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Advances in Plant-Nematode Interactions with Emphasis on the

Notorious Nematode Genus Meloidogyne

Isgouhi Kaloshian1,2 and Marcella Teixeira1

1Department of Nematology, 2Institute for Integrative Genome Biology, 

University of California, Riverside, CA 92521

ABSTRACT

Plant infections by plant parasitic nematodes (PPNs) continue to be one

of the major limitations in agricultural systems. Root-knot nematodes (RKNs),

belonging to the genus Meloidogyne, are one of the most important groups

of  PPNs  worldwide.  Their  wide  host  range  combined  with  ubiquitous

presence, continues to provide challenges for their control and breeding for

resistance. Although resistance to RKNs has been identified, incorporation of

these  resistances  into  crops  and  durability  of  the  resistance  remains

challenging.  In  addition,  progress  in  cloning of  RKN resistance genes has

been  dismal.  Recent  identification  of  pattern-triggered  immunity  in  roots

against  nematodes,  an  ascaroside  as  a  nematode-associated  molecular

pattern (NAMP) and the discovery of a NAMP plant receptor, provide tools

and  opportunities  to  develop  durable  host  resistance  against  nematodes

including RKNs. 
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Plant parasitic nematodes (PPNs) are soil dwelling animals that belong

to a group of over 4,100 species  (Decraemer and Hunt 2006), are able to

penetrate and parasitize plants and are responsible for $US157 billion in crop

losses annually worldwide  (Abad et al.  2008).  In this  review, we describe

recent  advances in  PPNs research focusing on nematode recognition  and

early  plant  responses.  In  addition,  we  highlight  knowledge  on  disease

resistance  genes  and  mechanism  of  resistance  to  one  of  the  notorious

groups of PPNs, the root-knot nematodes (RKNs, Meloidogyne spp.). 

PLANT PARASITIC NEMATODES

A common feature ubiquitous among plant parasitic nematodes is the

specialized mouthpart  or  the stylet,  that resembles a hypodermic needle.

Nematodes  use  their  stylets  to  penetrate  plant  roots  and inject  secreted

effectors originating from the pharyngeal glands to establish parasitism on a

variety  of  plant  species   (Vieira  and  Gleason  2019).  Different  modes  of

adaptation and parasitic behavior allow nematodes to succeed in a variety of

different habitats, both above and belowground. Plant parasitic nematodes

are  divided  into  ectoparasites,  endoparasites  and  semi  endoparasites

depending on their location on the host when they feed. The endoparasites

are further divided into migratory and sedentary depending on their motility

after initiating feeding. 

Migratory  endoparasites,  such  as  the  root  lesion  nematodes

(Pratylenchus spp.),  burrowing  nematode  (Radopholus  similis),  rice  root

nematode (Hirschmanniella  oryzae),  pine wilt  nematode (Bursaphelenchus

xylophilus) and red ring nematode (Bursaphelenchus cocophilus), are known

to inflict great damage during their migration inside plant tissues and are

known  for  causing  severe  necrotic  symptoms.  In  a  wide  context,  these

nematodes can all be referred to as lesion nematodes, since they trigger the

formation of lesions while migrating inside plant tissues  (Fosu-Nyarko and

Jones 2016). In contrast,  sedentary endoparasites, as the name indicates,

penetrate the host and form an intimate relationship with their host, feeding
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on the same site  for  life  and becoming sessile  as  soon as  they initiated

feeding. This group includes the most intensely studied PPNs, the RKNs and

cyst nematodes (CNs) of the genera Heterodera and Globodera, respectively

(Jones et al.  2013). Under proper environmental conditions,  their infective

stage, the second stage juvenile (J2), hatches from eggs, is attracted to and

penetrates roots of a susceptible host. While cyst nematodes penetrate roots

at undefined locations, RKN penetrate roots mainly behind the tip, in the root

elongation zone.  Another distinction between RKNs and CNs is their mode of

migration  through  the  plant.  While  RKNs  move  intercellularly,  CNs  move

intracellularly  both with destinations towards the vascular cylinder,  where

they establish specialized feeding sites and become sedentary. RKNs induce

the formation of giant cells,  which are the outcome of cells that undergo

karyokinesis  without  cytokinesis,  resulting  in  hypertrophied,  enlarged,

multinucleated structures. CNs induce the formation of syncytia, which are

also  multinucleated enlarged cells  formed by the  degradation  of  the  cell

walls,  leading  to  connection  of  adjacent  cells  and  resulting  in  the

multinucleated syncytium. Both types of feeding sites are nutrient sinks for

the nematodes and are tightly regulated by their secreted effectors (Favery

et  al.  2016;  Juvale  and  Baum  2018).  The  very  ability  to  establish  a

permanent feeding site and manipulate it to act as a nutrient sink, shows the

evolutionary  complexity  between  these  PPNs  and  their  hosts.  Once  the

feeding site is established, nematodes become sedentary and undergo molts

to  become  adult.  Maintenance  of  the  feeding  sites  is  necessary  for  the

completion of their life cycle and producing large numbers of progeny that

initiate new rounds of infection. Considering damage caused, host range and

number of scientific publications, RKNs and CNs are recognized as the two

most important PPN groups worldwide (Jones et al. 2013).

