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Abstract 

We introduce a new empirical paradigm for studying 
naturalistic active learning, as well as new computational tools 
for jointly modeling algorithmic and rational theories of 
information search. Subjects in our task can ask questions and 
learn about hundreds of everyday items, but must retrieve 
queried items from memory. In order to maximize information 
gain, subjects need to retrieve sequences of dissimilar items. 
We find that subjects are not able to do this. Instead, 
associative memory mechanisms lead to the successive 
retrieval of similar items, an established memory effect known 
as semantic congruence. The extent of semantic congruence 
(and thus suboptimality) is unaffected by task instructions and 
incentives, though subjects are able to identify efficient query 
sequences when given a choice. Overall, our results indicate 
that subjects can distinguish between optimal and suboptimal 
search if explicitly asked to do so, but have difficulty 
implementing optimal search from memory. We conclude that 
associative memory processes place critical restrictions on 
people’s ability to ask good questions in naturalistic active 
learning tasks.  

Keywords: Active learning; Memory search; Computational 
modeling; Rational cognition 

Introduction 

 People often choose what information they want to gather. 

This kind of learning is known as active learning, and has 

been the subject of intense study in recent years in several 

fields. Although there are many questions to ask about active 

learning, perhaps the most pressing question about active 

learning is this: how and why do people seek the particular 

information they seek? 

Theories of rational cognition (Griffiths et al., 2010) 

provide an increasingly popular answer to this question. 

These theories propose that people search for information 

optimally; that is, they generate queries that provide the most 

information possible. The rational account of active learning 

has been successfully tested in many domains in psychology 

(for review see Coenen et al., 2019), however, one challenge 

for the rational account of active learning involves the role of 

semantic similarity in memory search. Optimal search often 

requires asking questions that are dissimilar to each other, as 

asking the same (or a similar) question repeatedly will usually 

provide the same (or similar) information. Consider, for 

example, a task in which the learner has to determine how 

much of a new nutrient there is in different food items. The 

learner can ask questions about each item sequentially (how 

much of the nutrient is there in a strawberry? how much in a 

blueberry? how much in an egg?) and must retrieve each item 

(strawberry, blueberry, egg) from memory prior to the query. 

As similar items usually have similar properties, for the 

questions to be maximally informative, the queried items 

must be as different to each other as possible. It is much better 

to follow up a query about strawberry with a query about egg 

than a query about blueberry. 

 

 
Figure 1. Experimental and modeling setup. Top: The practice, 

active learning, and test phases of the task. Middle: The Markov 

memory model which guides query generation in the learning 

phase. Bottom: The Bayesian model, which uses the information in 

the learning phase to give responses in the test phase.  
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This optimal search strategy is the opposite of what 

researchers have observed in most recall tasks. Typically, 

when asked to retrieve items from memory, people generate 

sequences of semantically similar items, an effect known as 

semantic congruence. The semantic congruence effect is 

remarkably robust, and emerges across a variety of tasks 

including free association (De Deyne et al., 2019), free recall 

from lists (Howard & Kahana, 2002), semantic memory 

search (Bousfield & Sedgewick, 1944), and memory-based 

decision making (Aka & Bhatia, 2021). This is due to the 

associative structure of memory (Atkinson & Shiffrin, 1968). 

Retrieved items cue successive items based on their strength 

of association. Items that are similar are more associated with 

each other, which is why the retrieval of strawberry is more 

likely to cue blueberry than egg. 

How is this conflict resolved in naturalistic active learning 

tasks? Are people able to search optimally and retrieve 

sequences of dissimilar items, or are they fundamentally 

constrained by the associative memory processes that lead to 

semantic congruence in other recall tasks?  

Overview of Experimental Paradigm 

Unfortunately, most studies on active learning are 

conducted under rarified conditions that do not require 

memory search. This is largely due to the difficulty in 

modeling naturalistic active learning, in which people can 

search over and ask questions about thousands of items and 

entities. Fortunately, recent work has shown the promise of 

distributed semantics models (DSMs) for solving this 

problem. DSMs use patterns of word-word co-occurrence in 

large collections of texts, to build vector representations of 

millions of real words and phrases. Words that are 

semantically similar, like strawberry or blueberry, tend to 

have similar distributions in text, and therefore end up with 

vector representations that are close to each other. For this 

reason, DSMs can describe many psychological phenomena 

(see Bhatia et al. 2019 for review), and, importantly, can 

predict semantic congruence effects in memory search.  

