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Grasping extreme aerodynamics on a
low-dimensional manifold

Kai Fukami 1 & Kunihiko Taira 1

Modern air vehicles perform a wide range of operations, including transpor-
tation, defense, surveillance, and rescue. These aircraft can fly in calm condi-
tions but avoid operations in gusty environments, encountered in urban
canyons, over mountainous terrains, and in ship wakes. With extreme weather
becoming ever more frequent due to global warming, it is anticipated that
aircraft, especially those that are smaller in size, will encounter sizeable
atmospheric disturbances and still be expected to achieve stable flight. How-
ever, there exists virtually no theoretical fluid-dynamic foundation to describe
the influence of extreme vortical gusts on wings. To compound this difficulty,
there is a large parameter space for gust-wing interactions. While such inter-
actions are seemingly complex and different for each combination of gust
parameters, we show that the fundamental physics behind extreme aero-
dynamics is far simpler and lower-rank than traditionally expected. We reveal
that the nonlinear vortical flow field over time and parameter space can be
compressed to only three variables with a lift-augmented autoencoder while
holding the essence of the original high-dimensional physics. Extreme aero-
dynamic flows can be compressed through machine learning into a low-
dimensional manifold, which can enable real-time sparse reconstruction,
dynamical modeling, and control of extremely unsteady gusty flows. The
present findings offer support for the stable flight of next-generation small air
vehicles in atmosphere conditions traditionally considered unflyable.

Since the Wright brothers accomplished the first human-powered and
controlled flight in 1903, a wide variety of aircraft has been developed
for transportation, defense, observation, search, and rescue missions.
What makes these aircraft uniquely different from other modes of
transportation is their ability to stay aloft by taking advantage of
aerodynamics. To support the development of these aircraft, the field
of aerodynamics has undergone tremendous growth over the past
century. Despite its expansive theory, the current aerodynamics is
generally based on steady (cruise) or quasi-steady flight conditions
with linear analysis or its nonlinear extensions for small
perturbations1–3.

We are now at an important transition point for aerodynamics.
With novel materials and enhanced powerplants/batteries becoming
available over the past couple of decades, therehave been tremendous

efforts in developing and operating smaller size personalized air
vehicles and unmanned air systems4–8. They can traverse unconven-
tional terrain, including mountainous and urban environments9–11 that
were traditionally avoided by conventional aircraft. As amatter of fact,
flight demonstrations of such air vehicles in calm weather have taken
place in recent years12. These new and amazing flying vehicle concepts
will likely revolutionize air-based transportation5,13,14 and have already
been realized for some cases15,16.

However, there are major challenges in operating small-scale air-
craft under these complex airspace when adverse weather generates
highly turbulent environments17–21. Moreover, the increased occur-
rence of extreme weather caused by global warming limits the
operations of aircraft. Flying small-scale aircraft near large natural or
manmade structures in adverse weather face additional complications
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as these vehicles need to navigate through severe turbulence com-
prised of gusts and vortical disturbances, as illustrated in Fig. 1. These
disturbances come in a variety of forms22 and are far more disruptive
than what present-day commercial aircraft experience in inclement
weather23. These extreme aerodynamic environments can be char-
acterized by a manifestation of a large number of strong vortices with
different strengths, sizes, and orientations generated by the sur-
rounding structures24. Such a flight environment has been off-limits
due to the fact that there is virtually no available theory for extreme
aerodynamic problems and to avoid possible loss of aircraft.

With infinite scenarios of large and strong atmospheric dis-
turbances hitting a flying vehicle, we cannot only focus on a single
cruise condition butmust also consider a whole array of cases in which
wings experience extreme aerodynamic disturbances. These dis-
turbances are characterized by a variety of parameters, including the
size, strength, orientation, position, and geometry of the disturbances,
necessitating massive experimental and computational campaigns if
approached naively. With a single extreme aerodynamic simulation
already producing a very large amount of flow field data, extensive
parametric sweeps lead to an enormous collection of aerodynamic
flow data and calls for significant computational and experimental
resources. These extreme aerodynamic flows exhibit rich nonlinear
behavior over a range of spatiotemporal scales that cannot be easily
analyzed and modeled with existing theories.

