; reside in
distinct individuals, we obtain Pr(Y;|I;, 6;’) from the Ewens
sampling formula for a sample, of size

n
m; = 2n — th?
k=1

ordered in the sequence in which the genes are observed.
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To determine Pr(Y;|I;, 01) in (20b), we use a fundamental
property of the ESF (Ewens 1972; Karlin and McGregor
1972): the probability that the next-sampled (ith) gene rep-
resents a novel allele corresponds to

07’:

- 21
i—1+6° (21a)

i
for 6* defined in (5), and the probability that it represents an
additional copy of already-observed allele j is

(1-m) b (21b)
i
for i; the number of replicates of allele j in the sample at size
(i—1) O =i—1). Appendix A presents a first-principles
derivation of (21a). Expressions (21) imply that for Y; the list
of alleles at locus [ in order of observance,

(6)TT, (my — 1)!
[ E-1+6)

in which K; denotes the total number of distinct allelic classes,
my; the number of replicates of the jth allele in the sample,
and m; = ) ;my; the number of lineages remaining at time T
(Figure 1).

Pr(Y,|1,6;) = (22)

Missing data: Our method allows the allelic class of one or
both genes at each locus to be missing. In Figure 1, for ex-
ample, the genotype of individual 4 is X4 = (B, *), indicating
that the allelic class of the first gene is observed to be 3, but
that of the second gene is unknown.

A missing allelic specification in the sample of genotypes X;
leads to a missing specification for the corresponding gene in
Y; unless the genetic lineage coalesces, in the interval be-
tween X; and Y;, with a lineage ancestral to a gene for which
the allelic type was observed. Figure 1 illustrates such a co-
alescence event in the case of individual 4. In contrast, the
lineages ancestral to the genes carried by individual 5 fail to
coalesce more recently than their separation into distinct in-
dividuals, giving rise to a missing specification in Y;.

The probability of Y; can be computed by simply summing
over all possible values for each missing specification. Equiv-
alently, those elements may simply be dropped from Y; before
computing the probability via the ESF, the procedure imple-
mented in our method.

Bayesian Inference Framework
Prior on mutation rates

Ewens (1972) showed for the panmictic case that the number
of distinct allelic classes observed at a locus [e.g., K; in (22)]
provides a sufficient statistic for the estimation of the scaled
mutation rate. As each locus [ provides relatively little infor-
mation about the scaled mutation rate 0; (Equation 5), we
make the assumption that mutation rates across loci cluster in
a finite number of groups. Because we do not know a priori



the group assignment of loci or even the number of distinct
rate classes among the observed loci, we use the DPP to
estimate simultaneously the number of groups, the value of
0* for each group, and the assignment of loci to groups.

The Dirichlet process comprises a base distribution, which
here represents the distribution of the scaled mutation rate 6*
across groups, and a concentration parameter «, which con-
trols the probability that each successive locus belongs to
a new group. In assigning 0.1 to «, which implies a low
expected number of rate classes, we adopt a conservative
approach under which a new rate class is created only if
the data provide sufficient support for doing so. Further, we
place a gamma distribution [I'(a =0.25,8 =2)] on the
mean scaled mutation rate for each group. As this prior has
a high variance relative to the mean (0.5), it is relatively
uninformative about 6*.

Model-specific parameters

Derivations presented in the preceding section indicate that
the probability of a sample of diploid genotypes under the
infinite-alleles model depends on only the uniparental pro-
portion s* and the scaled mutation rates @* (Equation 19)
across loci. These composite parameters are determined by
the set of basic demographic parameters W associated with
each model of reproduction under consideration. As the ge-
notypic data provide equal support to any combination of
basic parameters that implies the same values of s* and ©*,
the full set of basic parameters for any model is in general
nonidentifiable, using the observed genotype frequency spec-
trum alone.

Even so, our MCMC implementation updates the basic
parameters directly, with likelihoods determined from the
implied values of s* and ®*. This feature facilitates the in-
corporation of information in addition to the genotypic data
that can contribute to the estimation of the basic parameters
under a particular model or assessment of alternative models.
We have

Pr(X,®* W) = Pr(X|®*, ¥)-Pr(@*) -Pr(W¥

( ) = PrEX|®"‘,s"‘)(ilf)()-Pr)((a"‘g~Pr)(\lf), 23
for X the genotypic data and s*(W) the uniparental propor-
tion determined by W for the model under consideration. To
determine the marginal distribution of 6; (Equation 3) for
each locus [, we use (5), incorporating the distributions of
s*(W) and E(W), the scaling factor defined in (3):

YTE(-s*)2)
For the pure hermaphroditism model (Equation 6), ¥ = {5, 7},
for s the proportion of conceptions through selfing and 7 the
viability of uniparental individuals relative to biparental indi-
viduals. The default priors for s and 7 are uniform:
§ ~ Uniform(0,1)

7 ~ Uniform(0,1). 24

0.15 - variable
— bias
-
S
e — rms
mO 0
©
g type
§ 0.05 — mode
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Figure 2 Errors for the full likelihood (posterior mode), RMES, and
Fis-based (Equation 27) methods for a large simulated sample (n = 70
individuals, L = 32 loci). In the key, rms indicates the root-mean-square
error and bias the average deviation. Averages are taken across simulated
data sets at each true value of s*.

For the Kryptolebias model (Equation 7), ¥ = {5, 7,pm }, with
uniform priors as the default:

§ ~ Uniform(0,1)

7 ~ Uniform(0, 1)

Pm ~ Uniform(0, 1).

(25)

For the gynodioecy model (Equation 9), ¥ = {5, 7, ps, o'}, in-
cluding s the proportion of egg cells produced by hermaph-
rodites fertilized by selfing, ps (Equation 10a) the proportion
of females (male steriles) among reproductives, and o the
fertility of females relative to hermaphrodites. The default
priors correspond to

S ~ Uniform

0,1
0,1
ps ~ Uniform(0,1 (26)

)

(
7 ~ Uniform(
(
(

)
)
)
1 .

= ~ Uniform(0,1).
ag

Assessment of Accuracy and Coverage Using
Simulated Data

We developed a forward-in-time simulator (https://github.
com/skumagai/selfingsim) that tracks multiple neutral loci
with locus-specific scaled mutation rates (@) in a population
comprising N = 10* reproducing diploid hermaphrodites of
which a proportion s* are of uniparental origin. We used this
simulator to generate data under two sampling regimes:
large (L = 32 loci in each of n = 70 diploid individuals)
and small (L = 6 loci in each of n = 10 diploid individuals).
We applied our Bayesian method and RMES (David et al.
2007) to simulated data sets. A description of the procedures
used to assess the accuracy and coverage properties of the
three methods is included in Supporting Information, File S1.