We used DSMs to model memory search in a new 

naturalistic active learning task (Fig. 1, top panel). In the task, 

subjects (a) learned a novel property by querying 20 different 

entities in a category and getting feedback on those entities’ 

property scores, and then (b) in the test phase predicted the 

scores of a fixed set of 20 test items. Prior to the active 

learning task, subjects participated in a practice phase, where 

they were presented five items and the corresponding 

property scores. Property scores for the entities were 

constructed by prespecified random linear functions on their 

word2vec (Mikolov et al., 2013) DSM vectors, giving similar 

items similar property scores. Exps. 1a, 2 and 3 implemented 

this task with 1,594 food items, while Exp. 1b implemented 

it with 1,734 animals.  Additionally, Exp. 2 compared the 

queries in the active learning task with recall in a standard 

semantic memory search task. Exp. 3 provided detailed 

coaching on how to do well in the active learning task. Exp. 

4 did not directly use the task but instead asked subjects to 

judge the optimality of search sequences in the task.  

There were 396 subjects in Exps. 1a and 1b, 102 subjects 

in Exp. 2, 100 subjects in Exp. 3, and 48 subjects in Exp. 4. 

Subjects in all experiments were recruited from Prolific 

Academic and were US residents that were fluent in English. 

They were given a base payment of $2, and were given a 

bonus of $1.00 if their test performance (measured by RMSE) 

was in the top 10%, and $.50 if they were in the top 50%.  

Exps. 2 and 3 were pre-registered. 

Semantic Congruence in Search 

We used a computational model (Fig. 1 middle panel) to 

formally capture memory retrieval dynamics in the active 

learning phase (Exps. 1a, 1b, 2 and 3). In line with classic 

memory retrieval models, we assumed that subjects searched 

for a word among all candidate queries in the memory space 

𝑆. Assuming the Markov property, the model predicted the 

switch from one query 𝑠𝑡−1  to another query 𝑠𝑡  using 

transition probabilities Pr[𝑠𝑡|𝑠𝑡−1], where 𝑠𝑡−1, 𝑠𝑡 ∈ 𝑆 and t 

∈{2,3,...,T} are the time steps. We allowed Pr[𝑠𝑡|𝑠𝑡−1] to be 

a function of item activation, which in turn depended on two 

key cognitive mechanisms -- semantic congruence and word 

frequency -- giving us: Pr[𝑠𝑡|𝑠𝑡−1] = 𝜎(𝛽1𝑠𝑖𝑚𝑠𝑡−1,𝑠𝑡
+

𝛽2𝑓𝑟𝑒𝑞𝑠𝑡
), where 𝑠𝑖𝑚𝑠𝑡−1,𝑠𝑡

 is the cosine-similarity between 

𝑠𝑡−1  and 𝑠𝑡 , 𝑓𝑟𝑒𝑞𝑠𝑡
 represents the frequency (log-

transformed) of candidate query 𝑠𝑡, and 𝜎(∙) is the softmax 

function that sets ∑ Pr[𝑠𝑡|𝑠𝑡−1]𝑠𝑡∈𝑆 = 1.  

Hierarchical Bayesian model fitting provided both group- 

and individual-level estimation of 𝛽1  and 𝛽2  (Table 1). On 

the group level, cosine similarity had a strong positive effect 

on sequential memory search for food items in Exps. 1a, 2, 

and 3 and for animals in Exp. 1b. Likewise, frequent 

words/phrases were much more likely to be queried than 

infrequent ones for both foods in Exps. 1a, 2 and 3 and 

animals in Exp. 1b. The individual level estimation also 

suggested that a majority of our subjects displayed these 

tendencies. These results suggest that the underlying 

cognitive processes in our naturalistic active learning task 

resembled those underlying a typical memory task, processes 

which likely lead to sub-optimal queries. 

 
Table 1: Mean and 95%CI of memory model parameters 

 

 𝜷𝟏 𝜷𝟐 

Exp. 1a 0.62 [0.57, 0.67] 0.97 [0.93, 1.02] 

Exp. 1b 0.71 [0.66, 0.76] 0.93 [0.90, 0.97] 

Exp. 2 0.68 [0.63, 0.74] 0.86 [0.80, 0.91] 

Exp. 3 0.42 [0.36, 0.50] 0.87 [0.80, 0.94] 

 

