
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Flow-Based Decomposition for Geometric and Combinatorial Markov Chain Mixing

Permalink
https://escholarship.org/uc/item/4874g94p

Author
Frishberg, Daniel

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4874g94p
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Flow-Based Decomposition for Geometric and Combinatorial Markov Chain Mixing

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Daniel Frishberg

Dissertation Committee:
Distinguished Professor David Eppstein, Chair

Distinguished Professor Michael Goodrich
Associate Professor Milena Mihail

2023

Chapter 3 and Appendix B © 2021 David Eppstein and Daniel Frishberg
Chapters 1-2 and Appendix A © 2022 David Eppstein and Daniel Frishberg

All other materials © 2023 Daniel Frishberg

DEDICATION

I dedicate this dissertation to the world’s cats, including Marvin and Tammi, a continuing
source of companionship and joy, and Marmalade, Hopi, Wave, and Orion, whom I

remember often.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 k-angulations . 2

1.1.1 Decomposition framework . 3
1.2 Glauber dynamics on graph-theoretic structures 5

1.2.1 Our contribution . 5
1.3 Main Results . 6

1.3.1 Geometric Results . 6
1.3.2 Graph-Theoretic Chain Results . 7

1.4 Organization . 8
1.4.1 Chapter 2 Organization: Geometric Chains 8
1.4.2 Chapter 3 Organization: Graph-Theoretic Chains 8

2 Improved mixing for the convex polygon triangulation flip walk 10
2.1 Background . 10

2.1.1 Triangulations of convex point sets and lattice point sets 10
2.1.2 Convex triangulation flip walk and mixing time 11

2.2 Decomposing the convex point set triangulation flip graph 13
2.2.1 Bounding mixing via expansion . 13
2.2.2 “Slicing and peeling” . 14

2.3 Bounding expansion via multicommodity flows 19
2.4 Our framework . 20

2.4.1 Markov chain decomposition via multicommodity flow 21
2.4.2 General pattern for bounding projection chain congestion 23
2.4.3 Eliminating inductive loss: nearly tight conductance for triangulations 26
2.4.4 Intuition for the flow construction for triangulations 28

2.5 Proof that the conditions of Lemma 2.9 imply rapid mixing 31
2.6 Proof that the conditions of Lemma 2.12 imply rapid mixing 35

iii

2.7 k-angulations of convex point sets: quasipolynomial mixing 49
2.7.1 Generalizing triangulations . 49
2.7.2 (Generalized) Catalan numbers . 50
2.7.3 Partition into classes . 52
2.7.4 Applying the framework . 54

2.8 Integer lattice triangulation flip graphs . 57
2.8.1 Definition . 57
2.8.2 Additional preliminaries: treewidth, separators, and vertex expansion 59

3 Rapid mixing for the hardcore Glauber dynamics and other Markov chains
in bounded-treewidth graphs 62

3.0.1 Prior work and our contribution . 63
3.0.2 Application to graphical models . 65
3.0.3 Further discussion of prior work . 66

3.1 Preliminaries . 68
3.1.1 Rapid mixing and Glauber dynamics 68
3.1.2 Carving width . 70
3.1.3 Dominating sets, b-matchings, and b-edge covers 70
3.1.4 Glauber dynamics with parameter λ > 0 73

3.2 λ = 1: Bounded carving width . 74
3.2.1 Partitioning the vertices of MIS(G) into classes 75
3.2.2 Rapid mixing of the independent set flip chain when G has bounded

carving width . 77
3.2.3 Abstraction into framework conditions 78

3.3 λ = 1: Unbounded degree . 82
3.3.1 Hierarchical framework . 82
3.3.2 Independent sets . 82
3.3.3 Hierarchical Framework Conditions 84

3.4 Bounded carving width: application of framework beyond independent sets . 85
3.4.1 q-colorings . 85
3.4.2 b-edge covers and b-matchings . 87
3.4.3 Maximal independent sets and maximal b-matchings 88

3.5 Hierarchical framework . 88
3.5.1 Proof that conditions of the hierarchical framework imply rapid mixing 88
3.5.2 Independent sets . 91
3.5.3 Partial q-colorings . 92

3.6 All λ > 0 . 93
3.6.1 (Weighted) Conductance . 94
3.6.2 Analysis of flow construction . 98

3.7 Dealing with non-independence . 100
3.7.1 Framework relaxation to allow non-independence 101
3.7.2 b-edge covers in the relaxed hierarchical framework 102
3.7.3 Dominating sets in the relaxed hierarchical framework 106
3.7.4 Rapid mixing in the relaxed hierarchical framework for all λ > 0 . . . 109
3.7.5 Rapid mixing of the Glauber dynamics on b-matchings for all λ > 0 . 110

iv

3.7.6 Maximal independent sets and maximal b-matchings in the non-hierarchical
framework . 111

3.8 Open Questions . 118

Bibliography 120

Appendix A Missing details for triangulations 126
A.1 Nearly tight conductance for triangulations: lower bound 126
A.2 Eliminating log |V (Kn)|: mixing time O(n3 log3 n) for triangulations 145
A.3 Associahedron expansion upper bound . 147

A.3.1 Finding a sparse cut . 148
A.4 Missing details from k-angulation walk proofs 151

Appendix B Missing details for Glauber dynamics 154
B.1 Derivation of upper bounds in main theorems 154
B.2 Deferred Proof Details . 156

v

LIST OF FIGURES

Page

2.1 Triangulation example and illustration of oriented partition 15
2.2 Partition illustration for the K5 associahedron 18
2.3 Boundary set structure under oriented partition 27
2.4 Schematic of flow construction for triangulations 29
2.5 Schematic of flow construction for general decomposition theorem 31
2.6 Triangulation flow problem decomposition 39
2.7 Recursive flow decomposition . 40
2.8 Central k-gon partition . 51
2.9 Lattice triangulation flip graphs . 58

3.1 Two independent sets in the same class . 75
3.2 Flow construction schematic for independent sets 76
3.3 Flips between classes of independent sets . 77
3.4 Hierarchical framework schematic . 82
3.5 Maximal independent sets . 112

vi

ACKNOWLEDGMENTS

Much of this dissertation, namely the results in Chapter 2 and Appendix A, is reproduced,
with modifications, from a work that will appear in the Proceedings of the 50th International
Colloquium on Automata, Languages and Programming (ICALP), 2023, under the title
“Improved mixing for the convex polygon triangulation flip walk.” These results are also on
arXiv [26]. The material in Chapter 3 and Appendix B is on arXiv [25]. All of this material
is licensed under Creative Commons CC BY 4.0. David Eppstein, the co-author listed in this
publication, directed and supervised research which forms the basis for the dissertation.

I acknowledge helpful conversations on this topic with Hadi Khodabandeh, Milena Mihail,
Ioannis Panageas, Eric Vigoda, Charlie Carlson, Prasad Tetali, Vedat Alev, Michail Sarantis,
Zongchen Chen, Alexandre Stauffer, Lionel Pournin, Jean Cardinal, Karthik Gajulapalli, and
Pedro Matias. I thank Milena Mihail, Ioannis Panageas, Eric Vigoda, and Prasad Tetali for
further nuturing my interest in the topic of mixing times. I thank the colleagues, labmates,
and students who formed the intellectual community that made the journey of graduate
school both stimulating and fun. Special thanks are due to Nil Mamano, an early guide who
helped me build confidence as a researcher during my first year of graduate school.

David Eppstein pointed me to geometric graph connectivity problems, taught me some of the
machinery used in this setting, and helped me develop my interest in rapid mixing, providing
me freedom to explore my interests, crucial encouragement, and permission to ruminate.
My mentor at the University of Maryland, College Park, Bill Gasarch, helped me build an
appreciation of the research landscape. My teaching faculty mentor, Michael Shindler, has
helped me find my way as a theory educator, sharing pedagogical strategies and materials,
giving me feedback on my teaching, and encouraging me to develop my passion for teaching.
Danny Mann has also been a crucial teaching mentor, helping me develop my teaching style
and introducing me to an amazing pedagogical community. Michael Goodrich gave me an
early opportunity to spread my wings as a teaching assistant for a thoroughly enjoyable
theory of computation class. Erik Sudderth taught me the joy of graphical models.

I thank the many teachers and mentors who have kindled my love of math, algorithms, research,
pedagogy, and other interests over the years: Dalia Anik, Dave Weaver, Ann Maffrey, Danielle
Bostick, Ms. Ashbury, Anthony Muehlberger, Philip Bagley, Ellis Wisner, Richard Salter, Bob
Geitz, Sarah Manchester, Roseanne Jones, Larry March, DeSales Harrison, Karen Rosenbaum,
and many others. I thank the many friends who have offered encouragement along the way. I
thank my supportive colleagues at my workplace prior to graduate school—especially Mark,
Eddie, Aaron, and Amit—whose encouragement helped me navigate a big career change. My
roommate, Will Gallagher, cooked many meals for me as I was studying for the GRE. I thank
my parents, Dina and David, who taught me curiosity and scientific skepticism, recognized
and nurtured my interests in math and computation at an early age—and who continue to
be a source of wisdom and support. My brother, Nathan, and my sister-in-law, Madison,
have been incredible in their encouragement. I thank my granny Sylvia for nurturing my
out-of-bounds Sagittarian moon, my Bubbe Catherine for her example of moral courage, and
my Zayde Emanuel for modeling kindness and generosity.

vii

VITA

Daniel Frishberg

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, California

Master of Science in Computer Science 2020
University of California, Irvine Irvine, California

Bachelor of Arts in Computer Science 2007
Oberlin College Oberlin, Ohio

RESEARCH EXPERIENCE

Graduate Student Researcher 2019
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2018-2023
University of California, Irvine Irvine, California

Instructor of Record 2022
University of California, Irvine Irvine, California

viii

REFEREED JOURNAL PUBLICATIONS

David Eppstein, Daniel Frishberg, and Martha C. Os-
egueda. Angles of arc-polygons and Lombardi drawings
of cacti.

2023

Computational Geometry

David Eppstein, Daniel Frishberg, and William Maxwell.
On the treewidth of Hanoi graphs.

2022

Theoretical Computer Science

REFEREED CONFERENCE PUBLICATIONS

David Eppstein and Daniel Frishberg. Improved mixing
for the convex polygon triangulation flip walk.

2023

Will appear, Proc. 50th International Colloquium on Automata, Languages and Pro-
gramming (ICALP).

David Eppstein, Daniel Frishberg, and Martha C. Os-
egueda. Angles of arc-polygons and Lombardi drawings
of cacti.

2021

Proc. 33rd Canadian Conference on Computational Geometry (CCCG).

David Eppstein, Daniel Frishberg, and William Maxwell.
On the treewidth of Hanoi graphs.

2020

Proc. 10th International Conference on Fun with Algorithms (FUN).

Simplifying activity-on-edge graphs. 2020
Proc. 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT).

New applications of nearest-neighbor chains: Euclidean
TSP and Motorcycle Graphs. N. Mamano, A. Efrat, D.
Eppstein, D. Frishberg, M. T. Goodrich, S.G. Kobourov,
P. Matias, V. Polishchuk.

2019

Proc. 30th International Symposium on Algorithms and Computation (ISAAC).

PREPRINTS

Charlie Carlson, Daniel Frishberg, and Eric Vigoda. Im-
proved distributed algorithms for random colorings.

2023

Submitted for publication.

David Eppstein and Daniel Frishberg. Rapid mixing
of the hardcore Glauber dynamics and other Markov
chains in bounded-treewidth graphs.

2021

arXiv preprint.

ix

ABSTRACT OF THE DISSERTATION

Flow-Based Decomposition for Geometric and Combinatorial Markov Chain Mixing

By

Daniel Frishberg

Candidate for Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

David Eppstein, Chair

We prove that the well-studied triangulation flip walk on a convex point set mixes in time

O(n3 log3 n), the first progress since McShine and Tetali’s O(n5 log n) bound in 1997. In

the process we give lower and upper bounds of respectively Ω(1/(
√
n log n)) and O(1/

√
n)

—asymptotically tight up to an O(log n) factor—for the expansion of the associahedron

graph Kn—the first o(1) expansion result for this graph. We show quasipolynomial mixing

for the k-angulation flip walk on a convex point set, for fixed k ≥ 4, and a treewidth result

for the flip graph on n× n lattice triangulations.

We show that the hardcore Glauber dynamics—a random walk on the independent sets of

an input graph—mixes rapidly in graphs of bounded treewdith for all fixed values of the

standard parameter λ > 0, giving a simple alternative to existing sampling algorithms for

these structures. We also show rapid mixing for analogous Markov chains on dominating sets

and b-edge covers (for fixed b ≥ 1 and λ > 0) in bounded-treewidth graphs, and for Markov

chains on the b-matchings (for fixed b ≥ 1 and λ > 0), the maximal independent sets, and

the maximal b-matchings of a graph (for fixed b ≥ 1), in graphs of bounded carving width.

To obtain these results, we introduce a decomposition framework for showing rapid Markov

chain mixing. This framework is a purely combinatorial analogue that in some settings gives

better results than the projection-restriction technique of Jerrum, Son, Tetali, and Vigoda.

x

Chapter 1

Introduction

The study of mixing times—the art and science of proving upper and lower bounds on the

efficiency of Markov chain Monte Carlo sampling methods—is a well-established area of

research, of interest for graph-theoretic sampling problems, spin systems in statistical physics,

probability, and the study of subset systems. Work in this area brings together techniques

from spectral graph theory, combinatorics, and probability, and dates back decades; for a

comprehensive survey of classic methods, results, and open questions see the canonical text by

Levin, Wilmer, and Peres [48]. Recent breakthroughs [2, 3, 4, 16, 17, 18, 43, 47]—incorporating

techniques from the theory of abstract simplicial complexes—have led to a recent slew of

results for the mixing times of graph-theoretic chains for sampling independent sets, matchings,

Ising model configurations, and a number of other structures in graphs, injecting renewed

energy into an already active area.

1

1.1 k-angulations

In Chapter 2, we focus on a class of geometric sampling problems that has received considerable

attention from the counting and sampling [1, 41] and mixing time [54, 56, 71, 13] research

communities over the last few decades, but for which tight bounds have been elusive: sampling

triangulations. A triangulation is a maximal set of non-crossing edges connecting pairs of

points (see Figure 2.1) in a given n-point set. Every pair of triangles sharing an edge forms a

quadrilateral. A triangulation flip consists of removing such an edge, and replacing it with

the only other possible diagonal within the same quadrilateral. Flips give a natural Markov

chain (the flip walk): one selects a uniformly random diagonal from a given triangulation

and (if possible) flips the diagonal.

McShine and Tetali gave a classic result in a 1997 paper [54], showing that in the special

case of a convex two-dimensional point set (a convex n-gon), the flip walk mixes (converges

to approximately uniform) in time O(n5 log n), improving on the best-known prior (and first

polynomial) upper bound, O(n25), by Molloy, Reed, and Steiger [56]. McShine and Tetali

applied a Markov chain comparison technique due to Diaconis and Saloff-Coste [21] and to

Randall and Tetali [63] to obtain their bound, using a bijection between triangulations and a

structure known as Dyck paths. They noted that they could not improve on this bound using

this bijection. Furthermore, they believed that an earlier lower bound of Ω(n3/2), also by

Molloy, Reed, and Steiger [56], should be tight. We show the following result (see Section 2.3

for the precise definition of mixing time):

Theorem 1.1. The triangulation flip walk on the convex n + 2-point set mixes in time

O(n3 log3 n).

Prior to the present work, no progress had been made either on upper or lower bounds

for this chain in 25 years—even as new polynomial upper bounds and exponential lower

bounds were given for other geometric chains, from lattice point set triangulations [71, 13]

2

to quadrangulations of planar maps [14], and despite many breakthroughs using the newer

techniques for other problems.

1.1.1 Decomposition framework

To prove our result, we develop a general decomposition framework that applies to a broad class

of Markov chains, as an alternative to prior work by Jerrum, Son, Tetali, and Vigoda [40] that

used spectral methods. We obtain our new mixing result for triangulations, then generalize

our technique to obtain the first nontrivial mixing result for k-angulations. In Chapter 3 we

further generalize this work to obtain the first rapid mixing bounds for Markov chains for

sampling independent sets, dominating sets, and b-edge covers (generalizing edge covers) in

graphs of bounded treewidth, and for maximal independent sets, b-matchings, and maximal

b-matchings in graphs of bounded treewidth and degree. In that work we also strengthen

existing results [35, 23] for proper q-colorings in graphs of bounded treewidth and degree.

The key observation that unifies these chains is that, when viewing their state spaces as graphs

(exponentially large graphs relative to the input), they all admit a recursive decomposition

satisfying key properties. First, each such graph, called a “flip graph,” can be partitioned into

a small number of induced subgraphs, where each subgraph is a Cartesian product of smaller

graphs that are structurally similar to the original graph—and thus can be partitioned again

into even smaller product graphs. Second, at each level of recursion, pairs of subgraphs are

connected by large matchings. Intuitively, we can “slice” a flip graph into subgraphs that are

well connected to each other, then “peel” apart the subgraphs using their Cartesian product

structure, and repeat the process recursively. Each recursive level of slicing cuts through

many edges (the large matchings), and indeed the peeling also disconnects many mutually

well-connected subgraphs from one another.

Prior work has applied this “slicing” and “peeling” paradigm, also known as projection-

3

restriction: Jerrum, Son, Tetali, and Vigoda [40] gave a decomposition theorem (Theorem 2.2)

for obtaining bounds on the spectral gap of a chain. The spectral gap of a chain is the difference

between the two largest eigenvalues of the transition matrix of the chain (equivalently, the

adjacency matrix of the flip graph, up to normalization factors). They defined, with respect

to any decomposition of the state space of a chain into subgraphs (“slicing”), a projection

chain—whose states are identified with the subgraphs and whose transitions correspond

to the edges between pairs of the subgraphs—and a restriction chain within each of the

subgraphs. They showed that the gap of the overall chain can be bounded from below by the

product of the gaps of the projection chain and the restriction chain, up to some loss factors.

Using standard inequalities that relate the spectral gap to the mixing time of a chain, their

technique then gives bounds on the mixing time.

One of our contributions is to unify prior applications [40, 35, 23] of projection-restriction into

a sufficient set of conditions—given in Lemma 2.9—under which one can apply the spectral

decomposition theorem. A more substantial technical contribution is our Theorem 2.1, an

analogue to Jerrum, Son, Tetali, and Vigoda’s Theorem 2.2 that uses multicommodity flows

instead of the spectral gap to bound congestion. One can bound the mixing time of a chain

by constructing a multicommodity flow in the corresponding flip graph, and bounding the

congestion of the flow.

One can use our flow-based theorem in place of the spectral theorem and, in some cases,

obtain better mixing bounds. In particular, in the case of triangulations, we obtain polynomial

mixing via an adaptation of our (combinatorial) technique (Lemma 2.12)—and it is not clear

how to adapt the existing spectral theorem to get even a polynomial bound. In the case

of k-angulations, our theorem gives a bound that has better dependence on the parameter k.

4

1.2 Glauber dynamics on graph-theoretic structures

The Glauber dynamics on independent sets in a graph—motivated in part by modeling systems

in statistical physics—is a Markov chain in which one starts at an arbitrary independent

set, then repeatedly chooses a vertex at random and, with probability that depends on a

fixed parameter λ > 0, either removes the vertex from the set (if it is in the set), or adds

it to the set (if it is not in the set and has no neighbor in the set). This chain, also known

as the hardcore model, has seen recent rapid mixing results under various conditions. In

addition to independent sets, similar dynamics have been studied for a number of other

structures—including, for example, q-colorings, matchings, and edge covers (more generally,

b-matchings and b-edge covers).

1.2.1 Our contribution

In Chapter 3, we prove that the hardcore Glauber dynamics mixes rapidly on graphs of

bounded treewidth for all fixed λ > 0, and that the Glauber dynamics on partial q-colorings

(for all λ > 0) of a graph of bounded treewidth, and on q-colorings of a graph of bounded

carving width, mix rapidly. Marc Heinrich proved the latter result, namely for q-colorings, in

a 2020 preprint [35]. Heinrich’s result applies to all graphs of bounded treewidth; however,

for graphs of bounded carving width whose degree is less than quadratic in their treewidth,

we improve on Heinrich’s upper bound—provided that q is fixed. We also prove that the

analogous dynamics on the b-edge covers (when b is bounded) and the dominating sets of

a graph of bounded treewidth mix rapidly for all λ > 0. In a similar vein, we prove that

three additional chains—on b-matchings (when λ > 0), on maximal independent sets, and

on maximal b-matchings—mix rapidly in graphs where carving width is bounded. (For the

latter two chains we consider only the unbiased version.)

5

To prove our results, we apply the framework we introduce in Chapter 2. As we discuss in

Chapter 2, the framework makes progress towards unifying prior work on similar Glauber

dynamics with prior work on probabilistic graphical models. The application to k-angulations

(proving quasipolynomial mixing) illustrates the applicability of the framework beyond

graphical models and sampling problems in graphs.

1.3 Main Results

1.3.1 Geometric Results

To obtain Theorem 1.1, we show the following result for the expansion of the associahedron:

Theorem 1.2. The expansion of the associahedron K3,n+2 is Ω(1/(
√
n log n)) and O(1/

√
n).

We will prove the lower bound in Section 2.6 and Section A.1 using the multicommodity flow -

based machinery we introduce in Section 2.4, after giving intuition in Section 2.2. Combining

this result with the connection between flows and mixing [67]—with some additional effort in

Section A.1—gives our new O(n3 log3 n) bound (Theorem 1.1) for triangulation mixing.

Although the expansion lower bound is more interesting for the sake of rapid mixing, the

upper bound in Theorem 1.2—which we prove in Section A.3—recovers Molloy, Reed, and

Steiger’s Ω(n3/2) mixing lower bound [56]. It is also the first result showing that the

associahedron has combinatorial expansion o(1). By contrast, Anari, Liu, Oveis Gharan, and

Vinzant recently proved [4, 3], settling a conjecture of Mihail and Vazirani [55], that matroids

have expansion one. (Mihail and Vazirani in fact conjectured that all graphs realizable as

the 1-skeleton of a 0-1 polytope have expansion one.) Although the set of convex n-gon

triangulations is not a matroid, it is an important subset system—and this work shows that

it does not have expansion one. More generally, we give the following quasipolynomial bound

6

for k-angulations:

Theorem 1.3. For every fixed k ≥ 3, the k-angulation flip walk on the convex (k−2)n+2-point

set mixes in time nO(k logn).

In Section 2.8, we give a lower bound on the treewidth of the n× n integer lattice point set

triangulation flip graph:

Theorem 1.4. The treewidth of the triangulation flip graph Fn on the n× n integer lattice

point set is Ω(N1−o(1)), where N = |V (Fn)|.

1.3.2 Graph-Theoretic Chain Results

Our main results are the following (see Section 3.1 for relevant definitions).

Theorem 1.5. The hardcore Glauber dynamics mixes in time nO(t) on graphs of treewidth t

for all fixed λ > 0.

Theorem 1.6. The (unbiased) Glauber dynamics on q-colorings (when q ≥ ∆+ 2 is fixed)

mixes in time nO(t) on graphs of treewidth t and degree ∆. The Glauber dynamics on partial

q-colorings (when q ≥ ∆ + 2 is fixed) mixes in time nO(t) on graphs of treewidth t for all

fixed λ > 0.

Theorem 1.7. The Glauber dynamics on b-edge covers mixes in time nO(t2) on graphs of

treewidth t, for all fixed b and fixed λ > 0. The Glauber dynamics on dominating sets mixes in

time nO(t) on graphs of treewidth t for all fixed λ > 0. The Glauber dynamics on b-matchings

mixes in time nO(t) on graphs of treewidth t, fixed b, and fixed degree ∆ for all fixed λ > 0.

Theorem 1.8. There exist flip chains on maximal independent sets and maximal b-matchings,

whose stationary distributions are uniform, that mix in time nO(t) on graphs of treewidth t

and fixed degree ∆.

7

1.4 Organization

1.4.1 Chapter 2 Organization: Geometric Chains

In Chapter 2 we define the Markov chains we are analyzing. In Section 2.2, we give intuition

for the decomposition by describing its application to triangulations. In Section 2.4 we present

our general decomposition meta-theorems, and compare our contribution to prior work by

Jerrum, Son, Tetali, and Vigoda [40]. In particular, we discuss why our purely combinatorial

machinery is needed for obtaining new bounds in the case of triangulations. In Section 2.6 we

prove a general result that gives a coarse bound on triangulation mixing. Improving this bound

to near tightness requires some technical optimizations, which we defer to Appendix A.1; we

give a matching upper bound (up to logarithmic factors) in Appendix A.3. In Section 2.7, we

show that general k-angulations admit a decomposition satisfying a relaxation (Lemma 2.11)

of our general theorem that implies quasipolynomial-time mixing. We analyze the particular

quasipolynomial bound we obtain, and show that our combinatorial technique (Theorem 2.1)

gives a better dependence on k than one would obtain with the prior decomposition theorem.

In Section 2.5 we prove our general combinatorial decomposition theorem, Theorem 2.1. In

Section 2.8 we prove a theorem about lattice triangulations; in Appendix A.4 we fill in a few

remaining proof details.

1.4.2 Chapter 3 Organization: Graph-Theoretic Chains

In Section 3.1, we give some additional relevant definitions and background for our graph-

theoretic chains, including defining the Glauber dynamics and the hardcore model (the chain

on independent sets). In Section 3.2.3, we use the chain on independent sets to illustrate

what we call a “non-hierarchical” version of the framework (actually the version we give in

Chapter 2). This non-hierarchical version works on this chain when carving width is bounded,

8

and in Sections 3.4.1 and Section 3.4.2 we describe how to apply it respectively to q-colorings,

and to b-edge covers and b-matchings.

To fully prove Theorem 1.5 and Theorem 1.7, we need to deal with unbounded-degree

graphs. In Section 3.3, we discuss how to modify the framework to accomplish this, proving

Theorem 1.5 for λ = 1. We defer some of the details of this proof to Section 3.5, in which we

also finish the proof of Theorem 1.6 for λ = 1.

We prove the general case λ > 0 of Theorems 1.5 and 1.6 in Appendix 3.6. We finish the

proofs of Theorems 1.7 and 1.8 in Section 3.7: applying the framework to the relevant chains

requires a further refinement of the framework.

In all of the above, we prove rapid mixing but defer derivation of specific upper bounds to

Appendix B.1.

9

Chapter 2

Improved mixing for the convex

polygon triangulation flip walk

2.1 Background

2.1.1 Triangulations of convex point sets and lattice point sets

Let Pn be the regular polygon with n vertices. Every triangulation t of Pn+2 has n − 1

diagonals, and every diagonal can be flipped : every diagonal D belongs to two triangles

forming a convex quadrilateral, so D can be removed and replaced with the diagonal D′

lying in the same quadrilateral and crossing D. The set of all triangulations of Pn+2, for

n ≥ 1, is the vertex set of a graph that we denote Kn. (This notation is standard, but

unfortunate, as it coincides with the notation for a complete graph.) The edges of this graph

are the flips between adjacent triangulations. The graph Kn is realizable as the 1-skeleton

of an n − 1-dimensional polytope [49] called the associahedron (we also use this name for

the graph itself). It is also isomorphic to the rotation graph on the set of all binary plane

10

trees with n+ 1 leaves [69], and equivalently the set of all parenthesizations of an algebraic

expression with n+ 1 terms, with “flips” defined as applications of the associative property

of multiplication. union The structure of this graph depends only on the convexity and the

number of vertices of the polygon, and not on its precise geometry. That is, Pn+2 need not

be regular for Kn to be well defined.

McShine and Tetali [54] showed that the mixing time (see Section 2.3) of the uniform random

walk on Kn is O(n5 log n), following Molloy, Reed, and Steiger’s [56] lower bound of Ω(n3/2).

Standard inequalities [67] then imply that the expansion of Kn is Ω(1/(n4 log n)) and O(n1/4).

It is easy to generalize triangulations to k-angulations of a convex polygon P(k−2)n+2, and to

generalize the definition of a flip between triangulations to a flip between k-angulations: a

k-angulation is a maximal division of the polygon into k-gons, and a flip consists of taking a

pair of k-gons that share a diagonal, removing that diagonal, and replacing it with one of the

other diagonals in the resulting 2k − 2-gon. One can then define the k-angulation flip walk

on the k-angulations of P(k−2)n+2. An analogous graph to the associahedron is defined over

the triangulations of the integer lattice (grid) point set with n rows of points and n columns.

Substantial prior work has been done on bounds for the number of triangulations in this

graph ([1], [41]), as well as characterizing the mixing time of random walks on the graph,

when the walks are weighted by a function of the lengths of the edges in a triangulation ([13]

[12]).

2.1.2 Convex triangulation flip walk and mixing time

Consider the following random walk on the triangulations of the convex n+ 2-gon:

for t = 1, 2, . . . do

Begin with an arbitrary triangulation t.

Flip a fair coin.

11

If the result is tails, do nothing.

Else, select a diagonal in t uniformly at random, and flip the diagonal.

end for

(The “do nothing” step is a standard MCMC step that enforces a technical condition known

as laziness, required for the arguments that bound mixing time.)

At any given time step, this walk induces a probability distribution π over the triangulations

of the n + 2-gon. Standard spectral graph theory shows that π converges to the uniform

distribution in the limit. Formally, what McShine and Tetali showed [54] is that the number

of steps before π is within total variation distance 1/4 of the uniform distribution is bounded

by O(n5 log n)—in other words, that the mixing time is O(n5 log n). Any polynomial bound

means the walk mixes rapidly. We formally define total variation distance:

The total variation distance between two probability distributions µ and ν over the same set

Ω is defined as

d(µ, ν) =
1

2

∑
S∈Ω

|π(S)− π∗(S)|.

Consider a Markov chain with state space Ω with transition matrix P . Given a starting state

S ∈ Ω, the chain induces a probability distribution πt at each time step t. Suppose the chain

is irreducible: it connects every pair of states. Suppose further that the chain is lazy : it

has constant probability of remaining at any given state. Then the distribution converges

in the limit to a stationary distribution π∗. Furthermore, if the transition probabilities are

symmetric (as is the case for the k-angulation flip walk), then the stationary distribution is

uniform. The mixing time is defined as follows: Given an arbitrary ε > 0, the mixing time,

τ(ε), of a Markov chain with state space Ω and stationary distribution π∗ is the minimum

time t such that, regardless of starting state, we always have

d(πt, π
∗) < ε.

12

Suppose that the chain belongs to a family of chains, whose size is parameterized by a value

n. (It may be that Ω is exponential in n.) If τ(ε) is upper bounded by a function that is

polynomial in log(1/ε) and in n, say that the chain is rapidly mixing. It is common to omit

the parameter ε, assuming its value to be the arbitrary constant 1/4.

2.2 Decomposing the convex point set triangulation

flip graph

2.2.1 Bounding mixing via expansion

We have a Markov chain that is in fact a random walk on the associahedron Kn. We wish to

bound the mixing time of this walk. It turns out that one way to do this is by lower-bounding

the expansion of the same graph Kn. Intuitively, expansion concerns the extent to which

“bottlenecks” exist in a graph. More precisely, it measures the “sparsest” cut—the minimum

ratio of the number of edges in a cut divided by the number of vertices on the smaller side of

the cut:

The edge expansion (or simply expansion), h(G), of a graph G = (V,E) is the quantity

min
S⊆V :|S|≤|V |/2

|∂S|/|S|,

where ∂S = {(s, t)|s ∈ S, t /∈ S} is the set of edges across the (S, V \ S) cut. A lower bound

on edge expansion leads to an upper bound on mixing [39, 67]:

Lemma 2.1. The mixing time of the Markov chain whose transition matrix is the normalized

13

adjacency matrix of a ∆-regular graph G is

O

(
∆2 log(|V (G)|)

(h(G))2

)
.

One can do better [22, 67] if the paths in a multicommodity flow are not too long (Section 2.3).

2.2.2 “Slicing and peeling”

We would like to show that there are many edges in every cut, relative to the number of

vertices on one side of the cut. We partition the triangulations V (Kn) into n equivalence

classes, each inducing a subgraph of Kn. We show that many edges exist between each pair

of the subgraphs. Thus the partitioning “slices” through many edges. After the partitioning,

we show that each of the induced subgraphs has large expansion. To do so, we show that

each such subgraph decomposes into many copies of a smaller flip graph Ki, i < n. This

inductive structure lets us assume that Ki has large expansion—then show that the copies of

the smaller flip graph are all well connected to one another. We call this “peeling,” because

one must peel the many Ki copies from one another—removing many edges—to isolate

each copy. Molloy, Reed, and Steiger [56] obtained their O(n25) mixing upper bound via

a different decomposition, namely using the central triangle, via a non-flow-based method.

That decomposition is the one we use for our quasipolynomial bound for general k-angulations

in Appendix 2.7. However, we use a different decomposition here, one with a structure that

lets us obtain a nearly tight bound, via a multicommodity flow construction. We formalize

the slicing step now:

Fix a “special” edge e∗ of the convex n + 2-gon Pn+2. For each triangle T having e∗ as

one of its edges, define the oriented class C∗(T) to be the set of triangulations of Pn+2 that

include T as one of their triangles. Let Tn be the set of all such triangles; let Sn be the set of

14

all classes {C∗(T)|T ∈ Tn}.

Orient Pn+2 so that e∗ is on the bottom. Then say that T (respectively C∗(T)) is to the left

of T ′ (respectively C∗(T ′)) if the topmost vertex of T lies counterclockwise around Pn+2 from

the topmost vertex of T ′. Say that T ′ lies to the right of T . Write T < T ′ and T ′ > T .

See Figure 2.1.

l r j

i

k

Figure 2.1: Left: A triangulation of the regular octagon. Center: a class C∗(T) ∈ Sn,
represented schematically by the triangle T that induces it. We depict the regular n+2-gon as a
circle (which it approximates as n → ∞), for ease of illustration. Each triangulation t ∈ C∗(T)
consists of T (the triangle shown), and an arbitrary triangulation of the two polygons on
either side of T . Notice that C∗(T) ∼= Kl□Kr, where T partitions the n + 2-gon into an l-
gon and an r-gon. Right: the matching E∗(T, T ′) between classes C∗(T) ∼= Ki□Kj+k and
C∗(T ′) ∼= Ki+j□Kk, is in bijection with the triangulations in Ki□Kj□Kk (induced by the
quadrilateral containing T and T ′). Therefore, |E∗(T, T ′)| = CiCjCk.