In addition, we determine the uniparental proportion (s*)
inferred from the departure from Hardy-Weinberg expecta-
tion (Fis) (Wright 1969) alone. Our Fig-based estimate entails
setting the observed value of Fis equal to its classical
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Figure 3 Fraction of loci and data sets that are ignored by RMES.

expectation s*/(2 —s*) (Wright 1921; Haldane 1924) and
solving for s* :

_ _2Fs
1+ Fis

S‘.':

(27)

In accommodating multiple loci, this estimate incorporates a
multilocus estimate for 1515 (Appendix B) but, unlike those
generated by our Bayesian method and RMES, does not use
identity disequilibrium across loci within individuals to infer
the number of generations since the most recent outcross
event in their ancestry. As our primary purpose in examining
the Fis-based estimate (Equation 27) is to provide a baseline
for the results of those likelihood-based methods, we have
not attempted to develop an index of error or uncertainty
for it.

Accuracy

To assess relative accuracy of estimates of the uniparental
proportion s*, we determine the bias and root-mean-square
error of the three methods by averaging over 10* data sets
(102 independent samples from each of 10% independent
simulations for each assigned s*). In contrast with the point
estimates of s* produced by RMES, our Bayesian method
generates a posterior distribution. To facilitate comparison,
we reduce our estimate to a single value, the mode of the
posterior distribution of s*, with the caveat that the median
and mean may show different qualitative behavior (see
File S1).

Figure 2 indicates that our method, RMES, and even the
Fis-based estimate (Equation 27) provide estimates of the
uniparental proportion s* that show little bias over most of
its range. RMES differs from the other two methods in show-
ing a steep rise in both bias and root-mean-square (RMS)
error for high values of s*, with the change point occurring
at lower values of the uniparental proportion s* for the small-
sample regime (n = 10, L = 6). Alikely contributing factor to
the increased error shown by RMES under high values of s* is
its default assumption that the number of generations in the
ancestry of any individual does not exceed 20. Violations of
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Figure 4 Frequentist coverage at each level of s* for 95% intervals from
RMES and the method based on the full likelihood under the large sam-
pling regime (n = 70, L = 32). RMES intervals are 95% confidence inter-
vals computed via profile likelihood. Full-likelihood intervals are 95%
highest posterior density Bayesian credible intervals.

this assumption arise more often under high values of s*,
possibly promoting underestimation of the uniparental pro-
portion. Further, RMES discards data at loci at which no het-
erozygotes are observed and terminates analysis altogether if
the number of loci drops below 2. RMES treats all loci with
zero heterozygosity (Equation 1) as uninformative, even if
multiple alleles are observed. In contrast, our full-likelihood
method uses data from all loci, with polymorphic loci in the
absence of heterozygotes providing strong evidence of high
rates of selfing (rather than low rates of mutation). Under the
large sampling regime (n = 70, L = 32), RMES discards on
average 50% of the loci for true s* values exceeding 0.94,
with < 10% of data sets unanalyzable (<2 informative loci)
even at s* = 0.99 (Figure 3). Under the n =10, L = 6 re-
gime, RMES discards on average 50% of loci for true s* values
exceeding 0.85, with ~50% of data sets unanalyzable under
s*=0.94.

Coverage

We determine the fraction of data sets for which the confi-
dence interval (C.I.) generated by RMES and the Bayesian
credible interval (BCI) generated by our method contain the
true value of the uniparental proportion s*. This measure of
coverage is a frequentist notion, as it treats each true value of
s* separately. A 95% C.I. should contain the truth 95% of the
time for each specific value of s*. However, a 95% BCI is not
expected to have 95% coverage at each value of s*, but rather
95% coverage averaged over values of s* sampled from the
prior. Of the various ways to determine a BCI for a given
posterior distribution, we choose to report the highest poste-
rior density BCI (rather than the central BCI, for example).
Figure 4 indicates that coverage of the 95% C.1.’s produced
by RMES is consistently <95% across all true s* values under
the large sampling regime (n = 70, L = 32). Coverage ap-
pears to decline as s* increases, dropping from 86% for
s* = 0.1 to 64% for s* = 0.99. In contrast, the 95% BCIs have
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Figure 5 Exact distribution of selfing times under s* = 0.5 compared
to the posterior distribution averaged across individuals and across
data sets.

slightly >95% frequentist coverage for each value of s*, ex-
cept for s* values very close to the extremes (0 and 1). Under
very high rates of inbreeding (s* ~ 1), an assumption (Equa-
tion 4) of our underlying model (random outcrossing occurs
on a timescale much shorter than the timescales of mutation
and coalescence) is likely violated. We observed similar be-
havior under nominal coverage levels ranging from 0.5 to
0.99 (File S1).

Number of consecutive generations of selfing

To check the accuracy of our reconstructed generations of
selfing, we examine the posterior distributions of selfing times
{Tx} for s*=0.5 under the large sampling regime
(n =70, L = 32). We average posterior distributions for self-
ing times across 100 simulated data sets and across individ-
uals k = 1...70 within each simulated data set. We then
compare these averages based on the simulated data with
the exact distribution of selfing times across individuals (Fig-
ure 5). The pooled posterior distribution closely matches the
exact distribution. This simple check suggests that our
method correctly infers the true posterior distribution of self-
ing times for each sampled individual.

Analysis of Microsatellite Data from Natural Populations

Toillustrate the features of our method, we apply it to existing
microsatellite data sets from natural populations of a self-
fertilizing vertebrate and a plant. We note that the infinite-
alleles model of mutation may fail to capture features of
mutation processes of microsatellites.

Self-fertilizing vertebrate

Our analysis of data from the killifish K. marmoratus (Mackiewicz
et al. 2006; Tatarenkov et al. 2012) incorporates genotypes
from 32 microsatellite loci as well as information on the ob-
served fraction of males. Our method jointly estimates the
proportion of males in the population (py,) together with
rates of locus-specific mutation (6*) and the uniparental pro-
portion (s..). We apply the method to two populations, which
show highly divergent rates of inbreeding.
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Figure 6 Posterior distribution of the uniparental proportion s, for the BP
population. The median is indicated by a black circle, with a maroon bar
for the 95% BCl and a slate-colored bar for the 50% BClI.

Parameter estimation: Our analysis uses an expanded-
likelihood expression, which directly incorporates the obser-
vation of ny, males among ny, zZygotes,

Pr(X, LT, nm|s*, ©%, pm, Neora)
= Pr(X, 1, T|s*, ©*) - Pr(nm|pm, Mrotal )

in which

Nm ~ Binomial (a1, Pm), (28)
for pm (Equation 8a) the fraction of males among reproduc-
tives, under the assumption that the sex ratio among ob-
served individuals corresponds to the sex ratio among
reproductives. The likelihood expression reflects that s* and
O~ are sufficient to account for X, I, and T, which are inde-
pendent of ny,, Nyotal, and pr,-

Inthe absence of directinformation regarding the existence
or intensity of inbreeding depression, we impose the con-
straint 7= 1, which permits estimation of the uniparental
proportion s;, under a uniform prior:

s* ~ Uniform(0, 1).