Bayesian Learning Model 

Subjects learned about the target property from the scores 

given as feedback to queries. To formally capture this 

dynamic learning process, we assumed that the subjects were 

ideal Bayesian learners who took as input the scores 𝑦𝑡  of 

their query (quantified by a DSM vector 𝑋𝑡) and learned a 
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linear mapping between them (Fig. 1, bottom panel). Subjects 

updated their belief of weights 𝜽 that determined the linear 

mapping after observing each pair of 𝑋𝑡  and 𝑦𝑡  using the 

Bayes rule: 𝑝𝑡(𝜽|𝑋𝑡 , 𝑦𝑡) =
𝑝𝑡(𝜽)𝑝(𝑦𝑡|𝑋𝑡,𝜽)

∫ 𝑝𝑡(𝜽)𝑝(𝑦𝑡|𝑋𝑡,𝜽)
. In the test phase, 

we assumed that subjects made predictions on the test items 

based on the updated posterior distribution 𝑝(𝜽|𝑿, 𝒚), where 

𝑿 is the design matrix corresponding to their 20 queries in the 

active learning phase and 𝒚 are the corresponding scores. The 

predicted scores at test can be written as 𝑦∗̂ =

∫ 𝑝(𝜽|𝑿, 𝒚)𝜽𝑋∗𝑑𝜽, where 𝑋∗ is the vector corresponding to 

the test item.  

 

 
Figure 2. Baseline, actual and ideal test Pearson’s R across 

experiments. Each point corresponds to a subject.  

 

The ideal Bayesian learning model captured the between-

subject variation in test performance (see Fig. 2 using 

Pearson’s R as the measure). In the pooled analysis on the 

full datasets across experiments (Exps. 1a, 1b, 2 and 3; N = 

546), we found that the predicted performance at test by the 

Bayesian learning model trained on each subject’s queries 

was correlated with the actual performance of the subjects 

measured by both Pearson’s R and root-mean-squared error 

(RMSE) (Pearson’s R: r = 0.313, p < 10-13; RMSE: r = 0.269, 

p < 10-9). In separate analyses, the actual test Pearson’s R was 

positively related to the predicted test Pearson’s R by the 

ideal Bayesian learning model in Exps. 1a, 1b, and 2 (Exp. 

1a: r = 0.418, p < 10-9; Exp. 1b: r = 0.236, p < .001; Exp. 2: r 

= 0.528, p < .0001). In Exp. 3, in which participants were 

given coaching on how to generate efficient queries, we 

found that the Bayesian learning model failed to describe 

participant heterogeneity (r = 0.040, p = .696). Similar 

patterns emerged when we quantified test performance with 

RMSE (Exp. 1a: r = 0.219, p = .002; Exp. 1b: r = 0.166, p = 

.019; Exp. 2: r = 0.157, p = .277; Exp. 3: r = 0.021, p = .833).    

Note that subjects’ actual test performance was 

significantly better than the baseline model that assigned 

random scores at test. However actual test performance did 

not reach the accuracy levels predicted by the ideal Bayesian 

learning model (p’s < 10-12 in all experiments in Fig. 2), likely 

because of additional sources of noise during the test phase.  

Effect of Semantic Congruence on Learning 

The ideal Bayesian learning model also allowed us to 

evaluate query efficiency with Bayesian D-optimality, one of 

the most often used optimality criteria (Myung & Pitt, 2009). 

Mathematically, Bayesian D-optimality of the full set of 

queried items is the determinant of the Fisher information 

matrix 𝐷 = det{𝑿𝑿𝑻 + 𝛴−1}, where 𝑿 is the 11×20 design 

matrix corresponding to the 20 queried items, and 𝛴 is the 

11×11 covariance matrix prior to querying the items. At the 

beginning of the experiment, 𝛴 is set as an identity matrix, 

corresponding to the standard multivariate normal prior 

distribution on 𝜽. Intuitively, if the queried items are sparsely 

distributed in the space, the design matrix typically has a high 

Bayesian D-optimality. By contrast, if the queried items are 

close to one another, the design is likely to have a low 

Bayesian D-optimality.  

 

 
Figure 3. Correlations between semantic congruence parameter 

in memory model (β1) and Bayesian D-optimality. Each point 

corresponds to a subject.  

 

We correlated the Bayesian D-optimality of each subject’s 

query sequence with the estimated degree of semantic 

congruence, 𝛽1, in the memory model (Fig. 3). As expected, 

these two variables entail a strong tradeoff, such that subjects 

whose queries were more positively influenced by the 
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similarity with previous items had lower levels of Bayesian 

D-optimality.  