One of the important parameters under such extreme aero-
dynamic situations is the gust ratioG = ugust/u∞, which is ratio between
the characteristic gust velocity ugust and the translational velocity of
the wing u∞. For conditions of G ≳ 1, sustaining stable flight becomes
challenging18,25. In the present work, we consider high levels of aero-
dynamic disturbance with 0 ≤G ≤ 10, and refer to cases of G > 1 as
extreme aerodynamics. Strong gusts with G > 1 can be encountered in
urban canyons, mountainous environments, and severe atmospheric
turbulence. The goal of this study is to identify the unifying dynamics
that a wing experiences from extreme gust disturbances. At the most
fundamental level, the present problem requires the identification of
the underlying nonlinear dynamics of the complex separated flows
from an enormous amount of data in an efficientmanner while gaining
physical insights into extreme aerodynamics.

Although the aerodynamic influence of large-scale disturbances
on lifting bodies take various forms, the underlying dynamics are
generally shared. In this study, we seek these dominant dynamics
embedded in complex extreme aerodynamic flows. To achieve this
objective, we examine the reduction of massive fluid flow data into a
low-dimensional space in which the right set of variables describe the
underlying extreme aerodynamic physics. This process is enabled by
incorporating physical observables and ensuring that the gained
insights are interpretable and beneficial for future aircraft operations
and designs. In fact, we find that extreme aerodynamic flows can be
compressed by a carefully designed nonlinear machine-learning
technique to only three variables for a model problem of a strong

vortex hitting a canonical airfoil. The present findings further suggest
that the discovered manifold holds potential to support downstream
tasks such as real-time flow estimation, dynamical modeling, flow
control, and vehicle design.

Results
Extreme vortex–airfoil Interactions
We consider a strong vortex gust impacting an airfoil as a repre-
sentativemodel problem forwings experiencing extreme atmospheric
disturbances. The present model problem involves wake vortices
shedding from a high-rise building, ships in rough seas, and mountain
ridges18. The size of such strong vortices can be comparable to the size
of the wing, exerting tremendously large lift and drag forces. In this
study, we simulate two-dimensional incompressible flows with a vor-
tex placed upstream of the wing with varied vortex size, strength, and
initial position, as shown in Fig. 1. Because the airfoil wake responds
differently for each combination of these disturbance settings, the
resulting flow fields exhibit vastly different wake patterns and aero-
dynamic forces from case to case due to the nonlinear vortex
dynamics, as presented in Fig. 2. As the vortex passes around an airfoil,
thewing experiencesmassive flow separation (stall), which also causes
the emergence of additional vortical structures. All of these flow
structures interact nonlinearly, making the dynamics complex and
difficult to predict and control.

This study considers two-dimensional extremeaerodynamicflows
around a NACA 0012 airfoil at a chord-based Reynolds number
Re= u1c=ν = 100. Here, u∞ is the free-stream velocity, c is the chord
length, and ν is the kinematic viscosity. The flow field is obtained with
direct numerical simulation using an incompressible flow solver26,27.
The airfoil is positioned in the free stream with its leading edge at the
originwith angles of attackofα∈ [20°, 60°], enabling us to cover cases
of steady and unsteady wakes in undisturbed (baseline) cases. These
wakes are disturbed with a gust vortex having an angular velocity
profile28 of uθ =uθ,maxðr=RÞ exp½1=2� r2=ð2R2Þ�, where the radius of the
vortex is R.

The present disturbance vortex is characterized by the gust ratio
G � uθ,max=u1 2 ½�10,10� with its size relative to the wing chord
L ≡ 2R/c∈ [0.5, 2] and is introduced upstream of the wing at x0/c = − 2
and y0/c∈ [ −0.5, 0.5]. The combinations of these parameters provide
a wide range of large and strong gust vortices hitting the wing at
various locations. The flow field around the airfoil exhibits a rich
dynamical response to the disturbance vortex characterized by a large
parameter space comprised of (α,G, L, y0/c). To fully resolve the
dynamics over this parameter space, a substantial number of flow
cases for different combinations of these parameters would be
required. In general, Re is also another parameter but is fixed for this
study at 100. While the gust vortices contained in actual atmospheric
turbulence can be much more complex than what is considered here,
the primary dynamics of large vortex core interacting with the wing is
captured well at this Re at least in a two-dimensional manner. What is

Model Problem
(Gust vortex impingement on an airfoil) 

Extreme
disturbance 
vortex

High incidence 
airfoil

Fig. 1 | Potential extreme aerodynamic encounters. (Left) Illustration of possible
extreme aerodynamic encounters by modern air vehicles in urban environment
during adverse weather. Air vehicles operating in such an environment experience

extreme level of unsteady aerodynamic forces due to strong gusts with spatial
variations comparable to their vehicle size. (Right) Model problem of strong dis-
turbance vortex impinging on an airfoil with vorticity distribution being visualized.
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particularly important is to resolve the large vorticity source from the
surface under local flow acceleration29. These phenomena have rela-
tively short time-scales compared to the much longer viscous scales
associated with Re= 100, making the current problem setup an
appropriate test bed. In this study, we set the convective time to be
zero when the center of the vortex arrives at the leading edge of the
wing x0/c =0. The snapshots of the vorticityfield and the lift history are
examined in detail with data-driven analyses in what follows.