ROOT-KNOT NEMATODES: A NOTORIOUS GENUS

Members  of  the  genus  Meloidogyne,  are  the  most  economically

harmful nematodes worldwide (Figure 1). In addition, members of this genus
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with the widest host range, such as M. incognita and M. javanica, are species

that reproduce asexually without  undergoing meiosis.  The ability of these

species  to  adapt  to  and  feed  on  a  large  number  of  plant  species,  from

diverse taxa, suggests the existence of a large genetic diversity within these

polyphagous species. However, the lack of sexual reproduction has hindered

scientists  in  deciphering  the  underlying  genetics  of  this  impressive  host

adaptability and the ability to predict host ranges. Instead, to characterize

the  different  populations  of  a  certain  species  of  this  group,  a  race

designation  was implemented based on a  set  of  host  plants  and specific

cultivars  that  were  initially  thought  to  distinguish  among  races  of  the

polyphagous  Meloidogyne spp.  (Hartman and Sasser 1985). However, over

time, RKN populations were identified that did not behave as predicted in

this differential host test resulting in calls for discontinuing the use of this

race  designation  scheme  (dos  Santos  et  al.  2012;  Moens  et  al.  2009).

Although molecular markers were identified that distinguished the different

RKN species, no molecular markers have been identified that distinguished

among the different races within a species  (Williamson and Roberts 2009).

Consistent with the lack of genetic variation among the races of  a single

species,  sequencing  of  genomes  of  eleven  isolates  of  M.  incognita,

originating from distinct locations, host adaptation and race designation, low

sequence variation was detected among these isolates/races  (Koutsovoulos

et al. 2019). Furthermore, the limited variation observed was not correlated

with  the  host  races.  Consequently,  the  challenge  remains  as  to  how  to

predict  and advise farmers  on the crops,  and specific cultivars,  they can

plant based on nematode identification. The lack of genetic variation among

these  races  suggests  a  major  role  for  the  epigenome in  regulating  host

adaptation.   

ATTRACTION TO THE HOST

The first important step for the success of a parasite is finding the host.

It  has been long known that RKN infective stage juveniles are capable of
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detecting a signal gradient to find a host and to chemotax along gradients of

carbon dioxide. More recently, using a transparent gel medium, Pluronic F-

127, that allowed mimicking the three-dimensional structure of soil, a series

of elegant experiments revealed interesting RKN behavioral characteristics

and allowed dissection of cues that are involved in attraction to root tips.

These  experiments  showed  that,  while  infective-stage  juveniles  from

different  RKN  species  are  attracted  to  the  plant  root  tip,  the  movement

towards the tip of a common host was at different rates, indicating genetic

differences in attraction among PPNs  (Wang et al. 2009a). In addition, RKN

infective-stage juveniles were attracted to a low pH environment, measured

using a pH gradient gel system, consistent with the known acid efflux pattern

at the surface of a growing primary root (Wang et al. 2009b). Furthermore,

these experiments showed that attraction to carbon dioxide, and likely other

known nematode attractants, is likely indirect, and is due to acidification of

solutions  by  these  compounds  and  not  directly  by  the  compounds

themselves. These experiments also showed that, besides a pH gradient, the

plant  hormone ethylene is  involved in  chemotaxis  of  nematodes to plant

roots.  However,  differences  in  attractiveness  to  ethylene among different

nematode species  has  been observed.  While  active  ethylene signaling  in

Arabidopsis  reduced  root  attractiveness  to  RKN and  Heterodera  glycines,

enhanced  attractiveness  of  Heterodera  schachtii to  an  ethylene

overproducing Arabidopsis mutant or ethephon-treated Arabidopsis roots has

been  reported,  suggesting  variable  responses  among  similar  group  of

nematodes, albeit with different host ranges  (Fudali et al. 2013; Hu et al.

2016; Kammerhofer et al. 2015; Wubben et al. 2001).  

How plant parasitic nematodes sense and utilize plant cues is not well

understood.  Morphological  studies  of  the infective-stage juveniles  suggest

that amphids and phasmids, chemosensory organs located in the nematode

head and tail regions, respectively, are the main sensory organ involved in

plant  host  perception  (Curtis  et  al.  2009).  Consequently,  interfering  with

chemoreception  has  been  a  means  to  control  plant  infection  by  plant
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parasitic nematodes and was shown to be one of the modes of actions of

certain nematicides (Curtis et al. 2009).

PLANT EARLY RESPONSES to NEMATODE PENETRATION

In  recent  years,  the  processes  involved  in  root  perception  of

nematodes  and  early  responses  during  nematode  penetration  have  been

unveiled.  It  was  shown  that  RKN  and  CN  infective-stage  juveniles  are

perceived by plant roots, during their root migration phase, similar to the

perception  of  microbial  pathogens in  above ground tissues  (Mendy et  al.

2017;  Teixeira  et  al.  2016).  Nematode  perception  requires  the  well-

characterized  cell-surface  localized  pattern  recognition  co-receptor

BAK1/SERK3  as  SERK3 silenced  tomato  plants  displayed  enhanced

susceptibility  to  RKN  (Figure  2)  (Peng  and  Kaloshian  2014).  BAK1  is  a

coreceptor  of  multiple  microbe-associated  molecular  patterns  (MAMPs)

coordinating perception with diverse pattern-recognition receptors (PRRs) to

activate  pattern-triggered  immunity  (PTI)  (Bohm  et  al.  2014).  Enhanced

susceptibility  to both RKN and CN were also reported on the Arabidopsis

bak1-5 mutant allele (Mendy et al. 2017; Teixeira et al. 2016). It is likely that

BAK1 coordinates nematode perception through multiple PRRs similar to its

role in microbial pathogen perception. Recently, a receptor like kinase (RLK)

involved in nematode-induced immune responses was shown to have similar

characteristics to microbial PRRs (Mendy et al. 2017). In addition, Arabidopsis

mutants of the kinase BIK1 and the double mutant of the respiratory burst

NADPH oxidase (RBOH) D/F also displayed enhanced susceptibility to RKN

infection indicating that canonical PTI signaling is involved in the nematode

perception (Figure 2) (Teixeira et al. 2016).