Low outcrossing rate: We applied our method to the BP data
set described by Tatarenkov et al. (2012). This data set com-
prises a total of 70 individuals, collected in 2007, 2010, and
2011 from the Big Pine location in the Florida Keys.

Tatarenkov et al. (2012) report 2 males among the 201
individuals collected from various locations in the Florida
Keys during this period, consistent with other estimates of
~1% (e.g., Turner et al. 1992). Drawing on the long-term
experience of the Tatarenkov-Avise laboratory, we assume
observation of ny, = 20 males of n, = 2000 individuals in
(28). Our purpose here is to illustrate the application of the
method, with researchers using the software for primary re-
search encouraged to substitute actual numbers. Our analysis
for the BP population generates a posterior distribution for
the fraction of males in the population (pn,) with a posterior
median of 0.01 and a 95% BCI of (0.0062, 0.015).
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Figure 7 Empirical distribution of number of generations since the most recent outcross event (T) across individuals for the BP population of K.
marmoratus, averaged across posterior samples. The right panel is constructed by zooming in on the panel on the left. “Expected” probabilities
represent the proportion of individuals with the indicated number of selfing generations expected under the median uniparental proportion sg.
“Inferred” probabilities represent proportions inferred across individuals in the sample. The first inferred bar with positive probability corresponds to

T=1

Our estimates of mutation rates (0*) indicate substantial
variation among loci, with the median ranging over an order
of magnitude (~0.5-5.0) (Figure S8). The distribution of
mutation rates across loci appears to be multimodal, with
many loci having a relatively low rate and some having larger
rates.

Figure 6 shows the posterior distribution of uniparental
proportion s., with a median of 0.95 and a 95% BCI of
(0.93, 0.97). This estimate appears to be somewhat lower
than the Fis-based estimate (Equation 27) of 0.97 and
slightly higher than the RMES estimate of 0.94, which has
a 95% C.I. of (0.91, 0.96). We note that RMES discarded
from the analysis data from the 9 loci (of 32) that showed no
heterozygosity, even though 7 of the 9 were polymorphic in
the sample.

Our method estimates the latent variables {T1, Ty, ..., T}
(Equation 13), representing the number of generations since
the most recent outcross event in the ancestry of each indi-
vidual (Figure S6). Figure 7 shows the empirical distribution
of the time since outcrossing across individuals, averaged
over posterior uncertainty, indicating a complete absence
of biparental individuals (0 generations of selfing). Because
we expect that a sample of size 70 would include at least
some biparental individuals under the inferred uniparental
proportion (s;, ~ 0.95), this finding suggests that any bipa-
rental individuals that may exist in the sample show lower
heterozygosity than expected from the observed level of ge-
netic variation. This deficiency suggests that an extended
model that accommodates biparental inbreeding or popula-
tion subdivision may account for the data better than the
present model, which allows only selfing and random
outcrossing.

Higher outcrossing rate: We apply the three methods to the
sample collected in 2005 from Twin Cays, Belize (TCO05)
(Mackiewicz et al. 2006). Compared to the BP data set, this
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TC data set shows considerably higher incidence of males and
levels of polymorphism and heterozygosity.

We incorporate the observation of 19 males among the 112
individuals collected from Belize in 2005 (Mackiewicz et al.
2006) into the likelihood (see Equation 28). Our estimate
of the population fraction of males among reproductives
(pm) has a posterior median of 0.17 with a 95% BCI of
(0.11, 0.25).

Figure S9 indicates that the posterior medians of the locus-
specific mutation rates span a wide range (~0.5-23). Two
loci appear to exhibit mutation rates substantially higher
than those of other loci, both of which appear to have high
rates in the BP population as well (Figure S8). The rank
orders of median mutation rates estimated across loci from
the two data sets show only diffuse correspondence (Figure
S10).

All three methods confirm the inference of Mackiewicz
et al. (2006) of much lower inbreeding in the TC population
relative to the BP population. Our posterior distribution of
uniparental proportion s; has a median and 95% BCI of
0.35 (0.25, 0.45) (Figure 8). This median again lies between
the Fig-based estimate (Equation 27) of 0.39 and the RMES
estimate of 0.33, which has a 95% C.I. of (0.30, 0.36). In this
case, RMES excluded from the analysis only a single locus,
which was monomorphic in the sample.

Figure 9 shows the inferred distribution of the number
of generations since the most recent outcross event (T)
across individuals, averaged over posterior uncertainty. In
contrast to the BP population, the distribution of time since
the most recent outcross event in the TC population ap-
pears to conform to the distribution expected under the
inferred uniparental proportion (s;), including a high frac-
tion of biparental individuals (Tx = 0). Figure S7 presents
the posterior distribution of the number of consecutive
generations of selfing in the immediate ancestry of each
individual.
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Gynodioecious plant

We next examine data from Schiedea salicaria, a gynodioe-
cious member of the carnation family endemic to the Hawai-
ian islands. We analyzed genotypes at nine microsatellite loci
from 25 S. salicaria individuals collected from west Maui and
identified by Wallace et al. (2011) as nonhybrids. We use this
analysis to illustrate the incorporation of data in addition to
the genotypic scores.

Parameter estimation: Campbell et al. (2010) reported a
12% proportion of females (nf =27 females among
Neoral = 221 individuals). As for Kryptolebias (Equation 28),
we model this information by

ng ~ Binomial (g, P ), (29)

obtaining estimates from an extended-likelihood function
corresponding to the product of Pr(n¢|nwm, pr) and the likeli-
hood of the genetic data.

Our analysis assumes equal seed set by females and her-
maphrodites (o = 1), consistent with empirical results (Weller
and Sakai 2005). In addition, we use results of experimental
studies of inbreeding depression to develop an informative
prior distribution for 7,

T ~ Beta(2, 8), (30)
the mean of which (0.2) is consistent with the results of
greenhouse experiments reported by Sakai et al. (1989).
We retain a uniform prior for the proportion of seeds of her-
maphrodites set by self-pollen (5).

Results: Table 1 presents posterior medians and 95% BClIs for
the proportion of uniparentals among reproductives (sg), the
proportion of seeds of hermaphrodites set by self-pollen (s),
the viability of uniparental relative to biparental offspring
(), the proportion of females among reproductives (ps),
and the probability that a random gene derives from a female
parent [(1 —sg)F/2]. Our full analysis incorporates genetic
data (G), observations on the sex ratio (F), and an informa-
tive prior (I) for the relative viability of uniparentals (7)
based on results of manipulative experiments (Sakai et al.
1989). Each row represents an analysis that includes (Y) or
excludes (N) information of type G, F, or I. Comparison of the
YYY and NYY rows indicates that inclusion of the genetic data
more than doubles the posterior median of s* (from 0.112 to
0.247) and shrinks the credible interval. Comparison of the
YYY and YYN rows indicates that information about the level
of inbreeding depression increases the posterior median of
the collective contribution of females to the gene pool
[(1 —sg)F/21, bringing it closer to the proportion of females
(ps), with equality (10b) implying maximization of relative
effective number Eg (Equation 9d).

