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The importance of vibrational anharmonicity for electron-phonon
coupling in molecular crystals

Antonios M. Alvertis1, 2, ∗ and Edgar A. Engel1, †

1Cavendish Laboratory, University of Cambridge,
J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Dated: August 16, 2022)

Accurate predictions of electronic bandgaps are key to the computational design of functional
materials with tailored optical and thermoelectric properties. While an accurate description of the
underlying electronic structure is indispensable, electron-phonon interactions also play a prominent
role in determining the bandgap. The harmonic vibrational approximation is used almost universally
to describe electron-phonon coupling and provides a satisfactory description in most systems. Here
we demonstrate that this is not the case for molecular crystals due to the presence of strongly
anharmonic motions. We demonstrate the breakdown of the harmonic approximation in acene
molecular crystals, and show that converged bandgaps can be obtained by rigorously accounting
for vibrational anharmonicity using path-integral molecular dynamics. Finally, we characterise the
most anharmonic vibrational modes and their contributions to the bandgap renormalisation.

Introduction.– Electronic bandgaps are a key quan-
tity in studying the optical and electrical properties of
materials and are central to applications such as pho-
tovoltaics [1] and thermoelectrics [2]. Accurate predic-
tions of bandgaps are critical in understanding how the
electronic and optical properties may be tuned by fac-
tors such as atomic or molecular substitutions, tempera-
ture [3–5], and pressure [6, 7], and thus for the design of
materials with tailored characteristics. General predic-
tive calculations of the electronic properties of materials
require not only an accurate description of the electronic
structure of a fixed atomic configuration, but also the
rigorous treatment of quantum and thermal nuclear fluc-
tuations, which can lead to a significant renormalisation
and temperature dependence of bandgaps [8, 9].

Traditionally this electron-phonon coupling is either
neglected, or accounted for subject to approximations [4].
In particular, nuclear motion is generally assumed to be
harmonic, in which case the nuclear density distribu-
tion can be computed analytically and used to sample
the ensemble average bandgap [4]. This approach has
proven practical and suitable for a wide range of semicon-
ductors [8–10]. Unfortunately, the harmonic vibrational
approximation (HA) breaks down for general molecular
systems. This is well-established in the context of com-
puting thermodynamic stability [11–16], but more rarely
discussed in the context of electron-phonon coupling and
computational spectroscopy.

In this letter, we calculate fully anharmonic, quantum-
mechanical, finite-temperature electronic bandgaps, and
identify the phonons that most strongly deviate from
the harmonic behaviour. This is achieved by employ-
ing path-integral molecular dynamics (PIMD) to sam-
ple the full anharmonic, quantum-mechanical thermody-
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namic ensemble and subsequently computing the associ-
ated bandgaps. To render these otherwise prohibitively
expensive PIMD simulations feasible, we use a surrogate
machine-learning (ML) potential, constructed to repro-
duce the potential energy surface from first-principles
density functional theory (DFT) calculations. We re-
strict ourselves to DFT electronic bandgaps, reserving
the extension to more sophisticated techniques for future
work. While DFT using (semi-)local density function-
als tends to severely underestimate bandgaps [17, 18], it
provides the foundation for more accurate but computa-
tionally demanding techniques such as diffusion Monte
Carlo [19] and GW many-body perturbation theory [20].

Using the example of the acene molecular crystals, we
highlight the catastrophic failure of bandgap calculations
based on the HA in the presence of anharmonic crys-
tal vibrations, and identify which phonons dominate the
electron-phonon interaction at different temperatures.
Our approach could be utilised to rigorously compute the
bandgaps of various materials where anharmonicity be-
comes important, such as lead-halide perovskites [21, 22].