The Arabidopsis  NEMATODE-INDUCED LRR-RLK 1 (NILR1) encoding a

leucine-reach  repeat  (LRR)  serine/threonine  kinase,  was  identified  as  a

putative  receptor  of  a  yet  unidentified  nematode-associated  molecular

pattern  (NAMP).  Sequence  information  indicated  that  NILR1  has  a

transmembrane domain with the LRR of NILR1 localized extracellularly while
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the kinase domain localized intracellularly. Transient expression of NILR1 in

Nicotiana benthamiana leaves indicated that NILR is localized to the plasma

membrane consistent  with  its  role  as  a  PRR.  The  NILR1 transcripts  were

upregulated early after  H. schachtii infection of Arabidopsis roots and the

nilr1 null mutants exhibited enhanced susceptibility to H. schachtii (Mendy et

al.  2017).  Interestingly,  the  enhanced  susceptibility  phenotype  was  also

reported against M. incognita suggesting that NILR1 might be a receptor of a

NAMP common among CNs and RKNs. Consistent with its role as a receptor

and  positive  regulator  of  immunity,  nilr1 mutants  were  compromised  in

reactive  oxygen  species  (ROS)  burst.  Arabidopsis  has  two  NILR genes

belonging to the subfamily X of  the LRR-RLKs  (Matsushima and Miyashita

2012). Unlike the majority of microbial PRRs, NILR1 is widely conserved in

dicotyledonous and monocotyledonous plants (Mendy et al. 2017). The wide

presence  of  NILR1  among  susceptible  plant  species  and/or  genotypes

suggests that nematodes have acquired effectors that enable them to evade

PTI.  However,  overexpression  of  NILR1  may  provide  an  opportunity  to

generate  stable  and  broad-spectrum  resistance  against  plant  parasitic

nematodes.

NEMATODE ASSOCIATED MOLECULAR PATTERNS

What components of  the nematodes are perceived by plant PRRs is

currently of great interest. Considering nematode structure and biology, the

surface  coat  could  be  an  obvious  source  of  NAMPs.  Nematode  cuticle  is

covered by a surface coat originated from the cuticle hypodermis, is covered

with antigenic molecules made up of proteins and glycoproteins thought to

originate from secretory-excretory systems  (Davies and Curtis  2011).  The

surface coat has been shown to play an important  role in interactions  of

different  nematodes  with  their  hosts  including,  PPNs,  entomopathogenic

nematodes and animal gastrointestinal parasites  (Davies and Curtis 2011;

Patel et al.  2009; Schmid-Hempel 2008). Interestingly, the surface coat is

continuously shed and replaced by a new antigenic surface. It  is  possible
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therefore that proteins present in the surface coat are recognized by the

host plant and is potentially the reason why it is shed by the nematode to

evade recognition (De Veer et al. 2007). Additional sources of NAMPs could

be  extracellular  secretions  of  glycan  moieties,  glycoproteins  and  small

molecules,  in  addition  to  chitin  present  in  the  nematode  eggshells  and

esophageal glands (Holbein, et al. 2016). 

The  only  NAMP  known  to  date  is  an  ascaroside.  Ascarosides  are

glycolipids  that  act  as  dauer  pheromones  and  aggregation  and  repulsion

signals  among nematodes.  Ascarosides were first  characterized as a lipid

that accounted for 25% of the total lipid content of  Ascaris lumbricoides, a

human  parasite,  and  are  present  in  a  wide  range  of  nematode  species,

including free living and parasitic (mammal, insect and plants) nematodes

(Choe et  al.  2012).  Their  relevance in  nematode biology,  abundance and

conservation  across  taxa  fits  the  general  characteristics  of  a  conserved

signature  molecule  for  a  group  organisms.  Using  mass  spectrometry,

ascaroside  18  was  shown  to  be  the  most  abundant  ascaroside  in  the

infective-stage  juveniles  of  five  PPN  species  (Manosalva  et  al.  2015).

Consistently, exogenous application of ascaroside 18 elicited canonical PTI

defense responses in plants, as well as inducing resistance to plant parasitic

nematodes and to microbial pathogens (Manosalva et al. 2015). Notably, the

yet to be identified ascaroside receptor is likely conserved among distinct

plant  species,  as  the  elicitation  of  defense  responses  was  conserved  in

dicotyledonous and monocotyledonous plants such as Arabidopsis, tomato,

potato and barley (Manosalva et al. 2015).

Different  sources  for  NAMPs  have  been  used  to  study  plant  early

responses. Crude tissue extracts of infective-stage juveniles was shown to

induce defense marker genes in Arabidopsis roots  (Teixeira et al. 2016). In

addition,  treatment  with  this  extract  induced root  enlargement  similar  to

symptoms cause by nematode infection  indicating that both defense and

morphological  alteration  cues  are  present  in  the  extract  (Teixeira  et  al.

2016). Another source of NAMPs used to date is NemaWater, water in which
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infective-stage  juveniles  have  been  incubated.  Treating  roots  with

NemaWater  triggered  a  ROS  burst  and  defense  gene  induction  in  roots,

indicating activation  of  defense responses suggesting the presence of  an

immune elicitor(s)  (Mendy et al. 2017). Similar to microbial pathogens, it is

expected that nematodes also have a number of different NAMPs. Currently,

it is unclear how many different elicitors are present in the nematode extract

or  in the NemaWater.  However,  the elicitor(s)  in the NemaWater is  heat-

labile and likely proteinaceous in nature as heat or proteinase K treatment of

NemaWater led to significant attenuation of the observed defense responses

(Mendy et al. 2017).