Without any external disturbances, the wing experiences steady
aerodynamic lift forces at low angles of attack (α≲ 20°) and moderate
unsteady aerodynamic force fluctuations at higher angles of attack
(α ≳ 30°). These lift values are shown by the dashed lines for the dif-
ferent angles of attack in Fig. 2. The unsteady lift fluctuations are
exerted by the von Karman vortices shedding from the leading and
trailing edges, as visualized in Fig. 2. At this Reynolds number, these
cases are periodic in time and constitute limit cycles.

When the wing encounters a strong gust vortex, the flow around
the wing is significantly modified. The approaching vortex strongly
influences the vorticity field around the wing and triggers large-scale
vortex formation. For example, let us consider the flow field for a case
shown in Fig. 2 for which a strong positive vortex with G = 3.8 hits a
wing at α = 20°. Due to this disturbance, two large vortices are formed
shortly after impact, generating massive separation due to the inter-
action of the gust vortex and the wing wake. These dramatic transient
wake dynamics exert sharp increase in aerodynamic forces on the
wing. In fact, the lift force increases 714% anddrops 656%within a short
duration of 1.8 convective time. Such a significant variation in the lift
force makes controlling air vehicles tremendously difficult. While not
shown, the moment experienced by the wing also undergoes a tre-
mendous change. We also display a total of 100 force histories for

cases of flows disturbed by extreme levels of gust vortices in Fig. 2. In
all of these cases, the airfoil wake dynamics undergo large transient
changes within a short amount of time with large aerodynamic force
fluctuations with similar order of magnitudes. These violent dis-
turbances not only destabilize flight but can also damage vehicle
structures, making the analysis of these flows critically important.

Because of the nonlinear nature of the dynamics, flow around the
airfoil responds differently to each different gust vortex with massive
flow separation and large-scale formation of additional vortices, as
visualized in Fig. 2. There is no aerodynamic model or theory that can
easily describe the highly nonlinear nature of the extreme gust-airfoil
interactions. What is especially challenging is that there is no simple
scaling that collapses the collection of lift curves or the vortical flow
fields due to the strong nonlinearity. This is an enormous burden for
studying extreme aerodynamic flows since each and every case needs
to be examined through painstaking computational or experimental
campaigns that require significant resources. We re-emphasize that
even for the present problem setup, there are a good number of
parameters (vortex strengthG, size L, position y0/c, and airfoil angle of
attack α) that necessitate a very large number of cases of extreme
aerodynamic flows to map out the response dynamics. Practically
speaking, such a campaignmay not be possible for all gust encounters
with limited computational resources. Therefore, it is desirable to
capture the underlying dominant dynamics that form the basis of
extreme gust response characteristics without having to rely on
expensive simulations with a very large degree of freedom, which in
this case is proportional to 2.88 × 104 grid (spatial) points to describe
the instantaneous flow field and 1.26 × 105 temporal frames for suffi-
cient spatiotemporal solutions for all cases. While we do have the
Navier–Stokes equations as the governing partial differential
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Fig. 2 | Examples of lift responses and vortical flows. Visualizations of the vor-
ticity fields from times indicated by symbols○ and△ on the lift responses (thick
lines associatedwith the visualized cases). The light-colored lift curves correspond

to all lift responses considered in thepresent study. The shown color for each angle
of attack is shared with other figures.
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equations to fully describe the dynamics, solving them in real time for
practical air vehicle operations is out of the question.

For the aforementioned reasons, it is important to extract the
dominant low-dimensional dynamics from the possible collection of
extreme aerodynamic data sets. The rich responses to different gust
vortices appear uniquely different from one snapshot to another but
possess some common and identifiable features, including the dis-
turbance vortex, flow separation, wake vortices, secondary vortices,
shear layers, vortex roll-up, vortex pinch-off, and vortex deformation.
The fact that these features are indeed identifiable by the trained eyes
of fluid dynamicists suggests that there is likely some underlying low-
dimensional representation of the high-dimensional complex dynam-
ics. Thus,we aim to capture the keydynamics in a spacecomprisedof a
very small number of variables that can estimate the full state of the
flow field and offer insights into the nonlinear dynamics of the vortex-
gust interaction. We find that a nonlinear autoencoder with physical
observables illustrated in Fig. 3 achieves the present objective.