Semantic incongruence was also associated with better test 

performance as predicted by the ideal Bayesian learning 

model. In a pooled analysis across Exps. 1a, 1b, 2 and 3 (N = 

546), we found that 1 was positively correlated with the ideal 

Bayesian learning model’s predicted test RMSE (r = 0.446, p 

< 10-15) and negatively with its predicted test Pearson’s R (r 

= -0.093, p = .029). Additionally, subjects who displayed 

more semantic incongruence also performed better at test. 𝛽1 

was positively correlated with subjects’ actual RMSE (r = 

0.188, p < .001) and negatively correlated with subjects’ 

actual Pearson’s R (b = -0.212, p = .036) at test.  

To more systematically examine the tradeoff between 

semantic congruence in memory retrieval and optimal search 

in active learning, we simulated a semantic similarity-based 

retrieval strategy and compared its Bayesian D-optimality, as 

well as the predicted test performance by the ideal Bayesian 

learning model, with that of a number of other retrieval 

strategies (Fig. 5). The semantic similarity-based strategy 

produced the lowest query Bayesian D-optimality and 

achieved the worst test performance among all retrieval 

strategies. In stark contrast, the D-optimality Greedy strategy 

that kept selecting the most informative query according to 

the Bayesian D-optimality criterion always produced the 

lowest semantic congruence in queries and the best 

performance at test. Retrieval strategies that searched based 

on word frequency or based on random sampling achieved 

intermediate D-optimality and accuracy rates at test.  

The subjects’ actual query sequences were far from 

optimal, as compared with the D-optimality Greedy strategy 

(Fig. 5). They also displayed more semantic congruence, and 

achieved lower Bayesian D-optimality, than the random or 

frequency-based queries. Overall, these results, once again, 

suggest that subjects were unable to ask the most informative 

questions when the questions had to be generated from 

memory. 

 Effect of Task Demands 

Do subjects’ queries vary with task requirements? We 

examined this in two experiments. In Exp. 2, we compared 

an active learning condition with a traditional semantic 

memory search condition in which subjects were asked to list 

all foods that they could think of. As can be seen in Fig. 4, 

the conditions differed neither on semantic congruence 

(i.e.1) (t96.7 = 0.818, p = .416), nor on Bayesian D-optimality 

of the queries (t99.8 = 0.719, p = .474). In Exp. 3, we compared 

a coached learning condition, in which subjects were 

explicitly instructed to query more efficiently by sampling 

dissimilar items, with an uncoached condition (which was 

identical to Exp. 1a). The conditions did not differ on either 

semantic congruence (t79.9 = 1.214, p = .229) or Bayesian D-

optimality (t93.0 = 1.018, p = .311). The conditions did not 

differ on their predictive performance at test either (test 

Pearson’s R: t88.9 = 1.05, p = .297; test RMSE: t77.1 = 0.221, p 

= .826). Both experiments suggest that the semantic 

congruence effect is so strong that it cannot be moved by 

simple task demands. 

 
 

Figure 4. Between-condition comparisons of semantic 

congruence and Bayesian D-optimality of subjects’ queries (Exps. 

2 and 3) and actual test performance (Exp. 3).  Error bars represent 

95% confidence intervals. 

 

Judging Optimality of Queries 

Finally, we tested whether subjects could distinguish 

efficient query sequences from inefficient sequences. For this 

purpose, we gave subjects in Exp. 4 five pairs of subject-

generated sequences. Most (32 of 48) subjects achieved 

greater than chance accuracy (p=.029 in a binomial test), and 

in fact the modal accuracy rate was 100%. On the pair level, 

three pairs achieved accuracy rates significantly higher than 

random (90%, 67% and 63% respectively, ps < .05) while the 

other two pairs were more difficult to judge and didn’t pass 

the conventional significance threshold (48% and 52% 

respectively).  

Overall, while subjects in Exps. 1-3 generally queried in a 

suboptimal manner, subjects in Exp. 4 showed the ability to 

distinguish between more and less efficient query sets. This 

is consistent with the idea that subjects can evaluate 

optimality to some degree, but are unable to consider 

optimality when generating queries due to universal, 

powerful constraints on memory retrieval, particularly 

semantic similarity. 
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Discussion 

Contrary to the popular optimality hypothesis that claims 

that people can ask efficient questions that maximize 

expected information gain, we found that subjects failed to 

generate optimal inquiries and that the suboptimality was 

largely due to associative memory search (Exps. 1a & 1b). 