We make observations about the structure of each class as an induced subgraph of Kn

The Cartesian product graph G□H of graphs G and H has vertices V (G)× V (H) and edges

{((u, v), (u′, v))|(u, u′) ∈ E(G), v ∈ V (H)} ∪ {((u, v), (u, v′))|(v, v′) ∈ E(H), u ∈ V (G)}.

Given a vertex w = (u, v) ∈ V (G)× V (H), call u the projection of w onto G, and similarly

call v the projection of w onto H. (Applying the obvious associativity of the Cartesian

product operator, one can naturally define the product G1□G2□ · · ·□Gk = □k
i=1Gi.)

We can now characterize the structure of each class as an induced subgraph of Kn:

Lemma 2.2. Each class C∗(T) is isomorphic to a Cartesian product of two associahedron

15

graphs Kl and Kr, with l + r = n− 1.

Proof. Each triangle T partitions the n+ 2-gon into two smaller convex polygons with side

lengths l + 1 and r + 1, such that l + r = n− 1. Thus each triangulation in C∗(T) can be

identified with a tuple of triangulations of these smaller polygons. The Cartesian product

structure then follows from the fact that every flip between two triangulations in C∗(T) can

be identified with a flip in one of the smaller polygons.

Lemma 2.2 will be central to the peeling step. For the slicing step, building on the idea in

Lemma 2.2 will help us characterize the edge sets between classes:

Given classes C∗(T), C∗(T ′) ∈ Sn, denote by E∗(T, T ′) the set of edges (flips) between C∗(T)

and C∗(T ′). Let B∗
n,T ′(T) and B∗

n,T (T
′) be the boundary sets—the sets of endpoints of edges

in E∗(T, T ′)—that lie respectively in C∗(T) and C∗(T ′).

Lemma 2.3. For each pair of classes C∗(T) and C∗(T ′), the boundary set B∗
n,T ′(T) induces a

subgraph of C∗(T) isomorphic to a Cartesian product of the form Ki□Kj□Kk, for some i+

j + k = n− 2.

Proof. Each flip between triangulations in adjacent classes C∗(T) involves flipping a diagonal

of T to transform the triangulation t ∈ C∗(T) into triangulation t′ ∈ C∗(T ′). Whenever this is

possible, there must exist a quadrilateral Q, sharing two sides with T (the sides that are not

flipped), such that both t and t′ contain Q. Furthermore, every t ∈ C∗(T) containing Q has a

flip to a distinct t′ ∈ C∗(T ′). The set of all such boundary vertices t ∈ C∗(T) can be identified

with the Cartesian product described because Q partitions Pn+2 into three smaller polygons,

so that each triangulation in B∗
n,T ′(T) consists of a tuple of triangulations in each of these

smaller polygons, and such that every flip between triangulations in B∗
n,T ′(T) consists of a

flip in one of these smaller polygons.

16

Lemma 2.4. The set E∗(T, T ′) of edges between each pair of classes C∗(T) and C∗(T ′) is a

nonempty matching. Furthermore, this edge set is in bijection with the vertices of a Cartesian

product Ki□Kj□Kk, i+ j + k = n− 2.

Proof. The claim follows from the reasoning in Lemma 2.3 and from the observation that

each triangulation in B∗
n,T ′(T) has exactly one flip (namely, flipping a side of the triangle T)

to a neighbor in B∗
n,T (T

′).

Lemma 2.4 characterizes the structure of the edge sets (namely matchings) between classes;

we would also like to know the sizes of the matchings. We will use the following formula:

Let Cn be the nth Catalan number, defined as Cn = 1
n+1

(
2n
n

)
.

Lemma 2.5. [46, 36]: The number of vertices in the associahedron Kn is Cn, and this

number grows as 1√
π·n3/2 · 22n.

We will prove the following in Section A.4:

Lemma 2.6. For every T, T ′ ∈ Tn,

|E∗(T, T ′)| ≥ |C∗(T)||C∗(T ′)|
Cn

.

Lemma 2.6—which states that the number of edges between a pair of classes is at least equal

to the product of the cardinalities of the classes, divided by the total number of vertices

in the graph |V (Kn)| = Cn—is crucial to our results. To explain why this is, we will need

to present our multicommodity flow construction (Appendix 2.6). We will give intuition in

Section 2.4. For now, it suffices to say that Lemma 2.6 implies that there are many edges

between a given pair of classes, justifying (intuitively) the slicing step. For the peeling step,

we need the fact that Cartesian graph products preserve the well-connectedness of the graphs

in the product [31]:

17

Lemma 2.7. Given graphs G1, G2, . . . , Gk, Cartesian product G1□G2□ · · ·□Gk satisfies

h(G1□G2□ · · ·□Gk) ≥
1

2
min

i
h(Gi).

Lemma 2.2 says that each of the classes C∗(T) ∈ Sn is a Cartesian graph product of

associahedron graphs Kl, Kr, l < n, r < n, allowing us to “peel” (decompose) C∗(T) into

graphs that can then be recursively sliced into classes and peeled. Lemma 2.7 implies that

the peeling must disconnect many edges, as it involves splitting a Cartesian product graph

into many subgraphs (copies of Kl).

We will make all of this intuition rigorous in Section 2.6 by constructing our flow. The

choice of paths through which to route flow will closely trace the edges in this recursive

“slicing and peeling” decomposition. We will then show that, with this choice of paths, the

resulting congestion—the maximum amount of flow carried along an edge—is bounded by a

suitable polynomial factor. This will provide a lower bound on the expansion.

Figure 2.2: Left: The associahedron graph K5, with each vertex representing a triangulation
of the regular heptagon. Flips are shown with edges (in blue and red). The vertex set V (Kn)
is partitioned into a set Sn of five equivalence classes (of varying sizes). Within each class, all
triangulations share the same triangle containing the bottom edge e∗. Flips (edges) between
triangulations in the same class are shown in blue. Flips between triangulations in different
classes are shown in red. To “slice” K5 into its subgraphs, one must cut through these red
matchings. Right: A class C∗(T) from the graph K5 on the left-hand side, viewed as an
induced subgraph of K5. The identifying triangle T is marked with a blue dot. This subgraph
is isomorphic to a Cartesian product of two K2 graphs; each copy of K2 induced by fixing the
rightmost diagonal is outlined in green. “Peeling” apart this product requires disconnecting
the two red edges connecting the K2 copies.

18

2.3 Bounding expansion via multicommodity flows

The way we will lower-bound expansion is by using multicommodity flows [67, 42]. A

multicommodity flow ϕ in a graph G = (V,E) is a collection of functions {fst : A → R | s, t ∈

V }, where A =
⋃

{u,v}∈E{(u, v), (v, u)}, combined with a demand function D : V × V → R.

Each fst is a flow sending D(s, t) units of a commodity from vertex s to vertex t through the

edges of G. We consider the capacities of all edges to be infinite. Let fst(u, v) be the amount

of flow sent by fst across the arc (u, v). (It may be that fst(u, v) ̸= fst(v, u).) Let

f(u, v) =
1

|V |
∑

s,t∈V×V

fst(u, v),

and let ρ = max(u,v)∈A f(u, v). Call ρ the congestion. Unless we specify otherwise, we will

mean by “multicommodity flow” a uniform multicommodity flow, i.e. one in which D(s, t) = 1

for all s, t. The following is well established and enables the use of multicommodity flows as

a powerful lower-bounding technique for expansion:

Lemma 2.8. Given a uniform multicommodity flow f in a graph G = (V,E) with congestion ρ,

the expansion h(G) is at least 1/(2ρ).

Lemma 2.8, combined with Lemma 2.1, gives an automatic upper bound on mixing time

given a multicommodity flow with an upper bound on congestion—but with a quadratic

loss. As we will discuss in Appendix 2.5, one can do better if the paths used in the flow are

short [22, 67].

19

2.4 Our framework

In addition to the new mixing bounds for triangulations and for general k-angulations, we

make general technical contributions, in the form of three meta-theorems, which we present

in this section. First, Theorem 2.1 provides a general recursive mechanism for analyzing the

expansion of a flip graph in terms of the expansion of its subgraphs. Equivalently, viewing the

random walk on such a flip graph as a Markov chain, this theorem provides a mechanism for

analyzing the mixing time of a chain, in terms of the mixing times of smaller restriction chains

into which one decomposes the original chain—and analyzing a projection chain over these

smaller chains. We obtain, in certain circumstances such as the k-angulation walk, better

mixing time bounds than one obtains applying similar prior decomposition theorems—which

used a different underlying machinery.

The second theorem, Lemma 2.9, observes and formalizes a set of conditions satisfied by a

number of chains (equivalently, flip graphs) under which one can apply either our Theorem 2.1,

or prior decomposition techniques, to obtain rapid mixing reuslts. Depending on the chain,

one may then obtain better results either by applying Theorem 2.1, or by applying the prior

techniques. It is Lemma 2.9 that we apply to a number of other chains in Chapter 3 The

case of general k-angulations satisfies a relaxation of this theorem (Lemma 2.11), giving

a quasipolynomial bound. This bound will come from incurring a polynomial loss over

logarithmic recursion depth.

The third theorem, Lemma 2.12, adapts the machinery in Theorem 2.1 to eliminate this

multiplicative loss altogether, assuming that a chain satisfies certain properties. One such

key property is the existence of large matchings in Lemma 2.6 in Section 2.2. Another

property, which we will discuss further after presenting Lemma 2.12, is that the boundary

sets—the vertices in one class (equivalently, states in a restriction chain) having neighbors in

another class—are well connected to the rest of the first class. When these properties are

20

satisfied, one can apply our flow machinery to overcome the multiplicative loss and obtain a

polynomial bound. However, the improvement relies on observations about congestion that

do not obviously translate to the spectral setting.

2.4.1 Markov chain decomposition via multicommodity flow

In this section we state our first general theorem. To place our contribution in context

with prior work, we cast our flip graphs in the language of Markov chains. As we discussed

in Section 2.1.2, any Markov chain satisfying certain mild conditions has a stationary

distribution π∗ (which in the case of our triangulation walks is uniform). We can view such a

chain as a random walk on a graph M (an unweighted graph in the case of the chains we

consider, which have uniform distributions and regular transition probabilities). In the case

of convex polygon triangulations, we have M = Kn.

The flip graph M has vertex set Ω and (up to normalization by degree) adjacency ma-

trix P—and we abuse notation, identifying the Markov chain M with this graph. When π∗

is not uniform, it is easy to generalize the flip graph to a weighted graph, with each vertex

(state) t assigned weight π(t), and each transition (edge) (t, t′) assigned weight π(t)P (t, t′) =

π(t′)P (t′, t). We assume here that this latter equality holds, a condition on the chainM known

as reversibility. We then replace a uniform multicommodity flow with one where D(t, t′) =

π(t)π(t′) (up to normalization factors).

Consider a Markov chain M with finite state space Ω and probability transition matrix P , and

stationary distribution π. Consider a partition of the states of Ω into classes Ω1,Ω2, . . . ,Ωk.

Let the restriction chain, for i = 1, . . . , k, be the chain with state space Ωi, probability

distribution πi, with πi(x) = π(x)/(
∑

y∈Ωi
π(y)), for x ∈ Ωi, and transition probabili-

ties Pi(x, y) = P (x, y)/(
∑

z∈Ωi
P (x, z)). Let the projection chain be the chain with state

space Ω̄ = {1, 2, . . . , k}, stationary distribution π̄, with π̄(i) =
∑

x∈Ωi
π(i), and transition

21

probabilities P̄ (i, j) =
∑

x∈Ωi,y∈Ωj
P (x, y).

Theorem 2.1. Let M be a reversible Markov chain with finite state space Ω probability tran-

sition matrix P , and stationary distribution π∗. Suppose M is connected (irreducible). Sup-

pose M can be decomposed into a collection of restriction chains (Ω1, P1), (Ω2, P2), . . . , (Ωk, Pk),

and a projection chain (Ω̄, P̄). Suppose each restriction chain admits a multicommodity flow

(or canonical paths) construction with congestion at most ρmax. Suppose also that there exists

a multicommodity flow construction in the projection chain with congestion at most ρ̄. Then

there exists a multicommodity flow construction in M (viewed as a weighted graph in the

natural way) with congestion

(1 + 2ρ̄γ∆)ρmax,

where γ = maxi∈[k] maxx∈Ωi

∑
y/∈Ωi

P (x, y), and ∆ is the degree of M.

The proof of Theorem 2.1 is in Section 2.5. Jerrum, Son, Tetali, and Vigoda [40] presented

an analogous decomposition theorem, which we restate below as Theorem 2.2, and which has

become a standard tool in mixing time analysis. The key difference between our theorem

and theirs is that our theorem uses multicommodity flows, while their theorem uses the

so-called spectral gap—another parameter that can use to bound the mixing time of a chain.

Often, the spectral gap gives tighter mixing bounds than combinatorial methods. Their

Theorem 2.2 gave bounds analogous to our Theorem 2.1, but with the multicommodity flow

congestion replaced with the spectral gap of a chain—and with a 3γ term in place of our 2γ.

(They also gave an analogous version for the log-Sobolev constant—yet another parameter for

bounding mixing times.) The spectral gap of a chain M = (Ω, P), which we denote λ, is the

difference between the two largest eigenvalues of the transition matrix P (which we can view

as the normalized adjacency matrix of the corresponding weighted graph). The key point is

that while on the one hand the mixing time τ satisfies τ ≤ λ−1 log |Ω|, the bound on mixing

using expansion in Lemma 2.1 comes from passing through the spectral gap: λ ≥ (h(M))2

2∆2 ,

where ∆ is the degree of the flip graph and h(M) is the expansion of M. The quadratic loss

22

in passing from expansion to mixing is not incurred when bounding the spectral gap directly,

so one can obtain better bounds via the spectral gap. Jerrum, Son, Tetali, and Vigoda gave

a mechanism for doing precisely this:

Theorem 2.2. [40] Let M be a reversible Markov chain with finite state space Ω probability

transition matrix P , and stationary distribution π∗. Suppose M is connected (irreducible).

Suppose M can be decomposed into a collection of restriction chains (Ω1, P1), (Ω2, P2),

. . . , (Ωk, Pk), and a projection chain (Ω̄, P̄). Suppose each restriction chain has spectral gap

at least λmin. Suppose also that the projection chain has spectral gap at least λ̄. Then M has

gap at least

min

{
λmin

3
,
λ̄λmin

3γ + λ̄

}
,

where γ is as in Theorem 2.1.

Our Theorem 2.1 has a relatively simple proof (Section 2.5) and shows that the earlier spectral

machinery can be replaced with a purely combinatorial technique. We also obtain a tighter

bound on expansion than would result from a black-box application of Theorem 2.2. The cost

to our improvement is in passing from expansion to mixing via the spectral gap. Nonetheless,

we will show that in the case of triangulations, our Theorem 2.1 can be adapted to give a

new mixing bound whereas, by contrast, it is not clear how to obtain even a polynomial

bound adapting Jerrum, Son, Tetali, and Vigoda’s spectral machinery. We will also show

that for general k-angulations, one can, with our technique, use a combinatorial insight to

eliminate the γ factor in our decomposition in favor of a ∆−1 factor (for k-angulations we

have γ = k/∆)—whereas it is not clear how to do so with the spectral decomposition.

2.4.2 General pattern for bounding projection chain congestion

Our second decomposition theorem, which we will apply to general k-angulations, states that

if one can recursively decompose a chain into restriction chains in a particular fashion, and if

23

the projection chain is well connected, then Theorem 2.1 gives an expansion bound:

Lemma 2.9. Let F = {M1,M2, . . . } be a family of connected graphs, parameterized by a

value n. Suppose that every graph Mn = (Vn, En) ∈ F , for n ≥ 2, can be partitioned into a

set Sn of classes satisfying the following conditions:

1. Each class in Sn is isomorphic to a Cartesian product of one or more graphs C(T) ∼=

Mi1□ · · ·Mik , where for each such graph Mij ∈ F , ij ≤ n/2.

2. The number of classes is O(1).

3. For every pair of classes C(T), C(T ′) ∈ Sn that share an edge, the number of edges

between the two classes is Ω(1) times the size of each of the two classes.

4. The ratio of the sizes of any two classes is Θ(1).

Suppose further that |V1| = 1. Then the expansion of Mn is Ω(n−O(1)).

Lemma 2.9 follows from applying induction to Theorem 2.1. An analogue in terms of spectral

gap follows from applying induction to Theorem 2.2. Furthermore, as we will prove in

Appendix 2.5, a precise statement of the bounds given by Lemma 2.9 is as follows:

Lemma 2.10. Suppose a flip graph Mn = (Vn, En) belongs to a family F of graphs satisfying

the conditions of Lemma 2.9. Suppose further that every graph Mk = (Vk, Ek) ∈ F , k < n,

satisfies

|Vk|/|Ek,min| ≤ f(k),

for some function f(k), where Ek,min is the smallest edge set between adjacent classes

C(T), C(T ′) ∈ Sk, where Sk is as in Lemma 2.9. Then the expansion of Mn is

Ω(1/(2f(n))logn)).

24

Proof. Constructing an arbitrary multicommodity flow (or set of canonical paths) in the

projection graph at each inductive step gives the result claimed. The term |Vk|/|Ek,min| bounds

the (normalized) congestion in any such flow because the total amount of flow exchanged by

all pairs of vertices (states) combined is |Vk|2, and the minimum weight of an edge in the

projection graph is |Ek,min|.

Notice that we do not incur a γ∆ term here, because even if a state (vertex) in Ωi ⊆ Vk

has neighbors x ∈ Ωj, y ∈ Ωl, z still only receives no more than |Vk|2/Ek,min} flow across the

edges (z, x) and (z, y) combined.

Remark 2.1. The γ∆ factor in Theorem 2.1, which does not appear in Lemma 2.10, does

appear in a straightforward appliation of Jerrum, Son, Tetali, and Vigoda’s Theorem 2.2.

We will show that k-angulations (with fixed k ≥ 4) satisfy a relaxation of Lemma 2.9:

Lemma 2.11. Suppose a family F of graphs satisfies the conditions of Lemma 2.9, with

the Ω(1), O(1), and Θ(1) factors in Conditions 3, 2, and 4 respectively replaced by Ω(n−O(1)),

O(nO(1)), and Θ(nO(1)). Then for every Mn ∈ F , the expansion of Mn is Ω(n−O(logn)).

Lemma 2.9 enables us to relate a number of chains admitting a certain decomposition process

in a black-box fashion, unifying prior work applying Theorem 2.2 separately to individual

chains. Marc Heinrich [35] presented a similar but less general construction for the Glauber

dynamics on q-colorings in bounded-treewidth graphs; other precursors exist, including for

the hardcore model on certain trees [40] and a general argument for a class of graphical

models [20]. In Chapter 3, we apply Lemma 2.9 to chains for sampling independent sets

and dominating sets in bounded-treewidth graphs, as well as chains on q-colorings, maximal

independent sets, and several other structures, in graphs whose treewidth and degree are

bounded.

25

2.4.3 Eliminating inductive loss: nearly tight conductance for

triangulations

We now give the meta-theorem that we will apply to triangulations. Lemma 2.9—using

either Theorem 2.1 or Theorem 2.2—gives a merely quasipolynomial bound when applied

straightforwardly to k-angulations, including the case of triangulations—simply because the

f(n) term in Lemma 2.10 is ω(1) and thus the overall congestion is ω(1)logn (not polynomial).

However, it turns out that the large matchings given by Lemma 2.6 between pairs of classes

in the case of triangulations (but not general k-angulations), combined with some additional

structure in the triangulation flip walk, satisfy an alternative set of conditions that suffice for

rapid mixing. The conditions are:

Lemma 2.12. Let F = {M1,M2, . . . } be an infinite family of connected graphs, parameter-

ized by a value n. Suppose that for every graph Mn = (Vn, En) ∈ F , for n ≥ 2, the vertex

set Vn can be partitioned into a set Sn of classes inducing subgraphs of Mn that satisfy the

following conditions:

1. Each subgraph is isomorphic to a Cartesian product of one or more graphs C(T) ∼=

Mi1□ · · ·Mik , where for each such graph Mij ∈ F , ij < n.

2. The number of classes is nO(1).

3. For every pair of classes C(T), C(T ′) ∈ Sn, the set of edges between the subgraphs induced

by the two classes is a matching of size at least |C(T)||C(T ′)|
|Vn| .

4. Given a pair of classes C(T), C(T ′) ∈ Sn, there exists a graph Mi in the Cartesian

product C(T), and a class C(U) ∈ Si within the graph Mi, such that the set of vertices

in C(T) having a neighbor in C(T ′) is precisely the set of vertices in C(T) whose projection

onto Mi lies in C(U). Furthermore, no class C(U) within Mi is the projection of more

than one such boundary.

26

Suppose further that |V1| = 1. Then the expansion of Mn is Ω(1/(κ(n)n)), where κ(n) =

max1≤i≤n |C(Si)| is the maximum number of classes in any Mi, i ≤ n.

Unlike Lemma 2.9, this lemma requires a purely combinatorial construction; it is not clear

how to apply spectral methods to obtain even a polynomial bound. Condition 4 is crucial.

To give more intuition for this condition, we state and prove the following fact about the

triangulation flip graph (visualized in Figure 2.3):

T T
′

Tk

C(T) C(T ′)

BT ′(T)

BT (T
′)

E(T, T ′)

C(T) ∼= Mj1� · · ·�Mi� · · ·�Mjk

Mi

BT ′(T) ∼= Mj1� · · ·�C(U)� · · ·�Mjk

Mi

C(U)

Mi

Mi Mi Mi

C(U) C(U)

C(U)C(U)C(U)

Figure 2.3: Left: (Lemma 2.13) The set of edges E∗(T, T ′) has Ki□C∗(Tk) as its set of
boundary vertices in C∗(T). Center: An illustration of Condition 3 in Lemma 2.12, showing
a large matching E(T, T ′) between two classes (subgraphs) C(T) and C(T ′). Right: An
illustration of Conditions 1 and 4 in Lemma 2.12: C(T) as a Cartesian product of smaller
graphs Mj1 , . . . ,Mi, . . . ,Mjk in the family F . The schematic view shows this Cartesian
product as a collection of copies of Mi, connected via perfect matchings between pairs of the
copies—with the pairs to connect determined by the structure of the Cartesian product. The
boundary BT ′(T) (center) is isomorphic to a class C(U) (right) within Mi, a graph in the
product. Within each copy of Mi, many edges connect C(U) to the rest of Mi.

Lemma 2.13. Given T, T ′ ∈ Tn, suppose T
′ lies to the right of T . Then the subgraph of C∗(T)

induced by B∗
n,T ′(T) is isomorphic to a Cartesian product Kl□C∗(Tk), where l + r = n− 1,

and where Tk has as an edge the right diagonal of T , and as the vertex opposite this edge the

topmost vertex of T ′. A symmetric fact holds for B∗
n,T (T

′).

Proof. Every triangulation in B∗
n,T ′(T) (i) includes the triangle T and (ii) is a single flip

away from including the triangle T ′. As we observed in the proof of Lemma 2.3, this implies

that B∗
n,T ′(T) consists of the set of triangulations in C∗(T) containing a quadrilateral Q.

Specifically, Q shares two sides with T : one of these is e∗, and the other is the left side of T .

27

One of the other two sides of Q is the right side of C∗(T ′). Combining this side with the “top”

side of Q and with the right side of T , one obtains the triangle Tk, proving the claim.

Lemma 2.13 implies that there are many edges between the boundary set B∗
n,T ′(T) and the

rest of C∗(T): C∗(T) ∼= Kl□Kr, where Kl and Kr are smaller associahedron graphs, so C∗(T)

is a collection of copies of Kr, with pairs of copies connected by perfect matchings. Each Kr

copy can itself be decomposed into a set Sr of classes, one of which, namely C∗(Tk), is the

intersection of B∗
n,T ′(T) with the Kr copy. Applying Condition 3 to the Kr copy implies that

there are many edges between boundary vertices in C∗(Tk) to other subgraphs (classes) in

the Kr copy. That is, the boundary set B∗
n,T ′(T) is well connected to the rest of C∗(T).

Figure 2.3 visualizes this situation in general terms for the framework. We have now proven:

Lemma 2.14. The associahedron graph Kn, along with the oriented partition, satisfies the

conditions of Lemma 2.12.

Proof. The graphKn is connected [54]. Conditions 1 and 3 follow from Lemma 2.2, Lemma 2.4,

and Lemma 2.6. Concerning the boundary sets, Condition 4 follows from Lemma 2.13 and

from the discussion leading to this lemma.

Together with Lemma 2.1 and the fact that Kn is a Θ(n)-regular graph, Lemma 2.14 implies

rapid mixing, pending the proof of Lemma 2.12—which we prove in Appendix 2.6.

2.4.4 Intuition for the flow construction for triangulations

We will prove Lemma 2.12 in Appendix 2.6, from which a coarse expansion lower bound for

triangulations—and a corresponding coarse (but polynomial) upper bound for mixing—will

be immediate by Lemma 2.14. We give some intuition now for the flow construction we

will give in the proof of Lemma 2.12, and in particular for the centrality of Condition 3 and

28

Condition 4 (corresponding respectively to Lemma 2.6 and Lemma 2.13 for triangulations).

Consider the case of triangulations, for concreteness. Every t ∈ C∗(T), t′ ∈ C∗(T ′) must

exchange a unit of flow. This means that a total of |C∗(T)||C∗(T ′)| flow must be sent across

the matching E∗(T, T ′). To minimize congestion, it will be optimal to equally distribute this

flow across all of the boundary matching edges. We can decompose the overall problem of

routing flow from each t ∈ C∗(T) to each t′ ∈ C∗(T ′) into three subproblems: (i) concentrating

flow from every triangulation in C∗(T) within the boundary set B∗
n,T ′(T), (ii) routing flow

across the matching edges E∗(T, T ′), i.e. from B∗
n,T ′(T) ⊆ C∗(T) to B∗

n,T (T
′) ⊆ C∗(T ′), and

(iii) distributing flow from the boundary B∗
n,T (T

′) to each t′ ∈ C∗(T ′). Now, the amount of

C(T) C(T ′)

BT ′(T)

BT (T
′)

E(T, T ′)

Mi

C(U)

C(U) C(U ′)

BU ′(U)

BU (U
′)

E(U,U ′)

Figure 2.4: Left: The problem of sending flow from each t ∈ C∗(T) to each t′ ∈
C∗(T ′), decomposed into subproblems: (i) concentrating flow within B∗

n,T ′(T), (ii) trans-
mitting the flow across the boundary matching E∗(T, T ′), and (iii) distributing the flow
from B∗

n,T (T
′) throughout C∗(T ′). Center: Within each copy of Mi in the prod-

uct C∗(T ′) ∼= Mj1□ · · ·□Mi□ · · ·□Mjk , the distribution problem in Figure 2.4 induces
the problem of distributing flow from a class C∗(U)—namely the projection of B∗

n,T (T
′)

onto Mi—throughout the rest of Mi. Right: The problem in the center figure induces
subproblems in which C∗(U) ⊆ Mi must send flow to each C∗(U ′) ⊆ Mi. These subproblems
are of the same form as the original C∗(T), C∗(T ′) problem (left), and can be solved recursively.
The large matchings E∗(T, T ′), E∗(U,U ′) guaranteed by Condition 3 prevent any recursive
congestion increase.

flow that must be concentrated from C∗(T) at each boundary triangulation u ∈ B∗
n,T ′(T) (and

symmetrically distributed from each v ∈ B∗
n,T (T

′) throughout C∗(T ′)) is equal to

|C∗(T)||C∗(T ′)|
|B∗

n,T ′(T)|
=

|C∗(T)||C∗(T ′)|
|B∗

n,T (T
′)|

=
|C∗(T)||C∗(T ′)|
|E∗(T, T ′)|

≤ Cn,

where we have used the equality |B∗
n,T ′(T)| = |B∗

n,T (T
′)| = |E∗(T, T ′)| by Lemma 2.3 and

Lemma 2.4, and where the inequality follows from Lemma 2.6. As a result, in the “con-

29

centration” and “distribution” subproblems (i) and (iii), at most Cn flow is concentrated

at or distributed from any given triangulation (Figure 2.4). This bound yields a recursive

structure: the concentration (respectively distribution) subproblem decomposes into a flow

problem within C∗(T) (respectively C∗(T ′)), in which, by the inequality, each triangulation

has Cn total units of flow it must receive (or send). We will then apply Condition 4, observing

(see Figure 2.4) that the concentration (symmetrically) distribution of this flow can be done

entirely between pairs of classes C∗(U), C∗(U ′) within copies of a smaller flip graph Mi in the

Cartesian product C∗(T ′) ∼= Mj1□ · · ·□Mi□ · · ·□Mjk .

The C∗(U), C∗(U ′) subproblem is of the same form as the original C∗(T), C∗(T ′) problem

(Figure 2.4), and we will show that the Cn bound on the flow (normalizing to congestion one)

across the E∗(T, T ′) edges will induce the same Cn bound across the E∗(U,U ′) edges in the

induced subproblem. We further decompose the C∗(U), C∗(U ′) problem into concentration,

transmission, and distribution subproblems without any gain in overall congestion. To see

this, view the initial flow problem in Kn as though every triangulation t ∈ V (Kn) is initially

“charged” with |V (Kn)| = Cn total units of flow to distribute throughout Kn. Similarly, in

the induced distribution subproblem within each copy of Mi = Ki in the product C∗(T ′),

each vertex on the boundary B∗
n,T ′(T) is initially “charged” with Cn total units to distribute

throughout Ki. Just as the original problem in Kn results in each E∗(T, T ′) carrying at

most Cn flow across each edge, similarly (we will show in Section 2.6) the induced problem

in Ki results in each E∗(U,U ′) carrying at most Cn flow across each edge. This preservation

of the bound Cn under the recursion avoids any congestion increase.

One must be cautious, due to the linear recursion depth, not to accrue even a constant-factor

loss in the recursive step (the coefficient 2 in Theorem 2.1). In Theorem 2.1, it turns out

that this loss comes from routing outbound flow within a class C∗(T)—flow that must be

sent to other classes—and then also routing inbound flow. The combination of these steps

involves two “recursive invocations” of a uniform multicommodity flow that is inductively

30

assumed to exist within C∗(T). We will show in Section 2.6 that one can avoid the second

“invocation” with an initial “shuffling” step: a uniform flow within C∗(T) in which each

triangulation t ∈ C∗(T) distributes all of its outbound flow evenly throughout C∗(T).

It is here that Jerrum, Son, Tetali, and Vigoda’s spectral Theorem 2.2 breaks down, giving

a 3-factor loss at each recursion level, due to applying the Cauchy-Schwarz inequality to a

Dirichlet form that is decomposed into expressions over the restriction chains. Although

Jerrum, Son, Tetali, and Vigoda gave circumstances for mitigating or eliminating their

multiplicative loss, this chain does not satisfy those conditions in an obvious way.

2.5 Proof that the conditions of Lemma 2.9 imply rapid

mixing

In this section we prove Theorem 2.1. Lemma 2.9 will then follow by way of Lemma 2.10.

C(T) C(T ′)
t

t′

f (n)

Figure 2.5: In the flow construction we use for quasipolynomial mixing (Theorem 1.3), we
first find a flow in C(T) (similarly C(T ′)) and bound its congestion. (Actually, we assume
such a flow exists, for the inductive hypothesis.) We then reuse the paths from this flow in
routing the flow between t and t′. Reusing these paths results in compounding the amount of
flow across each path by f(n), where f(n) is the amount of flow across an edge between the
two classes.

Theorem 2.1. Let M be a reversible Markov chain with finite state space Ω probability tran-

sition matrix P , and stationary distribution π∗. Suppose M is connected (irreducible). Sup-

31

pose M can be decomposed into a collection of restriction chains (Ω1, P1), (Ω2, P2), . . . , (Ωk, Pk),

and a projection chain (Ω̄, P̄). Suppose each restriction chain admits a multicommodity flow

(or canonical paths) construction with congestion at most ρmax. Suppose also that there exists

a multicommodity flow construction in the projection chain with congestion at most ρ̄. Then

there exists a multicommodity flow construction in M (viewed as a weighted graph in the

natural way) with congestion

(1 + 2ρ̄γ∆)ρmax,

where γ = maxi∈[k] maxx∈Ωi

∑
y/∈Ωi

P (x, y), and ∆ is the degree of M.

Here, instead of a uniform flow in which each pair of states exchanges a single unit, it will

be convenient to use a specification of demands and definition of congestion that are closer

to standard in the analysis of Markov chains: the demands are D(z, w) = π(z)π(w), and

the congestion across an edge (x, y) produced by a multicommodity flow f that satisfies the

demands {D(z, w)|z, w ∈ Ω} is ρ(x, y) = f(x, y)/(∆·Q(x, y)), where Q(x, y) = π(x)P (x, y) =

π(y)P (y, x) (by reversibility). One can check that in the uniform case, this definition is

equivalent to our definition in Section 2.3. Furthermore, Lemma 2.8 and Lemma 2.1 work for

the weighted case [67] with this adjusted definition of congestion.

The proof of Theorem 2.1 is in fact not difficult to describe intuitively: if one finds a flow

(collection of fractional paths) through the projection graph between every pair of classes

(restriction chains), this flow induces a subproblem in each class Ωi, in which each “boundary

vertex”—each vertex (state) z ∈ Ωi that brings in flow from a neighbor w ∈ Ωj—must

route the flow it receives throughout Ωi. The state z may bring in an amount of flow up

to ρ̄γ∆ from such neighbors, and z must route this flow (which we will show in the proof

is at most ρ̄γ∆π(z)) throughout Ωi. By assumption, it is possible for z to route π(z) flow

throughout Ωi with congestion at most ρmax, and therefore z can route the ρ̄γ∆π(z) flow

throughout Ωi with congestion at most ρ̄γ∆ρmax. The factor of 2 in the term 1+2ρ̄γ∆ comes

32

from applying the above reasoning twice: once for “inbound flow” that z brings into Ωi, and

once for “outbound flow” that z must route from Ωi to other classes. Finally, the factor of 1

comes from routing flow between pairs of states within Ωi.