Systems and methods.– To demonstrate the impact
of nuclear vibrational anharmonicity on electron-phonon
coupling in organic molecular crystals, we use the acene
series, including naphthalene (Np), anthracene (Ac),
tetracene (Tc), and pentacene (Pc). These systems con-
sist of an increasing number of fused benzene rings (see
Figure 1, top left panel). In every case we report the mini-
mum bandgap of the studied systems. The electronic and
optical properties of these acenes have been the topic of a
previous study, which found evidence of strong effects of
anharmonicity [23]. Details regarding the structures, ge-
ometry optimisations, etc. are provided in Supplemental
Material [24] section II.A.

We compute first-principles ensemble-average
bandgaps within the adiabatic approximation

Eg = 〈Eg(X)〉H =
1

Z

∫
dXEg(X)e−βV (X) (1)
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FIG. 1. Schematic of the key steps in obtaining first-principles bandgaps within the harmonic approximation, and upon rigorous
sampling of anharmonic quantum nuclear fluctuations. For simplicity, we show a single (phonon) degree of freedom X. The
approximate harmonic potential V har(X) (solid line), the corresponding Gaussian probability distribution (dashed line), and
samples Xhar drawn therefrom (filled circles) are highlighted in red, while the approximate surrogate ML potential V ML(X) and
associated probability distribution and samples are shown in grey, and the rigorous, first-principles potential V (X), distribution
and Boltzmann weights are indicated in blue. The crystal structures are represented in terms of their molecular building blocks.

where the canonical partition function Z =
∫
dXe−βV (X)

involves the configuration space integral
∫
dX [25]. We

pursue a three-pronged approach. We first geometry op-
timise the different acenes (Fig. 1, panel 2), and extract
the respective “static” bandgaps, Est

g , which provide the
reference for computing vibrational bandgap corrections.

Second, we compute the bandgap within the HA, which
amounts to approximating the physical Hamiltonian H
with

Hhar ≡ 1

2

∑
n,q

∇2
un,q

+ V har ; V har ≡ 1

2

∑
n,q

ω2
n,qu

2
n,q

(2)
(in atomic units). This primarily serves the purpose of
providing atomistic insight by resolving the phonons, la-
belled by branch index n and wavevector q, and (subse-
quently) their respective contributions to the vibrational
bandgap correction. We compute the ensemble-average
Ehar
g using a finite-displacements approach [26, 27] to

compute phonon frequencies {ωn,q} and coordinates
{un,q} (panel 3), and then draw N random samples
{Xhar

i } from the multivariate Gaussian phonon distribu-
tion and calculate their bandgaps {Eg(Xhar

i )} (panel 4).
Ehar
g is then simply computed as the average bandgap of

the samples

Ehar
g = lim

N→∞

1

N

N∑
i=1

Eg(X
har
i ) (3)

This provides a non-perturbative description of electron-

phonon coupling [8], within the constraints of the approx-
imate harmonic vibrational distribution. Unfortunately,
the systematic error resulting from the HA cannot be
quantified reliably.

To rigorously account for general, anharmonic quan-
tum nuclear motion we finally employ path-integral tech-
niques. Since converged first-principles PIMD simula-
tions for our structures are prohibitively expensive, we
use the total energies and forces computed as a side
product of sampling Ehar

g to train a surrogate ML po-

tential, V ML (grey solid, Fig. 1, panel 5). We chose
the tried-and-tested Behler-Parinello framework as im-
plemented in the N2P2 package [28], in which structures
are encoded in atom-centred symmetry functions [29]
and passed through fully-connected feed-forward artifi-
cial neural networks to compute atomic forces and con-
tributions to the total energy. We replicate the architec-
ture, which has previously proven highly accurate and
reliable for polymorphs of benzene [30, 31]. In result, the
evaluation of V ML is orders of magnitude less expensive
than a corresponding first-principles calculation, which
renders PIMD simulations using the ML Hamiltonian,

HML ≡
Na∑
i=1

p̂2
i

2mi
+ V ML(r̂1, . . . , r̂Na) (4)

computationally tractable. This permits us to compute
the bandgap of the ML ensemble as the average over the
DFT values computed for a small number N ′, of sample
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structures {XML
i } drawn from a PIMD trajectory:

EML
g = lim

N ′→∞

1

N ′

N ′∑
i=1

Eg(X
ML
i ). (5)

In practice we find that computing the DFT bandgap
for between 50 (for the larger supercells) and 200 (for
the unit cells) configurations from PIMD trajectories for
32 beads at regular intervals of 50 fs, provides suitably
converged ensemble average bandgaps.