Identification of extreme aerodynamic manifold
To find a low-dimensional space that captures the essential physics of
extreme aerodynamic interactions between the gust vortex and the
airfoil wake, we perform data-driven compression of the flow field.
Herein, we consider cases with randomly-sampled parameters from
G∈ [−4, 4], L∈ [0.5, 2], and y0/c∈ [−0.5, 0.5].

First, let us consider the most commonly used linear dimension-
ality reduction technique, namely the principal component analysis
(PCA), which is also known as the proper orthogonal decomposition
(POD)30–32. With this method, the low-dimensional representation of a
fluctuating variable is found by identifying the primary modes (or
vectors) that best capture the variance about the mean. In the present
study, we first analyze the vorticity fields over (x, y)/
c∈ [−1.4, 4] × [−1.2, 1.2], shown in Fig. 2 by applying PCA to determine
the most vortically energetic components of the flow field.

Shown in Fig. 4 are the temporal variations of the first three PCA
components (ξ1(t), ξ2(t), and ξ3(t)) of the vorticity field data. The gray
curves represent the whole collection of extreme aerodynamic data
plotted in this coordinate space. Also highlighted are undisturbed
baseline cases for α = 20° to 60°. Here, we observe that the gray curves
span a range of values over ξ1, ξ2, and ξ3 in a seemingly incoherent
manner. What is further problematic with this compression is the
overlap of the baseline cases. These observations reveal that PCA
struggles to compress the extreme aerodynamic data in a meaningful
mannerwhile keeping different angles of attack cases distinct. Because
different flows over different angles of attack are collapsed as the
same, the overlapping low-dimensional representations produced by
PCA cannot distinguish important flow characteristics and yield
grossly inaccurate flow reconstructions, as shown in Fig. S.1.

The challenges of reducing degrees of freedom (dimension) of
extreme vorticity dynamics by PCA can be mitigated by utilizing a
nonlinear compression technique. For this purpose, we utilize a non-
linear convolutional autoencoder, presented in Fig. 3 (excluding the

green-shaded side network), to reduce a large number of vorticity field
data to very few variables. An autoencoder is a neural network com-
posed of an encoder and a decoderwith a bottleneck in themiddle33–35.
Generally, this neural network framework is used to take an input data
and replicate the same data at the output. The variables that lie in the
middle are referred to as latent variables (red circles in Fig. 3), which
hold the compressed information about the input data. When the
nonlinear autoencoder can replicate the same input data at the output,
this means that both the encoder and the decoder function effectively
to nonlinearly transform the full data set to a low-dimensional latent
variable ξ and vice versa effectively. The present autoencoder first
compresses a flow field using a convolutional neural network (CNN)36

to capture global features of the vortical flow field. The compressed
vector (extracted feature) through the CNN is then flattened at the
reshape layer in Fig. 3 to pass into a multi-layer perceptron (MLP)37

towards the latent space. A similar operation is performed for the
decoder side to expand thedimensionof the latent variable back to the
size of the original flow field. The present autoencoder is trained with
the same data sets as that used for PCA. The details of the autoencoder
setupused in the present study areprovided in SupplementalMaterial.

The nonlinear autoencoder is able to compress the flow field data
and reproduce the flow field accurately, as shown in Fig. S.1. We also
present the latent space comprised of only three latent variables (ξ1, ξ2,
and ξ3) in Fig. 4 (middle). The ability of the nonlinear autoencoder to
compress the vorticity field to mere three variables is not only sur-
prising but also reaffirms that the flow field is indeed comprised of
common flow features. The compression capability offered by a non-
linear autoencoder is promising to capture violent flow physics that
appears tremendously rich. Nonetheless, we should note that the full
data set shown in Fig. 4 is distributed over the latent space without a
meaningful collapse of the latent variables. This is sufficient if the
objective is to ensure that data in latent space are distinct, thus cov-
ering as much space as necessary to ensure uniqueness of the infor-
mation. However, with regard to this study, we are aiming not only to
compress the extreme aerodynamic flow data but also to identify
universal features among the large number of flow field data holding
dynamical information.

The above autoencoder analysis was performed purely from a
data-centric perspective. Instead, let us consider incorporating a
physical measurement (observable) into the autoencoder to facilitate
the identification of a low-dimensional subspace defined by the
appropriate latent variable coordinates. Capturing the low-
dimensional nature of extreme aerodynamic flows can support the
flight stabilization of air vehicles in extreme levels of turbulence. For
this reason, we weigh the latent space variables ξ with lift force acting
on thewing. This is achieved by supplementing the autoencoderwith a
multi-layer perceptron that outputs the lift force for eachvorticity field
over time, as shown by the green-shaded network in Fig. 3. In this case,
training is performed to compress the vorticity field to the latent
variables and to estimate the lift force accurately from the latent
variables.