Analysis in the absence of data (NNN, bottom row of
Table 1) provides a prior estimate for the proportion of uni-
parentals (sg) of 0.0844 (0.000797, 0.643). While the propor-
tion of seeds set by self-pollen (s) and the relative viability of
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Figure 8 Posterior distribution of the uniparental proportion s, for the TC
population. Also shown are the 95% BCl (maroon), 50% BCl (slate color),
and median (black circle).

uniparental offspring () have uniform priors, the induced prior
on composite parameter sg departs from uniform on (0, 1).

In the absence of information about s and 7, we recom-
mend that researchers use the pure hermaphrodite model
(Equation 6) with 7 assigned as unity so that sg will be esti-
mated under a uniform prior. We adopt this approach to
compare our method to RMES, which uses only the genotype
counts. Our estimate of the uniparental proportion sg [me-
dian 0.287, 95% BCI (0.110, 0.478)] is similar to the esti-
mate using all information (YYY in Table 1) and in line with
the Fis-based estimate (Equation 27) of sg = 0.33. In con-
trast, RMES gave an estimate of sgc = 0 [95% CI (0, 0.15)],
even though it excluded none of the loci. Application of our
gynodioecy model to the genotypic counts with or without
additional information (YYY, YYN, YNY, or YNN in Table 1)
produces estimates of the selfing rate for which the 95% BCIs
exclude zero. This unexpected estimate of RMES stands in
opposition to previous work supporting the presence of self-
ing in this population of S. salicaria (Wallace et al. 2011).

Figure 10 presents the inferred distribution across individ-
uals of the number of generations since the most recent
outcross event T (Equation 15), averaged over posterior un-
certainty, using all data (YYY). In contrast with the analysis
of the K. marmoratus BP population (Figure 7), the distribu-
tion appears to be consistent with the inferred uniparental
proportion sg.

We include additional results obtained using all data (YYY)
in File S1. Figure S11 presents posterior distributions of all
basic parameters of the gynodioecy model (Equation 9). Un-
like the K. marmoratus data sets, the S. salicaria data set does
not appear to provide substantial evidence for large differ-
ences in locus-specific mutation rates across loci (Figure
S13). Figure S12 presents the posterior distribution of the
number of consecutive generations of selfing in the immedi-
ate ancestry of each individual.

Discussion

We introduce a model-based Bayesian method for the in-
ference of the rate of self-fertilization and other aspects of
mating systems. Designed to accommodate arbitrary numbers
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Figure 9 Empirical distribution of selfing times T across individuals, for K.
marmoratus (population TC). The histogram is averaged across posterior
samples.

of loci, it uses the ESF to determine likelihoods in a compu-
tationally efficient manner from frequency spectra of geno-
types observed at multiple unlinked sites throughout the
genome. Our MCMC sampler explicitly incorporates the full
set of parameters for each mating system considered (pure
hermaphroditism, Kryptolebias, and gynodioecy). This con-
struction permits incorporation of information in addition to
genetic data, affording insight into components of the evolu-
tionary process beyond the estimation of selfing rates alone.

Components of inference

Locus-specific mutation rates: Our method permits variation
among loci in the rate of mutation (Equation 3) by using the
DPP to determine the number of rate classes, the mutation rate
of each class, and the class to which each locus belongs. Our
DPP adopts a conservative approach, creating a new rate class
onlyifthe data demand it. Under the DPP, loci belonging to the
same group have identical mutation rates. This approach
might be generalized, for example, by using a Dirichlet process
mixture to allow variation in mutation rate among loci within
a rate class.

Joint inference of mutation and inbreeding rates: For the
infinite-alleles model of mutation, the ESF (Ewens 1972)
provides the probability of any allele frequency spectrum
(AFS) observed at a locus in a sample derived from a panmic-
tic population. Under partial self-fertilization, the ESF pro-
vides the probability of an AFS observed among genes, each
sampled from a distinct individual. For such genic (as op-
posed to genotypic) samples, the coalescence process under
inbreeding is identical to the standard coalescence process,
but with a rescaling of time (Fu 1997; Nordborg and Don-
nelly 1997). Accordingly, genic samples may serve as the
basis for the estimation of the single parameter of the ESF,
the scaled mutation rate 6* (Equation 5), but not the rate of
inbreeding apart from the scaled mutation rate.

Our method uses the information in a genotypic sample,
the genotype frequency spectrum, to infer both the unipa-
rental proportion s* and the scaled mutation rate #*. Our
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Figure 10 Empirical distribution of selfing times T across individuals, for
S. salicaria. The histogram is averaged across posterior samples.

sampler reconstructs the genealogical history of a sample of
diploid genotypes only to the point of the most recent ran-
dom-outcross event of each individual, with the number of
consecutive generations of inbreeding in the immediate an-
cestry of a given individual (T for individual k) correspond-
ing to a latent variable in our Bayesian inference framework.
Invocation of the ESF beyond the point at which all lineages
reside in separate individuals obviates the necessity of further
genealogical reconstruction. As a consequence, our method
may be better able to accommodate genome-scale magni-
tudes of observed loci (L).

Identity disequilibrium (Cockerham and Weir 1968), the
correlation in heterozygosity across loci within individuals,
reflects that all loci within an individual experience the most
recent random-outcross event at the same time, irrespective
of physical linkage. The heterozygosity profile of individual k
provides information about T; (Equation 15), which in turn
reflects the uniparental proportion s*. Observation of multi-
ple individuals provides a basis for inference of both the uni-
parental proportion s* and the scaled mutation rate 6*.

Estimation of the selfing rate

Accuracy and uncertainty: Enjalbert and David (2000) and
David et al. (2007) base estimates of selfing rate on the dis-
tribution of numbers of heterozygous loci. Both methods strip
genotype information from the data, distinguishing between
only homozygotes and heterozygotes, irrespective of the al-
leles involved. Loci lacking heterozygotes altogether (even if
polymorphic) are removed from the analysis as uninforma-
tive about the magnitude of departure from Hardy-Weinberg
proportions (Figure 3). As the observation of polymorphic
loci with low heterozygosity provides strong evidence of in-
breeding, exclusion of such loci by RMES (David et al. 2007)
may contribute to its loss of accuracy for high rates of selfing
(Figure 2).