Additional pre-registered experiments showed that subjects’ 

querying behavior was no more optimal – or less similarity-

driven – in our active learning task than a traditional semantic 

search task (Exp. 2), and no more optimal or less similarity-

driven when directly told to query more optimally by 

querying dissimilar items (Exp. 3), suggesting that memory-

based active learning is at the mercy of extremely stubborn 

memory constraints, which are difficult to alleviate by task 

instructions. A final experiment showed that subjects can 

distinguish between the more and less optimal query sets, 

suggesting that subjects understand what optimality entails, 

but that memory constraints make the spontaneous 

generation of optimal queries from memory difficult. 

Our results stand in stark contrast with the large body of 

work that finds optimal search in active learning. The theory 

that people acquire information optimally has been very 

successful in explaining human inquiry in several domains. 

However, most prior studies use fairly simple, artificial 

stimuli, and do not require subjects to generate queries from 

memory. We thus suggest that the scope of the optimality 

hypothesis in explaining human active learning may be more 

limited than previously thought. Indeed, we suspect that any 

setting in which subjects must formulate sequences of queries 

in natural language will probably be constrained by memory 

processes, particularly the similarity-driven associative 

memory search.  

Although associative memory processes curtail optimal 

active learning, that does not mean that people’s memory 

processes are inherently flawed. Rather, memory serves 

multiple cognitive functions and the associative biases 

documented in this paper may reflect optimal tradeoffs 

between diverging task demands. Indeed, many researchers 

have argued that association or similarity-driven memory 

search is part of an optimal system for semantic memory 

retrieval (Hills et al. 2012). Related work has shown that 

associative memory processes implicated in judgment and 

decision biases are adaptive in that they often lead to accurate 

inference and generalization with minimal cognitive cost 

(Bhatia, 2017; Tenenbaum & Griffiths, 2001). Regulating 

these processes in active learning tasks may be too effortful, 

and people may be optimally trading off performance with 

the cognitive cost required to succeed in our task (Lieder & 

Figure 5. Properties of a Bayesian learning model that makes predictions based on simulated queries. Actual query uses the subjects’ 

actual sequences of queries. Random query randomly selects from all the items with no replacement. Frequency-based query randomly 

selects from the top-100 most frequent items with no replacement. Similarity-based query keeps selecting the most cosine-similar item that 

hasn’t been queried before. Greedy query keeps selecting the item with the highest Bayesian D-optimality. Shaded bands are 95% CIs. 
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Griffiths, 2020). This theory predicts that even though we 

were unable to reduce semantic congruence and increase 

optimal search through coaching, performance may improve 

with higher incentives or practice. Testing these predictions 

is an important topic for future work.  

Other future directions include the refinement of our 

memory and learning models. For example, subjects in our 

study learned about novel target properties. Yet they came 

into the experiments with idiosyncratic knowledge about 

food items or animals. Thus, it is likely they held different 

prior belief about the novel target properties. Since prior 

belief is not the focus of this paper, we assumed all subjects 

held the same prior belief in the experiments. In future work, 

the shape of prior belief can be set as free parameters and the 

same framework can be used to derive the prior 

representation of target properties in a given domain. 

Individual differences in this regard can be revealed. The 

Bayesian learning model also assumes that subjects maintain 

a distribution of belief over multiple hypotheses (possible 

coefficients on the latent representations). However, other 

research suggests that in a closely related – and not even as 

complex – active category learning setting, subjects maintain 

a single hypothesis at a time (Markant & Gureckis, 2013). 

Previous research also reveals other simple heuristics, such 

as the split-half heuristic (Navarro & Perfors, 2011) and the 

likelihood difference heuristic (Nelson, 2005), in active 

learning tasks. It is possible that such heuristics play a role in 

the query search in our active learning tasks and, therefore, 

can be considered in the modeling of algorithmic processes 

in future research. 

Our work contributes to the emerging body of research that 

offers researchers a naturalistic search domain to study active 

learning. Additionally, our computational models integrate 

insights from several fields, and are able to jointly describe 

both algorithmic memory search processes (which we have 

specified using a Markov random walk model) as well as the 

optimality or suboptimality of these search processes for 

active learning. In this way, our paper presents a powerful 

new research paradigm for naturalistic active learning. There 

has been an increasing interest in porting computational 

cognitive models beyond abstract lab stimuli, to attempt to 

describe everyday cognition. This has been driven by the 

availability of new machine learning models that offer 

quantitative representations for natural entities (see Bhatia & 

Aka, in press for a review), as well as the growing demand 

from policy makers and practitioners for theory-driven 

behavioral and cognitive insights. Our research is part of this 

trend, and we look forward to future work that applies 

established algorithmic and rational theories of cognition to 

rich stimuli sets to better understand human cognition and 

behavior in the wild.  
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