OutputInput

Multi-layer perceptron (MLP)

Lift

Convolutional neural network

(CNN)

Res
hap

e

CNN

Encoder Decoder

Res
hap

e

Fig. 3 | Nonlinear autoencoder. The vorticity field is taken as the input and output. The green shaded portion becomes active when embedding lift into the compression
process.
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Incorporating lift into the learning process of the autoencoder
assists in effectively extracting the essence of extreme aerodynamics
due to three main reasons. First, using the lift force with the vorticity
input comes as a natural choice sincevorticity is theoretically knownas
the main mechanism for generating lift on a body. We take advantage
of this intimate relationshipbetween the vorticityfield and lift. Second,
the latent variables are guided to retain important information held by
the vorticity field correlatedwith the lift force. Thismeans that vortical
structures that apply large vortical forces are well-captured by the lift-
augmented autoencoder. Because extreme aerodynamic disturbances
exert enormous amounts of transient forces as presented in Fig. 2, the
autoencoder weights these extreme event appropriately and is able to
accurately identify the responsible vortical structures. Third, the latent
variables are encouraged to distinguish cases that yield different lift
responses to impinging gust vortices. This is crucial to avoid latent
variables fromoverlapping unnecessarily as observed in the struggling
cases of PCA.

Now, let us examine the compression results from the lift-
augmented autoencoder. The latent space comprised of three vari-
ables ξ1, ξ2, and ξ3 is presented in Fig. 4. We observe that the entire
collection of extreme aerodynamic cases collapses well in these latent
space coordinates, confirming that the extreme aerodynamic respon-
ses to gust vortices possess a fundamentally low-dimensional behavior
if captured appropriately with a nonlinear compressionmethod. Here,
the asymptotic periodic shedding states of the airfoil wakes provide
shows a “cone” or a “chocolate cornet” like structure with the extreme
aerodynamic trajectories lying in its vicinity in the three-dimensional
latent space. As the dynamical trajectories converge to the cone-
shaped structure, this structure serves as the inertialmanifold38–40. This
manifold geometry can be considered as an hour-glass shape since
there is a mirrored manifold for negative angle of attack cases. It
should be noted that the geometry of this structure is not specified a
priori and is discovered in an unsupervised manner. Here, this surface
constitutes a manifold on which the key dynamics of extreme gust
response reside. That is, the trajectories of the presently considered
extreme aerodynamic flows are mapped onto the discovered geo-
metry or to its vicinity.

Given the lift-augmented autoencoder collapsing all extreme
aerodynamic response data onto this cone-shaped manifold, let us
examine the accuracy of state reconstruction for the disturbed flow
and lift based on the three latent variables (ξ1, ξ2, ξ3). As representative
examples, we present the performance of the autoencoder for the
cases of (α,G, L, y0/c) = (40°, −2.2, 0.5, 0.3) and (60°, −2.8, 1.5, 0), which
are unused in training but chosen from the training parameter range.
Here, the gust ratios G for these two cases are much higher than what
are traditionally considered in gust response studies, but arewithin the
training data range of ∣G∣ ≤ 4. The latent variable trajectories for these

cases and the reconstruction of lift and vortical flows are also shown in
Fig. 5. To assess the reconstruction performance, we evaluate the
structural similarity index (SSIM)41 between the reference and the
decoded flow fields. The SSIM value for each decoded flow field is
listed under the visualized flow reconstruction. Even the flow states
exhibiting nonlinear interactions between the wing and the extreme
vortex gust can be reconstructed well by the present autoencoder, as
presented in Figs. 5 and S.1. Note that the structural similarity index for
a regular autoencoder without lift being higher compared to that for
the lift-augmented autoencoder is expected. This is because a regular
autoencoder is able to tune its weights solely to obtain accurate
reconstruction of the flow field from the latent variables. It is also
possible to reconstruct lift solely from the vorticity field. However, the
lift-augmented autoencoder is critical for revealing the manifold for
extreme aerodynamic response dynamics. These successful recon-
structions indicate that high-dimensional extreme aerodynamic flows
can be compressed into only three variables without significant loss of
key physics.