Our method derives information from all loci. Like most
coalescence-based models, it accounts for the level of varia-
tion as well as the way in which variation is partitioned within
the sample. Even a locus monomorphic within a sample
provides information about the age of the most recent



Table 1 Parameter estimates for different amounts of data

SG

S

T

P

(1—s6)F/2

Z2Z2<XK<Z2Z2Z<<X|m

G
Y Y
Y N
Y Y
Y N
N Y
N N
N Y
N N

0.247 (0.0791,0.444)
0.267 (0.0951,0.469)
0.213 (0.045,0.402)
0.243 (0.0608,0.429)
0.112 (0.0026,0.588)
(
(

0.231 (0.00391,0.776)

0.0376 (0.00,0.318)
0.0844 (0.000, 0.643)

0.695 (0.299,0.971)
0.497 (0.187,0.93)
0.742 (0.379,1.00)
0.628 (0.268,0.999)
0.496 (0.0252,0.974)
0.504 (0.025,0.973)
0.492 (0.0122,0.957)
0.497 (0.0244,0.975)

0.215 (0.0597,0.529)
0.507 (0.082,0.973)
0.252 (0.0488,0.529)
0.611 (0.167, 1.00)
0.183 (0.0277,0.513)
0.493 (0.0257,0.975)
(

0.0.185 (0.00917,0.462)

0.494 (0.0252,0.975)

0.125 (0.0849,0.173)
0.125 (0.0851,0.174)
0.244 (0.00,0.613)
0.354 (0.00,0.072)
0.125 (0.0847,0.173)
0.125 (0.0847,0.173)
0.483 (0.00,0.946)
0.479 (0.0245,0.972)

0.118 (0.054,0.258)
0.0808 (0.0398,0.191)
0.218 (0.0,0.403)
0.223 (0.00,0.394)
0.0956 (0.0427,0.218)
0.0778 (0.0392,0.172)
0.314 (0.0361,0.500)
0.289 (0.0313,0.5)

Estimates are given by a posterior median and a 95% BCI. Each row represents an analysis that includes (Y) or excludes (N) information, including genotype frequency data

(G), counts of females (F), and replacement of the Uniform(0, 1) prior on 7 by an informative prior (I).

common ancestor of the observed sequences, a property that
was not widely appreciated prior to analyses of the absence of
variation in a sample of human Y chromosomes (Dorit et al.
1995; Fu and Li 1996).

Both RMES and our method invoke independence of ge-
nealogical histories of unlinked loci, conditional on the time
since the most recent outcrossing event. RMES seeks to
approximate the likelihood by summing over the distribution
of time since the most recent outcross event, but truncates the
infinite sum at 20 generations. The increased error exhibited
by RMES under high rates of inbreeding may reflect that the
likelihood has a substantial mass beyond the truncation point
in such cases. Our method explicitly estimates the latent
variable of time since the most recent outcross for each indi-
vidual (Equation 13). This quantity ranges over the nonneg-
ative integers, but values assigned to individuals are explored
by the MCMC according to their effects on the likelihood.

Estimates of the proportion of uniparental individuals s*
(Equation 4) produced by our method appear to show greater
accuracy than RMES over much of the parameter range (Fig-
ure 2). Even so, we note that all methods considered here
provide fair estimates of the selfing rate, including the
Fis-based method (Equation 27) that uses only the single-
locus departures from Hardy-Weinberg proportions and not
identity disequilibrium. However, our Bayesian method ap-
pears to provide a more accurate assessment of uncertainty
than does the maximum-likelihood method RMES: our
BCIs have good frequentist coverage properties (Figure S5),
while the C.I.’s reported by RMES appear to perform less well
(Figure 4).

Identifiability: In an analysis based solely on the genotype
frequency spectrum observed in a sample, the likelihood
depends on just two composite parameters: the probability
that a random individual is uniparental (s*) and the scaled
rates of mutation @* (Equation 19) across loci. Even so, our
MCMC implementation updates the full set of basic parame-
ters, with likelihoods determined from the implied values of
s* and O*.

Any model for which the parameter set ¥ (Equation 23)
comprises more than one parameter is not fully identifiable
from the genetic data alone. In the pure hermaphroditism
model (Equation 6), for example, basic parameters s (fraction

of fertilizations by selfing) and 7 (relative viability of unipa-
rental offspring) are nonidentifiable: any assignments that
determine the same values of composite parameters s* and
O* have the same likelihood.

For each basic parameter in W beyond one, identifiability
requires incorporation of additional information beyond the
genetic data. A full treatment of such information requires
expansion of the likelihood function to encompass an explicit
model of the new information. For example, the Kryptolebias
model (Equation 7) comprises three basic parameters, in-
cluding p, (Equation 8a), the frequency of males among
reproductives. In our analysis of microsatellite data from
the killifish K. marmoratus (Mackiewicz et al. 2006; Tatarenkov
et al. 2012), the expanded-likelihood function corresponds to
the product of the probability of the genetic data and the
probability of the number of males observed among a total
number of individuals (Equation 28). In a similar manner, our
analysis of the data set from S. salicaria (Wallace et al. 2011)
uses an extended-likelihood function that models the ob-
served number of females as a binomial random variable
(Equation 29), permitting estimation of the frequency of fe-
males among reproductives (pg).

Nonidentifiable parameters can also be estimated through
the incorporation of informative priors. Because identifiability
is defined in terms of the likelihood, which is unaffected by
priors, such parameters remain nonidentifiable. Even so, in-
formative priors assist in their estimation through Bayesian
approaches, which do not require parameters to be identifi-
able. Our analysis of the Schiedea data draws on experimental
evidence in addition to the genotype counts to justify the
assumption of equal seed set by females and hermaphrodites
(o0 =1) (Weller and Sakai 2005) and to develop an informa-
tive prior for 7 (Equation 30) (Sakai et al. 1989).

Guidance for applying the method: Our present implemen-
tation of the method introduced here includes default priors
for the basic parameters, with users encouraged to specify
priors appropriate for their systems. For example, a biologi-
cally motivated prior for the relative viability of uniparentals
(7) might favor weak selection (7 ~ 1) or inbreeding depres-
sion of an intensity sufficient to maintain selfing (r =1/2).
In the Kryptolebias model (Equation 7), comprising basic pa-
rameters s (proportion of eggs self-fertilized by hermaphrodites),
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7 (relative viability of uniparentals), and py, (proportion of
males among reproductives), pn, together with s, determines
the scaling of time (Equation 7c), which depends on § and 7
only through s;. In the absence of information regarding s
and 7, we recommend assigning = = 1, which permits estima-
tion of s;, under the default uniform prior or a user-specified
prior. This assignment produces estimates that are simply
agnostic concerning the relative influence of s and 7 in de-
termining sp..

In the four-parameter gynodioecy model (Equation 26),
however, the scaling of time (Equation 9d) depends not only
on s (the proportion of uniparentals) and ps (the proportion
of females among reproductives), but also on F (the propor-
tion of biparental offspring that have a female parent). Be-
cause F (Equation 9b) depends on s (the proportion of seeds
set by self-pollen), information about 7 affects inference of all
basic parameters. In the absence of information about the
intensity of inbreeding depression, we recommend using
the pure hermaphroditism model (Equation 24) under the
assignment 7 = 1, which permits estimation of the uniparen-
tal proportion s* under a uniform prior.