PERCEPTION OF NEMATODES

Considering  penetration  of  nematodes  and  migration  inside  plant

tissues, cellular damage could be caused by their actions. In addition, PPNs

secrete cell wall degrading enzymes that may release cellular components

that act as self  danger molecules known as damage-associated molecular

patterns (DAMPs) (Ali et al. 2017). Similar to recognition of MAMPs or NAMPs,

DAMPs  also  trigger  defense  responses  (Mott  et  al.  2014).  DAMPs  were

originally described as a result of cell wall rupture, releasing fragments that

are  recognized  by  adjacent  cells,  such  as  oligogalacturonides  (OGs),

produced by the activity  of  pathogen-encoded enzymes. In addition,  ATP,

known to activate immunity in animals was also characterized as a plant

DAMP,  and  its  plant  receptor,  DOES  NOT  RESPOND  TO  NUCELOTIDES  1

(DORN1), was recently identified (Cao et al. 2014; Choi et al. 2014). A second

type  of  DAMP  is  transcriptionally  regulated  where  damage  leads  to

transcription  of  long  protein  precursors  (PROPEPs),  that  are  cleaved  and

generate  small  peptides  Atpep1-8,  which  are  recognized  by  the  PEP

receptors (PEPRs) 1 and 2  (Bartels and Boller 2015; Huffaker, Pearce, and

Ryan 2006). PROPEPs are also induced by pathogen infections and herbivore

saliva. These plant endogenous signals seem widely conserved as homologs
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of PROPEPs have been identified in numerous crop species  (Huffaker at al.

2006).

Infecting Arabidopsis  single or double mutants of  these three DAMP

receptors, dorn1, pepr1 and pepr2 or pepr1 pepr2, with M. incognita did not

result in a difference in phenotypes compared with wild-type suggesting that

DAMP recognition alone might not play a significant role in defense against

M. incognita (Teixeira et al. 2016). Interestingly, treatment of soybean seeds

with three soybean elicitor peptides (GmPep1, GmPep2 and GmPep3), and

activation of defense responses, resulted in reduced reproduction of both H.

glycines and M. incognita (Lee et al. 2018). Taken together this information

indicates  that  although  DAMP recognition  through  these  receptors  is  not

involved in RKN perception, activation of defense responses contributes to

RKN resistance.  Contrary  to  RKNs that  penetrate  roots  intercellularly  and

cause  minimum  cell  damage,  CNs  penetrate  root  tissues  intracellularly,

cause extensive visible damage during infection and migration and therefore

are expected to generate DAMPs. Whether these DAMP receptors participate

in  CN  perception  remains  unknown.  Nevertheless,  identification  of  the

GmPeps in soybean suggests such elicitor peptides could be present also in

other crop species, and used to induce defense against PPNs, promising a

novel approach to control nematodes in a wide variety of crops.

RESISTANCE GENES AND BREEDING FOR RESISTANCE

Identification and incorporation of diseases resistance (R) genes have

been  historically  important  tools  to  manage  nematode  infections.  The

challenge has always been the labor intensive and time-consuming nature of

the  nematode pathogenicity  assays  during  the breeding process.  As  with

other  pathosystems,  genetics  of  resistance  to  nematodes  varies  greatly.

However, all single gene resistance loci against nematodes identified to date

are  for  the  sedentary  endoparasites,  RKNs  and  CN,  while

resistance/tolerance to migratory endoparasites are mostly determined by

QTLs and none have been cloned to date (Jones et al. 2016).
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A large number of resistance sources to RKNs have been identified in

various  plant  taxa  (Williamson  and  Roberts  2009).  In  addition,  multiple

resistances with distinct specificity against a particular species of RKN have

been identified for crops, such as tomato, pepper, cotton or grain legumes.

However, the majority of these resistances have not been introgressed into

elite crop cultivars. Although the focus of resistance to RKN has been on

single dominant resistance types, the inheritance of resistance to this group

of nematodes varies, ranging from recessive inheritance to major and minor

QTL  combinations.  With  the  advent  of  molecular  marker  analysis  and

marker-assisted breeding, it is expected that the introgression of all types of

resistances will accelerate. 

Similar  to  resistance  genes  against  microbial  pathogens,  nematode

resistance  genes  also  show  clustered  genomic  arrangement.  One  of  the

better-known RKN resistance gene clusters is located on chromosome 6 of

tomato  where  the  well-known  Mi-1 resistance  gene  resides  (Seah  et  al.

2007).  Within  this  cluster,  in  addition  to  RKN  resistance  genes,  reside

resistance genes to the fungal pathogens  Oidium neolycopersici (OI-1) and

Cladosporium  fulvum (Cf2/Cf5),  the  bacterial  pathogen  Ralstonia

solanacearum (Bw-5), as well as the alfalfa mosaic virus (Am) and tomato

yellow leaf curl virus (TY1/TY3) (Dixon et al. 1998; Dixon et al. 1996; Parrella

et al. 2004; Seifi et al. 2011; Thoquet et al. 1996; Verlaan et al. 2013). These

resistances are encoded by proteins with varied predicted structures, making

it one of the most diverse resistance hot spots in crops.