The trajectory in the present latent space for the disturbed cases
reflects key features of nonlinear vortex-gust interaction appearing in
the high-dimensional space. For the extreme aerodynamic case of
α = 40°, the latent vector first drops towards the direction of the
undisturbed periodic orbit of α = 30° then comes back to the original
undisturbed orbit of α = 40°. This is due to the approach of negative
vortex disturbance to the wing, decreasing the effective angle of
attack. This indicates that the lift-augmented autoencoder captures
the relationship between high-dimensional extreme aerodynamic
flows and lift force in the low-order space. In fact, the reduction in ξ3
towards the direction of α = 30° in the latent space coincides with the
temporal evolution of lift responses, as shown in Fig. 4. A similar trend
is also observed in the case of α = 60° in which the latent vector first
heads to the direction of the periodic orbit of α = 50° corresponding to
the decrease of the lift response. Being able to capture the extreme
aerodynamic responseof thewingon thismanifoldenables us to relate
the instantaneous dynamics to the effective angle of attack, which is
critically important for the flight stability of air vehicles. It is particu-
larly encouraging that only three values in latent space are required to
accurately estimate the state of the violent flow around the wing and
transient lift force, which is promising for future development of
sensors.

The discovered manifold captures dynamics beyond the trained
gust strength G. Let us demonstrate how the present autoencoder
approach is able to capture even more severe vortex gust conditions
with ∣G∣ ≥ 4 by presenting two cases (α,G, L, y0/c) = (40°, 6.4, 1.0, 0.1)
and = (60°, −6.0, 2.0, −0.3), as shown in Fig. 5. The trajectory of these
seemingly extrapolative cases exhibits a larger radius on the ξ1 − ξ2
plane compared to the variables of the interpolation cases while also
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presenting the effective angle of attack as the latent vector moves in
the ξ3 direction. The wider radial trajectory is due to the stronger
disturbance, which produces a higher level of fluctuations in the
vortical flow response likely away from the body without affecting
lift. The present decoder can also recover the high-dimensional flow
states while estimating the very large transient lift dynamics as pre-
sented in Fig. 5. This indicates that the present autoencoder can be
robustly applied for such extreme gust vortex-airfoil interactions
while achieving a nearly lossless compression of high-dimensional
data. These findings also suggest that even under the extrapolating
condition of ∣G∣ > 4, the underlying vortex dynamics shares common
physics and can be nonlinearly compressed to a low-dimensional and
universal manifold. This provides hope in estimating the flow
states for cases that were not part of the extreme aerodynamic
training data.

To further examine the robustness of the identified manifold and
the autoencoder, let us consider cases that are different from the
training cases, namely flows with noise and two extreme vortices, as
shown in Fig. 6. Here, the noisy flow field is generated by adding
Gaussian noise that is 30% of the original extreme aerodynamic flow
field (same as the case shown in Fig. 5(b)). The present lift-augmented
autoencoder not only reconstructs a vortical flow but also estimates
the lift response well from a noisy flow. The autoencoder noise rejec-
tion characteristics is beneficial in obtaining real-time situational
awareness and working with turbulent flows in which less influential
smaller-scale structures may also be present around the extreme gust
vortices.

We also consider cases of vortex-dominated gust flows that are
challenging for most reconstruction techniques trained only with
single-gust disturbances. Here, we take two vortices that are intro-
duced vertically and horizontally upstreamof the airfoil, as depicted in
Fig. 6. In both cases, the dynamical lift responses can be accurately
estimated while the decoder reproduces the presence of two vortex
disturbances very well, as shown in Figs. 6 and S.2. We can also notice
from the latent space that the trajectory of the two-horizontal-vortex
case presents two inflections at ξ2 ≈0. This coincides with the obser-
vation in the lift dynamics which possesses two valleys due to the
impingement of two negative vortices. We note that these particular
examples are difficult for linear techniques, including PCA which
completely fails to reconstruct the flow field as shown in Fig. S.2.

Finally, let us demonstrate the potential of the present lift-
augmented autoencoder for handling a more challenging and realistic
extreme flight condition. In this last example, we introduce randomly
generated five strong vortices upstreamof the wing to simulate severe
wake turbulence striking the airfoil, as shown in Fig. 7 (top left). The
decoded lift, reconstructed flow fields, and latent trajectory are
presented in Fig. 7. Even under this extreme operating condition, the
present autoencoder robustly provides accurate reconstruction of
the flow variables despite the model being trained only with single-
gust disturbances. This success in flow compression/reconstruction
and lift estimation corroborates that the discovered low-dimensional
manifold universally captures the extreme gust vortex-airfoil interac-
tiondynamics. Thisdiscoveryprovides greathope inestablishingflight
in extreme gusts, which was traditionally considered impossible.
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Discussion
Small-scale air vehicles flying in urban or mountainous environments
need to maneuver through a highly unsteady wake field full of strong
vortices generated by manmade or natural obstacles. The interaction
of these vortices with flying vehicles requires an understanding of
extreme aerodynamic flows, for which there are no established the-
ories. In the current study, we presented a data-driven approach to
identify a low-dimensional manifold on which the key dynamics
between strong gust vortices and airfoil wakes can be collapsed. This
manifold was found with an autoencoder designed to retain the
knowledge of aerodynamic lift as part of the latent variables. The
existence of this low-dimensional manifold is significant in a few ways.