We now make this reasoning precise:

Proof. (Proof of Theorem 2.1) Let {fi, i = 1, . . . , k} be a collection of flow functions over the

restriction chains with congestion ρi ≤ ρmax, as supposed in the theorem statement. Suppose

we have a flow f̄ with congestion ρ̄ in the projection chain.

We construct a multicommodity flow f in the overall chain M as follows: for every edge e =

(x, y), x ∈ Ωi, y ∈ Ωj, i ≠ j between restriction state spaces, let fxy = f̄(i, j)Q(x, y)/Q̄(i, j).

For pairs of states x, y ∈ Ωi, simply use the same (fractional) paths to send flow as in fi.

Now, for non-adjacent pairs of states x ∈ Ωi, y ∈ Ωj, i ̸= j, we will use the flow f̄ to route

the x − y flow, perhaps through one or more intermediate restriction spaces. We need to

consider how to route the flow through each intermediate restriction space. This induces a

collection of subproblems over each restriction space Ωi in which each state z ∈ Ωi “brings in”

and similarly “sends out” at most
∑

j ̸=i

∑
w∈Ωj

ρ̄Q̄(i, j)Q(z, w)/Q̄(i, j) ≤ ρ̄π(z)γ∆ units of

flow. We reuse the (fractional) paths that produce the flow with congestion ρmax, scaling the

resulting congestion by ρ̄γ∆. More precisely, if e = (x, y) is an edge internal to a restriction

space Ωi, let

f̂zu(x, y) = (Din(z, u) +Dout(u, z))(fi,zu(x, y) ·
π̄(i)

π(z)π(u)
)

and denote

f̂(x, y) =
∑
zu

f̂zu(x, y) =
∑

z,u∈Ωi

(Din(z, u) +Dout(u, z))(fi,zu(x, y) ·
π̄(i)

π(z)π(u)
)

33

and ρ̂(x, y) = f̂(x,y)
Q(x,y)

, where

Din(z, u) = (
∑
j ̸=i

∑
w∈Ωj

f̄(i, j)Q(z, w)/Q̄(i, j)) · π(u)
π̄(i)

≤ ρ̄
π(z)π(u)

π̄(i)
γ∆

is the share of the demand brought in by z to Ωi that must be sent to u, and Dout(u, z) is

similar. This definition f̂zu(x, y) indeed satisfies the demands Din(z, u) and Dout(u, z): fi,zu

is defined as sending π(z)π(u)
π̄(i)

units of flow along a set of fractional paths from z to u, so the

function

f̂zu(x, y) = (Din(z, u) +Dout(u, z))(fi,zu(x, y) ·
π̄(i)

π(z)π(u)
)

sends Din(z, u) +Dout(u, z) units of flow along the same set of fractional paths.

Now, we know by the definition of the congestion ρi produced by fi that

∑
z,u∈Ωi

fi,zu(x, y) ≤ ρiQi(x, y),

where Qi(x, y) =
π(x)P (x,y)

π̄(i)
. Therefore

ρ̂(x, y) =
f̂(x, y)

Q(x, y)
=

1

Q(x, y)

∑
z,u∈Ωi

(Din(z, u) +Dout)(fi,zu(x, y) ·
π̄(i)

π(z)π(u)
)

≤ 1

Q(x, y)

∑
z,u∈Ωi

2ρ̄γ∆
π(z)π(u)

π̄(i)
(fi,zu(x, y) ·

π̄(i)

π(z)π(u)
) = 2ρ̄γ∆

∑
z∈Ωi

fi,zu(x, y)

Q(x, y)
≤ 2ρ̄γ∆ρmax.

Now, for x, y ∈ Ωi and for u ∈ Ωi, v ∈ Ωj ̸= Ωi, we let

fvu(x, y) =
∑
z∈Ωi

f̂v,zu(x, y),

where

f̂v,zu(x, y) = (Dv,in(z, u) +Dv,out(u, z))(fi,zu(x, y) ·
π̄(i)

π(z)π(u)
,

34

where

Dv,in(z, u) =
π(u)

π̄(i)

∑
k:∃w∈Ωk,w∼z

f̄j,i(k, i) ·
Q(Ωk, z)

Q̄(k, i)
· π(v)
π̄(j)

and Dv,out(u, z) is symmetric. The function fvu indeed is a valid flow sending π(u)π(v) units

from v to u, and also that ∑
j ̸=i

∑
v∈Ωj

f̂v,zu = f̂zu.

Therefore

ρ(x, y) =
∑
u∈Ωi

∑
v/∈Ωi

fvu(x, y)

Q(x, y)
=
∑

u,z∈Ωi

∑
v

f̂v,zu(x, y)

Q(x, y)
=
∑

u,z∈Ωi

f̂zu(x, y)

Q(x, y)
= ρ̂(x, y) ≤ 2ρ̄γ∆ρmax.

Finally, in the term ρ(x, y) we have only considered u, v flow where u, v lie in different classes.

Adding the congestion ρi ≤ ρmax produced by reusing the flow fi for pairs u, v ∈ Ωi justifies

the expression

(1 + 2ρ̄γ∆)ρmax.

Lemma 2.9 and Lemma 2.10 are now immediate, as is Lemma 2.11.

2.6 Proof that the conditions of Lemma 2.12 imply

rapid mixing

In this section we prove Lemma 2.12:

Lemma 2.12. Let F = {M1,M2, . . . } be an infinite family of connected graphs, parameter-

ized by a value n. Suppose that for every graph Mn = (Vn, En) ∈ F , for n ≥ 2, the vertex

set Vn can be partitioned into a set Sn of classes inducing subgraphs of Mn that satisfy the

35

following conditions:

1. Each subgraph is isomorphic to a Cartesian product of one or more graphs C(T) ∼=

Mi1□ · · ·Mik , where for each such graph Mij ∈ F , ij < n.

2. The number of classes is nO(1).

3. For every pair of classes C(T), C(T ′) ∈ Sn, the set of edges between the subgraphs induced

by the two classes is a matching of size at least |C(T)||C(T ′)|
|Vn| .

4. Given a pair of classes C(T), C(T ′) ∈ Sn, there exists a graph Mi in the Cartesian

product C(T), and a class C(U) ∈ Si within the graph Mi, such that the set of vertices

in C(T) having a neighbor in C(T ′) is precisely the set of vertices in C(T) whose projection

onto Mi lies in C(U). Furthermore, no class C(U) within Mi is the projection of more

than one such boundary.

Suppose further that |V1| = 1. Then the expansion of Mn is Ω(1/(κ(n)n)), where κ(n) =

max1≤i≤n |C(Si)| is the maximum number of classes in any Mi, i ≤ n.

We will use the fact that one can prove an analogue of Lemma 2.7 for multicommodity

flows—namely one that does not lose a factor of two. We prove this in Appendix A.4:

Lemma 2.15. Let J = G□H. Given multicommodity flows g and h in G and H respectively

with congestion at most ρ, there exists a multicommodity flow f for J with congestion at

most ρ.

We will construct a “good flow”—that is, a uniform multicommodity flow with polynomially

bounded congestion—in any Mn ∈ F satisfying the conditions of Lemma 2.12, via an

inductive process. The base case, |V| = 1, is trivial. For the inductive hypothesis, we assume

that for all i < n, there exists a good flow in Mi. For the inductive step, we begin by

36

combining Lemma 2.15 with Condition 1 to obtain a good flow in each C(T): since each class

is a product of smaller graphs {Mi} in the same family, the inductive assumption that those

smaller graphs have good flows carries through to C(T) by Lemma 2.15.

The more difficult part of the inductive step is then to route flow between pairs of vertices

that lie in different classes. We now introduce machinery, in the form of multi-way single-

commodity flows, that we will apply to the boundary set structure in Condition 4 to find the

right paths for these pairs.

Define a multi-way single-commodity flow (MSF), given a graph G = (V,E), with source set

S ⊆ V and sink set T ⊆ V , and a set of “surplus” and “deficit” amounts σ : S → R and

δ : T → R, as a flow f : A(E) → R in G, such that:

1. the net flow out of each vertex s ∈ S \ T is σ(s),

2. the net flow into each vertex t ∈ T \ S is δ(t),

3. the net flow out of each vertex u ∈ S ∩ T is σ(u)− δ(u), and

4. the net flow into (out of) each vertex u ∈ V \ (S ∪ T) is zero.

Denote the MSF as the tuple ρ = (f, S, T, σ, δ). (Here A(E) is the directed arc set obtained

by creating directed arcs (u, v) and (v, u) for each edge {u, v} ∈ E.) When σ and δ are

constant functions, abuse notation and denote by σ and δ their values. Intuitively, an MSF

describes sending flow from some set of vertices (the source set) in a graph to another set

(the sink set). It differs from a multicommodity flow in that it is not important that every

vertex in S send flow to every vertex in T . For instance, in a bipartite graph, if the source

set and sink set are the two sides of the bipartition, and all surpluses and demands are one,

it suffices to direct the flow across a matching.

It will also be useful to talk about an MSF problem, in which we are given surpluses and

37

demands but need to find the actual flow function. Define a multi-way single-commodity flow

problem (MSF problem) as a tuple π = (S, T, σ, δ), where S, T, σ, δ are as in the definition of

an MSF, but no flow function f is specified.

(One could alternatively formulate an MSF problem as a more familiar s− t flow problem

by adding extra vertices and edges. However, the definition of an MSF will make our flow

construction more convenient.)

The main lemma of this section is as follows:

Lemma 2.16. Let a graph Mn ∈ F be given, with n > 1 and F satisfying the conditions of

Lemma 2.12. Suppose that for all 1 ≤ i < n, the graph Mi has a uniform multicommodity

flow with congestion at most ρ, for some ρ > 0. Then there exists a uniform multicommodity

flow in Mn with congestion at most ρ + κ, where κ = |Sn| is the number of classes in the

partition described in Lemma 2.12.

Lemma 2.16 forms the inductive step of an argument that proves Lemma 2.12.

To prove Lemma 2.16, we will start by partitioning Mn into the classes Sn as described

in Lemma 2.12. Now consider any vertex s ∈ C(T), for a given class C(T) ∈ Sn, and consider

any other class C(T ′) ̸= C(T). Consider a multi-way single-commodity flow problem

πs = ({s}, C(T ′), σs = |C(T ′)|, δs = 1).

We will “solve” this problem—construct a flow function fs that satisfies the surpluses

and demands of the problem. Notice that to solve πs is to send a unit of flow from s

to every t ∈ C(T ′). Thus if we construct such a function fs for every s ∈ C(T), and

construct similar flows for every pair of classes C(T), C(T ′), we will have constructed a

uniform multicommodity flow in Mn. We will do precisely this, then analyze the congestion

of the sum of these flow functions.

38

To construct fs, we will express the problem πs as the composition of four MSF problems

πshuf = ({s}, C(T), σshuf = σs = |C(T ′)|, δshuf =
|C(T ′)|
|C(T)|

),

πconc = (C(T),BT ′(T), σconc = δshuf , δconc =
|C(T ′)|
|BT ′(T)|

),

πtran = (BT ′(T),BT (T
′), σtran = δtran = δconc =

|C(T ′)|
|BT ′(T)|

=
|C(T ′)|
|BT (T ′)|

,

πdist = (BT (T
′), C(T ′), σdist = δtran, δdist = δs = 1).

(Here we have defined the matching E(T, T ′) and the boundary set BT ′(T) for the general

family F in the same way we defined E∗(T, T ′) and B∗
n,T ′(T) for the associahedron. We

have implicitly used the equality |BT ′(T)| = |E(T, T ′)| = |BT (T
′)|, which follows from the

assumption in Condition 3 that these boundary edges form a matching.)

Remark 2.2. Comparing σ and δ values and comparing source and sink sets shows that if

one specifies flow functions solving the four subproblems πshuf , πconc, πtran, πdist, one can take

the arc-wise sum of these functions as a solution to the original MSF problem πs.

C(T) C(T) C(T ′)

πtran

πconc πdist

BT ′(T)

BT (T
′)

Figure 2.6: The decomposition of the MSF problem πs. Left: πshuf , solved in aggregate for
all s ∈ C(T) by a uniform multicommodity flow in C(T). Right: the problems πconc, πtran,
and πdist, in which the (single) commodity from s ∈ C(T) begins uniformly spread through-
out C(T). The flow must then be concentrated on the boundary BT ′(T) (for πconc), sent
to C(T ′) (for πtran), and distributed uniformly throughout C(T ′) (for πdist).

Intuitively, πshuf describes the problem of “shuffling,” or distributing evenly throughout C(T),

the flow that s must send to vertices in C(T ′). We solve this subproblem in aggregate

39

Mi

C(U)

C(U) C(U ′)

πrectran

πrecconc πrecdist

BU ′(U)

BU (U
′)

Figure 2.7: Left: An illustration of πrec, to which we reduce πdist in Lemma 2.19, in
which C(U) must distribute its flow throughout Mi, inducing a corresponding distribution of
flow from BT (T

′) throughout C(T), by the isomorphism in Condition 4.

Right: a decomposition of the flow πrec,U,U ′ from Lemma 2.20, which decomposes
into πconc, πtran, πdist, which are similar to πconc, πtran, πdist and thus admit a recursive
decomposition (Lemma 2.21).

for every s ∈ C(T) by applying the inductive hypothesis and Lemma 2.15, obtaining a

uniform multicommodity flow fT in C(T) with combined congestion at most ρ. We then

let fshuf = fs,shuf be the part of fT that sends flow just for s—since fT can be written

as a sum
∑

s∈C(T) fs,shuf , where fs =
∑

s′∈C(T) fs,s′ , where fs,s′ is the single-commodity flow

function already defined for the s, s′ pair.

Thus we prove the following:

Lemma 2.17. The MSF subproblem πshuf as defined in this section for any two classes

C(T), C(T ′) ∈ Sn, with Sn partitioning Mn ∈ F , n > 1, with F satisfying the conditions of

Lemma 2.12, can be solved in aggregate for all s ∈ C(T) and for all C(T ′) ̸= C(T), while

generating at most congestion ρ—where ρ is as in the statement of Lemma 2.16.

Proof. As in the discussion leading to this lemma, the uniform multicommodity flow fT

in C(T) given by the application of the inductive hypothesis and Lemma 2.15 has congestion

at most ρ. More precisely, in this uniform multicommodity flow, the un-normalized congestion

(as we have previously defined), is at most ρ|C(T)|. Under the definition of σshuf = |C(T ′)|,

and summing over all s and over all C(T ′), what we in fact need is a scaled version of fT—in

which the amount of flow sent between each pair of vertices s, s′ ∈ C(T), and therefore the

40

overall congestion across each edge within C(T), is scaled so that each s sends to each s′

|Vn|
|C(T)|

units of flow, instead of just one unit.

Thus we increase the un-normalized congestion from ρ|C(T)| to ρ|Vn|. However, since we are

now considering congestion within the graph Mn instead of the induced subgraph C(T), the

normalized congestion ρ does not change.

We define ftran—solving the problem πtran of transmitting the flow from the boundary edges

BT ′(T) ⊆ C(T) to BT (T
′) ⊆ C(T ′) in the natural way: for each directed arc (u, v) ∈ E(T, T ′),

let f(u, v) = σtran = δtran. Summing the resulting flow over every s ∈ C(T) gives (normalized)

congestion

1

|Vn|
|C(T)|σtran =

|C(T)||C(T ′)|
|E(T, T ′)||Vn|

≤ 1,

where the inequality follows from Condition 3 of Lemma 2.12.

Thus we have proven:

Lemma 2.18. The MSF subproblem πtran as defined in this section for a given pair of

classes C(T), C(T ′) can be solved by a function ftran while generating at most congestion

one—when summing over all s ∈ C(T).

It remains to solve πconc and πdist. We observe that these two problems are of the same

form up to reversal of flows: πconc describes beginning with flow from a single commodity

distributed equally throughout C(T), and ending with that flow concentrated (uniformly)

within the boundary BT ′(T). On the other hand, πdist describes just the reverse process

within C(T ′). We will construct πdist within C(T ′), in aggregate, for all s ∈ C(T); the form of

this construction will give a symmetric construction for πconc within C(T).

41

Our construction is recursive, and it is here that we use the boundary set structure in

Condition 4: we use this condition to reduce the problem πdist to a problem

πrec = (C(U) ∈ Si,Mi, σrec = σdist =
|C(T ′)|
|BT (T ′)|

, δrec = δs = 1).

We obtain a reduction that allows us to pass from the problem πdist to the problem πrec:

by Condition 4, we have that the projection of BT (T
′) onto some Mi in the Cartesian

product C(T) ∼= □iMi is precisely C(U), for some C(U) ∈ Si. Therefore, if one views πdist as

a process of distributing flow throughout C(T ′), the flow is initially uniform within every copy

of Mj, for all graphs Mj in the product other than Mi. It therefore suffices to distribute

the flow within each copy of Mi, in which it is initially concentrated uniformly within C(U).

Thus we prove:

Lemma 2.19. The problem πdist described in this section can be solved by any flow func-

tion frec that solves the MSF problem πrec as described in this section. Furthermore, if frec

generates congestion at most ρ, then fdist also generates congestion at most ρ. The prob-

lem πconc is of the same form as the reversal of πdist and therefore is solved by a flow function

similar to frec, also with congestion at most ρ.

Proof. The first part of the lemma statement—the reduction—is justified by the discussion

leading to this lemma. That is, we can construct a flow function fdist that solves πdist as the

arc-wise sum of many separate (but identical) functions frec—one such function within each

copy of Mi in the Cartesian product C(T ′).

The preservation of the congestion bound ρ follows from the fact that these functions are

defined over disjoint sets of arcs, since the copies of Mi are all mutually disjoint.

Finally, the symmetry of πconc and πdist follows from the discussion leading to this lemma.

42

Furthermore, notice that in πrec, we have the problem of flow that is initially concentrated

uniformly within a class C(U) ∈ Si, such that an equal amount must be distributed to each

vertex t ∈ C(U ′), for every class C(U ′) ∈ Si. Let πrec,U,U ′ be this problem of sending the flow

that is bound for vertices in C(U ′). We now have:

Lemma 2.20. The problem πrec, defined with respect to s ∈ C(T) and C(U) ∈ Mi, can be

decomposed into a collection of problems πrec,U,U ′, one for each C(U ′) ∈ Si.

Proof. Following the discussion leading to this lemma, it suffices to define

πrec,U,U ′ = (C(U), C(U ′), σrec,U,U ′ = σrec
|C(U ′)|
|Vi|

, δrec,U,U ′ = δrec).

The definitions of σrec,U,U ′ and δrec,U,U ′ are indeed correct (achieve the decomposition of πrec

stated in the lemma): δrec,U,U ′ = δrec obviously agrees with πrec, and one can check that

∑
U ′

σrec,U,U ′ = σrec,

as needed.

Furthermore, since Mi is in the family F and thus satisfies the conditions of Lemma 2.12, the

problem πrec,U,U ′ is of the same form as our original problem (πconc, πtran, πdist) of sending

flow that was uniformly concentrated within C(T) to vertices in C(T ′), where C(T), C(T ′) ∈ Sn

were classes in the original graph Mn.

That is, just as we decomposed the original problem πs into the “concentration” problem πconc,

the “transmission” problem πtran, and the “distribution” problem πdist, we can recursively

decompose πrec,U,U ′ in the same fashion. In particular, we can solve the resulting transmission

problem, in the same fashion as before. Furthermore, recall that the original problem πs was

defined with respect to a single s ∈ C(T). We claim that even after solving the transmission

problem for all s ∈ C(T), we obtain congestion at most one.

43

Furthermore:

Remark 2.3. Summing σdist over all s ∈ C(T) produces

|C(T)|σdist =
|C(T)||C(T ′)|

|BT ′(T)
| ≤ |Vn|

flow “concentrated” within each boundary vertex.

These facts, we claim, indicate that the congestion does not increase as we pass from one

level of recursion to the next. Remark 2.3 implies that in this reduction, we have within Mi

a problem similar to the original problem in Mn: that is, in the original problem, the overall

flow construction, we have a collection of MSF problems {{πs}|s ∈ Vn}, in which each s ∈ Vn

is “charged” with initial surplus values
∑

T ′ |C(T ′)| = |Vn|. What we have now is a single

MSF problem, in Mi, in which each u ∈ BT (T
′) ∩Mi = C(U) has a surplus (summing over

all s ∈ C(T)) of |C(T)|σdist ≤ |Vn|, by Remark 2.3. Furthermore, just as the original problem

of distributing |C(T)||Vn| outbound flow from vertices s ∈ C(T) throughout Mn induces

the subproblem of sending |C(T)||C(T ′)| flow from C(T) to C(T ′) (and thus by Condition 3

producing ≤ |Vn| flow across each E(T, T ′) edge), similarly the subproblem of distributing |Vn|

flow from each u ∈ C(T) throughout Mi induces the subproblem of sending

|C(U)||Vn|
|C(U ′)|
|V (Mi)|

flow from C(U) to each C(U ′) in Mi, since each C(U ′) receives a portion of the |C(U)||Vn|

outbound flow from C(U) that is proportional to the cardinality of C(U ′) within V (Mi). This

generates at most

|C(U)||Vn| |C(U ′)|
|V (Mi)|

|E(U,U ′)
≤ |V (Mi)||Vn|

|V (Mi)|
= |Vn|

flow across the matching edges E(U,U ′), producing (normalized) congestion one, and matching

the flow across E(T, T ′). (Here, in the first inequality, we have applied Condition 3 to the

44

matching E(U,U ′).) Thus we have a recursive decomposition in which the congestion does

not increase in the recursion.

Lemma 2.21. Let the problem πrec,U,U ′ be defined as in this section, with respect to s ∈ C(T),

class C(U), C(U ′) being classes in Mi, with Mi a graph in the Cartesian product C(T).

Then πrec,U,U ′ can be recursively decomposed into πrecconc, πrectran, and πrecdist, with each

problem solved by a respective flow frecconc, frectran, frecdist, such that:

(i) The sum total congestion incurred by all of the frectran subproblems induced by all s ∈

C(T), is at most one, and

(ii) πreccconc and πrecdist are similar to the problems πdist and πconc described in this section

and thus admit a recursive decomposition as in Lemma 2.19, and

(iii) the demand δrecconc is upper-bounded by δconc, the surplus value in the original concen-

tration problem πconc; similarly, σrecdist ≤ σdist.

Proof. We prove (ii) first: define

πrecconc =

(
C(U),BU ′(U), σrecconc = σrec, δrecconc = σrecconc

|C(U)|
|BU ′(U)|

)
,

πrectran = (BU ′(U),BU(U
′), σrectran = δrectran = δrecconc),

πrecdist =

(
BU(U

′), C(U ′), σrecdist = δrectran, δrecdist = σrecdist
|BU(U

′)|
|C(U ′)|

)
.

Comparing source and sink sets, and comparing σ and δ functions shows that πrec decomposes

into πrecconc, πrectran, and πrecdist. Each class C(U) and C(U ′) decomposes as a Cartesian

product satisfying Condition 1 in Lemma 2.12, and similarly the boundary sets BU ′(U),BU (U
′)

satisfy Condition 4. Thus exactly the same form of decomposition used to reduce the

original πdist and πconc to πrec also works for πrecconc and πrecdist. We can thus recursively

construct frecconc and frecdist, proving (ii).

45

For (i), we need to define frectran and to bound the resulting congestion.

Define frectran in the same natural way we defined ftran: simply assign σrectran = δrectran to

each arc.

We observe that

σrecconc = σrec,U,U ′ = σrec
|C(U ′)|
|Vi|

= σdist
|C(U ′)|
|Vi|

=
|C(T ′)|
|BT (T ′)|

· |C(U
′)|

|Vi|
,

by the definitions of the MSF problems we have given in this section. Also,

σrectran = δrectran = δrecconc = σrecconc
|C(U)|
|BU ′(U)|

.

Combining these facts gives

σrectran =
|C(T ′)|
|BT (T ′)|

· |C(U
′)|

|Vi|
· |C(U)|
|BU ′(U)|

≤ |C(T ′)|
|E(T ′, T)|

= σtran,

where the inequality follows from the fact that the matching E(U,U ′) satisfies Condition 3 of

Lemma 2.12.

Now, to obtain the un-normalized congestion ρ̄rectran that results from frectran, we sum over

all s ∈ C(T), scaling the above quantity by a factor of |C(T)|, giving

ρ̄rectran = |C(T)|σrectran = |C(T)|σtran =
|C(T)||C(T ′)|
|E(T, T ′)|

≤ |Vn|,

where we have again applied Condition 3 of Lemma 2.12.

Thus we obtain normalized congestion at most |Vn|
|Vn| ≤ 1, proving (i).

For (iii), claim (i) also implies that the congestion does not increase in the recursive decom-

46

position given by (ii)—that is, passing from πdist, to πrec, to πrec,U,U ′ , to πrecdist, preserves

the bound

σrecdist ≤ σdist.

The analogous fact for σrecconc is symmetric.

We now have all the pieces we need to prove Lemma 2.16:

Lemma 2.16. Let a graph Mn ∈ F be given, with n > 1 and F satisfying the conditions of

Lemma 2.12. Suppose that for all 1 ≤ i < n, the graph Mi has a uniform multicommodity

flow with congestion at most ρ, for some ρ > 0. Then there exists a uniform multicommodity

flow in Mn with congestion at most ρ + κ, where κ = |Sn| is the number of classes in the

partition described in Lemma 2.12.

Proof. To construct the desired uniform multicommodity flow, it suffices to construct, for

every C(T), C(T ′) ∈ Sn and for every s ∈ C(T), the flow fs solving the MSF problem πs. As

shown in this section, πs decomposes (Remark 2.2) as the subproblems πshuf , πconc, πtran,

and πdist.

For πshuf , summing over all s ∈ C(T) and over all s ∈ C(T ′), the sum of the fshuf flows given

by the inductive hypothesis and the Cartesian flow structure (Lemma 2.15) of C(T) gives

congestion at most ρ, by Lemma 2.17.

For a given C(T), C(T ′) pair, again summing over all s ∈ C(T ′), we obtain flows ftran for πtran

whose sum is congestion one, by Lemma 2.18.

Dividing πdist (and symmetrically πconc) into copies of the πrec problem as in Lemma 2.19, and

further dividing each πrec into problems πrec,U,U ′ (by Lemma 2.20), each of which we further

divide into πrecconc, πrectran, and πrecdist. Furthermore, by Lemma 2.21, these subproblems

are of the same form as πconc, πtran, and πdist, with the natural solution frectran to the

47

“transmission” problem πtran being of the same form as ftran and producing, like ftran, overall

congestion one after summing over all s ∈ C(T).

We then recursively decompose πrecconc and πrecdist in the same fashion as we did πconc

and πdist, with, by Lemma 2.21, congestion one in the transmission problems at each level

of recursion. Since all flow produced by solving the subproblems in this decomposition is

counted by the transmission flows, and since (it is easy to see) each arc occurs in only one

such transmission flow, we obtain overall congestion one for πrec,U,U ′ .

Recall that πrec,U,U ′ is defined with respect to a given C(T), C(T ′) pair, where C(U) is

determined by C(T), as a class within the graph Mi, within the Cartesian product C(T) ∼=

□jMj. Thus we must sum this bound of congestion one for frec,U,U ′ over all C(U ′) ∈ Si. By

assumption |Si| ≤ κ, so we obtain κ flows each with congestion one, giving overall congestion

at most κ.

One may worry that the κ2 pairs of classes exchanging flow may produce κ2 congestion,

since we do obtain κ2 subproblems. Fortunately, we can justify the κ bound as follows:

consider κ MSF problems instead of κ2 problems. In each of the κ MSF problems, a given

class C(T) must send flow to all other classes. This introduces some asymmetry, as the

concentration flow within C(T) involves only a single commodity, while the distribution flow

within C(T) involves κ− 1 commodities. Thus we can break this distribution flow into κ− 1

recursive distribution flows that each involve a single commodity distributed throughout C(T)

from BT ′(T) for some C(T ′).

The concentration flow takes slightly more work: it involves a single commodity but induces

a subproblem in which every pair of subclasses within C(T) must exchange a unit of flow.

Consider the boundary sets BT ′(T) and BT ′′(T) along which C(T) must send flow to any

two of the other classes C(T ′) and C(T ′′). By Condition 4, we know that all of this flow

occurs between subclasses within copies of smaller flip graphs. Say these subclasses are C(U ′)

48

and C(U ′′). Notice that we do not need to send flow in both directions, because we have

only a single commodity. Only the amount of flow sent matters. This observation gives us

a convenient subproblem in which for each pair of subclasses C(U ′), C(U ′′), one class sends

to the other an amount of flow that, by Condition 3, generates congestion at most one,

producing appropriate recursive subproblems without an increase in congestion.

Lemma 2.16 forms the inductive step of Lemma 2.12 (with a trivial base case), and thus we

have proven Lemma 2.12.

2.7 k-angulations of convex point sets: quasipolynomial

mixing

2.7.1 Generalizing triangulations

As we stated in the introduction, one can generalize triangulations to k-angulations. We

do so in more detail here. A quadrangulation of a point set is a maximal subdivision of

the point set into quadrilaterals, where each quadrilateral has all of its vertices in the point

set. Consider P2n+2, the regular polygon with 2n + 2 vertices. We denote by K4,2n+2 the

graph whose vertex set is the set of all quadrangulations of P2n+2, and whose edges are the

flips between quadrilaterals. Here, a flip is defined as follows: each diagonal belongs to two

quadrilaterals, which together form a hexagon. Replace the diagonal with one of the other

two diagonals in the hexagon. (Thus each diagonal in a quadrangulation can be flipped in

two possible ways [14].)

There is a polytope, analogous to the associahedron, known as the accordiohedron [38, 5],

whose vertices and edges are those of a subgraph of K4,2n+2. However, we ignore this polytope

and just consider the graph K4,2n+2.

49

We refer to a k-angulation of a point set as a maximal subdivision of the point set into

k-gons, each of whose vertices all belong to the point set. A bijection exists [36] between the

k-angulations of P(k−2)n+2 and the set of all k − 1-ary plane trees with n internal nodes.

It is easy to generalize the definition of a flip between triangulations or quadrangulations to

a flip between k-angulations: each diagonal in a k-angulation belongs to two k-gons, which

together form a 2k − 2-gon. A flip then consists of replacing this diagonal—which connects

two opposite vertices in the 2k − 2-gon—with one of the k − 2 other such diagonals.

We generalize the associahedron graph Kn as follows: Define the k-angulation flip graph

Kk,(k−2)n+2 as the graph whose vertices represent the k-angulations of P(k−2)n+2, and whose

edges represent the flips between k-angulations.

Define the k-angulation flip walk as the natural Markov chain whose state space isKk,(k−2)n+2.

2.7.2 (Generalized) Catalan numbers

The usual notation for Catalan numbers is simply Cn; we will now consider a generalization:

[62, 46, 36] Let Ck,n = 1
(k−2)n+1

(
(k−1)n

n

)
. These numbers, which generalize Catalan numbers,

are similar but not identical to the Fuss-Catalan numbers.

We will use the following fact in proving that the random walk on k-angulations mixes in

quasipolynomial time:

Lemma 2.22. [46, 36] The number of k-angulations of the convex (k − 2)n + 2-gon is

counted by Ck,n.

One can show using Stirling’s formula, and in particular a result by Robbins [64], that:

50

Figure 2.8: Left: a class C(T) in K3,n+2. Each triangulation in C(T) contains the central
triangle depicted. We depict the polygon Pn+2 as a circle for simplicity. Right: the set of
edges E(T, T ′) (which form a matching) between two classes.

Lemma 2.23. For all k ≥ 3 and n ≥ 1, e−1/6 k−2
k−1

f(k, n) ≤ Ck,n ≤ e1/12 · f(k, n), where

f(k, n) =

√
k − 1√

2π((k − 2)n)3/2
· (k − 1)(k−1)n

(k − 2)(k−2)n
.

We will prove the following:

Lemma 2.24. The flip graph Kk,(k−2)n+2, along with the partition Sk,(k−2)n+2, satisfies

Lemma 2.11.

Theorem 1.3, as we will show in Appendix 2.7, will follow from tracing the particular

quasipolynomial factors in the proof of Lemma 2.24.

To prove Lemma 2.24, we will partition Kk,(k−2)n+2 into a set of classes Sk in a suitable

fashion. We will define a partition that generalizes one by Molloy, Reed, and Steiger [56]. In

order to define Sk, we need some observations about the structure of the graph Kk,(k−2)n+2.

51

2.7.3 Partition into classes

Given a k-gon T containing the center of the regular (k−2)n+2-gon P(k−2)n+2 and sharing all of

its vertices with P(k−2)n+2, identify T with the class C(T) of k-angulations v ∈ V (Kk,(k−2)n+2)

such that T forms one of the k-gons in the k-angulation v. Let Sk,(k−2)n+2 be the set of all

such C(T) classes. (If Pn+2 has an even number of edges, we perturb the center slightly so

that every triangulation lies in some class.)

Remark 2.4. The set Sk,(k−2)n+2 is a partition of V (Kk,(k−2)n+2), because no pair of k-gons

whose endpoints are polygon vertices can contain the origin without crossing.

(This generalizes the partition of Molloy, Reed, and Steiger [56].)

Given classes C(T), C(T ′) ∈ Sk,(k−2)n+2, let E(T, T ′) be the set of edges between with one

endpoint in C(T) and one endpoint in C(T ′). Let BT ′(T) denote the set of vertices in C(T)

that have at least one neighbor in C(T ′). See Figure 2.8.

Remark 2.5. The set of edge sets of the form E(T, T ′) is a partition of all edges between

pairs of vertices in different classes.

Cardinalities of classes and of edge sets

We make some observations about the nature and cardinalities of the classes in Sk,(k−2)n+2,

and of the sets and numbers of edges between the classes.