Beyond estimation of the selfing rate

Unlike the other methods considered here, our method pro-
vides a framework for the incorporation of information in
addition to counts of diploid genotypes and the inference of a
number of aspects of the mating system beyond the selfing
rate.

Time since the most recent outcross: Our method incorpo-
rates as a latent variable Ty (Equation 13), the number of
generations since the most recent outcross event in the im-
mediate ancestry of individual k, and provides posterior dis-
tributions for this quantity.

This aspect of the mating system is of biological interest in
itself and also affords insight into the suitability of the un-
derlying model. Pooling such estimates of times since the most
recent outcross over individuals produces an empirical distri-
bution of the number of consecutive generations of selfing.
Under the assumption of a single population-wide rate of self-
fertilization, we expect selfing time to have a geometric
distribution with parameters corresponding to the estimated
selfing rate. Empirical distributions of the estimated number
of generations since the last outcross appear consistent with
this expectation for the data sets derived from the TC pop-
ulation of K. marmoratus (Figure 9) and from Schiedea
(Figure 10). In contrast, the empirical distribution for the
highly inbred BP population of K. marmoratus (Figure 7)
shows an absence of individuals formed by random outcross-
ing (T = 0).

That our method accurately estimates T from simulated
data (Figure 5) argues against attributing the inferred defi-
ciency of biparental individuals in the BP data set to an arti-
fact of the method. Rather, the deficiency may indicate a
departure from the underlying model, which assumes repro-
duction only through self-fertilization or random outcrossing.
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Figure 11 Posterior distributions of relative effective number £ (Equation
3) for data sets derived from K. marmoratus (BP and TC populations) and
S. salicaria.

In particular, biparental inbreeding as well as selfing may
reduce the fraction of individuals formed by random out-
crossing. Misscoring of heterozygotes as homozygotes due
to null alleles or other factors, a possibility directly addressed
by RMES (David et al. 2007) but not by our method, may also
in principle contribute to the apparent deficiency of individ-
uals formed by random outcrossing.

Relative effective number: Incorporation of additional in-
formation, either through extension of the likelihood or
through informative priors, permits inference not only of
the basic parameters but also of functions of the basic param-
eters. For example, Table 1 includes estimates of the propor-
tion of seeds of hermaphrodites set by self-pollen (5) and the
probability that a random gene derives from a female parent
[(1 —sg)F/2] in gynodioecious S. salicaria. We are not aware
of other studies in which these quantities have been inferred
from the pattern of neutral genetic variation observed in a
random sample.

Among the most biologically significant functions to which
this approach affords access is relative effective number E
(Equation 3), a fundamental component of the reproductive
value of the sexes (Fisher 1958). We denote the probability
that a pair of genes, randomly drawn from distinct individu-
als, derive from the same parent in the preceding generation
as the rate of parent sharing (1/N*). Its inverse (N*) corre-
sponds to the inbreeding effective size of Crow and Denniston
(1988). Relative effective number E is the ratio of N* to the
total number of reproductive individuals. For example, in the
absence of inbreeding (s* = 0), N* in our gynodioecy model
(Equation 9) corresponds to Wright’s (1969) harmonic mean
expression for effective population size and E to the ratio of
N* and Nt + Ny, the total number of reproductive females
and hermaphrodites. In general (s*=0), relative effective
size E reflects reductions in effective size due to inbreeding
in addition to differences in numbers of the sexual forms.

Figure 11 presents posterior distributions of E for the three
data sets explored here. These results suggest that relative
effective number E in each of the natural populations sur-
veyed lies close to its maximum of unity, with the effective
number defined through the rate of parent sharing approach-
ing the total number of reproductives. Our estimates suggest



that maximization of relative effective number would occur
under a slight increase in the frequency of males p,, (Equa-
tion 8b) in both K. marmoratus populations and a very slight
decrease in the frequency of females p; (Equation 10b) in the
S. salicaria population.
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Appendix A
The Last-Sampled Gene

We present a first-principles derivation (not requiring knowledge of the ESF) of the probability that the last-sampled gene of i
genes randomly sampled from distinct individuals represents a novel allele (Equation 21a).

Under the infinite-alleles model of mutation, a single mutation in a lineage suffices to distinguish anew allele. We designate as
the focal gene the last-sampled gene and consider the level of the genealogical tree in which its ancestral lineage either receives a
mutation or joins the gene tree of the sample at size (i — 1). Level ¢ of the entire (i-gene) gene tree corresponds to the segment in
which ¢ lineages persist.

The probability that the line of descent of the focal gene terminates in a mutation immediately, in level i of the genealogy, is

u _ 67’:
: i o L(0F+ 1)
lu+(2)/N“(2—s"> ( )
In general, the probability that the lineage of the focal gene terminates on level ¢> 2 is
i-1 i-2
(i—l)u+< ) )/N*(Z—s*) (i—2)u+< ) )/N*(Z—s*)
i i—1
iu+< >/N*(2—s"") (i—l)u—|—< )/N*(Z—s"f)
2 2
L l N*(2 )
+ * X
u 9 Ky .
[+1 l
(l—l—l)u—i—( ) )/N""(Z—s*) Iu+ (2>/N""‘(2—5*)

(e 4i-1)

This expression illustrates the invariance over termination orders noted by Griffiths and Lessard (2005). Summing over all
levels, including level 2, for which a mutation in either remaining lineage ensures that the focal gene represents a novel allele,
we obtain the overall probability that the last-sampled gene represents a novel allele:

0% (i —2) 204 6*
i(0*+i—1) i(6*+i—1) 6*+i—1

Appendix B
Estimators of Fig

We follow Weir (1996) in developing an estimate of the uniparental proportion s* from Fis alone (Equation 27).
For a single locus, a simple estimator of Fis corresponds to

—~ 0]
FIS:]-_E?

for O the observed fraction of heterozygotes in the sample and E the expected fraction based on Hardy-Weinberg proportions
given the observed allele frequencies. Explicitly, we have

f\ 1 1- Zuﬁ”” (Zui)uu _135)
Is=141= 2 -2
1- Zup u 1- Zup u
for p, the frequency of allele u in the sample and P,, the frequency of homozygous genotype uu in the sample. However, this

estimator can be substantially biased for small samples, leading to underestimation of Fig (Weir 1996).
To address this bias and accommodate multiple loci, we instead adopt
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L K (= . K =
% 21:1 [Zulzl (Pl““ _plzu) + (1 B Zulzlpl”“) /Zn}
IS = L K; -9 K = bl
Zl:l [(1 N Zu:lpl“) h (1 - Zu:lpl””)/zn}
for n the number of diploid genotypes observed, L the number of loci, and K; the number of alleles at locus [. While this
estimator is also biased in general, it corresponds to the ratio of unbiased estimators of Fis - >_;(1 — >_,pz,) and >, (1 — 3", p2,),

in which py, is the frequency of allele u at locus [ in the entire population (Weir 1996). Our analysis of simulated data (Appendix
D) indicates that this estimator is more accurate than an estimator that simply averages single-locus estimates:

Zlil:l (pluu _plzu) + (1 - leilpluu>/2n
(- - (1 X P 2

Our Fis-based estimates (Equation 27) incorporate (B1) and not (B2).