RKN RESISTANCE GENES AND GENE STRUCTURE

Among the first group of resistance genes cloned in the mid to late

1990’s was the Mi-1 gene (Milligan et al. 1998; Vos et al. 1998). Mi-1, initially

identified  in the  wild  tomato  relative,  Solanum  peruvianum, confers

resistance to three RKN species, M. incognita,  M. javanica and M. arenaria.

To date, with over twenty years since cloning Mi-1, it is remarkable that only

one  other  RKN  resistance  gene,  Ma,  has  been  cloned  and  its  function
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demonstrated  in  the  plant  species  from  which  it  was  cloned.  The  Ma

resistance locus  was  isolated from the Myrobalan plum  Prunus  cerasifera

(Claverie  et  al.  2011).  Meanwhile,  a large number of  resistance genes to

microbial pathogens have been cloned, their function complemented in the

susceptible  plant species,  and a wealth of  information on their  modes of

pathogen recognition and signaling (Kourelis and van der Hoorn 2018). This

dearth  of  RKN  cloned  resistance  genes,  and  resistance  genes  against

nematodes  in  general,  suggest  difficulty  in  identifying  the  R-genes,

functional analysis by complementation in the respective plant species, or

lack of interest in sustainable funding for such work. Indeed, an additional

RKN  gene  PsoRPM2 was  recently  cloned  from  the  wild  Myrobalan  plum

Prunus sogdiana, but complementation was performed in tobacco pointing to

technical difficulties in transforming certain plant species (Zhu et al. 2017). 

Earlier,  an  alternate  approach  to  cloning  was  used  to  identify  the

nature of a RKN resistance gene, Mi-9. Mi-9 was identified in the wild relative

of  tomato,  Solanum  arcanum  accession LA2157,  mediates  heat-stable

resistance  to  the  same  spectrum  of  RKN  as  Mi-1.  Unlike  Mi-1-mediated

resistance that breaks down at soil temperatures above 28C, Mi-9-mediated

resistance is  active  at  high temperatures  (Ammiraju  et  al.  2003).  Mi-9 is

localized to the short arm of chromosome 6 of tomato, in a similar location

as  the Mi locus.  Since  the  short  arm of  chromosome 6  contains  several

members of the  Mi-1 gene family, it was speculated that  Mi-9 could be a

homolog of Mi-1. RKN resistance at high temperature in S. arcanum LA2157

was attenuated when a 300bp cDNA, spanning the carboxyl end of Mi-1, was

used in tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS),

indicating  that  Mi-9-mediated  resistance  in  accession  LA2157  is  indeed

encoded by a Mi-1 homolog (Jablonska et al. 2007). Since Mi-9 was identified

by  gene  silencing  and  not  by  cloning  and  complementation,  the  exact

sequence of Mi-9 remains unknown. 

STRUCTURE OF Mi AND Ma LOCI AND ENCODED PROTEINS 
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To date, only two R genes against RKN have been cloned, Mi-1 and Ma.

Both  R genes encode nucleotide-binding leucine-rich repeat (NLR) proteins

with  no  subcellular  localization  signals  and  are  presumed  to  be

cytoplasmically localized (Claverie et al. 2011; Milligan et al. 1998). Both Mi

and  Ma loci  also  have  similar  structure  encompassing  both  genes  and

pseudogenes. The Mi locus, located on the short arm, near the centromere,

of chromosome 6 of tomato spans about a 30-kb region, and contains two

complete NLR genes,  Mi-1.2 and Mi-1.1, and a pseudogene,  Mi-1.3. Tomato

complementation  experiments,  with  the  respective  native  promoters,

showed  that  Mi-1.2,  also  referred  to  as  Mi-1,  and  not  Mi-1.1 confers

resistance to  RKN.  The  Ma resistance locus  contains  three NLR encoding

sequences, two of which are pseudogenes or truncated genes and only one

encodes  a  full-length  gene  sequence,  the  Ma  gene.  Ma,  with  its  native

promoter  was  used  in  complementation  experiments  by  Agrobacterium

rhizogenes-mediated  transformation  of  susceptible  Prunus  as  hairy  root

transformation as well as composite microplants. Both approaches showed

that the presence of this single NLR conferred resistance to RKN confirming

that it is the Ma R gene (Claverie et al. 2011).  

While  Mi-1  and  Ma are  both  NLRs,  these  R  proteins  feature  stark

differences. The N-terminus of Mi-1 has a coiled-coil (CC) domain while the N-

terminus of Ma displays a Toll interleukin1 receptor (TIR) domain (Milligan et

al. 1998; Vos et al. 1998). In addition, while Mi-1 has a long amino terminus,

commonly displayed among NLRs from solanaceous plants, the Ma protein

has an unusually long carboxy-terminus. This long carboxy-terminal region

contains a WRKY-like domain (Claverie et al. 2011; Ghelder and Esmenjaud

2016).  Since  WRKYs  are  transcription  factors  known  for  their  role  in

regulating  immune  responses,  the  presence  of  WRKY-like  sequences

suggests  the  ability  of  Ma  to  integrate  effector  recognition  and  defense

signaling networks.  Alternatively,  the WRKY-like  domain  may serve as  an

effector target and a decoy bait as has been shown for other NLR-WRKY R

proteins (Baggs et al. 2017).
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In  addition  to  Mi-1,  a  few  CN  R  genes  have  been  cloned  from

solanaceous plant species, namely  Gpa2  and  Gro1-4 from potato and  Hero

from tomato.  Gpa2 and Hero encode CC-NLRs while  Gro1-4 encodes a TIR-

NLR  (Kaloshian et al. 2011). A recent review describes the recently cloned

soybean CN R-loci, rhg1 and Rhg4, from soybeans that encode surprising and

novel types of resistance proteins  (Mitchum 2014). The vast structural and

composition differences among the nematode resistance loci cloned to date

highlights the diversity of  R-genes and possible mechanisms of resistance

that includes both activation of immune responses and alterations in plant

metabolism. This diversity also highlights one of the challenges to identify

and clone PPN R genes. 