Crucially, the affordability of V ML comes at the price
of residual errors with respect to the reference V , which
may arise from the short-ranged nature of the ML po-
tential [32], information lost during the “featurisation”
of the samples [33], or from limited data. While the root-
mean-squared (RMS) errors in ML energies and forces do
not exceed 3.1 meV/atom and 0.16 eV/Angstrom, except
for naphthalene, they stand to affect the bandgap esti-
mates. To quantify this we use the first-principles poten-
tials {V (XML

i )}, which come as a complement of evalu-
ating the corresponding bandgaps (Eq. 5), to extract the
first-principles bandgap Eg by statistical reweighting of
the samples obtained from the ML ensemble (panel 8):

Eg = lim
N ′→∞

∑N ′

i=1 w(XML
i )Eg(X

ML
i )∑N ′

i=1 w(XML
i )

wi ≡ exp
(
−β
(
V (XML

i )− V ML(XML
i )

)) (6)

Recovering the DFT bandgaps Eg for the unit cells of
acenes using equation (6) reveals a consistent overestima-
tion of the bandgap correction for all acenes using V ML,
which does not affect the trends and microscopic insights
discussed below. This overestimation is largest for naph-
thalene (97 meV) and much smaller for the larger acenes,
consistent with smaller errors in V ML for these systems.

For the acenes, applying the same reweighting strategy
to recover Eg from the sampled {Eg(Xhar

i )} is prevented
by substantial differences between V har(X) and V (X),
leading to diverging weights and unphysical bandgap es-
timates, which do not agree with those obtained using
PIMD. However, since statistical reweighting can be at-
tempted at no additional cost in terms of DFT calcula-
tions, for near-harmonic systems it provides a practical
means of probing for anharmonic effects and avoiding un-
necessary PI calculations.

Results.– Let us demonstrate the breakdown of the
HA in the case of anthracene at T = 300 K. As visu-
alised in Figure 2a, the harmonic correction to the static
bandgap (red) fails to converge with increasing supercell
size. Meanwhile, accounting for anharmonic effects leads
to smooth convergence up to large, size 27 (3 × 3 × 3)
supercells. To elucidate the disagreement between the
two cases, we project the harmonic and anharmonic
trajectories of anthracene onto the phonon coordinates
{un,q}. This allows us to compare the RMS displacement√
〈u2n,q〉 of each phonon mode (n,q) at the two levels

of theory. Figure 2b shows significant differences in the
RMS displacements of low-frequency phonons, and high-
lights two particularly anharmonic modes (black circle
and arrow) that involve sliding motions between several
anthracene molecules as shown in the inset. In Figure 2c
we plot the harmonic potential energy surface along the
phonon coordinate un,q of one of the two modes and com-
pare it to the true, fully-anharmonic potential along un,q
as obtained through direct DFT calculations. We see
that the true potential is much stiffer than its HA and,
in comparison, stifles the amplitude of the vibrational
motion. This is consistent with the corresponding har-
monic and anharmonic RMS displacements observed in
Figure 2b, and suggests that the HA leads to unphysi-
cally large phonon amplitudes, which in turn result in
the lack of convergence for the harmonic bandgap seen
in Figure 2a.