Lemma 2.25. Each k-gonal class in Sk,(k−2)n+2 induces a subgraph of Kk,(k−2)n+2 that

is isomorphic to the Cartesian product Kk,(k−2)i1+2□Kk,(k−2)i2+2□ · · ·Kk,(k−2)ik+2, for some

1 ≤ i1 ≤ · · · ≤ ik ≤ n/2, i1 + · · ·+ ik = n− 1.

Proof. Each k-gon T partitions the regular (k − 2)n+ 2-gon into smaller convex polygons

with side lengths (k − 2)i1 + 2, (k − 2)i2 + 2, . . . , (k − 2)ik + 2. Thus each k-angulation in

52

C(T) can be identified with a tuple of k-angulations of these smaller polygons. The Cartesian

product structure then follows from the fact that every flip between two k-angulations in

C(T) can be identified with a flip in one of the smaller polygons.

Lemma 2.26. For each pair of classes C(T) and C(T ′), the boundary set BT ′(T) induces a sub-

graph of C(T) isomoprhic to a union of Cartesian products of the form K(k−2)i1+2□K(k−2)i2+2

□ · · ·□K(k−2)i2k−2+2, for some i1 ≤ · · · ≤ i2k−2 ≤ n/2, i1 + · · ·+ i2k−2 = n− 2.

Proof. Each flip between k-angulations in adjacent classes C(T) involves flipping a diagonal of

the k-gon T to transform k-angulation t ∈ C(T) into k-angulation t′ ∈ C(T ′). Whenever this

is possible, there must exist a 2k−2-gon Q, sharing k−1 sides with T (the k−1 sides that are

not flipped), such that both t and t′ contain Q. Furthermore, every t ∈ C(T) containing Q has

a flip to a distinct t′ ∈ C(T ′). The set of all such boundary vertices t ∈ C(T) can be identified

with the Cartesian product described because Q partitions P(k−2)n+2 into a collection of

smaller polygons, so that each k-angulation in BT ′(T) consists of a tuple of k-angulations

in each of these smaller polygons, and such that every flip between k-angulations in BT ′(T)

consists of a flip in one of these smaller polygons. (There may be many such 2k − 2-gons for

a given pair of classes, but the claim holds as a lower bound.)

Lemma 2.27. Each set of edges between classes in Sk,(k−2)n+2 is in bijection with the vertices

of a union of Cartesian products of the form K(k−2)i1+2□K(k−2)i2+2□ · · ·□K(k−2)i2k−2+2, for

i1 ≤ · · · ≤ i2k−2 ≤ n/2, i1 + · · ·+ i2k−2 = n− 2. Furthermore, no two edges in any such edge

set share a vertex, i.e. the edge set is a matching.

Proof. The claim follows from the reasoning in Lemma 2.26.

Corollary 2.1. Each k-gonal class in Sk,(k−2)n+2 has cardinality Ck,i1Ck,i2 · · ·Ck,ik , and each

edge set between classes has cardinality at least Ck,i1Ck,i2 · · ·Ck,i2k−2
. Here, i1, . . . , i2k−2 are

as in Lemmas 2.25 and 2.27.

53

2.7.4 Applying the framework

We are almost ready to prove that Kk,(k−2)n+2 satisfies the conditions of Lemma 2.11, but

first we need the following known fact:

Lemma 2.28. Kk,(k−2)n+2 is connected.

One way to prove Lemma 2.28 is via the isomorphism [36] between flips on k-angulations and

rotations on k − 1-ary plane trees. One can prove that the rotation graph on k − 1-ary plane

trees is connected as follows: find a path from any given tree to a “spine,” where all internal

nodes belong to a simple path via left children from the root to the leftmost leaf [19]. (This

path consists of repeated left rotations.) Every non-spine tree has some internal node at

which a left rotation can be performed. Furthermore, when no such operation is still possible,

one has a spine.

Nakamoto, Kawatani, Matsumoto, and Urrutia [58] also gave a proof of connectedness for

the special case k = 4. Sleator, Tarjan, and Thurston proved [69] that the diameter of K3,n+2

is at most 2n− 6 for n ≥ 11.

We now prove Lemma 2.24:

Lemma 2.24. The flip graph Kk,(k−2)n+2, along with the partition Sk,(k−2)n+2, satisfies

Lemma 2.11.

Proof. By Lemma 2.25 and the observation that there are at most
(
(k−2)n+2

k

)
classes, the

partition Sk,(k−2)n+2 meets Conditions 1 and 5 of the framework, with the modification to

Condition 1 that the O(1) term is replaced with O(nO(1)), and Condition 6 follows from the

identification of each class with a k-gon containing the center of the (k − 2)n+ 2-gon.

Corollary 2.1 gives a formula for the size of each class and each edge set between classes.

Lemma 2.23 then gives a polynomial bound on the ratio of N = |V (Kk,(k−2)n+2)| to the size

54

of the smallest class (similarly the smallest edge set). Conditions 2, 3, and 4 follow, with the

modification that the O(1) terms are replaced with O(nO(1)) terms.

To derive the specific quasipolynomial bound in Theorem 1.3, we first observe the following:

Remark 2.6. The smallest edge set between classes in Sk,(k−2)n+2 has size at least

Ck,i1 · · ·Ck,i2k−2
≥ N · f(k, i1) · · · f(k, i2k−2)

e(2k−2)/6+1/12((k − 1)/(k − 2))2k−2f(k, n)

≥ Ne(3−4k)/12 · (k − 2)k−3/2

(k − 1)3k−5/2
· 1

(2π)k−3/2
· 1

n3k
.

The next fact we need comes from Lemma 2.10:

Lemma 2.10. Suppose a flip graph Mn = (Vn, En) belongs to a family F of graphs satisfying

the conditions of Lemma 2.9. Suppose further that every graph Mk = (Vk, Ek) ∈ F , k < n,

satisfies

|Vk|/|Ek,min| ≤ f(k),

for some function f(k), where Ek,min is the smallest edge set between adjacent classes

C(T), C(T ′) ∈ Sk, where Sk is as in Lemma 2.9. Then the expansion of Mn is

Ω(1/(2f(n))logn)).

Applying Lemma 2.10, and using the fact that Kk,(k−2)n+2 is a ≤ (k− 2)n-regular graph with

55

logN ≤ (k − 1)n log(k − 1), gives mixing time

O((2N/Emin)
2 logn(k − 1)3(log(k − 1))n3)

= O((k − 1)3(log(k − 1))n3(2e(4k−3)/12 · (k − 1)3k−5/2

(k − 2)k−3/2
· (2π)k−3/2 · n3k)2 logn)

= O((k − 1)3(log(k − 1))n3(2e(4k)/12 · (k − 1)3k · (2π)k · n3k)2 logn)

= O((k − 1)3(log(k − 1)) · n2(3k log(k−1)+k(1+log π)+3k logn+k)+5).

Here we have implicitly used Lemma 2.1 to pass from the expansion bound given by

Lemma 2.10 to a mixing bound. Actually, we can do better using the following stan-

dard lemma, which allows for passing from congestion to mixing without a quadratic loss:

Lemma 2.29. [22, 67] Suppose a uniform multicommodity flow f exists in a graph G = (V,E)

with congestion ρ, in which for every s, t ∈ V ,

max
P∈Γst

|P | ≤ l,

for some l > 0, where Γst s the set of (simple) paths in G from s to t, and where we use the

shorthand fst(P) to denote the fraction of the s, t commodity that f sends along the path P .

Then the mixing time of the uniform random walk on G is

O

(
ρl

d
log(|V (G)|)

)
,

where d is the maximum degree of G.

Then we obtain mixing time

O((2N/Emin)
logn(k − 1)2(log(k − 1))n2 · l),

56

where l is the maximum length of a path in the flow construction. It is not difficult to see

that since the diameter of the projection graph is at most k, we obtain a recurrence

l = T (n) = k + 2kT (n/2) = O(nlog2 k+1),

giving total mixing

O((2N/Emin)
logn(k − 1)2(log(k − 1))n2 · nlog2 k+1),

As noted in Remark 2.1, we did not incur a term γ∆ in this calculation. Furthermore, it is

not clear how one could avoid this γ∆ = k factor using the spectral decomposition technique

(Theorem 2.2). That technique would give a mixing bound of

O(((3N/Emin) · k · k)logn · (k − 2)n).

(Here we have ignored an additional log |Ω| term, as one might be able to reduce this term

via, for instance, the log-Sobolev version of the Jerrum/Son/Tetali/Vigoda decomposition.)

Comparing the two expressions above shows that our technique gives an improvement of

Ω

(
nlog2(k

2)

nlog2 k+1 · kn log k

)
= Ω(nlog2 k−2/(k log k)).

2.8 Integer lattice triangulation flip graphs

2.8.1 Definition

The integer lattice triangulation flip graph, studied extensively in prior work ([1, 13, 12, 41,

71]), is analogous to the associahedron and is defined as follows:

57

Figure 2.9: Left: a triangulation of the 9x9 integer lattice. Center: a division of the lattice
into 9 3x3 sections, as described in the proof of Theorem 1.4. Right: a full triangulation
compatible with the division of the lattice.

Let the integer lattice triangulation flip graph be the graph Fn whose vertices are the

triangulations of the n× n integer lattice point set (integer grid), and whose edges are the

pairs of triangulations that differ by exactly one diagonal.

It will be useful to define notation for the number of triangulations in this graph: Let g(n)

be the number of triangulations of the n× n integer lattice point set.

In fact, g(n) is unknown in general, though much progress has been made on upper and lower

bounds, including the following result of Kaibel and Ziegler [41]:

Lemma 2.30. For n ≥ 1,

h(n) = Θ(2cn
2

),

for some constant c.

As discussed in the introduction, in recent years progress has been made ([13, 12, 71]) in

studying the mixing properties of the natural flip walk on the integer lattice triangulation

flip graph. However, this work has focused on biased versions of the flip walk, in which a real

parameter λ > 0 induces a weight function on the triangulations of the lattice, and in which

the random walk is biased in favor of triangulations with larger weights. The case of λ = 1

is the unbiased version of the walk. It is now known [12] that when λ > 1, the walk does

not mix rapidly, but that rapid mixing does occur for certain values of λ smaller than one.

58

However, the question is open for the biased version.

We do not settle the question—which would equate to showing that the integer lattice

triangulation flip graph has expansion at least 1/p(n) for some polynomial function p, but

we do show a weaker result in a similar spirit: that the flip graph has large subgraphs with

large expansion. Expansion measures the extent to which bottlenecks exist in a graph: large

expansion corresponds to a graph that does not have bottlenecks, roughly speaking. Thus,

even if bottlenecks exist in Fn—that is, if rapid mixing does not occur, i.e. if the expansion

is too small—then there still exist regions of the graph that are not prone to bottlenecks,

and thus internally induce rapidly mixing walks. Although far from clear evidence of large

expansion in Fn itself, one might hope that if bottlenecks exist, this result may suggest places

to look for them.

2.8.2 Additional preliminaries: treewidth, separators, and vertex

expansion

The treewidth of a graph G is a different density parameter from expansion. There are many

equivalent definitions of treewidth; one of the standard definitions is in terms of a so-called

tree decomposition.

Closely related to treewidth are vertex separators: A vertex separator for a graph G is a

subset X ⊆ V (G) of the vertices of G such that G \ X is disconnected. X is a balanced

separator if G \X consists of two subgraphs, A and B, such that no edge exists between A

and B, and such that |V (G)|/3 ≤ |V (A)| ≤ |V (B)| ≤ 2|V (G)|/3. We also say, if |X| ≤ s for

a given s ≥ 1, that X is an s-separator.

With respect to an integer s ≥ 1, a graph G is recursively s-separable if either |V (G)| ≤ 1, or

G has a balanced s-separator X such that the two mutually disconnected subgraphs induced

59

by removing X from G are both recursively s-separable. The following relates treewidth

and recursive separability [27]:

Lemma 2.31. For every t ≥ 1, every graph with treewidth at most t is recursively t + 1-

separable.

Treewidth in general is of interest in large part because many NP-hard problems become

tractable on graphs of bounded treewidth. For a survey of this phenomenon, known as

fixed-parameter tractability, see [9]. Our interest in treewidth, however, is mainly in its role

as a density parameter, in particular for Theorem 1.4.

Treewidth, as a density parameter, is weaker than vertex expansion, in the sense that a

high vertex expansion implies a high treewidth, but not vice versa. The following following

corollary to Lemma 2.31 makes this precise:

Corollary 2.2. If the vertex expansion of a family of graphs G(N) on N vertices is at least

hv(N), then the treewidth t(N) of the family is Ω(N · hv(N)).

Proof. Suppose G(N) has vertex expansion at least hv(N). Then every balanced separator

X is of size at least

|X| ≥ hv(N) ·N/3,

by the definition of a balanced separator and the definition of vertex expansion.

In this section we prove Theorem 1.4.

Theorem 1.4. The treewidth of the triangulation flip graph Fn on the n× n integer lattice

point set is Ω(N1−o(1)), where N = |V (Fn)|.

Proof. We will show that Fn has a large induced subgraph with large expansion, which will

imply large treewidth. Partition the points of the n×n grid into n grids of size
√
n×

√
n. (If

60

n is not a perfect square, we can take
√
⌊n⌋.) That is, fill in a partial triangulation as follows:

let each point in the grid have coordinates (i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ n. Fill in all

vertical edges connecting two consecutive points with the same j coordinate whenever j ≡ 0

(mod
√
n) or j ≡ 1 (mod

√
n), and fill in all horizontal edges connecting two consecutive

points with the same i coordinate whenever i ≡ 0 (mod
√
n) or i ≡ 1 (mod

√
n).

Fill in also all unit horizontal and unit vertical edges connecting vertices in adjacent
√
n×

√
n

sub-grids, and fill in all unit diagonals with negative slope inside the resulting squares. See

Figure 2.9, center. (The choice of these edges and diagonals to fill in between subgrids is

arbitrary, but must be consistent.)

Now consider the subgraph Hn of Fn induced by restricting V (Fn) to the triangulations that

extend this partial triangulation. That is, the vertices of Hn are the triangulations that

consist of separately triangulating each of the
√
n×

√
n grids. Hn is the Cartesian product

of n graphs that are each isomorphic to F√
n. See Figure 2.9, right, for an example of such a

triangulation.

Assuming the smallest possible expansion for a graph on g(
√
n) vertices, F√

n graph has

expansion Ω(1/g(
√
n)). The degree of Fn is O(n2). Now, by Lemma 2.7, Hn has expansion

Ω(1/g(
√
n)).

Therefore, by Corollary 2.2, Hn has treewidth Ω(g(n)/(n2g(
√
n))).

Now, by Lemma 2.30, Hn has treewidth

Ω(g(n)/(n2g(
√
n))) = Ω(2c·n

2−cn−2 logn) = Ω(2cn
2(1−o(1))) = Ω(N1−o(1)),

proving the theorem.

61

Chapter 3

Rapid mixing for the hardcore

Glauber dynamics and other Markov

chains in bounded-treewidth graphs

In this chapter we apply the machinery we developed in Chapter 2 to a number of graph-

theoretic chains. Recall from Chapter 2 that a multicommodity flow in a graph M is a set of

|V (M)|2 flows, one flow for each ordered pair of vertices (u, v), where each flow sends one

unit of a commodity from u to v. If a flow exists in M with small congestion—i.e. one in

which no edge carries too much flow—then the natural Markov chain whose states are the

vertices of M mixes rapidly. (We make this precise in Section 3.1.4.)

All of the chains we analyze can be seen as natural random walks on a “Glauber graph”

M(G) whose vertices are subsets of an underlying set. (For our purposes, this underlying set

is either the vertex set or the edge set of the input graph G.) Thus each of these random

walks is performed on a graph that may be exponentially large with respect to the size of the

input graph. In Chapter 2, we showed that when all of a certain set of conditions hold, we

62

can construct a multicommodity flow in M(G) with congestion polynomial in n = |V (G)|,

implying that the unbiased random walk on M(G) mixes rapidly.

Recall that the conditions specify that M(G) can be partitioned into a small number of

induced subgraphs, all of which are approximately the same size, with large numbers of

edges between pairs of the subgraphs. The conditions also require that each of these induced

subgraphs have a special structure, allowing for the decomposition of each induced subgraph

into smaller Glauber graphs that are similar in structure to M(G). This self similarity allows

for the inductive construction of a multicommodity flow, by assembling flows on smaller

Glauber graphs together into a flow in M(G) with small congestion.

3.0.1 Prior work and our contribution

Prior work on rapid mixing of Markov chains on subset systems includes the special case

of matroid polytopes. For this case, recent results [4, 3] have partly solved a 30-year-old

conjecture of Mihail and Vazirani [55]. Other prior work uses multicommodity flows (and the

essentially equivalent canonical paths technique) to obtain polynomial mixing upper bounds

on structures of exponential size, including matchings and 0/1 knapsack solutions [57, 32].

Madras and Randall [52] used a decomposition of the hardcore model state space to prove

rapid mixing under different conditions. We also decompose the state space, but our approach

is different from that of Madras and Randall and is more similar to Heinrich’s [35] application

of the projection-restriction technique (see Chapter 2) pioneered by Jerrum, Son, Tetali, and

Vigoda [40]. Essentially, the projection-restriction technique involves partitioning the state

space of a chain into a collection of sub-state spaces, each of which internally mixes rapidly,

and all of which are well connected to one another. Heinrich used the vertex separation

properties of bounded-treewidth graphs to obtain an inductive argument: the resulting

sub-spaces are themselves Cartesian products of chains on smaller graphs, and thus mix

63

rapidly. (See Lemma 2.15.)

We partition the state space recursively using the same vertex separation properties, and

indeed the framework conditions from Chapter 2, which we restate, in Section 3.2.3, in terms

more conducive to our graph-theoretic chains, suffice for rapid mixing using the projection-

restriction technique. Thus part of our contribution is simply to observe that these conditions

suffice. The main contribution in this chapter is to extend the framework to the chains we

analyze—for most of which this is not trivial. Thus our main contribution in this chapter is

to give conditions under which rapid mixing occurs in the projection chains. In particular, in

the case of independent sets, Jerrum, Son, Tetali, and Vigoda [40] applied their technique to

a special case of the hardcore model, namely regular trees. However, it was not clear how to

generalize this application to non-regular trees or to bounded-treewidth graphs. We resolve

this with the hierarchical version of our framework, and show that this version also gives an

analogous result for dominating sets.

Our framework solves another key problem that arises in applying the projection-restriction

technique: to apply that technique in a straightforward fashion, one needs each of the state

spaces in the partition to be a Cartesian product of chains on smaller spaces. For four of

our eight chains, the sub-spaces obtained in the decomposition are not Cartesian products

but may be non-disjoint unions of Cartesian products. In some cases, the sub-spaces may

not even be mutually disjoint and may induce non-ergodic restriction chains. We solve this

problem by using the structure of the state spaces of Glauber dynamics as graphs to obtain

multicommodity flows with bounded congestion. We will discuss this further in Section 3.8.

Our approach is also inspired by Kaibel’s [42] construction of a flow with bounded congestion

in any graph whose vertices are hypercube vertices and whose edges can be partitioned into

bipartite graphs in a hierarchical fashion.

64

3.0.2 Application to graphical models

Prior work [11, 30] has shown that related chains, including softcore models—in which the

sampled sets need not be independent—mix rapidly on graphs of bounded treewidth. However,

all of the Glauber dynamics we consider pertain to graph-theoretic sampling problems, in

which one is sampling a subset of either the vertices or the edges of a graph, where the

subsets must obey certain constraints, e.g. independence. As a result, and as Bordewich and

Kang [11] note, their technique does not extend to these models.

Similarly, in the setting of probabilistic graphical models, De Sa, Zhang, Olukotun, and

Ré [20] considered graphs with bounded hierarchy width. They showed—via arguments

similar to the projection-restriction technique [40]—that graphs with logarithmically bounded

hierarchy width admit rapid mixing for the Glauber dynamics on models with bounded

maximum factor weight. It is straightforward to apply their argument to the Ising and

Potts models with fixed parameters, on graphs of bounded carving width. This case of these

models also admits application of projection-restriction (and in the special case of the path

graph Jerrum, Sinclair, Tetali, and Vigoda observed this for the Ising model [40]), and it fits

our framework. Since our framework does not give a substantial improvement on existing

results for these models, we do not address them in detail in this paper; we simply note that

the framework we developed in our prior work [26, 25] applies to these cases and to every

undirected graphical model having only pairwise and unary factors, bounded maximum factor

weights, constantly many values for each random variable, and bounded carving width. This

shows that the framework unifies these models—in which all states have positive probability

and which prior work has addressed in these graphs—with graph-theoretic chains where some

states have zero probability—for which our results are new. We give a brief sketch of how to

apply our framework in Section 3.6.2. See Bordewich, Greenhill, and Patel [10] and Chen,

Liu, and Vigoda [17] for definitions of and results for these models.

65

3.0.3 Further discussion of prior work

Sly [70] showed that, except for restricted values of λ < 1, the hardcore Glauber dynamics does

not mix rapidly on general graphs unless RP = NP, and in fact showed that approximately

sampling from the corresponding distribution is hard unless RP = NP. However, Anari, Liu,

and Gharan [2] used a technique known as spectral independence to obtain rapid mixing

for the hardcore Glauber dynamics when λ is below the so-called uniqueness threshold that

depends on the maximum degree of the input graph. They showed, by exhibiting an infinite

family of examples, that the technique they used could not be further improved (namely

beyond the uniqueness threshold) even for trees. By contrast, we show that rapid mixing, for

all fixed values of λ, indeed holds not only for trees but for all graphs of bounded treewidth.

Chen, Galanis, Štefankovič, and Vigoda [16] and Feng, Guo, Yin, and Zhang [28] generalized

this work and applied it to graph colorings.

Other results exist for trees beyond the uniqueness threshold, however: Martinelli, Sinclair,

and Weitz [53] showed that the Glauber dynamics on the hardcore model mixes in O(n log n)

time on the complete ∆ − 1-ary tree with n nodes. They also showed that the dynamics

on q-colorings (q ≥ ∆+ 2) mixes in O(n log n) time on the same trees. Lucier, Molloy, and

Peres [51] showed that the dynamics mixes rapidly on general trees of bounded degree, namely

in time O(nO(1+∆/(q log∆))).

Prior work also exists for q-colorings of bounded-treewidth graphs: Berger, Kenyon, Mossel,

and Peres [6] showed rapid mixing for q-colorings of trees. Tetali, Vera, Vigoda, and Yang [72]

gave upper and lower bounds for complete trees. Vardi [73] showed that the so-called single-

flaw dynamics—a variaton on the Glauber dynamics in which at most one monochromatic edge

is permitted in a valid state—mixes rapidly on bounded-treewidth graphs when q ≥ (1 + ε)∆,

for any fixed parameter ε > 0. The proof used the vertex separaton properties of bounded-

treewidth graphs to construct a multicommodity flow with bounded congestion, although

66

the construction was substantally different from our divide-and-conquer approach. Dyer,

Goldberg, and Jerrum [23] showed rapid mixing when the degree of the graph is at least

2t and q ≥ 4t, where t is the treewidth. On the other hand, Heinrich [35] showed that the

Glauber dynamics on q-colorings of a bounded-treewidth graph mixes rapidly when q ≥ ∆+2.

Our construction, as we will discuss in more detail in Section 3.0.1, bears some similarity to

Heinrich’s. We also require that q (and therefore ∆) be bounded. However, due to a more

general analysis of the state spaces of Glauber dynamics as graphs, we obtain a more general

framework that holds for a greater variety of chains.

Planar graphs have unbounded but sublinear treewidth. For planar graphs, Hayes [33] showed

that the Glauber dynamics on q-colorings of a planar graph of maximum degree ∆ mixes

rapidly when q ≥ ∆ + O(
√
∆). Later, Hayes, Vera, and Vigoda [34] proved rapid mixing

for q-colorings of planar graphs when q = Ω(∆/ log∆), generalizing further to a spectral

condition on the adjacency matrix of the graph.

Bezáková and Sun showed [8] that the hardcore model mixes rapidly in chordal graphs

with bounded-size separators. Lastly, Chen, Galanis, Štefankovič, and Vigoda applied the

spectral independence technique to prove that the Glauber dynamics on the q-colorings of a

triangle-free graph with dgree ∆ mixes rapidly provided that q ≥ α∆+ 1, where α is greater

than a threshold approximately equal to 1.763. We show that when the carving width of G

is bounded, G need not be triangle free, and it suffices that q ≥ ∆+2 be bounded. We prove

a similar result for the natural Glauber dynamics on partial q-colorings.

Although our mixing results are new, Wan, Tu, Zhang, and Li showed [74] that exact counting

of independent sets is fixed-parameter tractable in treewidth. Furthermore, our result does

not technically constitute a proof of fixed-parameter tractability, as the treewidth appears in

the exponent of the polynomial we obtain. For this problem and all the other problems we

consider, the problem of exact counting—and therefore also uniform sampling—has already

been solved on the graphs we consider by an extension of Courcelle’s theorem [61]. In fact,

67

the standard reduction from approximate sampling to approximate counting [68] gives a

somewhat different rapidly mixing Markov chain on a larger state space. Nonetheless, our

result does settle the question of rapid mixing for a natural chain, and it implies a simpler

scheme for approximately sampling independent sets than one would obtain via this reduction.

Such a scheme is known as a fully polynomial randomized approximation scheme (FPRAS).

Huang, Lu, and Zhang provided an FPRAS for sampling b-edge covers in general graphs

when b ≤ 2, and for sampling b-matchings when b ≤ 7 [37]. This FPRAS relied on a rapid

mixing argument for a somewhat different Markov chain than ours. Existing dominating set

results for certain regular graphs are also known [7].

Exact counting of maximal independent sets—which would give an FPRAS by the equivalence

of counting and sampling—was shown in [60] to be hard for chordal graphs but is known [15]

to be tractable in graphs of bounded treewidth. However, again our result improves on the

simplicity of existing algorithms.

3.1 Preliminaries

In this section we define the hardcore Glauber dynamics. We also define in this section the

standard notion of carving width and the additional graph-theoretic chains we explore. See

Chapter 2 for definitions of the standard notions of expansion, multicommodity flows, and

treewidth.

3.1.1 Rapid mixing and Glauber dynamics

As we discussed in Chapter 2, rapid mixing is of interest in the random generation of certain

graph-theoretic objects, including such subset systems as the set of matchings in a graph. To

68

generate, approximately uniformly at random, an object of a given class—say, an independent

set in a given graph—it suffices to conduct a random walk on a graph whose vertices are

the objects of interest, and whose edges are flips between the objects, under some suitable

definition of a flip. (For technical reasons, self loops need to be added to the graph in a

standard fashion.) Basic spectral graph theory shows that, under mild conditions, the walk

converges to the uniform distribution in the limit. It is of interest for efficient sampling

algorithms to determine how rapid the convergence is. In the case of subset systems such as

those we consider, the walk takes place over an exponentially large number of subsets defined

over an underlying set of size n. If the convergence, or mixing time, of the walk is polynomial

in n, then the random walk is said to be rapidly mixing.

Recall that the mixing time, denoted τ , is the minimum number of steps in the random walk

before convergence is guaranteed, regardless of the starting point of the walk. Convergence is

measured via the total variation distance [67] between the distribution over states induced by

the walk at a given time step, and the uniform distribution. One can obtain convergence to

other distributions by adding weights to the vertices and edges of the graph—see Section 3.6.1.

Of interest for our mixing results is the hardcore Glauber dynamics, defined as follows: The

hardcore Glauber dynamics on the independent sets of a graph G is the following chain,

defined with respect to a fixed real parameter λ > 0:

1. Let X0 be an arbitrary independent set in G.

2. For t ≥ 0, select a vertex v ∈ V (G) uniformly at random.

3. If v /∈ Xt and Xt ∪ {v} is not a valid independent set, do nothing.

4. Otherwise:

Let Xt+1 = Xt ∪ {v} with probability λ/(λ+ 1).

Let Xt+1 = Xt \ {v} with probability 1/(λ+ 1).

69

3.1.2 Carving width

The carving width of a graph is a density parameter that is weaker than treewidth, in the

sense that high treewidth implies high carving width, but the converse is not true. Carving

width is defined with respect to a so-called carving decomposition [24] of a given graph G—in

short, a binary tree T whose leaves are identified with the vertices of G. Each node X ∈ T is

identified with the subgraph of G induced by the vertices of G (leaves of T) having X as an

ancestor in T . Each edge of T induces a cut in T ; this cut induces a partition of the leaves of

T (vertices of G) into two sets. This partition is naturally identified with a cut in G.

The width of a carving decomposition is the maximum number of edges of G across any such

cut, where the maximum is taken over all edges in T . The carving width of G is the minimum

width of a carving decomposition of G. See Seymour and Thomas [66] for a detailed treatment.

For our purposes, carving width is of interest due to its relationship to the treewidth and

degree of a graph. Specifically, Eppstein [24] observed the following fact that follows from

results of Nestoridis and Thilikos [59] and of Robertson and Seymour [65]:

Lemma 3.1. Given a graph G with maximum degree ∆, let tw(G) denote the treewidth of

G, and let cw(G) denote the carving width of G. For every graph G, (2/3)(tw(G) + 1) ≤

cw(G) ≤ ∆(tw(G)− 1).

It follows from the definition of carving width that every graph with bounded carving width

also has bounded degree. Combining this fact with Lemma 3.1 implies the following:

Corollary 3.1. A graph has bounded degree and treewidth if and only if it has bounded

carving width.

3.1.3 Dominating sets, b-matchings, and b-edge covers

A dominating set in a graph G = (V,E) is a set S ⊆ V of vertices such that for every vertex

70

v ∈ V , either v ∈ S or there exists some vertex u ∈ S such that (u, v) ∈ E.

b-matchings [45] and b-edge covers [29, 44] generalize the definitions of matchings and edge

covers respectively: Let G = (V,E) be a graph. Let b : V → Z≥0 be any function assigning

a nonnegative integer to each vertex. A b-matching in a graph G = (V,E) is a set S ⊆ E of

edges such that every v ∈ V has at most b(v) incident edges in S.

Let G = (V,E) be a graph. Let b : V → Z≥0 be any function assigning a nonnegative integer

to each vertex. A b-edge cover in a graph G = (V,E) is a set S ⊆ E of edges such that every

v ∈ V has at least b(v) incident edges in S.

Sometimes, as in the result by Huang, Lu, and Zhang [37], b-edge covers and b-matchings are

defined so that b is a constant, i.e. b(u) = b(v) for all u, v ∈ V .

For dominating sets, b-edge covers, and b-matchings, we consider a chain similar to the

hardcore dynamics, except that in the case of b-edge covers and b-matchings, we are of course

selecting edges instead of vertices. Also, in the case of dominating sets and b-edge covers,

instead of verifying independence before adding a vertex (or edge), we verify validity of a set

(e.g. domination) before dropping a vertex (or edge).

We also consider the Glauber dynamics on q-colorings: A q-coloring of a graph G is an

assignment of a color from the list [q] = {1, 2, . . . , q} to each vertex of G, such that no two

adjacent vertices have the same color. A partial q-coloring of a graph G is an assignment

of a color from [q] to each of a subset of the vertices of G, such that no two adjacent vertices

have the same color.

The Glauber dynamics on the partial q-colorings of G is as follows: Let the Glauber dynamics

on the partial q-colorings of a graph G be the following chain defined with respect to λ > 0:

1. Let X0 be an arbitrary partial q-coloring of G.

71

2. For t ≥ 0, select a vertex v ∈ V (G) uniformly at random, and select a color c ∈ [q + 1]

uniformly at random.

3. If c = q + 1, then:

If v is already colored in Xt, remove the coloring of v with probability 1/(λ+ 1).

Otherwise, let Xt+1 = Xt.

4. If c ≤ q, then:

If v is not already colored with c in Xt, set the color of v to c with probability

λ/(λ+ 1).

Otherwise, let Xt+1 = Xt.

Finally, the Glauber dynamics on the (complete) q-colorings of G is as follows (for this chain

we do not define a biased version): Let the Glauber dynamics on the q-colorings of a graph

G be the following chain:

1. Let X0 be an arbitrary q-coloring of G.

2. For t ≥ 0, select a vertex v ∈ V (G) uniformly at random, and select a color c ∈ [q]—other

than the color of v—uniformly at random.

3. If v has no neighbor with color c, then change the color of v to c with probability 1/2

to obtain Xt+1.

4. Otherwise, do nothing, i.e. let Xt+1 = Xt.

We define a graph whose vertices are the maximal independent sets of an underlying graph G,

and then define the flip chain as a random walk on this graph: Given a graph G = (V,E),

let the maximal independent set Glauber graph be the graph MMIS(G) whose vertices are the

maximal independent sets of G, and whose edges are the pairs of maximal independent sets

that differ by one flip, where a flip is defined as:

72

1. adding one vertex v to a given independent set S ⊆ V ,

2. removing every u ∈ S such that (u, v) ∈ E, and

3. adding a subset of the vertices at distance two in G from v.

Since MMIS(G) is undirected, we also define the reversal of a flip as a flip. See Figure 3.5 for

an example of a flip.

Lemma 3.2. The graph MMIS(G) is connected.

Proof. The proof relies on a greedy transformation argument and is in Section B.2.

For maximal b-matchings, we define a Glauber graph similar to the maximal independent

set Glauber graph, except that we are of course selecting edges instead of vertices in our

sets. A flip consists of adding some edge e = (u, v) to the b-matching, then removing edges

incident to u and v as needed until a valid b-matching is obtained, then adding edges incident

to neighbors of u and v as needed to obtain maximality.

3.1.4 Glauber dynamics with parameter λ > 0

Formally, the Glauber dynamics is defined as follows:

The Glauber dynamics is a Markov chain, parameterized by λ > 0, with state space Ω =

V (M(G)) and probability matrix P , where for S, S ′ ∈ V (M(G)) with S ̸= S ′,

P (S, S ′) = λ/(∆M(λ+ 1))

when |S ′ \ S| = 1, and

P (S, S ′) = 1/(∆M(λ+ 1))

73

when |S \ S ′| = 1. If S = S ′, then P (S, S ′) = 1−
∑

S′′ ̸=S P (S, S ′′).