MI-1 AND MA: RESISTANCE SPECTRUM AND MECHANISM OF RESISTANCE

Most NLRs confer resistance to a specific race or strain of pathogen or

nematode.  In contrast, Mi-1 confers resistance to two distinct taxa of pests,

nematodes and insects.  Besides conferring  resistance to  three species  of

RKNs, Mi-1 confers resistance to three species of Hempiteran insects, potato

aphids  (Macrosiphum euphorbiae),  whiteflies (Bemisia  tabaci)  and psyllids

(Bactericerca cockerelli) (Kaloshian et al. 2011). How a single NLR recognizes

all these different groups of pests remains a mystery. The broad-spectrum

resistance conferred by  Mi-1  suggests that either these organisms share a

common conserved motif, suggesting direct recognition, or that they leave

similar footprints or have effectors converging on the same immunity hub

guarded by Mi-1. To date, no insect effectors that Mi-1 recognizes have been

identified.  Two  genes  that  are  uniquely  expressed  in  Mi-1  avirulent  RKN

populations,  and  not  in  virulent  near-isogenic  populations,  have  been

isolated (Gleason et al. 2008; Semblat et al. 2001). However, it is not clear

whether  either  one  of  these  genes  is  the  effector  that  Mi-1  recognizes

(discussed in the next section).

The mechanism of resistance to RKN in herbaceous plants varies from

hypersensitive response (HR) and no initiation of feeding site to late necrosis
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and  imperfect  giant  cell  formation.  Mi-1-mediated  resistance  to  RKN  in

tomato roots is manifested by HR, accumulation of H2O2 and no initiation of a

visible feeding site indicating that nematodes either die from starvation or

exit resistant roots  (Kaloshian et al. 2011). Unlike RKNs, aphids are able to

initiate feeding on resistant tomato leaves and no HR is detected (Martinez

de Ilarduya et al. 2003). However, aphids are unable to sustain feeding and

die, likely from starvation.  Although  R-gene-mediated resistance has been

uncoupled from HR, it is not clear whether this difference in  Mi-1-mediated

RKN  and  aphid  resistance  is  due  to  the  different  plant  tissues  involved,

leaves vs roots, or possibly the differential level of Mi-1 expression in these

distinct tissue types.    

The resistance mediated by the  Ma gene also involves HR. Infective-

stage juveniles are able to penetrate both resistant and susceptible plum

root tips, but in resistant roots, infective-stage juveniles are unable to move

out of the apical meristem region, do not initiate a feeding site or develop

(Saucet et al. 2016).  In spite of a similar resistance mechanism against RKN,

the Ma and Mi-1 R-genes differ regarding their spectrum of resistance. While

Mi-1 confers resistance to diverse organisms, the  Ma gene displays broad-

spectrum resistance to RKN species.  Ma confers resistance against over 30

RKN species  and  populations  but  it  is  not  clear  what  type  of  nematode

effector or trigger it recognizes (Saucet et al. 2016). This type of resistance is

similar to the rice resistance gene  Xa21 with broad-spectrum resistance to

various  strains  of  Xanthomonas  oryzae  pv. oryzae  (Song  et  al.  1995).

Considering that Xa21 immune activity is triggered by a 21-amino acid RaxX

peptide (RaxX21-sY) (Pruitt et al. 2015), it is likely that Ma also recognizes a

common peptide or NAMP shared by diverse RKN species. Xa21 and other

MAMP recognition  receptors  are cell  surface localized and mostly  directly

interact  with  their  cognate  MAMPs.  Considering  that  Ma encodes  an

intracellular receptor, it is unclear how it comes into contact with the NAMP

and whether it directly interacts with the ligand.
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RESISTANCE BREAKING RKN AND RKN EFFECTORS

In  a  number  of  resistant  plant-RKN  interactions,  differences  in  the

ability  of  nematodes to reproduce have been reported.  Numerous reports

have indicated the presence of M. incognita and M. javanica populations that

are able to infect and reproduce on tomato plants carrying  Mi-1.  Most of

these  RKN  virulent  populations  are  reported  from  fields  that  have  been

repeatedly  planted  with  resistant  tomato  suggesting  that  virulence  has

developed as a consequence of genetic pressure. In addition, sometimes a

fitness cost, such as the ability to reproduce at high levels on the susceptible

plant  or  on  other  crops,  has  been  associated  with  the  appearance  of

virulence  (Williamson  and  Roberts  2009).  However,  virulence  on  Mi-1-

containing  tomatoes  has  also  been  reported  in  fields  with  no  history  of

resistant tomato cropping indicating an inherent ability to adapt quickly to

resistant  cultivars  (Netscher  1976;  Kaloshian  et  al.  1996).  How do  these

latter  virulent  RKN  populations  overcome  Mi-1-mediated  resistance  is

puzzling  considering  their  parthenogenetic  mode of  reproduction  and our

understanding  of  the  evolution  of  R genes,  and  may  suggest  either

transcriptional plasticity of effectors or an active dynamic genome. 

To identify the genetics of virulence and to identify the RKN effector

that Mi-1 recognizes, nearly-isogenic RKN strains that differ in virulence on

Mi-1 carrying tomato, were used in transcriptome analyses  (Gleason et al.