The breakdown of the HA is not limited to the case
of anthracene. In Supplemental Material [24] Section
III, we show that the remaining acenes exhibit simi-
lar behaviour, with strongly anharmonic low-frequency
phonons, which can in turn manifest a similar lack of con-
vergence for the harmonic bandgap. Such anharmonic-
ity generally arises when studying supercells of size four
or above, where phonons can primarily involve inter-
molecular motion between several molecules, resulting
in extremely low-frequency anharmonic motion, partic-
ularly for (but not limited to) acoustic modes. Conse-
quently, studies using coarse q-grids (or, conversely, small
simulation cells within finite-displacement approaches)
may escape the breakdown of the HA and obtain reason-
able estimates of vibrationally-renormalised bandgaps of
molecular crystals [23]. However, this generally comes
at the price of errors due to unconverged q-sampling (in
particular, neglecting low-frequency q → 0 phonons), as
apparent in Figures 2a and 3a. Accurate bandgap pre-
dictions thus require studying large supercells, which ex-
hibit strong anharmonicity. Notably, the degree of anhar-
monicity is fairly insensitive to the flavour of electronic
structure theory, as shown for of pentacene in Supple-
mental Material [24] Section III.

Therefore, in order to rigorously account for electron-
phonon interactions in molecular crystals, we turn to
the aforementioned PIMD approach, which fully ac-
counts for anharmonicity and nuclear quantum effects.
Figure 3a shows that the room-temperature bandgap
renormalisation of the acene crystals converges smoothly
with increasing supercell size. Pentacene and tetracene
bandgaps are already reasonably well-converged for su-
percells of size two. The bandgaps only show marginal
changes when increasing the supercell size to eight, which
is the maximum we were able to simulate for these sys-
tems, due to memory limitations in the DFT bandgap
calculations for the sampled configurations. For the
smaller acenes, larger supercells are required to reach
convergence and even for the 3× 3× 3 case naphthalene
and anthracene seem to not be fully converged. However,
DFT calculations on larger supercells are prohibitively
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FIG. 2. Harmonic and anharmonic bandgap renormalisation
in anthracene at 300 K (panel a). The root-mean-squared
phonon displacements in the two distributions (panel b) high-
light unphysical displacements for harmonic low-frequency
phonons. For one of these motions, the harmonic and an-
harmonic potential energy surface is shown in panel c, where
room temperature is marked with a dotted line. This phonon
involves a sliding motion between several molecules (panel d).

expensive. More details regarding the convergence of
PIMD averages are given in SI [24] Section II.

Comparing our value of −0.683 eV for the room-
temperature bandgap renormalisation in naphthalene
to the −0.44 eV [34] obtained using density functional
perturbation theory (DFPT) [35, 36] and Allen-Heine-
Cardona (AHC) theory highlights the differences aris-
ing from different approximations to the electron-phonon
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FIG. 3. Bandgap renormalisation of the acene crystals, com-
puted with path integral molecular dynamics. Convergence of
the bandgap correction at 300 K with respect to the simula-
tion cell size (panel a). Panel b shows the difference between
the converged 100 K and 300 K corrections (black), as well as
the bandgap renormalisation at 100 K (red).

interaction. While Ref. [34] relies on the HA and per-
turbation theory, our PIMD approach naturally includes
anharmonicity and higher-order terms in the electron-
phonon interaction. The latter are known to be im-
portant in molecular crystals [8] and are reflected, for
instance, in the non-quadratic dependence of pentacene
bandgap on the displacement of low-frequency phonons
shown in Supplemental Material [24] Figure 4b. We also
note that the lack of convergence of the bandgap that
we observe within the HA is not related to the diver-
gence which can appear in AHC theory, particularly for
IR-active materials [37], where it can be remedied by in-
cluding non-adiabatic effects. We expect our results for
the acene crystals (unlike more ionic materials [38]) to be
insensitive to non-adiabatic effects. Moreover, we empha-
sise that the unphysical effects that arise from neglect-
ing the effects of anharmonicity on electron-phonon cou-
pling are not an artefact of finite displacement methods,
as similar observations have been reported for SrTiO3

within AHC theory [39].