Here ∆M is the maximum degree of the Glauber graph—i.e. the maximum number of

neighboring states that a state S can have.

The two cases described for S ̸= S ′ are exhaustive for all of the chains that we have

parameterized by λ. For all of the chains for which λ is not defined, the transition probability

is in every case 1/(2∆M).

3.2 λ = 1: Bounded carving width

To build up to the proof of Theorem 1.5, we first show a weaker result: that the unbiased

Glauber dynamics on independent sets mixes rapidly in graphs of bounded carving width. The

full proof of Theorem 1.5, even in the unbiased case, requires the non-hierarchical framework.

The main technical lemma in this section, Lemma 3.10, comes from Chapter 2. Our

contribution in this chapter is the application to independent sets in graphs of bounded

carving width—which we strengthen to graphs of bounded treewidth in Section 3.3.

The independent set flip chain (the hardcore model) is the natural random walk on what

we will call the independent set Glauber graph: Given a graph G, let the independent set

Glauber graph MIS(G) be the graph whose vertices are the independent sets of G, and whose

edges are the pairs of independent sets S, S ′ such that |S ⊕ S ′| = 1. The following is known,

but we give a proof:

Lemma 3.3. The independent set Glauber graph is connected.

Proof. Consider the empty independent set ∅. Every independent set S ∈ V (MIS(G)) has a

path of length |S| to ∅, formed by removing each vertex in S in arbitrary order.

74

X
A

B

v

u

X
A

B

v

u

Figure 3.1: Two independent sets in a graph G, belonging to the same class, induced by the
restriction of the sets to X.

3.2.1 Partitioning the vertices of MIS(G) into classes

The vertices of the Glauber graph MIS(G) are subsets of the vertices of an underlying graph

G. When G has bounded treewidth, we can choose a small separator X that partitions

V (G) \X into two mutually disconnected vertex subsets, A and B, neither of which is too

large. Consider the problem of sampling an independent set S from G. Given a separator X

for G, partition the independent sets in G into equivalence classes as follows:

Let G = (V,E) be a graph. Let MIS(G) be as we have defined. Let X ⊆ V be a vertex

separator for G. Let SIS(G) be the set of equivalence classes of V (MIS(G)) in which two

independent sets S and S ′ are in the same class if S ∩X = S ′ ∩X. Let T = S ∩X, and call

the corresponding class CIS(T).

See Figure 3.1 for an example of a partitioning and a class.

Let A and B be the mutually disconnected vertex subsets into which the removal of X

partitions G[V \X]. Given a fixed independent subset T ⊆ X, identify the independent sets

in CIS(T) with the pairs of the form (SA, SB), where SA is an independent set in A \NA(T),

and SB is an independent set in B \NB(T), where NA(T) and NB(T) denote the union of the

neighborhoods of vertices in T , in A and B respectively. That is, identify each independent

set in CIS(T) with a pair of an independent set in A that avoids neighbors of vertices in T ,

75

CIS(T) CIS(T ′′) CIS(T ′)S

S
′′

wS
′

Figure 3.2: A schematic view of three classes in the independent set Glauber graph MIS(G).
The large circles denote classes under the partition described in Section 3.2.1. The curved
arrows illustrate the construction of a flow in MIS(G) from an independent set S ∈ CIS(T)
to another independent set S ′′ ∈ CIS(T)—and also to an independent set S ′ ∈ CIS(T ′). Here,
CIS(T) and CIS(T ′′) are adjacent classes in MIS(G), connected by a large number of edges,
and similarly CIS(T ′) and CIS(T ′′) are adjacent. In Section 3.2.2 we formalize this flow.

and a similar independent set in B. Consider the two Glauber graphs MIS(A \ NA(T))

and MIS(B \NB(T)), whose vertices are respectively the independent sets in G[A \NA(T)],

and those in G[B \NB(T)]. If two independent sets S = (SA, SB) and S ′ = (S ′
A, S

′
B) belong

to the same class, then a flip exists between S and S ′ in MIS(G) precisely when a flip exists

between the restrictions of S and S ′ to either MIS(A \ NA(T)) or MIS(B \ NB(T)) (but

not both). See Figure 3.1. Therefore, each class induces, in MIS(G), a subgraph that is

isomorphic to a Cartesian product of two smaller Glauber graphs:

Lemma 3.4. Given a graph G and a vertex separator X that partitions V (G) into subgraphs A

and B, for every class T ∈ SIS(G),

CIS(T) ∼= MIS(A \NA(T))□MIS(B \NB(T)).

(Here we identify the class CIS(T) with the subgraph it induces in MIS(G).)

76

X
A

B

v

u

X
A

B

v

u

Figure 3.3: Two independent sets in a graph G: S (left) and S ′ (right), belonging to distinct
classes. S and S ′ differ by a flip, with the separator X inducing the classes to which the sets
belong. S ′ results from adding v to S. |S ′| < |S|, since S ′ excludes those independent sets
that contain the vertex u.

3.2.2 Rapid mixing of the independent set flip chain when G has

bounded carving width

As described in Section 3.2.1, we use a small vertex separator X in G to give a decomposition

of MIS(G) into subgraphs, each of which has a Cartesian product structure—in which both

factor graphs in the product are themselves Glauber graphs. Since Cartesian products

preserve flow congestion upper bounds (see Lemma 2.15), this decomposition provides a

crucial inductive structure. We analyze this structure in this section.

Lemma 3.5. Let G be a graph with bounded treewidth t, let MIS(G) be as we have defined,

and let SIS(G) be as we have defined with respect to a small balanced separator X with

|X| ≤ t+ 1. The number of classes in SIS(G) is O(1).

Proof. The lemma follows from the fact that |SIS(G)| ≤ 2|X| ≤ 2t+1 = O(1), where the first

inequality is true because each class is identified with a subset of the vertices in X.

Lemma 3.6. Let G be a graph with bounded treewidth t and bounded degree ∆, let MIS(G)

be as we have defined, and let SIS(G) be as we have defined with respect to a small balanced

separator X with |X| ≤ t+ 1. For every pair of classes CIS(T), CIS(T ′) ∈ SIS(G), |CIS(T)| =

Θ(1)|CIS(T ′)|.

77

Lemma 3.7. Let G be a graph, let MIS(G) be as we have defined, and let SIS(G) be as we

have defined with respect to a separator X. Let CIS(T), CIS(T ′) ∈ SIS(G) be two classes. No

independent set in CIS(T) has more than O(1) flips to independent sets in CIS(T ′).

Lemma 3.8. Let G be a graph with bounded treewidth t and bounded degree ∆, let MIS(G)

be as we have defined, and let SIS(G) be as we have defined with respect to a small balanced

separator X with |X| ≤ t + 1. Let CIS(T), CIS(T ′) ∈ SIS(G) be two classes. Suppose there

exists at least one flip between an independent set in CIS(T) and an independent set in CIS(T ′).

Then there exist at least Ω(1)|CIS(T)| flips between independent sets in CIS(T) and independent

sets in CIS(T ′).

The proofs of Lemma 3.6, Lemma 3.7, and Lemma 3.8 are in Section B.2. We will use these

facts to prove the following, applying the framework from Chapter 2, in Section 3.2:

Lemma 3.9. Given a graph G with bounded carving width, the natural random walk on the

independent set Glauber graph MIS(G) has mixing time τ(n) = O(nc), where c = O(1).

To prove Theorem 1.5, however, we need to get rid of the assumption that degree is bounded.

We address this issue in Section 3.3.

3.2.3 Abstraction into framework conditions

The observations in Lemmas 3.5 through 3.8 correspond to the set of conditions we gave in

Lemma 2.10 (Chapter 2).

The conditions are, given a connected Glauber graph M(G), on some set of structures over

an underlying graph G with n vertices:

1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).

78

2. The ratio of the sizes of any two classes in S is Θ(1).

3. Given two classes C(T), C(T ′) ∈ S, no vertex in C(T) has more than O(1) edges to

vertices in C(T ′).

4. For every pair of classes that share at least one edge, the number of edges between the

two classes is Θ(1) times the size of each of the two classes.

5. Each class in S is the Cartesian product of two Glauber graphs M(G1) and M(G2),

each of which can be recursively partitioned in the same way as M(G).

6. The recursive partitioning mentioned in Condition 5 reaches the base case (graphs with

one or zero vertices) in O(log n) steps.

Conditions 1 through 4 correspond respectively to Lemmas 3.5 through 3.8; Condition 5

corresponds to Lemma 3.4. Condition 6 is satisfied by our chains due to the assumption

of bounded treewidth, which ensures a recursive decomposition in which the classes are

isomorphic to Cartesian products of Glauber graphs over an underlying graph whose number

of vertices has been reduced by a constant factor. Thus all of these conditions are satisfied

by the chain on independent sets in graphs of bounded carving width, and Lemma 3.9 will

follow from the claim that the above conditions imply rapid mixing. Indeed, we proved the

following in Chapter 2 (Lemma 2.9):

Lemma 3.10. Given a graph M(G) satisfying the conditions in this section, the expansion

of M(G) is Ω(1/nc), where c = O(1).

We revisit the proof sketch in Section 2.5, restating it in terms more conducive to the Glauber

dynamics in this chapter:

Proof Sketch. The idea of the proof is first to partition M(G) into classes as we have

described. By Lemma 3.4, each class C(T) ∈ S(G) is isomorphic to the Cartesian product

79

M(A \NA(T))□M(B \NB(T)). We make an inductive argument, in which the inductive

hypothesis assumes that for each such Cartesian product, the graphs M(A \ NA(T)) and

M(B\NB(T)) have multicommodity flows with congestion ρA ≤ clog |V (G)|−1, ρB ≤ clog |V (G)|−1

respectively, for an appropriate constant c. Lemma 2.15 then implies that C(T) has a flow fT

with congestion ρT ≤ clog |V (G)|−1.

The inductive step is then to combine the fT flows for all of the classes, constructing a

multicommodity flow f in M(G) with small congestion. We need to route flow between

every pair of Glauber graph vertices S and S ′ in M(G). If S and S ′ belong to the same class

C(T), this is easy: use the same flow that S uses to send its unit to S ′ in fT . If S ∈ C(T)

and S ′ ∈ C(T ′) ̸= C(T) belong to different classes, we do the following (see Figure 3.2):

1. Find a path from C(T) to C(T ′), where each pair of consecutive classes on the path

share at least one edge. Let this path be

C(T) = C(T1), C(T2), . . . , C(Tk) = C(T ′).

2. Let S send an equal fraction of the S-S ′ unit (through paths in C(T)) to each Z ∈ C(T)

that has a neighbor Y ∈ C(T2).

3. For i = 2, . . . , k − 1, within C(Ti), for every Y that receives flow from a neighbor

in C(Ti−1), let Y send an equal fraction of its S-S ′ unit (using paths in C(Ti)) to

every Z ∈ C(Ti) with a neighbor in C(Ti+1).

4. For i = 1, . . . , k− 1, let each Z ∈ C(Ti) having a neighbor Y ∈ C(Ti+1) send its fraction

of the S − S ′ unit to Y across the edge (Z, Y).

5. Let S ′ receive an equal fraction of the S-S ′ unit (through paths in C(T ′)) from each Y ∈

C(T ′) that has a neighbor in C(Tk−1).

80

We specified in Chapter 2 how to route the flow at each intermediate step, making use of the

existing flows within each class guaranteed by the inductive hypothesis. We then derived

upper bounds on the amount of flow resulting from this routing across any given edge within

a class, as well as on the amount of flow across each boundary edge e between classes. We

showed that the latter is O(N), where N = |V (M(G))|, i.e. ρ(e) = 1
N
O(N) = O(1); we

showed that the former is at most an O(1) factor times the existing congestion ρT .

This leads to a total congestion of O(1)l, where l is the number of levels of induction. The

fact that X is a balanced separator implies that l = O(log n); the lemma now follows from

Lemma 2.1.

Lemma 3.9 now follows.

We will use the phrase “non-hierarchical framework” to describe this set of conditions—which

apply to the chains we study when the underlying graph G has bounded carving width.

Although Jerrum, Son, Tetali, and Vigoda [40] did not consider bounded-treewidth graphs

generally, these conditions do allow their projection-restriction technique to be applied. In

effect, Lemma 3.10 characterizes a sufficient set of conditions for applying Jerrum, Son, Tetali,

and Vigoda’s technique.

The first main technical contribution of this chapter is in Section 3.3, in which we give an

alternative set of conditions—which we will call our “hierarchical framework”—that allows us

to handle underlying graphs of unbounded degree (though treewidth still must be bounded),

and to handle chains other than the hardcore model. This will allow us to complete the

proofs of Theorems 1.5, 1.6, and 1.7.

81

CIS(T)

CIS(P) CIS(P ′)

CIS(C) CIS(C ′)

Figure 3.4: Left: a schematic representation of the classes in the independent set Glauber
graph and edges between them when degree is unbounded. Right: a class CIS(T), with
two parents, CIS(P) and CIS(P ′), and two children, CIS(C) and CIS(C ′). (Classes with larger
cardinality are drawn larger.) The parallel edges depict the fact that a child class always
has every one of its vertices adjacent to a vertex in a given parent class, and that the edges
between any given pair of classes are vertex-disjoint.

3.3 λ = 1: Unbounded degree

3.3.1 Hierarchical framework

We now sketch a set of “hierarchical” framework conditions that guarantee rapid mixing in

the case of unbounded degree (when treewidth is bounded). Several of the chains we consider

satisfy these conditions so long as the treewidth of the underlying graph is bounded.

In the original framework, we assumed that the classes were approximately the same size.

Although all of the Glauber graphs to which we apply this hierarchical framework satisfy

this condition in graphs with bounded carving width, this is not the case when the degree is

unbounded. Fortunately, in the case of independent sets, partial q-colorings, dominating sets,

and b-edge covers, we can solve this problem with some modifications to the framework.

3.3.2 Independent sets

In the proof of Lemma 3.10, the assumption that the classes were approximately the same

size allowed us to argue that even in the worst case, any given class CIS(T) can route flow for

82

all pairs of vertices without being too congested, because CIS(T) is sufficiently large. Once we

discard this assumption, we need to be more explicit in specifying the path through which

any given CIS(T) routes flow to any given CIS(T ′). Namely, we show that one can engineer the

flow so that for any such CIS(T), CIS(T ′) pair, every intermediate class CIS(T ′′) that handles

flow between sets S ∈ CIS(T) and S ′ ∈ CIS(T ′) has a larger cardinality than one of CIS(T) or

CIS(T ′). This allows us to bound the number of pairs of sets, relative to |CIS(T ′′)|, for which

CIS(T ′′) carries flow.

To accomplish this, we observe that for any pair of classes CIS(T) and CIS(T ′), if there exists

one flip between an independent set in CIS(T ′) and an independent set in CIS(T), then without

loss of generality every independent set in CIS(T ′) has a flip to some independent set in CIS(T).

Namely, this flip consists of dropping some vertex v from T ′ ⊆ X to obtain T . In this case

we call CIS(T) a parent of CIS(T ′), and CIS(T ′) a child of CIS(T). See Figure 3.4. Since the

set of these edges is vertex disjoint, this implies that |CIS(T)| ≥ |CIS(T ′)|. In fact, whenever

T ⊆ T ′, we have |CIS(T)| ≥ |CIS(T ′)|.

Thus for any pair of classes CIS(T) and CIS(T ′), one can find paths from the two classes to a

“common ancestor”, and route flow along these paths, through the common ancestor. Since

for every class CIS(T ′′) on this path, either |CIS(T ′′)| ≥ |CIS(T)| or |CIS(T ′′)| ≥ |CIS(T ′)|, we

are still able to bound the congestion in a fashion similar to the non-hierarchical framework.

We make this precise and derive the resulting congestion bounds in Section 3.5.

Recall that in the proof sketch of Lemma 3.10 (Section 3.2.2), for every pair of Glauber

graph vertices S ∈ C(T), S ′ ∈ C(T ′) ̸= C(T), we found a sequence of classes C(T) =

C(T1), C(T2), . . . , C(Tk−1), C(Tk) = C(T ′), through which to route the S−S ′ flow. As discussed

in Section 3.3, when degree is unbounded, the classes are no longer nearly the same size, and

thus if this sequence is chosen carelessly, some C(Ti) may carry flow for too many S − S ′

pairs.

83

The solution is to choose the sequences carefully. This is possible provided that there exists a

partial order < on the classes with a unique maximal element, where C(T) > C(T ′) implies

|C(T)| ≥ |C(T ′)|. Under this condition, we can simply choose our sequence of classes so that for

some i with 1 ≤ i ≤ k, |C(T1)| ≤ |C(T2)| ≤ · · · ≤ |C(Ti)| ≥ |C(Ti+1)| ≥ · · · |C(Tk−1)| ≥ |C(Tk)|.

3.3.3 Hierarchical Framework Conditions

The conditions are as follows. Conditions 2 through 4 are new and concern the partial order

described above; Condition 1 and Conditions 5 through 7 are as in the non-hierarchical

framework.

1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).

2. There exists a partial order < on the classes in S, such that whenever C(T), C(T ′) ∈ S

and C(T) > C(T ′), we have |C(T)| ≥ |C(T ′)|.

3. The partial order < has a unique maximal element.

4. Whenever an edge exists between vertices in C(T) and C(T ′) with C(T) > C(T ′), the

number of such edges is |C(T ′)|.

5. For every pair of classes C(T) and C(T ′) that share an edge, the maximum degree, in

C(T), of a vertex in C(T ′), is O(1), and the maximum degree, in C(T ′), of a vertex in

C(T), is O(1).

6. Each class in S is the Cartesian product of two Glauber graphs M(G1) and M(G2),

each of which can be recursively partitioned in the same way as M(G).

7. The recursive partitioning mentioned in Condition 6 reaches the base case (graphs with

one or zero vertices) in O(log n) levels of recursion.

84

Lemma 3.11. Given a graph M(G) satisfying the conditions in Sectionx 3.3.3, the expansion

of M(G) is Ω(1/nc), where c = O(1).

We defer the proof of Lemma 3.11 to Section 3.5.

3.4 Bounded carving width: application of framework

beyond independent sets

3.4.1 q-colorings

We now apply the non-hierarchical framework to q-colorings in graphs of bounded carving

width. For reasons that will soon become apparent, we need to generalize to list colorings :

A list coloring of a graph G = (V,E), given a function L : V → 2[q] assigning a list of colors

to each vertex in V , is a coloring of G consistent with L. A partial list coloring is a coloring

of some of the vertices of G consistent with L.

We consider the Glauber graph MCOL(G,L), defined as follows: Let the Glauber graph

MCOL(G,L), given an input graph G and a set of colors [q] and a function L as in the

definition of list colorings, be the graph whose vertices are the list colorings of G consistent

with L, and whose edges are the pairs of list colorings C,C ′ that differ by a color assignment

to exactly one vertex v ∈ V (G).

The Glauber dynamics is clearly the natural random walk on MCOL(G,L), with self-loops

added in the standard fashion. The following lemma therefore suffices to prove the first claim

in Theorem 1.6:

Lemma 3.12. MCOL(G,L), defined over a graph G and a list L : V (G) → 2[q], with

L(v) ≥ δ(v)+2 for every v ∈ V (G), satisfies the conditions of the non-hierarchical framework

85

whenever G has bounded carving width and q is fixed.

Proof. We partition V (MCOL(G,L)) into classes induced by a small balanced separator

X, where each class is identified with a list coloring T of G[X]. This partitioning satisfies

Condition 5 since each class CCOL(T) consists of the tuples of the form (CA, CB), where CA

is a valid list coloring of G[A], and CB is a valid list coloring of G[B]—with A and B being

the mutually disconnected subsets of V (G) resulting from the removal of X. Here, we adjust

the list L(u) for each u ∈ NA(X) ∪NB(X), removing from L(u) every color that is assigned

to a neighbor of u in X under the coloring C.

The subproblems on A and B are independent, and that a flip within CCOL(T) corresponds

to a flip within either A or B but not both. Furthermore, the condition that L(u) ≥ δ(u) + 2

is preserved even after L is modified, since every color removed from L(u) corresponds to a

neighbor of u in X—i.e. a neighbor that is not part of the subproblem on A or B. Condition 5

follows.

Condition 1 follows from the fact that |X| and q are bounded. Condition 2 can be seen from

the bounded carving width of G by considering the following mapping f : V (MCOL(G,L)) →

CCOL(T) for any T : given a list coloring C ∈ V (MCOL(G,L)), let C ′ = f(C) be the list

coloring that (i) agrees with T on its restriction to X, (ii) agrees with C on its assignment of

colors to all vertices having no neighbor in X, and (iii) is consistent with both (i) and (ii) on

its assignment of colors to neighbors of vertices in X.

We can always satisfy (iii) because for each u ∈ NA(X) ∪NB(X), we have |L(u)| ≥ δ(u) + 2.

(There may be multiple list colorings satisfying (iii); resolve ambiguity in defining f(C) via

an arbitrary ordering on the list colorings of G.) Condition 4 follows from a similar mapping.

Condition 3 is follows from the definition of a flip; Condition 6 follows from the bounded

carving width of G.

86

3.4.2 b-edge covers and b-matchings

For b-edge covers and b-matchings, we now apply the non-hierarchical framework in graphs of

bounded carving width. As with independent sets, dealing with unbounded degree in b-edge

covers requires the hierarchical framework.

Lemma 3.13. Given an input graph G of bounded carving width, the Glauber dynamics on

b-matchings and on b-edge covers satisfy the conditions of the non-hierarchical framework,

when the maximum value of the function b is bounded.

Proof. The proof involves verifying that the chain on b-edge covers satisfies the non-hierarchical

framework conditions, as we have done for independent sets. There are a few additional

details, however.

In defining a b-edge cover, we are selecting subsets of edges instead of vertices. Thus, to

define our flip chain on b-edge covers, we modify the flip chain on independent sets in the

natural way: dropping or adding edges instead of vertices. The corresponding Glauber graph

MBEC(G) is connected, since every b-edge cover has a path in MBEC(G) to the trivial b-edge

cover (where every edge is selected). We identify each class CBEC(T) with the set T of edges

chosen incident to vertices in X. Since degree is bounded and |X| ≤ t, there are O(1) classes,

satisfying Condition 1.

Given a class CBEC(T), we pass recursively to subproblems on A and B, where we update b(v)

for each v ∈ A ∪ B according to the number of edges in T incident to v. That is, for each

vertex u selected in T , and for each edge (u, v) with v ∈ A (similarly v ∈ B), decrement b(v)

when passing to the subproblem on A (similarly B). The choices made in the A subproblem

and the B subproblem are independent, giving the required Cartesian product structure

for Condition 5, and there are still O(log n) levels of recursion, satisfying Condition 6. For

Condition 3, the proof is the same as for independent sets. Conditions 2 and 4 follow from a

87

similar mapping argument to that in the proof of Lemma 3.6.

The proof for b-matchings is similar to that for b-edge covers.

3.4.3 Maximal independent sets and maximal b-matchings

The main idea of applying the framework to maximal independent sets and maximal b-

matchings is similar to that for independent sets, b-matchings, and b-edge covers, but some

adaptation is required: the definition of a flip is somewhat different, and the proof that

classes have the required Cartesian product structure has a few more details. We thus defer

dealing with these chains to Section 3.7.6.

3.5 Hierarchical framework

In this section we complete the proof of the unbiased case of Theorem 1.5 and Theorem 1.6,

by fully specifying the hierarchical framework, and showing that the chain on independent

sets satisfies the conditions. Fully proving Theorem 1.7 and Theorem 1.8 requires some

adaptation of the framework, which we defer to Section 3.7.

3.5.1 Proof that conditions of the hierarchical framework imply

rapid mixing

We are ready to prove the counterpart of Lemma 3.10 for the hierarchical framework, from

which the unbiased case of Theorem 1.5 will follow.

Lemma 3.11. Given a graph M(G) satisfying the conditions in Sectionx 3.3.3, the expansion

of M(G) is Ω(1/nc), where c = O(1).

88

Proof. We use the scheme in the proof of Lemma 3.10, with the following specification:

when routing flow from S ∈ C(T) to S ′ ∈ C(T ′) ̸= C(T), we find a sequence of classes

C(T) = C(T1), C(T2), . . . , C(Tk−1), C(Tk) = C(T ′) as before, where each consecutive pair of

classes in the sequence shares an edge in M(G). In the proof of Lemma 3.10, this sequence

was arbitrary; we now require that, under the partial order < in Condition 2, for some

1 ≤ i ≤ k, C(T1) < · · · < C(Ti) > C(Ti+1) > · · · > C(Tk); Condition 3 guarantees that this

requirement can be satisfied.

We now bound the resulting congestion. As in the proof of Lemma 3.10, for i = 2, . . . , k − 1,

the congestion added to edges in C(Ti) in the inductive step is at most N2/(|Yi||Zi|) · clogn−1.

Unfortunately, without assuming that the classes are approximately the same size, we can

no longer say that |Yi| = Ω(N) or |Zi| = Ω(N). Instead, we argue as follows: thanks to

the choice of our sequence, for every pair of classes C(T) and C(T ′) that use a given class

Ti to route flow, either |C(Ti)| ≥ |C(T)| (and |C(Ti)| ≥ |C(Ti−1)|) or |C(Ti)| ≥ |C(T ′)| (and

|C(Ti)| ≥ |C(Ti+1)|). Assume the former case without loss of generality. For every pair of

classes C(T) and C(T ′) that use the edges between C(Ti−1) and C(Ti), |C(T)| ≤ |C(Ti−1)|, and

therefore the number of pairs S, S ′ of Glauber graph vertices that use these edges is at most

∑
T,T ′:|C(T)|≤|C(Ti−1)|

|C(T)||C(T ′)| ≤ N |S||C(Ti−1)| = O(1)N |C(Ti−1)|.

Therefore, since there are |C(Ti−1)| edges between C(Ti−1) and C(Ti) (by Condition 4),

each such edge carries at most N |S||C(Ti−1)|/|C(Ti−1)| = O(N) units of flow, giving O(1)

congestion.

To bound congestion within C(Ti), we specify the routing of flow from Yi (the set of vertices

on the C(Ti−1), C(Ti) boundary) to Zi (the set of vertices on the C(Ti), C(Ti+1) boundary) as

follows: first let each Y ∈ Yi send an equal fraction of its flow—of which it receives O(N)

units from each of O(1) edges—to every vertex in C(Ti), using the flow that is assumed to

89

exist within C(Ti) to route the flow. Then let each Z ∈ Zi receive its flow similarly from all

vertices in C(Ti). The resulting congestion across each edge is at most

(2O(N)/|C(Ti)|) · clogn−1|C(Ti)|/N ≤ clogn,

for a constant c. This gives the desired congestion bound, proving the lemma.

We now prove Lemma 3.14 by tracing the polynomial factors in the proof of Lemma 3.11:

Lemma 3.14. Suppose a Glauber graph M(G) satisfies the conditions of the hierarchical

framework. Then the mixing time of the corresponding Glauber dynamics is

O(((2(K + 1))2 logn) ·∆2
M logN),

where ∆M is the maximum degree of the Glauber graph M(G), n = |V (G)|, K is the number

of classes in the partition, and N = |V (M(G))|.

Proof. The analysis is similar to the proof of Lemma 2.10, with the following modifications:

each edge set E(T, T ′) from C(T) to a parent C(T ′) has |E(T, T ′)| = |C(T)|. Therefore,

outbound flow along each edge in such an edge set is at most N |C(T)|/|E(T, T ′)| = N : each

vertex (all vertices in C(T) are boundary vertices) then receives from each other vertex at

most N/|C(T)| units. As we will show shortly (see analysis of through flow below), edges to

children each carry at most K|C(T)|. Thus we will count the flow resulting from edges to

children with through flow.

Inbound flow is symmetric. The result is to scale the amount of flow across each edge internal

to C(T) by a factor of 2N/|C(T)|.

For through flow (including the outbound flow to children as described above), each boundary

vertex in C(T) carrying flow from (or to) a set of child classes {C(T ′
1), . . . , C(T ′

k)} carries at

90

most
∑k

i=1 N |C(T ′
i)|Ki/(|C(T ′

i)|) units, where Ki is the number of classes descendent from

C(T ′
i), including C(T ′

i) itself. This sum is at most NK. Each boundary vertex carrying flow

from (or to) an ancestor similarly carries at most NK units. Thus through flow contributes

a factor of 2NK/|C(T)|.

The resulting overall congestion is therefore at most

(2(K + 1))logn,

and applying Lemma 2.8 and Lemma 2.1 gives the resulting mixing bound.

3.5.2 Independent sets

We now finish the proof of the unbiased case of Theorem 1.5.

Verification of conditions

To show that the chain on independent sets satisfies the conditions of the hierarchical

framework when treewidth is bounded (but degree is unbounded), we first define a partial

order < on the classes in SIS(G). Recall that these are the classes induced by the separator

X in the underlying graph G. For CIS(T), CIS(T ′) ∈ SIS(G), let CIS(T) < CIS(T ′) if T ⊆ T ′

and T ̸= T ′. Call CIS(T) an ancestor of CIS(T ′), and CIS(T ′) a descendant of CIS(T). If CIS(T)

covers CIS(T ′) in this relation, call CIS(T) a parent of CIS(T ′), and CIS(T ′) a child of CIS(T).

We now prove that the chain on independent sets satisfies the conditions of the hierarchical

framework on graphs of bounded treewidth.

Lemma 3.15. Given a graph G with fixed treewidth t− 1, the hardcore Glauber dynamics on

the independent sets of G satisfies the conditions of the hierarchical framework.

91

Proof. Let MIS(G), X, and SIS(G) be as previously defined. We have already proven

Condition 1 and Conditions 4 through 7 in Lemmas 3.5 through 3.8.

The partial order we have defined satisfies Condition 2 because for every parent class CIS(T)

and child class CIS(T ′), the recursive subproblems in the Cartesian product comprising CIS(T ′)

are at least as constrained as the subproblems in the product comprising CIS(T). That

is, CIS(T) and CIS(T ′) are each a Cartesian product of two smaller Glauber graphs on the

independent sets in subgraphs AT and BT of G, and subgraphs AT ′ and BT ′ of G respectively.

We have V (AT ′) ⊆ V (AT) and V (BT ′) ⊆ V (BT), where the set V (AT) \ V (AT ′) consists of

the vertices in A that have a neighbor in T ′ but not in T .

Condition 3 follows from the fact that the empty independent set is the unique set that is an

ancestor of all other independent sets.

It now follows by Lemma 2.8 that M(G) has expansion Ω(1/nO(1)), and Theorem 1.5 follows

from this fact and from Lemma 2.1. More precisely, observing that the number of classes in the

partition is at most 2t+1 and applying Lemma 3.14 gives the bound claimed in Theorem 1.5,

namely

O(((1 + λ̂)λ̂)2(1 + log λ̂)n2(t+2)(1+log λ̂)+5),

where λ̂ = max{λ, 1/λ}. (We will give the machinery that justifies the terms involving λ, λ̂

in Section 3.6.)

3.5.3 Partial q-colorings

We now prove the unbiased case of the claim about partial colorings in Theorem 1.6:

92

Let MPCOL(G,L), given an input graph G and function L : V (G) → 2[q], be the graph

whose vertices are the partial list colorings of G, and whose edges are the pairs of partial list

colorings that differ by the removal or addition of a color assignment to a single vertex.

We show that this Glauber graph satisfies the conditions of the hierarchical framework:

Lemma 3.16. Given a graph G with bounded carving width and list function L : V (G) → 2[q],

where q ≥ ∆+2 is fixed and L(v) ≥ δ(v)+2 for all v ∈ V (G), the Glauber graph MPCOL(G,L)

has expansion Ω(1/nc), where c = O(1).

Proof. The partitioning is the same as in the proof of Lemma 3.12, except that we allow each

class to be identified with a partial list coloring of X. Condition 1, Condition 5, Condition 6,

and Condition 7 can be seen as before. For Conditions 2 and 3, the partial order is analogous

to the partial order for independent sets: given partial list colorings C and C ′ of X, let C be

a parent of C ′ if C and C ′ agree except for a single vertex to which C ′ assigns a coloring and

C does not. Condition 4 follows from this definition. The lemma follows.

We obtain the bound in Theorem 1.6 via the observations in Section B.1.

3.6 All λ > 0

Until now, we have only considered the unbiased versions of our chains. In this section we

complete the proof of Theorem 1.5, for arbitrary fixed λ > 0. To do so, we need to introduce

the standard notion of conductance [67], which extends the definition of expansion in the

natural way to the setting of a weighted graph.

93

3.6.1 (Weighted) Conductance

The conductance is defined with respect to a stationary distribution π induced by a random

walk. The stationary distribution is the distribution to which the random walk converges in

the limit. The convergence requires mild conditions: (i) that walk be ergodic, meaning that

the Glauber graph is connected; (ii) that the walk be reversible; and (iii) that the walk be

lazy.

Laziness means that with constant probability the walk stays at the current vertex at any

step; reversibility means that for every pair of sets S, S ′ ∈ MIS(G), we have

π(S)P (S, S ′) = π(S ′)P (S ′, S),

where P (S, S ′) denotes the probability that Xt+1 = S ′, given that Xt = S.

The Glauber dynamics on independent sets satisfies these conditions, and our other Glauber

dynamics satisfy them as well.

In the case of the Glauber dynamics on independent sets, the stationary distribution π

evaluates to

π(S) = λ|S|/Z(MIS(G)),

where for each of our Glauber graphs M(G),

Z(M(G)) =
∑

S⊆V (M(G))

λ|S|

is the normalizing constant. For all independent sets S in G, and for all S ′ such that

|S \ S ′| = 1,

π(S)P (S, S ′) = π(S ′)P (S ′, S) =

(
1

n(1 + λ)

)(
λ|S|

Z(MIS(G))

)
,

94

where n = |V (G)|.

For dominating sets and partial q-colorings, we define the same distribution; for b-edge covers

we define the analogous distribution over edges.

Remark 3.1. For each of our Glauber graphs M(G), the probability transition function

P (S, S ′), viewed as a matrix, is in fact the adjacency matrix of an edge-weighted version of

M(G), ignoring self loops.