2008;  Semblat  et  al.  2001).  In  these reports,  losses  of  the expression of

single, but distinct genes, were identified in the virulent isolates compared to

their avirulent counterparts. One of these genes named map-1.2, encodes an

expansin-like  protein  secreted  by  the  nematode  and  is  likely  involved  in

nematode penetration. MAP1.2 has 58 and 13 amino acid repeat units and

belongs to a small gene family with variation in the number of these repeat

units. Interestingly, members of the MAP1 family are unique to Meloidogyne

species with a mitotic  parthenogenetic mode of reproduction and are not

present  in  other  species  of  nematodes  or  in  RKNs  with  other  modes  of

reproduction  (Tomalova et al. 2012). The loss of  map-1.2 was detected in
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the genome of additional Mi-1 virulent RKNs, indicating genetic adaptation to

new  conditions  in  these  parthenogenetic  organisms  and  further

substantiating  a  link  between  virulence  and  the  absence  of  this  gene

(Castagnone-Sereno  et  al.  2009).  However,  besides  association  with

avirulence, the role of map-1 in Mi-1-mediated resistance remains unclear. 

The  second  gene  identified  using  Mi-1 virulent  and  avirulent  near-

isogenic RKN strains and differential transcriptome analysis, is Cg-1 (Gleason

et al. 2008). Similar to  map1,  Cg-1 is also expressed in the  Mi-1 avirulent

strain and missing from the virulent strain. Consistent with a role for Cg-1 in

Mi-1-mediated  resistance,  silencing  Cg-1 in  the  avirulent  RKN  strain,  by

soaking in double-stranded RNA, resulted in gain of virulence function. It is

not clear what  Cg-1 encodes as no annotation for this gene exists and it is

not  known  whether  Cg-1  expression  is  also  missing  in  additional  Mi-1.2

virulent RKN populations.  Consequently, the role of  Cg-1 in  Mi-1-mediated

resistance  remains  vague  and  the  quest  for  the  RKN  effector  that  Mi-1

recognizes continues.

Recent research suggests that gene copy number variation could be

responsible for the genetic variation and adaptation of virulent RKN isolates

to  Mi-1 carrying tomato plants. Using two nearly isogenic  Mi-1 virulent and

avirulent RKN pairs, 33 genes were identified that showed decreases in copy

number  in  the  two virulent  pairs  compared  to  the  avirulent  (Castagnone

Serrano et al. 2019). High level of variation in gene copy number has been

observed in various asexual organisms and thought to be one of the genomic

mechanisms used by these organisms to cope with selective pressure and

adaptation to their environments (Duvaux et al. 2015; Minning et al. 2011;

Spring et al. 2013). Interestingly, the ontology of these RKN genes indicate

enrichment  in  functions  involved  in  parasitism  and  further  supports  the

notion  that  gene  copy  loss  is  a  virulence  mechanism  in  asexual  RKNs

(Castagnone  Serrano  et  al.  2019).  However,  whether  these  RKN  gene

products are secreted into the plant and how they interact with Mi-1 and

evade Mi-1-mediated resistance remains unclear. 
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Characterization of  secreted nematode proteins and identification of

effectors is of great interest to the PPN scientific community (Mantelin et al.

2017). At this time, several projects across different continents are studying

nematode  effector  biology  in  the  hope  of  identifying  the  ways  PPNs

manipulate  their  hosts  for  their  advantage.  Current  information  indicates

that PPN secretions are not only essential for host penetration and feeding

site formation,  but also do indeed interfere with plant immune responses

(Mantelin et al. 2015). Among these is the RKN effector calreticulin, Mi-CRT,

that  has  been shown to suppress PTI  responses induced by the bacterial

MAMP elf18 (Jaouannet et al. 2013). The success of RKNs as parasites, and

the large number of  secreted proteins identified from them, suggests the

presence of additional effectors that suppress plant defenses  (Bellafiore et

al. 2008).

WHAT MORE WE KNOW ABOUT Mi-1 SIGNALING? 

Structure-function  analysis  indicates  that  the  Mi-1  LRR  domain  is

involved  in  effector  recognition  and  upon  this  recognition,  Mi-1  protein

undergoes  a  conformational  change  that  activates  immune  responses.

Activation also involves binding to and hydrolysis of ATP to ADP (Tameling et

al.  2002).   Additional  Mi-1  signaling  components,  common  in  other  NLR

signaling cascades, have been identified including Hsp90 and Sgt1 (Figure

2).  Downstream defense signals also include members of  mitogen-activated

protein (MAP) kinase cascade and the transcription factors WRKY70a/b and

WRKY72  (Kaloshian  et  al.  2011).  Rme1,  a  gene  identified  through

mutagenesis  of  resistant  tomato,  is  also  required  for  Mi-1-mediated

resistance and thought to function early in the signaling cascade, likely as a

common  target  for  RKN  and  insect  pests  guarded  by  Mi-1  (Martinez  de

Ilarduya, et al. 2001). However, Rme1 has not yet been cloned and its nature

and the exact role in Mi-1-mediated resistance remains unknown.

Recent information indicates that Mi-1 interacts with the cell surface

localized  receptor-like  kinase,  SERK1.  Using  a  VIGS  screen  as  a  reverse

18



genetic  tool,  SERK1  was  identified  to  be  required  for  Mi-1-mediated  cell

death  in  Nicotiana  benthamiana  (Mantelin  et  al.  2011).  Similarly,  the

requirement  of  SERK1  for  Mi-1  resistance  against  aphids  was  shown  in

tomato using VIGS. Interestingly, silencing SERK1 in tomato did not affect

RKN  resistance  (Mantelin  et  al.  2011).  Since  VIGS  does  not  completely

eliminate the targeted gene transcripts, it is likely that SERK1 also functions

in resistance against RKN and that the residual SERK1 levels in the silenced

roots is sufficient for Mi-1 function. In addition to SERK1, a recent discovery

indicates that Mi-1 cell death in  N. benthamiana leaves requires a second

NLR, known as NRC4 (NLR required for cell death 4), that is suggested to be

a core  element of  the plant  immune signaling network  (Wu et  al.  2017).