(B1)

(B2)

Appendix C
Implementation of the MCMC
State space

The state space for the Markov chain of our MCMC sampler includes times across sampled individuals since the last outcross
event T (Equation 13), coalescence events across individuals and loci since that event I (Equation 14), and model-specific
parameters W (Equation 23). The state space also comprises the scaled mutation rates @* (Equation 19), which are de-
termined by C, a list specifying the mutation rate category C; for locus[ = 1...L, and Z, a list specifying the scaled mutation
rate Z; for category i = 1...L + 4. For example, the scaled mutation rate at locus [ corresponds to

0] = Zc,. (€

While the actual number of observed rate categories does not exceed the number of loci (L), expanding the size of the lists to
L + 4 improves mixing of the MCMC by ensuring that multiple categories are available for the placement of a new, previously
unobserved category (see section 6 of Neal 2000). At any given point in the MCMC, the state of the Markov chain corresponds
to (I, T,W¥,C,Z).

Iterations

Each iteration of our MCMC sampler performs multiple updates, with each variable updated at least once per iteration. We
recorded the state sampled by the MCMC at each iteration. We assessed convergence by computing for each parameter an
effective number of independent samples [effective sample size (Liu 2001)]. Effective numbers for the large sample regime
exceeded 500 samples for each parameter on average, while effective number for the small sample regime exceeded 250
samples for each parameter on average. We found that 2000 iterations were more than sufficient to achieve these effective
numbers. About 14.5 min were required to complete 2000 iterations for the large sample regime on a Core i3—-4030 processor;
~10 sec were required for the small sample regime.

For analyses of simulated data sets, we ran Markov chains for 2000 iterations, discarding the first 200 iterations as burn-in. For
analyses of the actual data sets, we ran Markov chains for 100,000 iterations, discarding the first 10,000 iterations as burn-in.
Convergence appeared to occur as rapidly for actual data as for simulated data, but we found empirically that the larger number
of samples was needed to achieve smooth density plots for the actual data sets.

Transition kernels

Updating of the continuous variables of mutation rates {Z;} (Equation C1) and model-specific parameters W (Equation 23) uses
both Metropolis-Hastings (MH) transition kernels and autotuned slice-sampling transition kernels. Updating of the discrete
variables {C;} uses a Gibbs transition kernel.

Efficient inference on selfing times through collapsed Metropolis—Hastings

Simple MH proposals that separately update the time since the most recent outcross event (T} ) and coalescence history since that
event (I;) lead to extremely poor mixing efficiency. Strong correlations between Ty and I cause changes to Ty to be rejected
with high probability unless I is updated as well. For example, consider proposing a change of Ty from 1 to 0. When T;, = 1, on
average I, will be 1 at half of the loci and 0 at the remaining loci. If any of the I, = 1, a move to T, = 0 will always be rejected
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because the probability of a coalescence event more recently than the most recent outcross event is 0 if the sampled individual
is itself a product of outcrossing. To permit acceptance of changes to T, we introduce a proposal for Tj that also changes I.

The scheme starts from the value Ty = t; and proposes a new value . In standard MH within Gibbs, we would compute the
probability of Ty = t; and of T = t given that all other parameters are unchanged. We modify this MH scheme to compute
probabilities without conditioning on the coalescence indicators for individual k. However, the coalescence indicators for other
individuals are still held constant. To compute this probability, let J indicate all the coalescence indicators I, wherey # k. Then

Pr(X,T,J,s,0) = Pr(X,J|T,s, 6)Pr(T|s)Pr(s)Pr(6).
We introduce I, by summing over all possible values iy :

Pr(X,J|T,s,0) = > Pr(X, I =ix,J|T,s,6).

L

Since the iy for different loci are independent given T, we have

L
Pr(X,J|T,s,0) = > [] Pr(X;, I = iw, J|T;s,6)
i =1

L
= IH > Pr(X;, Iy = i, Ji|T, s, 6).
=1 i

Therefore, for specific values of T and J, we can compute the sum over all possible values of I, for [ = 1...L in computation
time proportional to L instead of 2L. This is possible because the L coalescence indicators for individual k each affect different
loci and are conditionally independent given Ty and J.

After accepting or rejecting the new value of Ty with I integrated out, we must choose new values for I, given the chosen
value of Tx. Because of their conditional independence, we may separately sample each coalescence indicator Iy for[=1...L
from its full conditional given the chosen value of T. This completes the collapsed MH proposal.

Appendix D
Analysis of Simulated Data
Simulations

Our simulator (https://github.com/skumagai/selfingsim) was developed using simuPOP, publicly available at http://simu-
pop.sourceforge.net/. It explicitly represents N = 10,000 individuals, each bearing two genes at each of L unlinked loci.
Mutations arise at locus [ at scaled rate 6; (Equation 3), in accordance with the infinite-alleles model.

We assigned to uniparental proportion s* values ranging from 0.01 to 0.99, with half of the L = 32 loci assigned scaled
mutation rate § = 0.5 and the remaining loci assigned 6 = 1.5.

We conducted 10? independent simulations for each assignment of s*. Each simulation was initialized with each of the
2N X 32 genes representing a unique allele. Most of this maximal heterozygosity was lost very rapidly, with allele number and
allele frequency spectrum typically stabilizing well within 10N generations. After 20N generations, we recorded the realized
population, from which 100 independent samples of L = 32 loci of size n = 70 were extracted. From this collection, we
randomly chose L = 6 loci and subsampled 100 independent samples of size n = 6.

Analysis

We applied our Bayesian method, the Fis method, and RMES to 10? independent samples from each of 10? independent
simulations for each assignment of the uniparental proportion s*. Our Bayesian method is open source and can be obtained at
https://github.com/bredelings/BayesianEstimatorSelfing/. We used the implementation of RMES (David et al. 2007) pro-
vided at http://www.cefe.cnrs.fr/images/stories/ DPTEEvolution/Genetique/fichiers%20Equipe/RMES%202009%282%29.zip.
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1 Assessment of the methods

1.1 Comparison of the median of the posterior distribution of the

uniparental proportion

We address the relative accuracy of estimates of the uniparental proportion s* produced by
our Bayesian method relative to those produced by RMES and the Fj¢ method (27) upon
application to simulated data (compare Assessment of Accuracy and Coverage using Simu-
lated Data section). While we summarize our posterior distributions of s* by the mode in
the main text, we here use the median.