That is: Given a Glauber graph M(G) and a Markov chain on M(G) with stationary

distribution π and probability transition function P , assign the weight π(S) to each vertex S

of M(G), and assign the weight Q(S, S ′) = π(S)P (S, S ′) to each edge (S, S ′).

Extend the definition of a Cartesian graph product to the weighted graphs described in this

section, so that for vertices g ∈ V (G), h ∈ V (H), the weight of the tuple (g, h) ∈ V (G□H)

is π(g, h) = πG(g)πH(h), where πG and πH are the vertex weight functions for G and H

respectively. Let the weight of each edge e between (g, h) and (g′, h′) be

Q(e) = πH(h)(∆GQG(g, g
′))/(∆G +∆H),

if g ̸= g′ and h = h′, and

Q(e) = πG(g)(∆HQH(h, h
′))/(∆G +∆H),

if g = g′ and h ̸= h′, where QG and QH are the edge weight functions for G and H, and ∆G

and ∆H are the maximum degrees of G and H.

For the self loop e = ((g, h), (g, h)), let

95

Q(e) = π(g, h)−
∑

(g′′,h):g′′ ̸=g

Q((g, h), (g′′, h))−
∑

(g,h′′):h′′ ̸=h

Q((g, h), (g, h′′)),

Lemma 3.17. Given the extended definition of Cartesian products, the stationary distribution

π in the discussion leading to Remark 3.1, and the resulting vertex and edge weights as in

the weighted definition of a Glauber graph, for each of our Glauber graphs M(G) and for

each class C(T) ∼= M(A)□M(B), and for each S ∈ V (M(A)), S ′ ∈ V (M(B)), the following

facts hold:

1. The vertex weight of S ∪ S ′ ∪ T in M(G) is equal to

πM(G)(S ∪ S ′ ∪ T) = πC(T)(S, S
′)πM(G)(C(T)),

where πM(G)(C(T)) is defined as
∑

U∈C(T) πM(G)(U), and

2. For all S ′′ with |S \ S ′′| = 1, the weight in M(G) of the edge e between S ∪ S ′ ∪ T and

S ′′ ∪ S ′ ∪ T is

QM(G)(e) = QC(T)(e)πM(G)(C(T))
|V (A)|+ |V (B)|

|V (G)|
.

Proof. We have

λ|S|+|S′|+|T |

Z(M(G))
= πM(A)(S)πM(B)(S

′)λ|T | · Z(M(A))Z(M(B))

Z(M(G))
= πC(T)(S, S

′)πM(G)(C(T)),

and

96

Q(e) =
1

|V (G)|(λ+ 1)
· λ

|S|+|S′|+|T |

Z(M(G))

= QM(A)(S, S
′′)πM(B)(S

′)λ|T | · Z(M(A))Z(M(B))

Z(M(G))
· |V (A)|
|V (G)|

= QC(T)(e)λ
|T | · Z(M(A))Z(M(B))

Z(M(G))
· |V (A)|+ |V (B)|

|V (G)|

= QC(T)(e)πM(G)(C(T))
|V (A)|+ |V (B)|

|V (G)|
.

Given a lazy, reversible, ergodic random walk on a weighted graph M = (V , E) with stationary

distribution π and probability matrix P : V × V → [0, 1], the conductance is the quantity

ϕ(M) = min
S⊆V:0<π(S)≤1/2

Q(S,V \ S)
π(S)

,

where for sets S,S ′ ⊆ V ,

π(S) =
∑
S∈S

π(S),

and

Q(S,S ′) =
∑

S∈S,S′∈S′

Q(S, S ′),

and where Q(S, S ′) = π(S)P (S, S ′) given S, S ′ ∈ V .

We now extend the definitions of multicommodity flows and congestion: Let a multicom-

modity flow f in a graph M = (V , E) be defined as before, except that each pair of vertices

S, S ′ ∈ V exchanges π(S)π(S ′) units of flow in each direction. Let

ρ =
∑
e∈E

f(e)

Q(e)
.

97

The following generalizations of Lemma 2.8 and Lemma 2.1 relate the conductance, congestion,

and mixing time [67]:

Theorem 3.1. Given a multicommodity flow with congestion ρ in a graph M, the conduc-

tance ϕ satisfies ϕ ≥ 1/(2ρ).

Theorem 3.2. The mixing time of a Markov chain with state space Ω, stationary distribution

π∗, and conductance at least ϕ is at most

τ = O(ϕ−2 log(1/(π∗
min))),

where

π∗
min = min

u∈Ω
π∗(u).

3.6.2 Analysis of flow construction

We now complete the proof of Theorem 1.5. It suffices to show the following lemma:

Lemma 3.18. The flow f constructed in MIS(G) in the proof of Lemma 3.11, adjusted so

that MIS(G) is weighted according to the parameter λ > 0, and so that each pair of sets S, S ′

exchanges π(S)π(S ′) units of flow, results in a congestion factor gain of at most ρ = O(1) at

each of the O(log n) levels of induction, resulting in at most polynomial overall congestion.

The same holds for the flip chain on partial q-colorings.

Proof. We use the same inductive argument, with the following adjustment: if C(T) is a descen-

dant of C(Ti−1), and C(Ti−1) is a child of C(Ti), where C(T) uses the edges between C(Ti−1) and

C(Ti) to send flow to C(T ′), then distribute this flow as before across these edges, but now let

each edge carry flow in proportion to its weight. We have π(C(T)) = O(1)π(C(Ti−1))—because

for every independent set S ∈ C(T) there exists a distinct independent set S ′ ∈ C(Ti−1) with

π(S ′) = (1/λ|T\Ti−1|)π(S), namely S ′ = S \ (T \ Ti−1).

98

Each edge (S, S ′) with S ∈ C(Ti), S
′ ∈ C(Ti−1), satisfies Q(S, S ′) = Ω(π(S)/n) (where the

constant-factor difference depends on λ). Thus the congestion along these edges is still O(n).

We then allow each vertex S ∈ C(Ti), having received at most O(π(S)) units along each

of O(1) incoming edges from child classes, to distribute these units to all other vertices in

C(Ti) according to their weight. That is, let S send O(π(S)π(S ′′)/π(C(Ti))) units to each

S ′′ ∈ C(Ti). By the inductive hypothesis and Lemma 2.15, a flow fTi
already exists under

which S sends π(S)π(S ′′)/(π(C(Ti)))
2 units to S ′′ at a congestion cost of O(nclogn−1), for

appropriate constant c. Thus letting S send O(π(S)π(S ′′)/π(C(Ti))) units to S ′′ reduces the

amount sent across each edge by at least a factor of 1/π(C(Ti)), while the weight of each

edge increases when passing from the factor graphs of C(Ti) to M(G) by at most the same

factor—up to the change in degree of the flip graph—by Lemma 3.17. This gives congestion

cost at most O(nclogn).

Specific polynomial bounds

We now revisit the discussion in Section B.1. In Theorem 1.5, the 1 + log λ̂ term in the

exponent comes from observing that, in Lemma 3.14, we can replace the K + 1 term with

Kλt+1+1 —since in the proof of Lemma 3.14, this is the factor by which the flow carried into

a class from a child class increases when adjusting for the weights induced by the parameter λ.

A similar analysis gives the result for partial q-colorings in Theorem 1.6.

The Ising and Potts models

As we discussed in the introduction, one can apply our framework to the Ising and Potts

models when the parameters of these models are fixed. We do not give the standard definitions

of these models or a detailed proof. Instead, we simply observe that in a graph of bounded

carving width, the same decomposition technique given in the non-hierarchical framework

99

applies, with the following modification. Since all assignments of spins are possible, so

instead of considering the cardinalities of the sets we consider weights of configurations under

the standard (exponentiated) energy functions. One can verify the conditions under this

modification, using the insight that the weights of the classes differ by a constant factor

from one another, since this factor is determined only by evaluating the energy function at a

constant number of edges and vertices.

3.7 Dealing with non-independence

The Glauber dynamics on independent sets induces a Glauber graph, MIS(G), that behaves

well when partitioned into classes. That is, each class CIS(T) is isomorphic to the Cartesian

product of two Glauber graphs on subgraphs of G. As we will see in Section 3.5, the Glauber

dynamics on partial q-colorings is similarly well-behaved. Unfortunately, as we will discuss

in Section 3.7, this does not hold for dominating sets or, in the unbounded-degree case, for

b-edge covers. In these problems, the selection T ⊆ X of vertices (or edges) in the separator

X with which the class C(T) is identified imposes constraints on what vertices (or edges) can

be chosen in the two subgraphs A ∪B = G \X—and choices in A may invalidate those in B.

In the case of maximal independent sets and maximal b-matchings, the situation is worse:

the classes induced by selection of T ⊆ X may not even be internally connected.

We address both of these problems by relaxing the framework condition that each class C(T)

be a Cartesian product of Glauber graphs, and instead require that each class C(T) be the

(not necessarily disjoint) union of Cartesian products of Glauber graphs, satisfying certain

conditions. We fully specify this condition, and show that the remaining chains satisfy it,

this section. That is, we complete the proofs of Theorem 1.7 and Theorem 1.8. The principal

problem is that when attempting to partition the Glauber graph into classes as we did for

100

independent sets, the resulting classes are not isomorphic to Cartesian products of Glauber

graphs. For instance, in the case of b-edge covers, we wish to identify a class of b-edge

covers with the set T of edges selected within the subgraph of G induced by the separator X.

Unfortunately, the resulting subproblems on A and B (where, as before, A ∪B = V (G) \X)

are not independent. This is because for each vertex x ∈ X, the sum of the number of

incident edges selected in A and those in B must be at least b(x), so the choices made in A

depend on those made in B, and vice versa.

The solution is as follows: we divide each class into smaller (not necessarily disjoint) “sub-

classes”, each of which is a Cartesian product of smaller Glauber graphs on b-edge covers.

We detail this in Section 3.7.2.

We encounter a similar problem in the case of dominating sets, with an additional challenge

that will require us to generalize the definition of a dominating set into what we call the

“constrained Steiner dominating set” problem. We give the full details in Section 3.7.3.

For maximal independent sets and maximal b-matchings (Section 3.7.6), the non-hierarchical

framework is more natural, as we require bounded degree. The challenge is twofold: first, we

need to define the Glauber graphs and show that they are connected. Secondly, we need to

deal with non-independence as with b-edge covers and dominating sets—with the additional

challenge, as we will see, that the classes are not necessarily internally connected.

3.7.1 Framework relaxation to allow non-independence

Lemma 3.19. Suppose a Glauber graph M(G) satisfies the conditions of the hierarchical

framework in Section 3.3.3, except for Condition 6. Suppose further that each class C(T) ∈ S is

the union of at most O(1) subclasses C(T) = C(T1)∪C(T2)∪· · · C(Tk), where for i = 1, . . . , k−1:

1. |C(Ti)| = Θ(1)|C(Ti+1)|, and

101

2. C(Ti) and C(Ti+1) share at least Ω(1)|C(Ti)| = Ω(1)|C(Ti+1)| vertices.

Suppose further that for i = 1, . . . , k, C(Ti) is isomorphic to the Cartesian product of two

Glauber graphs M(G1) and M(G2), each of which can be recursively partitioned in the same

way as M(G).

Then the expansion of M(G) is Ω(1/nc), where c = O(1).

Proof. It suffices to construct a multicommodity flow among the subclasses in S(T) and

bound its congestion. By the inductive hypothesis and Lemma 2.15, each subclass C(Ti) has

an internal flow fTi
with congestion ρTi

≤ clogn−1. We would like to derive a flow fT with

congestion ρT ≤ clogn−1; this will allow the rest of the proof of Lemma 3.11 to be applied.

The solution is to follow the proof sketch of Lemma 3.9: for Glauber graph vertices S ∈

C(Ti), S
′ ∈ C(Tj) ̸= C(Ti), send the S−S ′ flow through the classes C(Ti+1), C(Ti+1), . . . , C(Tj−1).

For l = i, . . . , j, let Yl and Zl be as in the proof of Lemma 3.9, except that Zl = Yl+1. That

is, the boundary vertices in consecutive pairs of classes on the path are shared between the

two classes. The routing of flow within each class on the path is the same as in Lemma 3.9.

The resulting congestion bound is the same as in Lemma 3.9. The only concern is that since

the subclasses may not be disjoint, each edge within a subclass may incur congestion from

multiple steps on the path. However, because the number of classes is O(1), there are O(1)

such steps, and thus the factor by which this increases congestion is O(1).

3.7.2 b-edge covers in the relaxed hierarchical framework

To finish the proof of Theorem 1.7, it now suffices to show that the chains on dominating

sets and b-edge covers satisfy the conditions of the hierarchical framework when treewidth is

bounded. We begin with b-edge covers.

102

Let CBEC(T) be defined as in Section 3.4.2, with the following modification: define each class

CBEC(T) so that T is identified with the set of selected edges both of whose endpoints are in

X, instead of including all edges incident to vertices in X.

We now divide each class CBEC(T) into subclasses. For each x ∈ X, let δT (x) be the number

of edges incident to x (from neighbors in X) that are selected in T . Let b′(x) = b(x)− δT (x),

i.e. decrease b(x) by the number of edges incident to x selected in X. Clearly for each x ∈ X,

every valid b-edge cover in T includes numbers of edges from neighbors in A and B that sum

to at least b′(x).

We will define a subclass of CBEC(T) for each possible assignment of b-values to the vertices

in X in the subproblems on A and B. (The number of these subclasses, since |X| = O(1)

and b is bounded, is still O(1).)

Formally: Define functions β and β as any assignments of b-values, in the subproblems

on A and B respectively, to all vertices x ∈ X, such that the β and β values sum to b′(x) for

each x.

There are many degrees of freedom in defining β. Consider each possible choice of β and β.

Define the subclass CBEC(Tβ) as the set of all b-edge covers that consist of a β-edge cover in

A and a β-edge cover in B.

That is, in class CBEC(Tβ), for each x, the number of incident edges selected in A is at least

β(x), and the number of incident edges in B is at least β(x).

Each of these subclasses CBEC(Tβ) is a Cartesian product of b-edge cover Glauber graphs,

over subgraphs A and B of G, and thus internally has a good flow fβ; thus it suffices to

combine flows within these subclasses together to design a flow fT in CBEC(T). We can then

apply the hierarchical framework to obtain the desired flow in MBEC(G).

103

Lemma 3.20. Given a graph G and corresponding Glauber graph MBEC(G), each class

CBEC(T) of b-edge covers in MBEC(G) satisfies the conditions of Lemma 3.19.

Proof. The number of subclasses is clearly O(1). The subclasses are also all within an O(1)

size factor of one another. To see this, compare |CBEC(T)| and |CBEC(Tβ)|, for any β. Fix

some lexicographic ordering of the edges of G. For every b-edge cover S ∈ CBEC(T), there

exists a b-edge cover S ′ ∈ CBEC(Tβ) that includes the lexicographically first β(x) edges in

A incident to x, for each x ∈ X, and also includes the first β(x) edges in B incident to x.

(Let S ′ agree with S on all other edges.) Clearly this is a 2b-to-1 mapping, i.e. an O(1)-to-1

mapping.

Finally, every pair of subclasses overlaps in at least Ω(1)|CBEC(T)| vertices: consider the set

of all b-edge covers in CBEC(T) in which for each x ∈ X, x has min{b′(x), δA(x)} incident

edges selected in A, and min{b′(x), δB(x)} incident edges selected in B. The number of such

b-edge covers is Ω(1)|CBEC(T)|, by similar reasoning to the above; furthermore, every pair of

subclasses of CBEC(T) clearly contains this set of b-edge covers. The lemma follows.

The rest of the hierarchical framework conditions are easy to verify, and thus the result in

Theorem 1.7 for the unbiased case of b-edge covers follows. The specific bound follows from

the following observations: first, constructing the flow within a class CBEC(T) incurs a factor

of

2L|CBEC(T)|/(ν(min
β

|CBEC(Tβ)|)),

where ν is the minimum fraction of vertices shared by a pair of adjacent classes whose

intersection is used in the flow, L is the maximum number of subclasses that a vertex can

belong to, and minβ |CBEC(Tβ)| is the smallest subclass of CBEC(T). L is at most the number

of subclasses, which is upper-bounded by (b+ 1)t+1; the smallest subclass has size at least

|CBEC(T)|/2b(t+1); and ν ≥ 1/2. (The latter two facts follow readily from observations made

in the proof of Lemma 3.20.)

104

Thus the construction of the flow within CBEC(T) incurs a factor of at most 4(b+1)t+1 ·2b(t+1).

In the biased chain the overlap between adjacent subclasses is at least λ/(1 + λ) instead of

1/2, and we need to adjust the ratio |CBEC(T)|/|CBEC(Tβ)| by a factor of λ̂b(t+1). Therefore

this expression becomes

2
1 + λ

λ
(b+ 1)t+1 · (2λ̂)b(t+1).

The rest of the inductive step is as in the case of independent sets, i.e. we apply Lemma 3.14,

using K ≤ 2t(t+1)/2, ∆M ≤ m, and N ≤ 2m. (In the weighted case, π∗
min ≤ (2λ̂)m. When

considering K in the application of Lemma 3.14, we need to weight K by a factor of λ̂t(t+1)/2.

Thus we obtain an additional factor of

2(Kλ̂t(t+1)/2 + 1) ≤ 2((2λ̂)t(t+1)/2+1).

Altogether, these two flow constructions combined, in each iteration, result in a factor of at

most

4(
1 + λ

λ
)(b+ 1)t+1 · (2λ̂)(t+1)(b+t/2)+1.

The resulting mixing time is therefore at most

O(((1 + λ̂)λ̂)2m3(log λ̂+ 1)n2(2+log(1+λ)−log(λ)+(t+1) log(b+1)+((t+1)(b+t/2)+1)(1+log λ̂))).

We have ignored one detail: technically the number of levels of induction is greater than log n,

because the t+1 vertices in the separator are included in the independent subproblems within

each subclass. Furthermore, we cannot assume that we have two connected components of

size at most |V (G)|/2 at each level of decomposition, so the base of the log is 3/2 and not 2.

However, for every ε < 1/2, we have for all n ≥ (t + 1)/ε that 2n/3 + t + 1 ≤ n(2/3 + ε).

105

Thus at the cost of a base case for the induction of (2λ̂)((t+1)/ε)2 , we adjust the log n exponent

in the congestion term to log1/(2/3+ε) n. Letting ε = 1/6, we obtain the mixing bound claimed

in Theorem 1.7, namely

O

((2λ̂)36(t+1)2)2

(
λ̂

(1 + λ̂)

)2

m3(log λ̂+ 1)n
2(3+log(1+λ)−log(λ)+(t+1) log(b+1)+((t+1)(b+t/2)+1)(1+log λ̂))

log(6/5)

 .

3.7.3 Dominating sets in the relaxed hierarchical framework

To finish the proof of Theorem 1.7 in the unbiased case, we now deal with dominating sets.

As with b-edge covers, defining classes in the same way as in the case of independent sets

does not result in Cartesian products of dominating set Glauber graphs, because it may be

that some vertices in X are not dominated by vertices in T ∩X; these vertices must then be

dominated by vertices in A or in B.

Therefore, to preserve the recursive structure of the problem and thus complete the proof of

Theorem 1.7, we define the constrained Steiner dominating set problem as a generalization of

the dominating set problem, in which there are three types of vertices:

1. “normal” vertices, which must be dominated and may be selected in a dominating set,

2. “Steiner” vertices, which need not be dominated and may be selected, and

3. “forbidden” vertices, which must be dominated and must not be selected.

Now, we let X be a balanced vertex separator in G as before. We would like to define each

class CDOM(T) by a choice of vertices in X. In the resulting subproblem in A (similarly

B), we then designate each vertex v ∈ A ∪ B having a neighbor selected in T ⊆ X as

106

Steiner. However, there may be vertices in X that are not selected or dominated by any

vertex in T . To obtain a valid dominating set, some neighbor of each such vertex w must

be chosen in either A or B. Thus we have non-independent subproblems, which ruins the

Cartesian product structure needed for the divide-and-conquer argument. To resolve this

non-independence, we divide CDOM(T) into subclasses as follows:

Given a graph G, separator X, and CSDS Glauber graph MDOM(G), and class CDOM(T) of

CSDS’s in MDOM(G), let U be the set of undominated vertices in X in class CDOM(T). For

each subset W ⊆ U , let the subclass CDOM(TW) be the set of all CSDS’s that consist of a

union of a CSDS on A∪W , and a CSDS on B ∪U \W—in which each w ∈ W is a forbidden

vertex in the A subproblem, and each w ∈ U \W is a forbidden vertex in the B subproblem.

There are at most 2t = O(1) such subclasses. Technically, as with b-edge covers, these are not

equivalence classes, as some CSDS solutions may belong to multiple classes. We will address

this shortly, but first we specify how to route flow among the subclasses within CDOM(T).

Once we have specified this flow, we can simply apply the flow described in the proof of

Lemma 3.11 to route flow among the “main” classes.

Lemma 3.21. Given a graph G, corresponding CSDS Glauber graph MDOM(G), and a

class CDOM(T) of CSDS’s in MDOM(G), the partition into subclasses given for dominating

sets satisfies the conditions of Lemma 3.19.

Proof. Clearly there are O(1) classes. We observe that the subclasses are all within an O(1)

size factor of one another. To see this, compare the sizes of CDOM(T) and CDOM(TW). Since

CDOM(TW) ⊆ CDOM(T), |CDOM(TW)| ≤ CDOM(T). On the other hand, consider the mapping

that sends every CSDS s ∈ CDOM(T) to a CSDS s′ ∈ CDOM(TW) in which at least one neighbor

(say, the first lexicographically) of each w ∈ W is selected in A, and in which the first neighbor

of each w ∈ U \W is selected in B. This mapping is clearly 2|U |-to-1 = O(1)-to-1, and thus

the size factor difference is O(1).

107

Now, since the subclasses are not equivalence classes, many pairs of subclasses overlap.

In particular, let T and U be as before, and suppose for some u ∈ U , W ′ = W ∪ {u}.

Then CDOM(TW) and CDOM(TW ′) overlap at those CSDS’s in which some neighbor of u in A is

selected, and some neighbor of u in B is selected. For every such pair of subclasses CDOM(TW)

and CDOM(TW ′), at least half of the CSDS’s in CDOM(TW) and at least half of those in

CDOM(TW ′) are part of the overlap.

It is clear that CDOM(T) is internally connected via these overlaps: every CSDS in CDOM(T)

has a path to the trivial CSDS in which every non-forbidden vertex of A ∪ B is selected.

Thus the conditions of Lemma 3.19 are satisfied.

As in the discussion following Lemma 3.20, we derive the bound in Theorem 1.7 as follows:

the flow within a class incurs a congestion factor of

2
1 + λ

λ
· (2λ̂)t+1|CDOM(T)|/(min

W
|CDOM(TW)|) ≤ 2

1 + λ

λ
(4λ̂)t+1.

The application of Lemma 3.14 contributes a 2(Kλ̂t+1 + 1) factor to the inductive step, with

K = 2t+1.

Thus the factor for one iteration is at most

4
1 + λ

λ
(8λ̂2)t+2.

The inclusion of the t + 1 separator vertices in the subproblems, as with b-edge covers,

increases the induction depth, and an analogous analysis gives a base case of (2λ̂)6(t+1) using

ε = 1/6. Putting all this together with the fact that ∆M ≤ n and 1/π∗
min ≤ (2λ̂)n gives a

mixing bound of

108

O(((2λ̂)6(t+1))2(
λ̂

1 + λ̂
)2(1 + log λ̂) · n2 log(4 1+λ

λ
(8λ̂2)t+2)/ log(6/5)+3)

= O(((2λ̂)12(t+1))(
λ̂

1 + λ̂
)2(1 + log λ̂) · n2(2+log(1+λ

λ
)+(t+2)(3+log λ̂))/ log(6/5)+3).

3.7.4 Rapid mixing in the relaxed hierarchical framework for all

λ > 0

We now generalize Lemma 3.19 to all λ > 0, finishing the proof of Theorems 1.6 and 1.7.

Lemma 3.22. For the Glauber graphs MBEC(G) and MDOM(G), with classes defined as in

Lemma 3.19, and with stationary distribution π induced by parameter λ as in the discussion

in Section 3.6.1, the flow construction in Lemma 3.19 results in a congestion factor gain of

at most ρ = O(1) at each of the O(log n) levels of induction, resulting in at most polynomial

overall congestion.

Proof. We need to show that the flow construction within a class C(T) in Lemma 3.19 produces

at most an O(1)-factor increase in congestion; the rest of the argument is similar to the proof

of Lemma 3.18. For the case of dominating sets, consider a pair of CDOM(TW) ⊆ CDOM(T) and

CDOM(TW ′) ⊆ CDOM(T). For every such pair, consider the intersection I of the two subclasses,

namely the set of dominating sets in which for every input graph vertex v ∈ W ∪W ′, some

neighbor of v is selected in A, and for every vertex w ∈ U \ (W ∩W ′), some neighbor of w is

selected in B. There exists an O(1)-to-1 mapping from CDOM(TW) to I—found by adding O(1)

neighbors of vertices in U as described above to each dominating set S ∈ CDOM(TW)—under

which the image S ′ of S has |S ′ \ S| = O(1), and therefore π(S ′) = λ|S′\S|π(S) = Θ(1)π(S).

This shows that π(I) = Θ(π(CDOM(TW))) = Θ(π(CDOM(TW ′))).

Thus we use the overlaps between classes to route flow along a path of classes as in the proof

109

of Lemma 3.19. As before, at each class in the path, the internal routing produces an O(1)

factor increase in the congestion within the class. The concern, again, is that due to overlap,

there may be edges belonging to multiple classes that thus incur congestion multiple times in

the routing of the flow; as before, this is not a problem as there are O(1) pairs of classes for

which this occurs.

The argument for MBEC(G) is similar, with the intersection I found by selecting sufficiently

many edges incident to each vertex x ∈ X to satisfy membership in both subclasses CBEC(Tβ)

and CBEC(Tβ′).

3.7.5 Rapid mixing of the Glauber dynamics on b-matchings for

all λ > 0

For the claim about b-matchings in Theorem 1.7, we do not need the relaxed framework; in

fact it suffices to combine Lemma 3.13 with the following lemma:

Lemma 3.23. One can adapt the proof of Lemma 3.18 to the hierarchical framework, proving

the claim about the Glauber dynamics on b-matchings in Theorem 1.7 for all λ > 0.

Proof. The proof of Lemma 3.18 uses a simple mapping argument to show that for every

ancestor C(Ti) of a class C(T), π(C(Ti)) = Θ(1)π(C(T)), then allows each boundary edge

e between classes to carry O(1)Q(e) units of flow across the boundary, by ensuring that

each boundary vertex S carries flow in proportion to its weight π(S). Since all pairs of

classes C(T), C(T ′) have a common ancestor in the case of b-matchings, we in fact have

π(C(T)) = Θ(1)π(C(T ′)) for every pair of classes C(T), C(T ′). The bound on flow across the

boundary therefore still holds; the argument for bounding congeston factor increase wthin a

class is the same as in the proof of Lemma 3.18.

110

For the specific mixing upper bound for b-matchings, we use Lemma 3.14, and observe that

K ≤ 2∆(t+1); the parameter λ contributes at most a λ̂∆(t+1) factor, 1/π∗
min ≤ (2λ̂)m, and

∆M ≤ m, so we have a mixing upper bound of

O(((1 + λ̂)λ̂)2(2((2λ̂)∆(t+1) + 1))2 lognm3(1 + log λ̂))

= O(((1 + λ̂)λ̂)2(1 + log λ̂)m3n2∆(t+2)(1+log λ̂)+2).

3.7.6 Maximal independent sets and maximal b-matchings in the

non-hierarchical framework

Dealing with internally disconnected classes

As noted in Section 3.7, we use the non-hierarchical framework and assume bounded carving

width for the chains on maximal independent sets and maximal b-matchings. Once we have

defined these chains, we will see that partitioning the Glauber graph for each chain in the

natural way will result in classes that are not necessarily internally connected. The solution

will be to relax the framework conditions so that the classes need not be disjoint—but then

require that every pair of overlapping classes must overlap in a large number of vertices.

More precisely:

Lemma 3.24. Suppose a Glauber graph M(G) satisfies the conditions of the non-hierarchical

framework in Section 3.2.3, except that:

1. The O(1) classes are not necessarily disjoint.

2. Each pair of classes C(T) and C(T ′) sharing at least one vertex shares Θ(1)|C(T)| =

Θ(1)|C(T ′)| vertices.

Then the expansion of M(G) is Ω(1/nc), where c = O(1).

111

X
A

B

v

X
A

B

v

Figure 3.5: Two maximal independent sets in a graph G: S (left) and S ′ (right). S and S ′

differ by a flip, with the separator X inducing the classes to which the sets belong. S ′ results
from adding v to S, removing the neighbors of v, and adding some of the neighbors of the
removed vertices.

Proof. The multicommodity flow construction is as in the proof of Lemma 3.9, except that

when sending flow from S ∈ C(T) to S ′ ∈ C(T ′) ̸= C(T) via a path through intermediate

classes, we now have some pairs of intermediate classes that share boundary vertices, instead

of sharing boundary edges. The flow is the same as before, except that there is no need to

send flow across a boundary in these cases.

The congestion analysis is the same as in the proof of Lemma 3.19.

Maximal independent sets

We now apply the non-hierarchical framework to the flip chain on maximal independent sets.

We first define the maximal independent set mixing problem, then show that it meets the

criteria of the framework, up to the conditions in Lemma 3.24.

We return to the Glauber graph defined for maximal independent sets.

Lemma 3.25. The maximum degree of MMIS(G) is at most n · 2∆2+∆, where n = |V (G)|

and ∆ is the maximum degree of any vertex in G.

Proof. The number of neighbors of a given maximal independent set S is the same as the

112

number of ways to choose a vertex v to add to or drop from S, along with a subset of the

vertices at distance at most two from v to add or drop.

Define the maximal independent set flip chain on a graph G with Glauber graph MMIS(G)

as the following Markov chain (let ∆M be the maximum degree of MMIS(G)):

1. Let X0 be an arbitrary maximal independent set in V (MMIS(G)).

2. For t ≥ 0, define Xt+1 as follows:

With probability (1/2)(δ(Xt)/∆M), let Xt+1 be a neighbor in MMIS(G) of Xt,

selected uniformly at random from the neighbors of Xt.

With probability 1− (1/2)(δ(Xt)/∆M) let Xt+1 = Xt.

For technical reasons, the following observation is necessary for obtaining a rapid mixing

bound from an expansion bound on MMIS(G).

Remark 3.2. This is the standard Markov chain on MMIS(G), with appropriate self loops

added in the standard way. Furthermore, by Lemma 3.25, if G has bounded degree, then the

degree-based weighting does not cause the spectral expansion of the chain to differ by more

than a polynomial factor from the edge (or vertex) expansion of MMIS(G).

Verification of conditions for maximal independent sets

We show how to apply the non-hierarchical version of the framework when the carving width

of G is bounded. First, to satisfy Condition 1, we would like to use a partition analogous

to that defined for independent sets: each class CMIS(T) is the set of maximal independent

sets that agree on their restriction to the vertex separator X for G. However, a subtlety

arises when considering the Cartesian product structure of the Glauber graphs on A and B

within a class T : in the independent set Glauber graph, CIS(T) was a Cartesian product of

113

two independent set Glauber graphs MMIS(GA) and MMIS(GB), respectively defined on the

independent sets in A \NA(T) and on those in B \NB(T). Here, however, the independent

sets chosen in A and in B need to give a maximal independent set when their union is taken

with the set chosen in X.

It may be that the independent set in X identified with CMIS(T) is not maximal. For a simple

example, suppose X is a path of length three, consisting of vertices u, v, and w and edges

(u, v) and (v, w), with u having neighbors only in A, w having neighbors only in B, and

v having only u and w as neighbors. Suppose CMIS(T) is identified with the independent

set {u} ⊆ X. Then every maximal independent set S ∈ T has some neighbor of w in B

chosen, or else S would not be maximal. Furthermore, one can show that defining classes in

this way would result in internally disconnected classes. Thus we cannot simply eliminate

vertices in NA(T) from A and NB(T) from B and define smaller maximal independent set

Glauber graphs. Instead, we define the classes—which, per the conditions of Lemma 3.24,

need not be disjoint—as follows:

Given a graph G with maximal independent set Glauber graph MMIS(G) and a class CMIS(T),

let U ⊆ X be the set of all unselected vertices in T that have no neighbor selected in T .

For each independent subset of the vertices in NA(U) ∪NB(U) that covers all of U—that

is, for each independent subset C ⊆ NA(U) ∪ NB(U) such that every x ∈ U has some

neighbor z ∈ C, let CMIS(TC) be the class of all independent sets in G that agree with T on

X, and that include all of the vertices in C.

The smaller Glauber graphs on A and B are now independent for a given class CMIS(TC): for

each z ∈ C, remove z and all neighbors in NA(z) ∪NB(z) from the graph, and consider the

resulting maximal independent set Glauber graphs on A\(C∪NA(C)) and on B\(C∪NB(C)).

Each class CMIS(TC) is a Cartesian product of two such graphs. It suffices to show that this

definition obeys the conditions of Lemma 3.24:

114

Lemma 3.26. Given a graph G with bounded carving width and corresponding maximal

independent set Glauber graph MMIS(G), the definition of classes given satisfies the conditions

of Lemma 3.24.

Proof. The Cartesian product structure of CMIS(TC) and the fact that X is a balanced

separator satisfy Conditions 5 and 6 of the non-hierarchical framework.

The classes do not partition CMIS(T). However, clearly there are O(1) classes. The classes are

also within an O(1) size factor of one another. To see this, define the following mapping f

from the set of all maximal independent sets in MMIS(G) to the set of maximal independent

sets in a class CMIS(TC). For each maximal independent set S ∈ V (MMIS(G)), let S ′ =

f(S) ∈ CMIS(TC) be the following maximal independent set: (i) let S ′ agree with T on all

vertices in X; (ii) let S ′ agree with TC on all vertices in NA(T)∪NB(T); (iii) let S
′ agree with

S on all vertices not in X ∪NA(T) ∪NB(T) and having no neighbor in X ∪NA(T) ∪NB(T);

(iv) add vertices to S, if needed, to obtain maximality.