First, the fact that only three variables can represent the complex
vortical flow field confirms the low-dimensional nature of the strong
gust vortices interactingwith the airfoilwakes.While the present study
distilled the dynamics to only three variables, it actually can be further
reduced to two variables if the three variables are projected on the
identified manifold. This significant compression of the extreme
aerodynamic flow fields was enabled with a nonlinear autoencoder-
based approach that incorporates aerodynamic insights embedded
into its formulation. We also note that noisy experimental data
encountering a different type of gust can also be coincidentally low-
dimensionalized tobe three-dimensional variables through anonlinear
autoencoder with the assistance of a topology-based concept42.

Second, this low-dimensional representation of the extreme aero-
dynamic flows suggests that only a small number of sensors on the
airfoilmay be able to accurately reconstruct the surrounding flow field
in real time. In fact, decoder-type neural networks, that take sparse
sensors as the input and high-resolution aerodynamic flows as the
output, have been recently developed to perform real-time fluid flow
state estimation43–46. The observations in these studies imply that low-
dimensional extreme aerodynamic latent vectors can also be esti-
mated from sparse sensor information, enabling us to track the high-
dimensional dynamics in a low-order, real-time manner. Third, given
the present findings, it is possible to develop a reduced-order model
that can capture the dynamics in the latent space to desired level of
accuracy and complexity. While we could model the latent dynamics
using other data-driven techniques such as sparse regression47, mod-
eling and controlling the high-dimensional extreme aerodynamicflows
on the present manifolds from the perspective of phase-amplitude
space appears interesting48–50. It can be anticipated the phase-
reduction analysis on the present nonlinear manifold offers a new
aspect in modifying wake dynamics by providing the optimal timing
and locations of actuation.

With the discovered manifold, active flow control and vehicle
stability control strategies can be developed for mitigating the
effects of extreme aerodynamic disturbances. While this study
focused on extreme two-dimensional vortex-airfoil interactions,
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there are other types of gust disturbances present in severe atmo-
spheric turbulence that require three-dimensional analysis9. Three-
dimensional flow extensions are important to further examine the
potential of the present approach. As shown in this study, nonlinear
data-driven compression techniques appear promising to support
the identification of other manifolds that capture the complex
extreme aerodynamic interactions between these other types of
gusts and the aircraft. The present findings offer a new perspective
on modeling and taming extreme aerodynamic flows in support of
next-generation air vehicle operations in conditions traditionally
considered unflyable.

Methods
Simulations of extreme vortex–airfoil interactions
The present study considers the unsteady flow field generated by the
extreme gust vortex-airfoil interactions. The flow fields examined in
this study areobtained fromdirect numerical simulations offlowsover
a NACA 0012 airfoil at a chord-based Reynolds number
Re � u1c=ν = 100. Here, u∞ is the free-stream velocity, c is the chord
length, and ν is the kinematic viscosity. The simulations are performed
with an incompressible flow solver26,27 for an airfoil at six different
angles of attack of α = 20°, 30°, 40°, 50°, and 60°. For the undisturbed
cases, theflowatα = 20° is steadywhile that atα≥30° exhibits unsteady
periodic wake shedding. The computational domain extends over
(x, y)/c∈ [ − 15, 30] × [ − 20, 20] with the leading edge of the wing
positioned at the origin.

To study the gust-airfoil interactions, a very strong vortex with an
angular velocity profile prescribed by equation28 is introduced
upstream of the airfoil at x0/c = − 2 and y0/c∈ [ −0.5, 0.5]. The
present disturbance vortex is parameterized by the gust ratio
G � uθ,max=u1 2 ½�10,10�, its size L ≡ 2R/c∈ [0.5, 2], and the vertical
position of the disturbance y0/c. From the parameter space composed
of these three variables, 40 randomly-sampled cases of the disturbed
flows are simulated for each angle of attack. For the purpose of
learning the extreme aerodynamicswith the autoencoder, 20 cases are
used for training and the remaining 20 cases are used for testing. The
simulated flows were validated with previous studies45,51–53, in parti-
cular with a study that considered a vortex-airfoil interaction
problem45.