We first address application of the methods to simulated data under the large-sample
regime (n = 70 individuals, L = 32 loci). Except in cases in which the true s* is very close
to 0, the error for RMES exceeds the error for our method (Figure S1), a trend that is apparent
under under both the large- and small-sample regimes. The error for the Fjg-based estimate
also exceeds the error for our method. It is largest near s* = 0 and vanishes as s* approaches
1, a pattern distinct from RMES.

Both RMES and our method show positive bias upon application to data sets for which
the true uniparental proportion s* is close to zero and negative bias for s* close to unity.
This trend reflects that both methods yield estimates of s* constrained to lie between 0 and
1. In contrast, the Fjg-based estimate (27) underestimates s* throughout the range, even
near s* = 0 (1/7-1; is not constrained to be positive). Our method has a bias near 0 that
is substantially larger than the bias of RMES, and an error that is slightly larger. A major
contributor to this trend is that our Bayesian estimate is represented by only the median of

the posterior distribution of the uniparental proportion s*.
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Figure S2 indicates that for data sets generated under a true value of s* of 0 (full random
outcrossing), the posterior distribution for s* has greater mass near 0. We suggest that the
bias shown near s* = 0 merely represents uncertainty in the posterior distribution for s* and
not any preference for incorrect values. We note that our method assumes that the data are
derived from a population reproducing through a mixture of self-fertilization and random
outcrossing. Assessment of a model of complete random mating (s* = 0) against the present
model (s* > 0) might be conducted through the Bayes factor.

Figure S3 indicates that all methods show increased error upon application of smaller
samples (n = 10 individuals, L = 6 loci), as expected. Comparison of our method and RMES
show trends qualitatively similar to the large-sample case: positive bias upon application
to data sets for which the true uniparental proportion s* is close to zero and negative bias
for s* close to unity, with less error exhibited by our method throughout the range of the

uniparental proportion (s*).

1.2 Comparison of the median, mode, and mean

In addition to the mode (Figure 2) and median (Figure S1), error might also be assessed by
consideration of the mean of the posterior distribution of s*. Figure S4 suggests that the
bias and root-mean-squared (rms) error of the mode, median, and mean exhibit different
properties. For example, the posterior mode shows smaller bias throughout the parameter
range, but the median and mean show smaller rms error for s* near the boundaries (near 0
or 1). That the posterior mode does not display large bias near s* = 0 is consistent with our

suggestion that the larger error of the mean in that region reflects higher uncertainty:.

1.3 Frequentist coverage

As for the 95% BCIs (Figure 4), Figure S5 indicates that BCIs of different nominal values
(0.5, 0.75, 0.9, 0.95, and 0.99) display the same pattern, with coverage exceeding the desired

value for intermediate true s* values and dipping below the desired value for very high values
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of s*. Coverage is closer to the nominal value for the 0.99 and 0.95 levels than for the 0.5

level.

2 Data analysis

2.1 Self-fertilizing vertebrate

Figure S6 shows the posterior distributions of number of generations since the most recent
outcross event (13) for each sampled individual in the highly inbred BP population of K.
marmoratus. Figure S7 shows the posterior distributions for the more outbred TC popula-
tion.

Figures S8 and S9 present posterior distributions of locus-specific mutation rates for the
BP and TC populations, respectively. For each locus, Fig. S10 compares the rank order of
its median mutation rate estimated from the BP data set versus that from the TC data set.
If a relationship exists between the mutation rates estimated from the datasets, it appears

to be diffuse.

2.2 Gynodioecious plant

Figure S11 presents posterior distributions for the uniparental proportion (sg), the propor-
tion of females among reproductives (py), the proportion of seeds set by hermaphrodites by
self-pollen (§), and the viability of uniparental offspring relative to biparental offspring (7).
Figure S12 presents the inferred number of generations since the most recent outcross
event T}, (13) for each individual k.
Figure S13 presents posterior distributions for locus-specific mutation rates inferred from

the S. salicaria data set. The loci appear to have similar posterior medians.
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Figure S1 Errors for the full likelihood (posterior median), RMES, and Frg-based (27)
methods for a large simulated sample (n = 70 individuals, L = 32 loci). In the legend,
rms indicates the root-mean-squared error and bias the average deviation. Averages are
taken across simulated data sets at each true value of s*.
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Figure S2 Average posterior density of the uniparental proportion (s*) inferred from simu-
lated data generated under the large sample regime (n = 70, L = 32) with a true value of
s* = 0. The average was taken across posterior densities for 100 data sets.
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Figure S3 Errors for the full likelihood (posterior median), RMES, and Fjs methods for a
small sample (n = 10 individuals, L = 6 loci). In the legend, rms indicates the root-mean-
squared error and bias the average deviation. Averages are taken across simulated data
sets at each true value of s*.
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Figure S5 Frequentist coverage for Bayesian credible intervals at different levels of credi-
bility under the large sampling regime (n = 70, L = 32).
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Figure S6 Number of generations since the most recent outcross event in the ancestry of
each individual in the sample from the BP population of K. marmoratus. The area of each
dot indicates the posterior probability that an individual (X-axis) has the indicated num-
ber (Y-axis) of consecutive generations of selfing in its immediate ancestry. The red line
indicates the posterior mean number of selfing generations and the blue line indicates the
number of heterozygous loci across individuals. The Y-axis is truncated to [0, 30].
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Figure S7 Number of generations since the most recent outcross event in the ancestry of

each individual in the sample from the TC population of K. marmoratus. Symbols as in
Figure S6.
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Figure S8 Posterior distributions for mutation rates at each locus in K. marmoratus (BP
population). For each distribution. the locus name is indicated in the grey shaded box.
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Figure S9 Mutation rates at each locus for K. marmoratus (TC population). For each

distribution. the locus name is indicated in the grey shaded box.

B. D. Redelings et al.

13 SI



30 - .
C [ ) [ ]
_g 20 - .
< . )
> .
o o
o o
o o
O * .
- .
10 - .
O a [ ]
| | | |
0) 10 20 30

BP population

Figure S10 Comparison of rank order of estimated locus-specific mutation rates between
the BP and TC populations of K. marmoratus. Each dot represents the rank order of the
median of the mutation rate of a given locus estimated from the BP data set versus that

from the TC data set.
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Figure S11 Posterior distributions on (a) s, (b) pf, (¢) 3, and (d) 7 for the Schiedea sali-
caria data set. Also shown are 95% BCI (maroon), 50% BCI (slate), and median (black
dot).
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Figure S12 Estimated number of selfing generations for each individual for S. salicaria.
The area of each dot indicates the posterior probability that a numbered individual (x-
axis) has been selfed for a given number of generations (y-axis). For each individual the
red line indicates the posterior mean number of selfing generations and the blue line indi-
cates the number of heterozygous loci.
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Figure S13 Posterior distributions for mutation rates at locus in S. salicaria. For each
distribution, the locus name is indicated in the grey shaded box.
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