These  discoveries  demonstrate  the  complex  nature  of  the  Mi-1  signaling

network that connects multiple components spanning the cell surface to the

cell nucleus (see more below). 

The  association  of  SERK1  and  Mi-1  was  further  demonstrated  by

colocalization  of  SERK1  and  Mi-1  at  the  plasma  membrane,  and  co-

immunoprecipitation of SERK1 and Mi-1 in a single protein complex in the

resistant tomato microsomal fractions (Peng et al. 2016). More interestingly,

SERK1 and Mi-1 were shown to directly interact only upon ligand recognition.

The ligand recognition may bring a conformational change in SERK1 and/or

Mi-1 consistent with the need for a conformational change(s) to activate Mi-

1-mediated  immunity  (Takken  et  al.  2006).  Furthermore,  besides  its

presence in the microsomal and cytoplasmic compartments, Mi-1 was also

detected  in  the  nucleus  indicating  its  presence  in  different  subcellular

regions (Peng et al. 2016). The presence of Mi-1 in microsomal fractions as

well as the cytoplasm and the nucleus, may highlight the importance of its

presence  in  multiple  subcellular  compartments  for  effective  activation  of

defenses. Whether such compartmentalization is necessary for Mi-1 function

and the function of RKN NLR R proteins remains to be seen.

DEFENSE RESPONSES AGAINST RKNs
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Plants depend on hormonal networks to fine tune responses to biotic

and  abiotic  stressors  and  to  regulate  growth  and  defense  tradeoffs.  The

major hormones that regulate plant defense responses are salicylic acid (SA),

Jasmonic acid (JA and ethylene (ET). For a long time, SA has been associated

with  defense  against  biotrophic  pathogens  while  JA/ET  contributing  to

defense against necrotrophic pathogens and herbivore pests. A synergistic

interaction  between  JA  and  ET  has  also  been  established  as  has  the

existence of an antagonistic relationship between SA and JA/ET responses.

However,  recent  information  indicates  that  all  three  hormone  signaling

pathways, SA, JA and ET, interact at a synergistic level with one hormone

making a larger contribution than the others based on the specific stressor

(Tsuda et al. 2009). Although defense against PPN involves all these three

major  hormones,  existing  information  reports  contradictory  outcomes  for

both RKN and CN infections.  A detailed review on the role of phytohormones

in  plant-PPN interactions  was published recently  elsewhere  (Gheysen and

Mitchum  2019).  The  emerging  consensus  indicates  that  ET  inhibits  RKN

infection and promotes CN infection while SA contributes to defense against

both  RKN  and  CN.  The  picture  with  the  JA  phytohormone  seems  more

complex particularly against RKN. While a clear positive role for JA in defense

against CN has emerged, the role of JA in RKN defense is not well defined.

What is clear is the lack of consensus on the role of JA in RKN defense and

that different branches of the oxylipin pathway that includes JA biosynthesis

contribute differently to RKN defense. 

CONCLUDING REMARKS

The progress towards cloning and incorporating RKN resistance genes

into cultivated crops remains surprisingly slow. Although the reasons for this

slow  progress  are  not  well  articulated,  it  is  clear  that  lack  of  sustained

funding and consequently low number of researchers in this field are major

contributors for this disappointing progress.  There is much to learn about

PPNs  and  interactions  with  their  hosts.  Outstanding  important  questions
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remain as to the cause of virulence, the nature of RKN effectors recognized

by R-proteins and the immediate downstream signals, the diversity of RKN R-

proteins and whether atypical R-proteins, like those against CNs, also exist

for RKNs. The lack of genetic variation and asexual reproduction of the most

agronomically  important  RKN species,  necessitates  systematic  analysis  of

genomic, transcriptomic and proteomic data sets to unravel these questions.

Potential use of alternatives to R-genes in controlling PPNs are emerging, but

far  from being implemented  for  their  control.  For  the  foreseeable  future,

reliance on chemicals to control PPNs, particularly RKNs, will continue. 
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FIGURE LEGEND

Figure 1. Tomato plants, grown in a plastic house, infected with the root-knot

nematode Meloidogyne incognita.

Figure 2. Immune receptors and defense signaling components against plant

parasitic  nematodes.  Unknown  nematode-associated  molecular  pattern(s)

(NAMPs) is recognized by the plasma membrane localized receptor kinase

NILR1  triggering  PTI  responses.  PTI  against  nematode  involves  the

membrane  localized  receptor-like  kinase  (RLK)  SERK3/BAK1  and  the

membrane associated kinase BIK1.  This  recognition triggers production of

ROS by the NADPH oxidases, the RBOHD/F,  which requires the coenzyme

FAD. The Mi-1 resistance protein associates indirectly with the membrane

28



localized RLK SERK1. Upon pest perception, a conformation change in the

SERK1-Mi-1 complex triggers immune responses that involve NRC4, HSP90,

SGT1  and  RME1.  This  ETI  response  involves  members  of  the  mitogen-

activated protein kinase cascades (MKK2, MAPK1-3) and WRKY transcription

factors.
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