For each of the cases considered in the present study, we prepare
1200 snapshots of vorticity field over 10.2 non-dimensional convective
time t* ≡ u∞t/c. We refer to this convective time as simply ‘time’ in the
main text. Of the entire flow field, a subdomain (x, y)/
c∈ [−1.4, 4] × [−1.2, 1.2] with spatial grid points (Nx,Ny) = (240, 120) is
considered for the data-driven analysis since vortex-airfoil interactions
primarily occur in this region. Moreover, the history of the lift fluc-
tuations is provided by the numerical simulations. The non-
dimensional lift coefficient CL � F lift=ð12ρu2

1cÞ, where Flift is the lift
force on the wing body and ρ is the density. In the main text, CL is
referred to as ‘lift.’ Overall, the training data used for the present
models amounts to 1.26 × 105 frames comprised of 100 extreme
aerodynamic gust response cases and 5 undisturbed wake cases with
1200 snapshots for each case.

Autoencoder setup
To discover the universal nonlinear manifold that represents the high-
dimensional extreme aerodynamic flows in a low-dimensional latent
space, we use an autoencoder33 (see Fig. 3). Here, we consider a con-
volutional neural-network-based autoencoder F, which is trained to
output q̂ to be the samedata as the inputq 2 Rn such that q̂ ≈Fðq;wÞ,
where w denotes the weights inside the autoencoder. This auto-
encoder is comprised of an encoderFe and a decoderFd connected
through a low-dimensional variable ξ 2 Rm in the middle, where m≪
n. Here, the high-dimensional input q can be compressed into the
latent vector ξ if the autoencoder F successfully recovers the data
accurately. That is, we seek to have an autoencoder that achieves

q ≈ q̂ =Fðq;wÞ=Fdðξ Þ=FdðFeðqÞÞ: ð1Þ

The autoencoderF is found based on data such that its weightsw
are optimized tominimize a desired cost (loss) functionE, yielding the
following optimization problem

w= argminw½Eðq,Fðq;wÞÞ�= argminw k q � q̂k2: ð2Þ

The weights w are determined with the Adam optimizer54.
We use an autoencoder composed of convolutional neural net-

works (CNN)36 and multi-layer perceptrons (MLP)37, as illustrated in
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Fig. 3. In the encoder, the CNN captures global features of the extreme
aerodynamicflowfield and theMLP is used to extract features fromthe
CNN while further reducing the size of the data. By leveraging non-
linear activation functions, an autoencoder can achieve better com-
pression than linear compression techniques such as principal
component analysis (PCA)33. Note that using autoencoder with linear
activation functions is mathematically equivalent to performing prin-
cipal component analysis (PCA)33,34. As for the nonlinear activation
function, we use the hyperbolic tangent function φ(s) = (es − e−s)/
(es + e−s), enabling us to consider the positive and the negative gust
influence in latent space. The hyperparameters used in the MLP and
CNN follow previous work with similar settings34,55. Full details on the
parameters of the present convolutional nonlinear autoencoder are
shown in table S.1.

In addition to PCA and a regular autoencoder, we develop a lift-
augmented convolutional autoencoder in this study. The present lift-
augmented autoencoder trains themodel with a lift coefficient CL(t) in
addition to a vorticity field q(t) such that ½q̂ðtÞ,ĈLðtÞ�=FðqðtÞÞ. The
additional side network based on an MLP is illustrated in the green-
shaded portion of Fig. 3. This additional network ensures that the
latent vector ξ(t) holds relevant information related to the lift coeffi-
cient CL(t) to support the manifold identification. The cost function in
this case becomes

w* = argminw jjq � q̂jj2 +βjjCL � ĈLjj2
h i

, ð3Þ

where β balances the vorticity field and lift reconstruction losses. In
this study, we choose β =0.05 based on the L-curve analysis56. With the
lift decoder FL, the reconstructed lift coefficient ĈLðtÞ is given by

ĈLðtÞ=FLðξ ðtÞÞ=FLðFeðqðtÞÞÞ: ð4Þ

Data availability
Extreme aerodynamic data57 used in the present study are available on
the Open Science Framework (https://doi.org/10.17605/OSF.IO/
7VSH8). Source data are provided with this paper, which is also avail-
able on the same link above.

Code availability
Sample codes58 for training the presentmodels are available onGitHub
(https://github.com/kfukami/Observable-AE and https://zenodo.org/
badge/latestdoi/677509021).
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