The symmetric difference f(S) ⊕ S is of size at most ∆2|X| ≤ ∆2(t + 1) = O(1), where

t is the (bounded) treewidth of G and ∆ is the (bounded) degree; thus f is an O(1)-to-1

mapping. By similar reasoning, the number of shared maximal independent sets between any

two overlapping classes CMIS(TC) and CMIS(TC′) is at least Ω(1)|CMIS(TC)|, and the number

of edges between any two adjacent classes CMIS(TC) and CMIS(T
′
C′) is at least Ω(1)|CMIS(TC)|.

The lemma follows.

Maximal b-matchings in the non-hierarchical framework

We return to the maximal b-matching Glauber graph defined in Section 3.1.

115

The argument that the graph is connected is similar to the proof of Lemma 3.2.

It suffices to define a partition and verify the conditions. We would like to identify each

class CMBM(T) with the chosen subset of the edges that have at least one endpoint in the

small balanced separator X. However, as with maximal independent sets, the maximality

requirement introduces non-independent subproblems. To modify the definition of the classes,

we first need to introduce the notion of a saturated vertex:

Given a b-matching in a graph G, consider a vertex v saturated if b(v) edges incident to v are

selected in the matching.

It may be that a vertex v ∈ X is not saturated in a maximal b-matching, and thus the

choice of edges inducing CMBM(T) does not saturate v. In this case, we have a constraint on

the subproblems in A and B. Namely, it must be that some neighbor of v, u ∈ N(X), is

saturated, or else the edge (u, v) could be added to the matching. We use this fact to define

the subclasses of a class CMBM(T):

Given a graph G with separator X, maximal b-matching Glauber graph MMBM(G), and a

set T of edges selected whose endpoints all lie in X, let U ⊆ X be the set of unsaturated

vertices in X induced by T ; let C be a minimal set of edges such that, after adding C to T ,

some neighbor of v is saturated for every v ∈ U . Define the class CMBM(TC) as the set of all

maximal b-matchings in T that contain all edges in C.

As in Section 3.7.6, these classes are not equivalence classes, because they overlap. Again,

however, each b-matching belongs to at most O(1) subclasses, and thus this overlap does not

interfere with the proof.

We now verify that this definition of classes satisfies Lemma 3.24:

Lemma 3.27. Given a graph G with bounded carving width, corresponding maximal b-

matching Glauber graph MMBM(G), the division into classes satisfies the conditions of

116

Lemma 3.24.

Proof. The argument is similar to the proof of Lemma 3.26: again we have a Cartesian product

structure in each class CMBM(TC)—where the resulting maximal b-matching subproblems

on A and B result from (i) removing each edge (u,w) ∈ C from G[A] and G[B], and (ii)

decreasing b(u) and b(w) accordingly.

Clearly the number of classes is O(1), due to the bounded carving width of G. The classes

differ by an O(1) size factor, and the overlaps are large; the argument, along with the resulting

flow, is similar to that in the proof of Lemma 3.26.

Specific mixing upper bounds for maximal independent sets and maximal b-

matchings

For the derivation of the specific bounds stated in Theorem 1.8, we apply Lemma 2.10,

with the modification that the Emin term must be replaced by the term min{Emin,Omin},

where Omin is the size of the smallest overlap between a pair of classes that share at least

one vertex. For maximal independent sets, Emin ≥ N/27∆
6(t+1) and Omin ≥ N/23∆

2(t+1), so

min{Emin,Omin} ≥ N/27∆
6(t+1). We also gain at each level of induction an additional factor

of K ≤ 2(∆+1)(t+1) due to overlaps. Combining this with the fact that ∆M ≤ 23∆
2
n and

N ≤ 2n gives a total mixing bound of

O((2 · 27∆6(t+1) · 2(∆+1)(t+1))2 logn · 26∆2

n3)

= O(26∆
2

n2(t+1)(7∆6+∆+1)+5)

as claimed. (The log(3/2) term in the theorem statement comes from the fact that the base

of the log in the induction is 3/2.)

117

A similar argument for maximal b-matchings gives the result claimed in Theorem 1.8, with

∆M ≤ 26∆
2
m, N ≤ 2m, K ≤ 23∆

2(t+1), Emin ≥ N/28∆
7(t+1), and Omin ≥ N/24∆

3(t+1).

I.e., we have

O((2 · 28∆7(t+1) · 23∆2(t+1))2 logn · 212∆2

m3)

= O(212∆
2

m3n2(t+1)(8∆7+3∆2)+2).

3.8 Open Questions

We have developed a framework whose application shows rapid mixing for several natural flip

chains on graph-theoretic structures in graphs of bounded treewidth. However, some work is

required in showing that each of the structures satisfies the conditions of the framework. We

hope that a more robust version of the framework can be developed that further unifies these

techniques.

In particular, all of the structures we have analyzed satisfy the conditions of Courcelle’s

theorem, as noted previously. It would be interesting to determine whether the framework

can be extended to all structures satisfying these conditions.

The fact that our results hold for all values of λ > 0 is not especially surprising, as Ioannis

Panageas has observed, since the limiting case λ = ∞ corresponds to the optimization version

of each problem, and the case λ = 1 corresponds to uniform sampling; as stated in the

introduction, both of these problems are already known to be fixed-parameter tractable in

treewidth. (In fact, as we noted in the introduction, the extension of Courcelle’s theorem,

combined with the reduction from sampling to counting, applies to all values of λ > 0.)

Nonetheless, our result does settle a missing case of the mixing question in some generality,

118

through purely combinatorial methods.

In all of our mixing bounds, the dependency on the parameters—treewidth and degree—is

bad. It would be interesting to see whether some refinement of our methods could give a

truly fixed-parameter tractable result, in which the treewidth and degree do not appear in

the exponent of n.

119

Bibliography

[1] An upper bound for the number of planar lattice triangulations. Journal of Combinatorial
Theory, Series A, 103(2):383 – 386, 2003. doi:10.1016/S0097-3165(03)00097-9.

[2] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-
dimensional expanders and applications to the hardcore model. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 1319–1330,
2020. doi:10.1109/FOCS46700.2020.00125.

[3] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave
polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2019), New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3313276.3316385.

[4] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials,
entropy, and a deterministic approximation algorithm for counting bases of matroids.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 35–46, 2018. doi:10.1109/FOCS.2018.00013.

[5] Pinaki Banerjee. Scattering amplitudes from positive geometries. In Prafulla Kumar
Behera, Vipin Bhatnagar, Prashant Shukla, and Rahul Sinha, editors, XXIII DAE High
Energy Physics Symposium, pages 421–427, Singapore, 2021. Springer Singapore.

[6] Noam Berger, Claire Kenyon, Elchanan Mossel, and Yuval Peres. Glauber dynamics on
trees and hyperbolic graphs. Probability Theory and Related Fields, 131:311 – 340, 2005.
doi:s00440-004-0369-4.

[7] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel
Štefankovič. Approximation via correlation decay when strong spatial mixing fails.
SIAM Journal on Computing, 48(2):279–349, 2019.

[8] Ivona Bezáková and Wenbo Sun. Mixing of Markov chains for independent sets on
chordal graphs with bounded separators. In Computing and Combinatorics, pages
664–676. Springer International Publishing, 2020.

[9] Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. volume
7370 of Lecture Notes in Computer Science, pages 196–227. Springer, 2012. doi:

10.1007/978-3-642-30891-8_12.

120

https://doi.org/10.1016/S0097-3165(03)00097-9
https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1109/FOCS.2018.00013
https://doi.org/s00440-004-0369-4
https://doi.org/10.1007/978-3-642-30891-8_12
https://doi.org/10.1007/978-3-642-30891-8_12

[10] Magnus Bordewich, Catherine Greenhill, and Viresh Patel. Mixing of the glauber
dynamics for the ferromagnetic potts model. Random Structures & Algorithms, 48(1):21–
52, 2016. doi:10.1002/rsa.20569.

[11] Magnus Bordewich and Ross J. Kang. Subset Glauber dynamics on graphs, hypergraphs
and matroids of bounded tree-width. Electronic Journal of Combinatorics, 21(4), 2014.
doi:10.37236/4195.

[12] Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Dynamics of
lattice triangulations on thin rectangles. Electronic Journal of Probability, 21, 05 2015.
doi:10.1214/16-EJP4321.

[13] Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Random lattice
triangulations: structure and algorithms. Annals of Applied Probability, 25:1650–1685,
2015.

[14] Alessandra Caraceni and Alexandre Stauffer. Polynomial mixing time of edge flips
on quadrangulations. Probability Theory and Related Fields, 176(1):35–76, Feb 2020.
doi:10.1007/s00440-019-00913-5.

[15] Yijia Chen and Jörg Flum. The parameterized complexity of maximality and minimality
problems. Annals of Pure and Applied Logic, 151(1):22 – 61, 2008. doi:10.1016/j.

apal.2007.09.003.

[16] Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Rapid mixing for
colorings via spectral independence. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1548–1557. doi:10.1137/1.9781611976465.94.

[17] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to
uniqueness via contraction, 2020. arXiv:2004.09083.

[18] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics:
Entropy factorization via high-dimensional expansion. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 1537–1550, 2021.

[19] Karel Culik II and Derick Wood. A note on some tree similarity measures. Information
Processing Letters, 15(1):39–42, 1982.

[20] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Rapidly Mixing
Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[21] Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible markov
chains. The Annals of Applied Probability, 3(3):696–730, 1993.

[22] Persi Diaconis and Daniel Stroock. Geometric Bounds for Eigenvalues of Markov Chains.
The Annals of Applied Probability, 1(1):36 – 61, 1991. doi:10.1214/aoap/1177005980.

121

https://doi.org/10.1002/rsa.20569
https://doi.org/10.37236/4195
https://doi.org/10.1214/16-EJP4321
https://doi.org/10.1007/s00440-019-00913-5
https://doi.org/10.1016/j.apal.2007.09.003
https://doi.org/10.1016/j.apal.2007.09.003
https://doi.org/10.1137/1.9781611976465.94
http://arxiv.org/abs/2004.09083
https://doi.org/10.1214/aoap/1177005980

[23] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Matrix norms and rapid mixing
for spin systems. The Annals of Applied Probability, 19(1):71–107, 2021/10/28/ 2009.
Full publication date: Feb., 2009. URL: http://www.jstor.org/stable/30243572.

[24] David Eppstein. The effect of planarization on width. In Graph Drawing and Network
Visualization, pages 560–572. Springer International Publishing, 2018.

[25] David Eppstein and Daniel Frishberg. Rapid mixing of the hardcore Glauber dynamics
and other Markov chains in bounded-treewidth graphs. 2021. arXiv:2111.03898,
doi:10.48550/arXiv.2111.03898.

[26] David Eppstein and Daniel Frishberg. Improved mixing for the convex polygon
triangulation flip walk. 2022. URL: https://arxiv.org/abs/2207.09972, doi:

10.48550/ARXIV.2207.09972.

[27] Jeff Erickson. Computational topology: Treewidth. Lecture Notes, 2009. URL: http:
//jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf.

[28] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid mixing from spectral
independence beyond the boolean domain. In Proceedings of the Thirty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, page 1558–1577, USA,
2021. Society for Industrial and Applied Mathematics.

[29] S. M. Ferdous, A. Khan, and A. Pothen. Parallel algorithms through approximation:
B-edge cover. In 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 22–33. IEEE Computer Society, May 2018. doi:10.1109/IPDPS.2018.
00013.

[30] Q Ge and D Štefankovič. A graph polynomial for independent sets of bipartite graphs.
Combinatorics, Probability and Computing, 21(5):695–714, 2012.

[31] F. Graham and P. Tetali. Isoperimetric inequalities for cartesian products of graphs.
Comb. Probab. Comput., 7:141–148, 1998.

[32] Venkatesan Guruswami. Rapidly mixing markov chains: A comparison of techniques (a
survey). ArXiv, 2016. URL: https://arxiv.org/abs/1603.01512.

[33] Thomas P Hayes. A simple condition implying rapid mixing of single-site dynamics
on spin systems. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 39–46. IEEE, 2006.

[34] Thomas P. Hayes, Juan C. Vera, and Eric Vigoda. Randomly coloring planar graphs with
fewer colors than the maximum degree. Random Structures & Algorithms, 47(4):731–
759, 2015. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20560,
doi:10.1002/rsa.20560.

[35] Marc Heinrich. Glauber dynamics for colourings of chordal graphs and graphs of bounded
treewidth, 2020. URL: https://arxiv.org/abs/2010.16158, arXiv:2010.16158.

122

http://www.jstor.org/stable/30243572
http://arxiv.org/abs/2111.03898
https://doi.org/10.48550/arXiv.2111.03898
https://arxiv.org/abs/2207.09972
https://doi.org/10.48550/ARXIV.2207.09972
https://doi.org/10.48550/ARXIV.2207.09972
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf
https://doi.org/10.1109/IPDPS.2018.00013
https://doi.org/10.1109/IPDPS.2018.00013
https://arxiv.org/abs/1603.01512
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20560
https://doi.org/10.1002/rsa.20560
https://arxiv.org/abs/2010.16158
http://arxiv.org/abs/2010.16158

[36] Peter J. Hilton and Jean J. Pedersen. Catalan numbers, their generalization, and their
uses. The Mathematical Intelligencer, 13:64–75, 1991.

[37] Lingxiao Huang, Pinyan Lu, and Chihao Zhang. Canonical paths for MCMC: from
art to science. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 514–527. SIAM, 2016.

[38] Mrunmay Jagadale and Alok Laddha. Towards positive geometry of multi scalar
field amplitudes : Accordiohedron and effective field theory. 2021. URL: https:
//arxiv.org/abs/2104.04915.

[39] Mark Jerrum and Alistair Sinclair. Conductance and the rapid mixing property for
Markov chains: The approximation of permanent resolved. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, 1988. doi:

10.1145/62212.62234.

[40] Mark Jerrum, Jung-Bae Son, Prasad Tetali, and Eric Vigoda. Elementary bounds
on Poincaré and log-Sobolev constants for decomposable Markov chains. The Annals
of Applied Probability, 14(4):1741–1765, 2004. URL: http://www.jstor.org/stable/
4140446.

[41] V. Kaibel and G. Ziegler. Counting lattice triangulations. arXiv: Combinatorics, 2002.

[42] Volker Kaibel. On the expansion of graphs of 0/1-polytopes. In The Sharpest Cut: The
Impact of Manfred Padberg and His Work, pages 199–216. SIAM, 2004.

[43] Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap.
Combinatorica, 40(2):245–281, 2020.

[44] Arif Khan and Alex Pothen. A new 3/2-approximation algorithm for the b-edge cover
problem. In 2016 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific
Computing, pages 52–61. SIAM, 2016.

[45] Arif Khan, Alex Pothen, Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish,
Narayanan Sundaram, Fredrik Manne, Mahantesh Halappanavar, and Pradeep Dubey.
Efficient approximation algorithms for weighted b-matching. SIAM Journal on Scientific
Computing, 38(5):S593–S619, 2016. doi:10.1137/15M1026304.

[46] David A. Klarner. Correspondences between plane trees and binary sequences. Journal
of Combinatorial Theory, 9(4):401–411, 1970. URL: https://www.sciencedirect.com/
science/article/pii/S002198007080093X, doi:10.1016/S0021-9800(70)80093-X.

[47] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and
applications. arXiv e-prints, pages arXiv–2001, 2020.

[48] David A Levin, Yuval Peres, and Elizabeth Wilmer. Markov chains and mixing times,
volume 107. American Mathematical Soc., 2017.

123

https://arxiv.org/abs/2104.04915
https://arxiv.org/abs/2104.04915
https://doi.org/10.1145/62212.62234
https://doi.org/10.1145/62212.62234
http://www.jstor.org/stable/4140446
http://www.jstor.org/stable/4140446
https://doi.org/10.1137/15M1026304
https://www.sciencedirect.com/science/article/pii/S002198007080093X
https://www.sciencedirect.com/science/article/pii/S002198007080093X
https://doi.org/10.1016/S0021-9800(70)80093-X

[49] J. Loday. The multiple facets of the associahedron. In Proc. 2005 Academy Coll. Series,
2005.

[50] László Lovász and Ravi Kannan. Faster mixing via average conductance. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC ’99, page
282–287, New York, NY, USA, 1999. Association for Computing Machinery. doi:

10.1145/301250.301317.

[51] Brendan Lucier, Michael Molloy, and Yuval Peres. The Glauber dynamics for colourings
of bounded degree trees. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 631–645, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[52] Neal Madras and Dana Randall. Markov chain decomposition for convergence rate
analysis. The Annals of Applied Probability, 12(2):581 – 606, 2002. doi:10.1214/aoap/
1026915617.

[53] Fabio Martinelli, Alistair Sinclair, and Dror Weitz. Fast mixing for independent sets,
colorings, and other models on trees. Random Structures & Algorithms, 31(2):134–
172, 2007. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20132,
doi:10.1002/rsa.20132.

[54] Lisa McShine and P. Tetali. On the mixing time of the triangulation walk and other
catalan structures. In Randomization Methods in Algorithm Design, 1997.

[55] Milena Mihail and Umesh Vazirani. On the expansion of 0-1 polytopes. Journal of
Combinatorial Theory, Series B, 1989.

[56] Michael Molloy, Bruce Reed, and William Steiger. On the mixing rate of the triangulation
walk. Randomization Methods in Algorithm Design, 1997.

[57] Ben Morris and Alistair Sinclair. Random walks on truncated cubes and sampling 0-1
knapsack solutions. SIAM journal on computing, 34(1):195–226, 2004.

[58] Atsuhiro Nakamoto, Gen Kawatani, Naoki Matsumoto, and Jorge Urrutia. Geometric
quadrangulations of a polygon. Electronic Notes in Discrete Mathematics, 68:59–64,
2018. Discrete Mathematics Days 2018. doi:10.1016/j.endm.2018.06.011.

[59] Nestor V. Nestoridis and Dimitrios M. Thilikos. Square roots of minor closed graph classes.
Discrete Applied Mathematics, 168:34–39, 2014. doi:10.1016/j.dam.2013.05.026.

[60] Yoshio Okamoto, Takeaki Uno, and Ryuhei Uehara. Linear-time counting algorithms for
independent sets in chordal graphs. In Graph-Theoretic Concepts in Computer Science,
pages 433–444. Springer Berlin Heidelberg, 2005.

[61] Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Counting and enumeration
problems with bounded treewidth. In Logic for Programming, Artificial Intelligence,
and Reasoning, pages 387–404. Springer Berlin Heidelberg, 2010.

124

https://doi.org/10.1145/301250.301317
https://doi.org/10.1145/301250.301317
https://doi.org/10.1214/aoap/1026915617
https://doi.org/10.1214/aoap/1026915617
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20132
https://doi.org/10.1002/rsa.20132
https://doi.org/10.1016/j.endm.2018.06.011
https://doi.org/10.1016/j.dam.2013.05.026

[62] Prashanth Raman. The positive geometry for ϕp interactions. Journal of High Energy
Physics, 2019(10):271, Oct 2019. doi:10.1007/JHEP10(2019)271.

[63] Dana Randall and Prasad Tetali. Analyzing glauber dynamics by comparison of markov
chains. In Latin American Symposium on Theoretical Informatics, pages 292–304.
Springer, 1998.

[64] Herbert E. Robbins. A remark on stirling’s formula. American Mathematical Monthly,
62:402–405, 1955.

[65] Neil Robertson and P.D Seymour. Graph minors. X. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/

0095-8956(91)90061-N.

[66] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, Jun 1994. doi:10.1007/BF01215352.

[67] Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity
flow. Combinatorics, Probability and Computing, 1(4):351–370, 1992. doi:10.1017/

S0963548300000390.

[68] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation, 82(1):93–133, 1989.
doi:10.1016/0890-5401(89)90067-9.

[69] Daniel D Sleator, Robert E Tarjan, and William P Thurston. Rotation distance,
triangulations, and hyperbolic geometry. Journal of the American Mathematical Society,
1(3):647–681, 1988.

[70] Allan Sly. Computational transition at the uniqueness threshold. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pages 287–296, 2010.
doi:10.1109/FOCS.2010.34.

[71] Alexandre Stauffer. A Lyapunov function for Glauber dynamics on lattice triangulations.
Probability Theory and Related Fields, 169:469–521, 2015.

[72] Prasad Tetali, Juan C. Vera, Eric Vigoda, and Linji Yang. Phase transition for the
mixing time of the glauber dynamics for coloring regular trees. In Proceedings of the
2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010. doi:

10.1137/1.9781611973075.134.

[73] Shai Vardi. Randomly coloring graphs of logarithmically bounded pathwidth. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[74] Pengfei Wan, Jianhua Tu, Shenggui Zhang, and Binlong Li. Computing the numbers of
independent sets and matchings of all sizes for graphs with bounded treewidth. Applied
Mathematics and Computation, 332:42 – 47, 2018. doi:10.1016/j.amc.2018.03.017.

125

https://doi.org/10.1007/JHEP10(2019)271
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1007/BF01215352
https://doi.org/10.1017/S0963548300000390
https://doi.org/10.1017/S0963548300000390
https://doi.org/10.1016/0890-5401(89)90067-9
https://doi.org/10.1109/FOCS.2010.34
https://doi.org/10.1137/1.9781611973075.134
https://doi.org/10.1137/1.9781611973075.134
https://doi.org/10.1016/j.amc.2018.03.017

Appendix A

Missing details for triangulations

A.1 Nearly tight conductance for triangulations: lower

bound

Lemma 2.14 and Lemma 2.12, as we showed in Appendix 2.6, imply the known result that

the flip walk on triangulations of the convex polygon mixes rapidly. However, the bound

given by Lemma 2.14 is O(n2) congestion, giving O(n7) mixing time by Lemma 2.1. Through

a more careful flow construction, one can further improve this bound to O(n3 log3 n). For the

more careful construction, we will define a different decomposition, via the central triangle:

Given a triangle T containing the center of the regular n+ 2-gon Pn+2 and sharing all of its

vertices with Pn+2, identify T with the class C(T) of triangulations t ∈ V (Kn) such that T

forms one of the triangles in t. Let Sn be the set of all such C(T) classes. (If Pn+2 has an

even number of edges, we perturb the center slightly so that every triangulation lies in some

class.)

Remark A.1. The set Sn is a partition of V (Kn), because no pair of triangles whose endpoints

are polygon vertices can contain the origin without crossing.

126

Molloy, Reed, and Steiger [56] defined this same partition in their work.

See Figure A.1.

We will combine this central-triangle decomposition with the oriented decomposition we

defined earlier. What we gain from using the central-triangle decomposition is that the

number of levels of induction will now be O(log n), by the fact that using the central triangle

to partition the classes divides the n + 2-gon into smaller polygons of size ≤ n/2. What

we lose, however, is that we no longer have matchings between every pair of classes, nor

are all of the matchings between adjacent pairs sufficiently large to obtain a polynomial

bound. Thus if we were to use just this decomposition on its own, we would be stuck with

the quasipolynomial bound (which in fact is what we obtain for general k-angulations in

Appendix 2.7).

Fortunately, we will show how to combine the two decompositions. With suitable care,

this will allow us to eliminate one of the factors of n—which we incurred in the n levels of

induction via Lemma 2.12. Some further optimizations will give us the claimed congestion

bound O(
√
n):

Lemma A.1. Suppose that for all 1 ≤ i ≤ n/2, a uniform multicommodity flow exists

with congestion O(
√
i log i) in Ki. Then a uniform multicommodity flow exists in Kn with

congestion O(
√
n log n).

(Here of course the constant hidden in the O notation is independent of the number of

induction levels.) Once we prove this lemma, then clearly Theorem 1.1 follows via simple

induction and an application of Lemma 2.1. (The base case in the induction is trivial.)

What we will do is, before routing the flow between triangulations in two different classes,

to do the same shuffling step as before—this time within each class in the central-triangle

partition, instead of within each class in the oriented partition. This is simply a “scaled-up”

127

uniform multicommodity flow in each class and produces no increase in congestion, using the

same analysis as before. We then have an MSF problem for each pair of classes, in which the

flow is routed through a set of intermediate classes, and:

Remark A.2. The boundary set BT ′(T) between every pair of central-triangle-induced classes

is isomorphic to a Cartesian product C∗(U)□Kj□Kl, where C∗(U) is an oriented class in Ki,

and where C(T) ∼= Ki□Kj□Kl, i+ j + l = n− 2, i, j, l ≤ n/2.

In other words, even though we are now using the central-triangle decomposition, our

boundary classes are, as before, Cartesian products of oriented classes with associahedron

graphs. Therefore:

Remark A.2, combined with our earlier congestion analysis for concentration and distribution

flows, implies the following:

Lemma A.2. Suppose it is possible to construct a multicommodity flow f in Kn in which the

total congestion across edges between a pair of classes is at most ρ̄. Then the total congestion

produced by f is at most 2ρ̄n.

Proof. Routing flow through an intermediate class C(T ′′), say, that originates at class C(T) and

is bound for C(T ′), can be accomplished with the combination of a uniform multicommodity

flow in C(T) (a “shuffling flow”), scaled as in the construction in Appendix 2.6, and an

MSF with source set C(T) and sink set C(T ′′). This MSF then induces in C(T ′′) both a

concentration flow and a distribution flow. Notice that C(T ′′) has O(n) distinct neighboring

classes. Therefore there are O(n) such concentration flows and O(n) such distribution flows.

Since each concentration flow and each distribution flow produces no increase in congestion

relative to the amount across each edge between classes, the claim follows.

We will use this idea of combining decompositions to obtain our O(
√
n log n) congestion

bound. We will exhibit a flow with ρ̄ = O(
√
n) log n, and will show how to avoid the O(n)

128

gain in Lemma A.2.

Figure A.1: An alternative partitioning of the associahedron graph K5, with each vertex
representing a triangulation of the regular heptagon. Flips are shown with edges (in blue).
The vertex set V (Kn) is partitioned into a set Sn of equivalence classes. Within each class, all
triangulations share the same central triangle—contrast with the oriented partition depicted
in Figure 2.2.

We do so by choosing carefully a good set of “paths” between each pair of classes, where

each path consists of a sequence of intermediate classes through which to route flow. One

first attempt might be, given classes C(S) and C(U), to consider the Pn+2 vertices by which

S and U differ. Route flow from C(S) to C(S ′), where S ′ is a triangle formed by replacing

some vertex of S \ U with a vertex of U \ S. This results in routing flow through at most

two intermediate classes. Unfortunately, if we do this for all S, U pairs, then some of these

intermediate classes will end up routing flow for too many S, U pairs, and the congestion

improvement will be insufficient for our purposes.

Roughly speaking, and perhaps counterintuitively, it turns out that the large congestion

under the scheme described above results from using paths that are too short: there exist

many pairs of large classes C(S), C(U) such that the intermediate classes found under this

129

scheme are much smaller than C(S) and C(U), and thus cannot effectively “spread out” the

congestion that results from sending the C(S), C(U) flow. Instead we will find slightly longer

paths.

To define these longer paths, we first need to organize the classes into a (non-disjoint) union

of larger classes, which we call regions: Let the length of a diagonal connecting two n-gon

vertices a and b be the number of edges on the n-gon lying between a and b, when traversing

the shorter of the two distances around the n-gon from a to b. Mark 24 equally spaced points

on the convex polygon Pn+2, in counterclockwise order. Define the following 24 regions as

collections of the classes: let Ui, 0 ≤ i ≤ 23, be the set of all classes C(T) such that the vertex

opposite the shortest edge of T lies in the (inclusive) interval [i · n/24, (i+ 2) · n/24).

This is not a partition of the classes {C(T)}, since it is possible for a triangle T to have a

vertex in two of the intervals described. However:

Remark A.3. All of the regions are of equal size, and the regions each have cardinality

Cn/12. Also, the regions form a cycle, in which each consecutive pair of regions shares an

overlap of size Cn/24.

The idea now is that we will establish the existence of a flow, within each of the 24 regions,

that has congestion O(
√

n/2+ log(n/2)). Once this is accomplished, we will use the constant-

factor intersections of the classes to route flow between classes with additional (additive)

congestion O(
√
n+ log n).

We will further partition the central-triangle-induced classes into two additional levels of

classes.

Given a central triangle T , let the apex of T be the vertex of T opposite the shortest side.

(If T has no unique shortest side, break ties in some arbitrary fashion; this will not change

the asymptotics.) Let the second vertex of T be the first of the two non-apex vertices that

130

succeeds the apex in counterclockwise order; let the remaining vertex be the third vertex.

Given a vertex p ∈ [0, n+ 1] of the n+ 2-gon, with the vertices labeled in counterclockwise

order, let Ap be the set of classes C(T) with p as the apex of T . Let Lpq be the set of

classes C(T) in Ap with q as the second vertex of T .

Remark A.4. Every Lpq is a collection of central-triangle classes sharing an edge, namely

the diagonal pq. Every class C(T) ∈ Lpq is, therefore, a Cartesian product Kq−p−1□C∗(T) of

a flip graph Kq−p−1 over the q−p+1-gon on one side of the diagonal pq, and a class C∗(T) ⊆

V (Kn−q+p−1) in the oriented partition induced by the edge pq in the n− q + p+ 1-gon on the

other side of pq.

Lemma A.3. Within Lpq, for all p ∈ [0, n+ 1], it is possible to route a unit of flow between

every ordered pair of triangulations t, t′ ∈ Lpq while producing congestion one across the edges

between any pair of central-triangle-induced classes.

Proof. By Remark A.4, we can apply Lemma 2.6 to conclude that every pair of classes C(T), C(T ′) ∈

Lpq can exchange one unit of a commodity with congestion at most

|C(T)||C(T ′)|
|E(T, T ′)||V (Kn)|

≤ |V (Kq−p−1)□C∗(T)||V (Kq−p−1)□C∗(T ′)|
|V (Kq−p−1)□E∗(T, T ′)||V (Kn)|

≤ |C∗(T)||C∗(T ′)|
|E∗(T, T ′)|

· Cq−p−1

Cn

,

with the first expression describing the product of the cardinalities of the classes divided by

the number of edges between them, and a normalization factor |V (Kn)| = Cn according to

the definition of congestion. The first inequality comes from Remark A.4, and the second

from rearranging terms. Applying Lemma 2.6 gives an upper bound of

Cn−q+p−qCq−p−1

Cn

≤ 1.

(Actually, this quantity is not only at most one but at most Cq−p−1Cn−q+p

Cn
= O(1/(q−p)3/2).)

Lemma A.3 describes only the flow across edges between pairs of central-triangle classes.

131

The construction in Appendix 2.6 shows how to obtain polynomial congestion within classes

from this bound. However, as we observed in the proof of Lemma 2.16, one suffers a loss

accounting for flow from κ = O(n) classes. We now show how to improve this O(n) loss

to O(
√
n).

For the purpose of analyzing congestion, a uniform multicommodity flow in Kn is equivalent

to the sum of |V (Kn)| = Cn single-commodity flows, one “originating” at (having sink set

as) a single triangulation t ∈ V (Kn). Furthermore, given the oriented partition Sn, and

considering the classes C∗(T1), C∗(T2), . . . , C∗(Tn) ∈ Sn, a uniform multicommodity flow in Kn

is equivalent to the sum of n uniform multicommodity flows, one within each class C∗(Ti),

added to n multi-way single-commodity flows (MSFs), each of which distributes flow from

one class C∗(Ti) to the rest of the graph Kn.

The congestion bound one obtains for the MSFs (ignoring the flows within the classes) from the

analysis in the proof of Lemma 2.16 is then κ = O(n). The following lemma states that we can

do better: we can solve these n MSF problems with congestion O(
√
n) by improving the flow

construction. Intuitively, given two triangles Ti, Tj with third vertices i and j on the n+2-gon,

the size of the matching E∗(Ti, Tj) between C∗(Ti) and C∗(Tj) is large when |j− i| is small, and

small when |j − i| is large. When Ti and Tj are far apart (|j − i| is large), we will route some

of the C∗(Ti) → C∗(Tj) flow through a sequence of intermediate classes {C∗(Tk)}, i < k < j,

taking advantage of the larger matchings between C∗(Ti) and C∗(Tk), and between C∗(Tk)

and C∗(Tj).

In particular, we will first group the classes into pairs of consecutive classes C∗(Ti), C∗(Ti+1)

(with, say, i = 0 (mod 2)), and let the two classes within a given pair exchange flow, so

that all of the flow originating at either class in the pair is uniformly distributed throughout

the pair C∗(Ti) ∪ C∗(Ti+1). That way, subsequent flow sent by the two classes can now be

considered as a single commodity. We will then group these pairs of classes into sets of

four classes, then sets of eight, and so on—reaching O(log n) hierarchical levels of sets, until

132

all n(n− 1) ordered pairs of classes have exchanged flow.

Lemma A.4. Given the flip graph Kn over the n+2-gon and the special edge e∗, consider the

triangles T1, T2, . . . , Tn that include e∗ as an edge, such that T1, T2, . . . , Tn occur in consecutive

order according to their third vertex. Consider the n MSF problems π1, π2, . . . , πn, one for

each oriented class C∗(Ti), i = 1, 2, . . . , n. Suppose each πi has source set C∗(Ti) and sink

set V (Kn), with uniform surplus and demand functions σi = |V (Kn)| = Cn, δi = |C∗(Ti)|.

Then π1, π2, . . . , πn can be reduced to an alternative collection of MSF problems that can be

solved with congestion O(
√
n).

Proof. Assume for simplicity that n is a power of two; it is easy to modify the solution if not.

Group the classes hierarchically as described in the disussion preceding this lemma. Let π[i,j]

be the problem, defined over the subgraph of Kn induced by the classes C∗(Ti) ∪ · · · ∪ C∗(Tj),

of distributing flow from the “left half” of the classes C∗(Ti) ∪ · · · ∪ C∗(Ti+ j−i+1
2

−1) to the

“right half” C∗(Ti+ j−i+1
2

) ∪ · · · ∪ C∗(Tj). Define π̄[i,j] symmetrically.