Figure 3a highlights larger bandgap corrections for
smaller molecular crystals. It is however not yet clear
whether the differences in the bandgap renormalisation
of the acenes are due to thermal or quantum nuclear
motion. To answer this question, we also sample the
bandgaps at 100 K using PIMD. In Figure 3b, we plot
the difference between the bandgaps at 100 K and 300 K
(black). This purely temperature-driven renormalisa-
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tion is more pronounced for smaller acenes, indicat-
ing that thermally-activated low-frequency phonons are
more strongly coupled to the bandgaps of these systems.
The remaining bandgap renormalisation at 100 K (red)
is also stronger for the smaller systems. At low tempera-
tures nuclear quantum fluctuations due to high-frequency
phonons dominate, since thermal activation is minimal,
while these modes have significant zero-point energies
~ωn,q/2. To further elucidate the different coupling of
low- and high-frequency phonons to the acene bandgaps,
we compute the phonon-resolved bandgap renormalisa-
tion within a quadratic approximation, which confirms
the above picture (see Supplemental Material [24] Sec-
tion IV).

Finally, it is interesting to visualise the phonons which
most strongly couple to electrons as a result of thermal
activation (see Supplemental Material [24] Section V).
Rotations around the molecular long-axes lead to sig-
nificant bandgap renormalisation in all studied systems,
and increasingly so for the smaller acenes. Naphthalene
is the only system with significant contributions from ro-
tations around the molecular short-axis, which drive the
failure of the harmonic approximation. We hypothesise
that such short-axis rotations become energetically un-
favourable for larger acenes, increasing the frequency of
these phonons beyond the threshold of thermal activation
at room temperature. Highly anharmonic sliding mo-
tions (such as the one in Figure 2b) become important in
the larger acenes and result in a blue-shift of the gap (see
Supplemental Material [24] Section III). The anharmonic
character of these motions, as well as their importance for
phenomena such as charge transport and singlet fission
in organic crystals are well known [40–42].

Conclusions.– In this letter we have demonstrated the
breakdown of the HA for computing electron-phonon
effects and associated thermodynamic averages of ob-
servables for molecular crystals. We have presented
an integrated approach for rigorously including anhar-
monic effects in calculations of electron-phonon coupling
within the adiabatic approximation, showing that it per-

mits computing converged values for the phonon-induced
bandgap renormalisation of the acene crystals. We find
that both low- and high-frequency vibrations couple more
strongly to the bandgap of crystals consisting of smaller
molecules, which we discuss in light of the displacement
patterns of specific phonon modes. Sliding motions are
consistently found to be amongst the most anharmonic
ones, emphasising the need to rigorously include anhar-
monicity in the study of phenomena such as charge trans-
port and singlet fission where these are known to be im-
portant.

In the acenes the breakdown of the HA is driven by
low-frequency, acoustic phonons, which are only probed
for fine sampling of the Brillouin zone. However, vibra-
tional anharmonicity is a recurrent theme in functional
materials and more generally plays prominent roles in
determining material properties, such as in the dynamic
stabilisation of halide perovskites [43] and the cubic per-
ovskite phase of SrTiO3 [14]. We thus emphasise that
our approach for capturing anharmonic effects is univer-
sal (albeit subject to the adiabatic approximation) and
applicable to diverse materials. Given the demonstrable
importance of non-adiabatic effects for electron-phonon
coupling in more ionic materials [38], it will be interest-
ing to investigate the interplay of non-adiabaticity and
vibrational anharmonicity.

The data underlying this publication can be found
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thors thank Bartomeu Monserrat (Cambridge), Jonah
B. Haber (Berkeley), and Jeffrey B. Neaton (Berkeley)
for insightful discussions. A.M.A. acknowledges funding
from the Winton Programme for the Physics of Sustain-
ability. E.A.E. acknowledges funding from Trinity Col-
lege, Cambridge, through a Junior Research Fellowship.
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provided by the Cambridge Tier-2 system operated by
the University of Cambridge Research Computing Ser-
vice (http://www.hpc.cam.ac.uk) and funded by EPSRC
Tier-2 capital grant EP/P020259/1.
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tex from first principles, Physical Review Letters 115, 1
(2015), 1510.06373.
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A. Richard, C. Ruzié, J. Armstrong, A. R. Kennedy,

https://doi.org/10.1103/PhysRevLett.112.215501
https://doi.org/10.1103/PhysRevLett.112.215501
https://doi.org/10.1088/0953-8984/22/2/023201
https://arxiv.org/abs/1002.2127
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1038/s41467-019-11087-y
https://doi.org/10.1038/s41467-019-11087-y
https://doi.org/10.1039/c6mh00275g
https://doi.org/10.1039/c6mh00275g
https://arxiv.org/abs/1607.08541
https://doi.org/10.1103/PhysRevB.102.081122
https://doi.org/0.5281/zenodo.1344447
https://github.com/CompPhysVienna/n2p2
https://github.com/CompPhysVienna/n2p2
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1063/1.5128375
https://doi.org/10.1063/1.5128375
https://doi.org/10.1103/PhysRevLett.125.166001
https://doi.org/10.1103/PhysRevLett.125.166001
https://doi.org/10.1103/PhysRevB.101.165102
https://doi.org/10.1016/S0370-2693(97)00392-4
https://doi.org/10.1016/S0370-2693(97)00392-4
https://arxiv.org/abs/9702376
https://doi.org/10.1103/PhysRevLett.115.176401
https://doi.org/10.1103/PhysRevLett.115.176401
https://arxiv.org/abs/1510.06373
https://doi.org/10.1063/1.4927081
https://arxiv.org/abs/1504.05992
https://doi.org/10.1038/s41524-020-00434-z
https://doi.org/10.1038/s41524-020-00434-z
https://arxiv.org/abs/2011.12765
https://doi.org/10.1021/acs.jpclett.0c00183
https://doi.org/10.1021/acs.jpclett.0c00183
https://doi.org/10.1021/cm051150h
https://doi.org/10.1021/cm051150h


7

K. Shankland, K. Takimiya, Y. H. Geerts, J. A. Zeitler,
S. Fratini, and H. Sirringhaus, Chasing the “Killer”
Phonon Mode for the Rational Design of Low-Disorder,
High-Mobility Molecular Semiconductors, Advanced Ma-
terials 31, 10.1002/adma.201902407 (2019).

[42] H. Seiler, M. Krynski, D. Zahn, S. Hammer, Y. W. Wind-
sor, T. Vasileiadis, J. Pflaum, R. Ernstorfer, M. Rossi,
and H. Schwoerer, Nuclear dynamics of singlet exciton
fission: a direct observation in pentacene single crystals,
Science Advances 7, eabg0869 (2021).

[43] J. S. Bechtel, J. C. Thomas, and A. Van Der Ven, Finite-
temperature simulation of anharmonicity and octahedral
tilting transitions in halide perovskites, Physical Review
Materials 3, 1 (2019).

[44] J. M. Robertson, V. C. Sinclair, and J. Trotter, The crys-
tal and molecular structure of tetracene, Acta Crystallo-
graphica 14, 697 (1961).

[45] M. J. Willatt, F. Musil, and M. Ceriotti, Feature opti-
mization for atomistic machine learning yields a data-
driven construction of the periodic table of the elements,
Phys Chem Chem Phys 20, 29661 (2018).

[46] V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Lit-
man, T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner,
D. M.Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienv-
enue, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande,
J. Wieme, and M. Ceriotti, i-PI 2.0: A universal force
engine for advanced molecular simulations, Computer
Physics Communications 236, 214 (2018).

[47] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi,
The Farthest Point Strategy for Progressive Image Sam-
pling, IEEE Transactions on Image Processing 6, 1305
(1997).

[48] V. Kapil, J. Behler, and M. Ceriotti, High order path
integrals made easy, The Journal of Chemical Physics
145, 234103 (2016).

[49] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler,
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