As discussed, the original collection of MSF problems {πi} reduces to a collection {π[i,j], π̄[i,j]},

where the pairs [i, j] are those induced by hierarchically partitioning the classes—first into

problems π[1,n] and π̄[1,n], then into (on the “left-hand side”) π[1,n/2], π̄[1,n/2] and (on the

“right-hand side”) π[n/2+1,n], π̄[n/2+1,n], then into four pairs of problems, and so on.

Now, for a given pair of problems π[i,j], π̄[i, j], each class C∗(Tl) on the “left-hand side” C∗(Ti)∪

· · · ∪ C∗(Ti+ j−i+1
2

−1), i ≤ l ≤ i+ j−i+1
2

− 1, must distribute Cn|C∗(Tl)| units of flow—that is,

the demand σ[i,j] times the size of the source set C∗(Tl) of π[i,j]—to the right-hand side, and

vice versa. Each class C∗(Tr) on the right-hand side receives a |C∗(Tr)|
|
∑

r′∈[i,j] |C∗(Tr′)|
factor of this

flow, and the flow must be distributed across the matching |E∗(Tl, Tr)|.

133

This produces congestion at most

O

(
Cn|C∗(Tl)||C∗(Tr)|

|E∗(Tl, Tr)|
∑

r′∈[i,j] |C∗(Tr′)|Cn

)
= O

(
|C∗(Tl)||C∗(Tr)|

|E∗(Tl, Tr)|
∑

r′∈[i,j] |C∗(Tr′)|

)
.

We will bound this quantity as O(
√
j − i), by showing that |C∗(Tl)|

|E∗(Tl,Tr)| = O((j− i)3/2) and that

|C∗(Tr)|
|
∑

r′∈[i,j] |C∗(Tr′)|
= O(1/(j − i)).

The first inequality is true because, by Lemma 2.4, E∗(Tl, Tr) is in bijection with the

vertex set of a Cartesian product Kl−1□Kr−l−1□Kn−r graph, whereas C∗(Tl) ∼= Kl−1□Kn−l.

Thus |C∗(Tl)|
|E∗(Tl,Tr)| ≤

Cn−l

Cr−l−1n−r
. We can assume without loss of generality that 1 ≤ l ≤ r ≤ n/2

(since Tl and Tr send one another the same amount of flow), and therefore this quantity is at

most O((r − l)3/2) = O((j − i)3/2).

The second inequality can be seen by noticing that for all r′ ∈ [i, j], C∗(Tr′) ∼= Kr′−1□Kn−r′ ,

so |C∗(Tr′)| = Cr′−1Cn − r′ = Cn

Θ(r′3/2)
. Since this is a decreasing function of r′, we have

∑
i≤r′≤j

|C∗(Tr′)| ≥
∑

i≤r′≤r

|C∗(Tr′)| ≥ (r − i+ 1)|C∗(Tr)| ≥
(j − i)

2
|C∗(Tr)|,

which implies certainly that |C∗(Tr)||
∑

r′∈[i,j] | = O(j − i).

Since every MSF pair π[i,j], π̂[i,j] is solvable with congestion O
(√

j − i
)
, where j − i =

1, 2, 4, 8, . . . , n, the overall congestion is
∑logn

k=0

√
2k = O(

√
n), as claimed.

Finally, one may worry that there may be a factor (j − i + 1)/2 gain in congestion for

each π[i,j], π̄[i,j] pair, since C∗(Tr) must receive flow from (j − i+ 1)/2 classes—just as we had

a κ-factor gain in the proof of Lemma 2.16. However, that gain occurred because we had κ

separate MSF problems. Here, however, we only have two MSF problems, inducing two flows.

The same construction we used in that proof then gives O(1) congestion per π[i,j], π̄[i,j] pair.

134

Corollary A.1. Within Lpq, for a given p ∈ [0, n + 1], consider a collection of q − p − 1

MSF problems, each of which corresponds to one class C(T) ∈ Lpq and describes distributing

a single commodity with surplus value Cn, initially concentrated in C(T), throughout the rest

of Lpq. All of these problems can be solved while producing total congestion O(
√
q − p).

Proof. It suffices to combine the constructions in Lemma A.3 and Lemma A.4. The exchange

in Lemma A.3, that is, induces MSF subproblems that can be viewed, by Remark A.4,

as an exchange between pairs of oriented subclasses of Kn−q+p (in copies of Kq−p−1)—in

which the surplus values are all Cq−p−1Cn−q+p. We can then apply Lemma A.4 to obtain

congestion O(
√
n)Cq−p−1Cn−q+p

Cn
.

Here we need to be careful. First, it may be that this bound exceeds O(
√
n), in particular

if Cq−p−1Cn−q+p

Cn
≥ ω(1/

√
n). Fortunately, by the proof of Lemma A.4, the O(

√
n) bound in that

lemma can be sharpened to O(
√
q − p) (by noticing that at no level of the hierarchical parti-

tioning do we have j− i > q−p). Thus we have the congestion bound O(
√
q − p)Cq−p−1Cn−q+p

Cn
.

Finally, we have assumed surplus values of Cq−p−1Cn−q+p. Actually, however, the present

claim concerns surplus values Cn. Scaling by Cn

Cq−p−1Cn−q+p
gives congestion O(

√
q − p).

Lemma A.5. Within a given Ap, p ∈ [0, n + 1], consider a collection of MSF problems,

one for each Lpq ∈ Ap (with source set Lpq, with surplus values Cn), with flow that must be

distributed uniformly throughout Ap. It is possible to solve these problems while producing

total congestion O(
√
n log n).

Proof. To route flow between pairs of central-triangle classes lying in distinct second-vertex

classes, i.e. between C(Tpqr) ∈ Lpq, C(Tpq′r′) ∈ Lpq′ , q ≠ q′, we will use the same trick as in

the hierarchical grouping in Lemma A.4. Assume that p = 0 without loss of generality and

for simplicity. For all Lpq,∈ Ap, it holds that n/4 ≤ q < n/2: q ≥ n/4 since the triangle

135

edge pq must be at least as long as the edge qr in any Tpqr, C(Tpqr) ∈ Lpq by definition of Lpq

and of Ap, and q ≤ n/2 since for every C(Tpqr), Tpqr is a central triangle. It will turn out to

be convenient to include in the grouping only the classes {Lpq|7n/24 ≤ q < n/2}. Order the

second-vertex-induced classes {Lpq} with q ∈ [7n/24, n/2 − 1] in increasing order. Group

pairs of adjacent second-vertex classes, then group these pairs into adjacent pairs, and so on.

Suppose q < q′ without loss of generality. At the j − i level of the grouping, i.e. the level at

which the number of second-vertex classes on the left- and right-hand sides combined is j − i,

the amount of flow to be exchanged between Lpq and Lpq′ lying on respectively the left and

right-hand sides of the group, in each direction, is

Cn|Lpq||Lpq′|∑
i≤q′′≤j |Lpq′′ |

,

where [i, j] is the interval of classes Lpi, . . . ,Lpj defining the group.

Let E(Lpq, Lpq′) =
⋃

C(Tpqr)∈Lpq
E(Tpqr, Tpq′r) denote the matching connecting Lpq and Lpq′ .

The resulting congestion is at most

|Lpq||Lpq′ |∑
i≤q′′≤j |Lpq′′ ||E(Lpq, Lpq′)|

≤ O((q′ − q)3/2)

(j − i)
,

where the inequality holds because |Lpq′′| ≥ |Lpq| for i+(j−i)/2 ≤ q′′ ≤ j, so that |Lpq |∑
i≤q′′≤j |Lpq′′ |

≤
1

(j−i)/2
, and because

|Lpq′ |
|E(Lpq ,Lpq′)|

= O((q′ − q)3/2). The latter fact can be seen as follows: first,

E(Lpq, Lpq′) =
⋃

Tpqr∈Lpq

E(Tpqr, Tpq′r).

Every C(Tpqr) has a nonempty matching to its neighboring class C(Tpq′r), and indeed C(Tpq′r)

lies in Ap and in Lpq′ . On the other hand, due to the constraint for membership in Ap that pq

and pq′ be the shortest edges of their respective central triangles, there may exist some values

of r for which Tpq′r ∈ Lpq′ but for which there is no neighbor of Tpq′r ∈ Lpq. Fortunately:

136

(i) Since by assumption q ≥ 7n/24, we get that C(Tpqr) ∈ Lpq (i.e. the edge qr is indeed

shorter than the edges pq and rp) for r = n/2 + 1, . . . , 2 · 7n/24 = 7n/12, and thus

there are at least n/12 central-triangle classes in Lpq (and thus at least as many in Lpq′ .

(ii) In Lpq (and similarly Lpq′), the central-triangle classes occur in decreasing order of size

(up to asymptotic order) as r increases.

Facts (i) and (ii) imply that an Ω(1) factor of the triangulations in Lpq′ lie in central-triangle

classes having a neighboring class in Lpq, and thus

|E(Lpq, Lpq′)| = Ω(1)Ω

(
1

(q′ − q)3/2

)
|C(Lpq′)|.

Now, the O((q′−q)3/2)
(j−i)

≤
√
j − i ≤

√
n congestion that occurs across the boundary match-

ing E(Lpq, Lpq′) for a given q, q′ pair occurs for a single commodity, at a single level in

the hierarchical grouping. We need to distribute this flow evenly first throughout each

class C(Tpqr) that receives it, and then throughout Lpq. By the same reasoning as in the proof

of Lemma A.4, this flow can be distributed throughout a given class C(Tpqr) ∈ Lpq with no

asymptotic congestion gain. Summing over all levels of the grouping produces

log(n/2−7n/24)∑
s=0

O(
√
2s) = O(

√
n)

congestion within each C(Tpqr).

To distribute the flow received by C(Tpqr) throughout Lpq, first notice that the total amount

of (normalized by a factor of Cn) flow received by C(Tpqr) is at most O(log(r − q))|C(Tpqr)|

from classes C(Tpq′r), q < q′ < (r− q)/2, because each vertex in each boundary set BTpq′r
(Tpqr)

137

receives O(
√
q′ − q) flow and |B|(Tpqr) = Θ(1

(q′−q)3/2
)|C(Tpqr)|, so the total is

|C(Tpqr)|
(r−q)/2∑
k=1

√
k

k3/2
= O(log(r − q))|C(Tpqr)|.

The analysis is similar for classes with q′ < q.

Now notice that the total amount of normalized flow received by C(Tpqr) from classes C(Tpq′r)

with q′ − q ≥ (r − q)/2 is at most

(r−q)/2∑
k=r−n/2

O

(
1

k3/2

)
·O(

√
(r − q))|C(Tpqr)| = O(

√
r − q√
r − n/2

)|C(Tpqr)|.

Recall that we are dealing with a single commodity. Thus we do not have multiple MSFs

to be concerned about. Unfortunately, however, the bound given by the construction in the

proof of Lemma 2.16 gives a bound of O(
√
r−q√
r−n/2

·
√
n), insufficient for our purposes.

Fortunately, we can apply the hierarchical grouping trick again within Lpq, but we need

to take care: first, it is insufficient merely to apply Corollary A.1, as we simply recover

the O(
√
n) factor gain mentioned above. Second, unlike in Corollary A.1, we are dealing

here with only a single commodity (this will help us). What we do is observe that since

the average flow received by a class C(Tpqr) is, as stated, O(
√
r−q√
r−n/2

) = O(

√
n/2−q√
r−n/2

), and

the average over all classes C(Tpqr) within the range r ∈ [i, j] (assuming for the worst case

that i = n/2 + (n/2− 1) = 1, since we are only considering flow from classes q′ where this

holds in the worst case) is at most

n/2+j∑
r=n/2+1

(j + n/2− q)3/2
√

n/2− q

j(r − q)3/2
√

r − n/2
,

138

where we have used the fact that

∑
s∈[n/2+1,n/2+j]

|C(Tpqs)| ≥ j ·
√
n/2− q

(j + n/2− q)3/2
|Lpq|,

since the left-hand side is a sum of j terms each of which is at least

|C(Tpq(n/2+j))| =
√
n/2− q

(j + n/2− q)3/2
|Lpq|,

and also the fact that

|C(Tpqr)| =
O(
√
n/2− q)

(r − q)3/2
|Lpq|.

When j ≤ n/2− q, we can bound the term

n/2+j∑
r=n/2+1

(j + n/2− q)3/2
√

n/2− q

j(r − q)3/2
√

r − n/2
≤ (j + n/2− q)3/2

n/2− q

1

j

n/2+j∑
r=n/2+1

1√
r − n/2

≤
√

n/2− q

√
j

j
=

√
n/2− q√

j

since r − q ≥ n/2− q always, and since we are assuming j ≤ n/2− q.

When j > n/2 − q, remember that we are considering only the flow to each C(Tpqr) from

classes C(Tpq′r) with q′ − q ≥ (r − q)/2, and therefore with r ≤ n/2− q. Thus the average

never exceeds

√
n/2−q
√
j

.

Let µj−i denote this average. Now we can bound the congestion across a given match-

ing E(Tpqr, Tpqr′), for C(Tpqr), C(Tpqr′) ∈ Lpq as

Cnµj−i|C(Tpqr)||C(Tpqr′)|
Cn

∑j
s=i |C(Tpqs)||E(Tpqr, Tpqr′)|

≤ (r′ − r)3/2µj−i

j − i
≤

(r′ − r)3/2
√
n/2− q

(j − i)3/2

≤
√

n/2− q ≤
√
n

139

for all j − i. Since we are dealing with a single commodity and every class C(Tpqr) has

at most O(
√
n) surplus or demand in each of its boundary vertices, we can use the same

construction as in the proof of Lemma 2.16 to conclude that the overall resulting congestion

in Lpq is at most O(
√
n).

It remains to consider the flow received by C(Tpqr) from classes C(Tpq′r) with q′−q ≤ (r−q)/2.

As we have already observed, the average for each C(Tpqr) is at most O(log(r− q)) = O(log n),

and thus we can simply apply Corollary A.1 to obtain O(
√
n log n) congestion.

Lastly, we have only distributed flow so far among the classes Lpq with q ≥ 7n/24. We need to

send flow from classes with q ≥ 7n/24 to those with n/4 ≤ q < 7n/24 and vice versa. We will

first use the same construction as above to concentrate all of the flow from the [7n/24, n/2]

classes within the [7n/24, n/3] classes. Because (as one can show) the [7n/24, n/3] classes

constitute a Θ(1) factor of the triangulations in Ap, this concentration causes at most an O(1)

increase in congestion.

Now let the [7n/24, n/3] and the [n/4, 7n/24] classes exchange flow. Once more we apply the

hierarchical grouping trick. The challenge is now that the number of central-triangle classes

in Lpq is small. Let χ(Lpq) = |{C(T)pqr|C(Tpqr) ∈ Lpq}| denote the number of central-triangle

classes in Lpq. We have χ(Lpq) = 2(q − n/4) whenever n/4 ≤ q ≤ n/3.

Thus for n/4 ≤ q < q′ ≤ n/3 we can bound

Cn|Lpq||Lpq′ |
Cn

∑j
q′′=i |Lpq′′ ||E(Lpq, Lpq′)|

≤ (q′ − q)3/2χ(Lpq′)(1/n
3)

(j − i)/2χ(Lp(q′−(j−i)/2))(1/n3)
= O(

√
j − i)

for each group, and we are done.

The following two lemmas will be useful shortly:

Lemma A.6. Within a given Lpq, consider a single MSF problem in which the source set

140

is a union of central-triangle classes, and each C(T) ∈ Lpq has surplus value O(1)Cn (where

the values may differ among the classes). It is possible to solve this problem while producing

congestion O(
√

n/2− q).

Proof. Let every C(Tpqr) send a |C(Tpqr′)|/|Lpq| factor of its surplus to each C(Tpqr′). By

Lemma 2.6 and by the fact that |Lpq| = Θ(1)
Cq−pCn−(q−p)√

n/2−q
, we have

Cn|C(Tpqr)||C(Tpqr′)|
√

n/2− q

Cn|E(T, T ′)|Cq−pCn−(q−p)

≤
√

n/2− q

congestion across each edge in E(T, T ′), proving the lemma.

Lemma A.7. Within a given Ap, consider a single MSF problem in which the source set is

a union of central-triangle classes, and each C(T) ∈ Ap has surplus value O(1)Cn (where the

values may differ among the classes). It is possible to solve this problem while producing total

congestion O(
√
n).

Proof. Distributing incoming flow throughout each Lpqr causes O(
√
n) congestion within Lpqr.

Now modify the flow construction in the proof of Lemma A.5 as follows: omit the hierarchical

grouping trick when distributing flow among the second-vertex classes, and instead simply

let each Lpq send an |Lpq′|/|Ap| factor its surplus to each Lpq′ once. Then the congestion

across E(Lpq,Lpq′) when Lpqr sends flow to Lpq′ (assuming q < q′) is

|Lpq||Lpq′ |
|E(Lpq,Lpq′)|(n/2− q)|Lpq|

≤ (q′ − q)3/2

n/2− q
.

Since (as in the proof of Lemma A.5) a 1/(q′ − q)3/2 factor of the vertices in a given C(Tpq′r)

receive O(q′−q)3/2)
n/2−q

flow from a given neighboring class Lpq, the resulting congestion within Lpq′

—accounting for the
√

n/2− q′ gain incurred in distributing the flow throughout Lpq′—is at

141

most

n∑
q′−q=1

(q′ − q)3/2

(q′ − q)3/2(n/2− q)
·
√

n/2− q′

≤
n∑

q′−q=1

1√
n/2− q

=O(
√
n)

(by Lemma A.6 and the fact that n/2− q > n/2− q′) and the congestion within Lpq is at

most

n/2−q∑
q′−q=1

(q′ − q)3/2

(q′ − q)3/2(n/2− q)
·
√

n/2− q = O(
√
n).

Lemma A.8. Within every region Ui, it is possible to route a unit of flow between every

ordered pair of triangulations t, t′ ∈ Ui while producing total congestion O(
√
n log n).

Proof. We need a shuffling step first: let each central-triangle class shuffle via a uni-

form multicommodity flow, scaled so that each triangulation t ∈ C(T) in Ui sends
|Ui|

|C(T)|

units to each t′ ∈ C(T). By the natural induction we have been using, this can be done

with O(
√

n/2 log(n/2)) congestion. We then have a collection of MSFs, each with source

set C(Tpqr), for each C(Tpqr). Apply Lemma A.5 to solve these MSFs with O(
√
n log n)

additional congestion.

Finally, we need to solve n/12 MSFs, one for each apex class in the region Ui. Each MSF

has as its source set an apex class. All apex classes are isomorphic to one another and have

cardinality Cn/n; the surplus values are all |Ui| = Θ(1)Cn, and the sink set for each MSF is

all of Ui.

142

We will use the hierarchical grouping trick once more: just as we grouped together central-

triangle classes within a second-vertex class in Lemma A.4, and just as we grouped together

second-vertex classes in the proof of Lemma A.5, here we group apex classes first into pairs,

then into contiguous sequences (in, say, counterclockwise order according to the apex p) of

four, then eight, and so on up to n/3.

Crucially, whenever Ap,Ap′ lie in a given Ui (i.e. |p′ − p| ≤ n/12), a Θ(1) factor of the

triangulations in Ap lie in classes C(Tpqr) having a neighboring class C(Tp′qr) in Ap′ such

that |E(Tpqr, Tp′qr)| ≥ (p′ − p)3/2|C(Tpqr)|.

Thus the hierarchical grouping produces

Θ(1)Cn|Ap||Ap′ |
Θ(1)Cn(j − i)|Ap||E(Ap, Ap′)|

= O

(
(p′ − p)3/2

j − i

)
= O(

√
j − i)

congestion at the j − i level, and O(
√
n) congestion overall.

The MSF subproblems induced in each Ap each involve distributing a single commodity

with surplus O(
√
j − i) throughout a given class C(Tpqr), such that the resulting average

flow concentrated in C(Tpqr) is O(1)Cn, then distributing this flow throughout Ap. There are

O(log n) such subproblems. This produces O(
√
n log2 n) congestion within each Ap. However,

we can eliminate a log factor and obtain O(
√
n log n) total congestion by applying Lemma A.7

to each of the O(log n) single-commodity flows within each Ap.

We have now demonstrated that a flow exists, in the subgraph of Kn induced by the region

Ui—in which the additional congestion added in the inductive step is O(
√
n log n). We are

now ready to prove Theorem 1.1 by way of Lemma A.1, by routing flow among the 24 regions:

Lemma A.1. Suppose that for all 1 ≤ i ≤ n/2, a uniform multicommodity flow exists

with congestion O(
√
i log i) in Ki. Then a uniform multicommodity flow exists in Kn with

congestion O(
√
n log n).

143

Proof. The first step is to apply Lemma A.8, obtaining a flow fi within each Ui in which

each pair of triangulations exchanges a unit of flow, and in which each edge carries at most

O(
√
n log n) congestion.

We do the same for all regions. There is a wrinkle: since some edge classes (and pairs thereof)

belong to more than one region, these 24 scaled-up flows result in multiple units of flow being

sent between some pairs, as well as a constant-factor increase in congestion. For the former,

we simply let pairs in the same class abstain from exchanging flow after the (lexicographically,

say) first of the six flows. Clearly, the flows between pairs can never increase the congestion

in the network.

For the latter, one may worry that we have lost our “additive advantage” and will now incur

a multiplicative penalty in the induction. Fortunately, however, the multiplicative factor is

only applied after we have applied the inductive hypothesis within each triangular class.

Next, we need to route the Ui → Ui+1 flow through the triangular classes in the intersection

Ui ∩Ui+1. This we accomplish by noting that, by Remark A.3, we can simply concentrate the

flow within the intersection between the regions, then send it with O(1) congestion gain. To

get from Ui+1 to the other 22 classes, we send flow in turn within Ui+1, concentrating it on

the boundary wtih Ui+2, and so on. Upon reaching the destination region, we then distribute

the flow in a fashion symmetric to the concentration.

The increases in congestion in this process are all by a constant factor, and crucially, again,

these increases are not applied more than once in the induction: our application of the

inductive hypothesis occurs only within each central-triangle class, and all subsequent routing

and redistribution of flow through and within these classes avoids multiplying these factors

by the congestion assumed in the inductive hypothesis.

Finally, the overall O(
√
n log n) congestion bound claimed now follows from combining the

log n levels of induction with the master theorem.

144

Theorem 1.2 is now immediate. A mixing upper bound of O(n4 log2 n) follows from Lemma 2.1;

in Section A.2 we will improve this to the O(n3 log3 n) bound claimed in Theorem 1.1.

A.2 Eliminating log |V (Kn)|: mixing time O(n3 log3 n) for

triangulations

We have obtained ourO(n4 log2 n) bound by showing that the expansion ofKn is Ω(1/(
√
n log n)),

then applying Lemma 2.1. The loss comes from: (i) normalizing by the degree Θ(n) of Kn,

(ii) squaring the resulting bound per Lemma 2.1, and (iii) multiplying by an additional factor

of log |V (Kn)| = Θ(n). We show in this section that we can eliminate the Θ(n) factor in

step (iii), obtaining an overall bound of O(n3 log3 n) via a result of Lovász and Kannan:

Lemma A.9. [50] Given a family of finite, reversible, connected Markov chains {Mn =

(Ωn, Pn)} parameterized by n, with stationary distribution π, let πmin = min{t∈Ωn} π(t). For

all x ∈ [1/πmin, 1/2], define the quantity

ϕ(x) = min
S:π(S)≤x

|∂S|
vol(S)

,

where vol(S) =
∑

t∈S
π(t)
∆

is the probability mass of S normalized by the maximum degree ∆

of the chain Mn (viewed as a graph). Then the mixing time of Mn is at most

τ(n) ≤ O(1)

∫ 1/2

πmin

dx

(ϕ(x))2x
.

Lemma A.9 implies that in a given flip graph, if small sets have sufficiently larger expansion

than large sets, then one can eliminate the log |Ω| factor incurred in passing to mixing from

squared expansion. This in fact is true for Kn: suppose a set S ⊆ V (Kn) is at most (Cn/k)
k/2,

for a given integer k ∈ [1, . . . , n + 1]. S can be partitioned into a collection of subsets of

145

disjoint Cartesian products of the form Ki1□Ki2□ · · ·□Kik , where each Kij is a smaller flip

graph with all ij ≤ n
k
, because of the following fact:

Lemma A.10. For every integer 1 ≤ k ≤ n, every triangulation t ∈ V (Kn) lies in some

Cartesian product of flip graphs Ki1□Ki2□ · · ·□Kik , with ij ≤ n
2⌊log3 k⌋ for all j.

Proof. To identify the Cartesian product to which t belongs, partition Kn using the central-

triangle partitioning. Each class is a Cartesian product of three smaller flip graphs induced

by three smaller polygons; partition each of these classes according to the three central

triangles in the three smaller polygons. Repeat this process recursively, in a “breadth-first”

fashion, with the triangles placed at a given level in some consistent lexicographic order.

. Stop the partitioning after k polygons have been obtained. Now the original n-gon has

been partitioned into a collection of smaller polygons, the size of each of which is at most

max{1, n/2⌊log3 k⌋}. This is because, first, if the recursion depth is d, then the number of “leaf

nodes”—polygons at the bottom level of partitioning—is at most 3d. Second, the breadth-first

nature of the partitioning guarantees that each level of partitioning decreases the maximum

size of a polygon by at least half, so the largest polygon has size at most n/2⌊log3 k⌋.

Now, once the partitioning has stopped, the number of triangulations lying in the resulting

partition is at least (Cn/k)
k, because the partition consists of k polygons whose sizes add up

to at least n, and because the size of the resulting Cartesian product Cl1Cl2 · · ·Clk ,
∑

i li ≥ n,

is minimized when li = n/k for all i.

The following is now immediate:

Corollary A.2. For every S ⊆ V (Kn), if |S| ≤ (Cn/k)
k/2, for integer k ∈ [1, n], then |∂S|/|S| ≥

Ω(1/((n/2⌊log3 k⌋)3/2 log(n/2⌊log3 k⌋))).

Proof. The claim follows from noticing that any such set can be partitioned into its intersec-

tions with Cartesian products (sets of triangulations) of the form described in Lemma A.10,

146

each of which is at most half full, then noticing that in each such Cartesian product, by

Lemma A.10 each graph Kij in the product has ij ≤ n
2⌊log3 k⌋ . Appyling Theorem 1.2 then

proves the claim.

We now combine Lemma A.9 with Lemma A.10, then combine Lemma 2.1 with Theorem 1.2

to obtain mixing time O(n3 log3 n) for triangulations, proving Theorem 1.1:

Proof. Proof of Theorem 1.1 We can write, by Lemma A.9,

τ(n) ≤ O(1)

∫ 1/2

πmin

dx

(ϕ(x))2x

= O(1)
n∑

k=1

∫ (Cn/k)
k/Cn

(Cn/(k+1))
k+1/Cn

O((n/2⌊log3 k⌋)3 log2(n/2⌊log3 k⌋))
dx

x

≤ O(n3 log2 n)
n∑

k=1

O((1/2⌊log3 k⌋)3
∫ (Cn/k)

k/Cn

(Cn/(k+1))
k+1/Cn

dx

x

= O(n3 log2 n)
n∑

k=1

O((1/2⌊log3 k⌋)3 ln

(
(Cn/k)

k

(Cn/(k+1))k+1

)
= O(n3 log2 n)

n∑
k=1

O((1/2⌊log3 k⌋)3 ln(O(n3/2))

= O(n3 log3 n)
n∑

k=1

O(1/klog3 8)

= O(n3 log3 n) ·O(1) = O(n3 log3 n).

A.3 Associahedron expansion upper bound

To prove Theorem 1.2, we simply find a sparse cut and apply the definition of expansion. We

use the central-triangle partition we used in Appendix 2.7 and Appendix A.1. These are the

same classes used to show the Ω(n3/2) mixing lower bound by Molloy, Reed, and Steiger [56].

147

As we discussed in the introduction, their mixing lower bound does not imply the expansion

upper bound we give here, but our expansion upper bound does imply their mixing lower

bound.

A.3.1 Finding a sparse cut

We will find a cut (S, S̄) with |∂S|/|S| = O(n−1/2). We start by partitioning the vertices of

the associahedron into central-triangle classes as in Appendix A.1; within any given class, all

vertices will be on the same side of the cut. Consider the associahedron Kn−2 over the n-gon.

Draw the regular n-gon in the plane, and label the vertices of the regular n-gon [0, n− 1],

with 0 as the topmost vertex.

Define the length of a diagonal be as in Section A.1, as the (least) number of n-gon edges lying

between the two endpoints of the diagonal. Let Cl = {t ∈ C(T)|T has shortest side lengthl}

be the set of all triangulations whose central triangle’s shortest side has length l, l ∈ [1, n/3].

Let S =
⋃

Cl|l∈[1,n/6] Cl. Let S̄ = V (Kn−2) \ S =
⋃

Cl|l∈(n/6,n/3] Cl.

Lemma A.11. The cut S is indeed a partition of V (Kn−2), has |S| = Θ(1)|V (Kn−2)|

and |S̄| = Θ(1)|V (Kn−2)|.

Proof. Every triangulation lies in exactly one Cl, and that S and S̄ together partition all

of the triangulations. To see that |S| = Θ(1)|V (Kn−2)| = Θ(1)Cn−2, we first count the

cardinality of each Cl, l ∈ [1, n/6]. Consider the number of ways to choose a central triangle T

so that C(T) ⊆ Cl, i.e. so that T has shortest side length l. There are n ways to choose the

apex of a central triangle (the vertex opposite the shortest side). Conditioned on this choice,

and conditioned on a choice of l for the side length opposite the apex, there are l ways to

choose the second vertex (the first vertex after the apex in counterclockwise order) so that

the center of the n-gon still lies inside the triangle. For all of these choices, the side opposite

148

the apex is indeed shortest. The number of triangulations lying in a class with shortest side

length l is Θ
(

1
n3/2l3/2

)
Cn−2, and thus the number of triangulations is

n/6∑
l=1

nl
1

Θ(n3/2l3/2)
= Θ

(
1√
n

) n/6∑
l=1

Θ

(
1√
l

)
= Θ

(√
n√
n

)
= Θ(1).

Thus |S| = Θ(1)Cn−2|. For |S̄|, notice that for every T with shortest side length l ∈ (n/6, n/3],

there are Θ(n2) ways to choose T , by the same argument we used for l ∈ [1, n/6], and each

central-triangle-induced class C(T) with shortest side l ∈ (n/6, n/3] has |C(T)| = Θ
(

1
n3

)
Cn−2.

Thus we have the sum

|S̄|
Cn−2

=

n/3∑
l=n/6+1

Θ(n2)

Θ(n3)
= Θ(1).

Lemma A.12. The cut (S, S̄) has |∂S|/|S| = O(1/
√
n)

Proof. In order for a triangulation t ∈ C(T), given a central-triangle class T in Cl, l ∈ [1, n/6],

to have a neighbor in S̄, i.e. for t to have a neighboring triangulation t′ ∈ C(T ′) with T ′ having

shortest side length k ≥ n/6 + 1, the central triangles T and T ′ must form a quadrilateral

in t and in t′. This quadrilateral, in t, consists of T along with a triangle U , where U has

shortest side length k. The fraction of triangulations lying in the boundary set BT ′(T) is

therefore at most O
(

1
(k−l)3/2

)
.

For l ∈ [1, n/6], let

∂lS = {(t, t′) ∈ E(Kn−2)|t ∈ Cl, t′ ∈ S̄} =
⋃

C(T)⊆Cl,C(T ′)⊆S̄

E(T, T ′)

be the set of all cut edges incident to triangulations in Cl.

We will split the sets {Cl} in S into the cases l ∈ [1, n/8] and l ∈ (n/8, n/6]. First, for

149

all l ∈ [1, n/8], by the above reasoning, we have

|∂lS|/|Cl| =
n/3∑

k=n/6+1

O

(
1

(k − l)3/2

)
≤ (n/3− n/6)O

(
1

(n/6 + 1− l)3/2

)

≤ (n/3− n/6)O

(
1

(n/6 + 1− n/8)3/2

)
= O

(n

n3/2

)
= O(1/

√
n).

On the other hand, for l ∈ (n/8, n/6], we compute the sum

∑n/6
l=n/8+1 |∂lS|

|S|
=

n/6∑
l=n/8+1

|∂lS|
Θ(1)Cn−2

≤
n/6∑

l=n/8+1

|Cl|
n/3∑

k=n/6+1

O

(
1

(k − l)3/2

)

=

∫ n/6

l=n/8+1

O

(
1

√
n
√
l

)∫ n/3

k=n/6+1

O

(
1

(k − l)3/2

)
dkdl,

where for the last inequality we have applied the observation from the proof of Lemma A.11

that |Cl| = O
(

1√
n
√
l

)
Cn−2, and have used the fact that asymptotically the summation is

equal to a double integral. Evaluating the inner integral we obtain

O

(
1√
n

)∫ n/6

l=n/8+1

O

(
1√

l
√

n/6 + 1− l

)
dl = O

(
1

n

)∫ n/6−n/8

u=1

O

(
1√
u

)
du,

with the substitution u = n/6+ 1− l and the observation that when l ≥ n/8 we have 1/
√
l =

O(1/
√
n). Finally, evaluating the integral gives

O

(
1

n
·
√

n/6− n/8

)
= O(1/

√
n).

150

We now have

|∂S|/|S| =
∑

l∈[1,n/6]

|∂lS|/|S|

=
∑

l∈[1,n/8]

|∂lS|/|S|+
∑

l∈[n/8+1,n/6]

|∂lS|/|S| = O(1/
√
n) +O(1/

√
n)

= O(1/
√
n),

as claimed.

A.4 Missing details from k-angulation walk proofs

Lemma 2.6. For every T, T ′ ∈ Tn,

|E∗(T, T ′)| ≥ |C∗(T)||C∗(T ′)|
Cn

.

Proof. C∗(T) and C∗(T ′) are Cartesian products of the form C∗(T) = Ki□Kj+k and T ′ =

Ki+j□Kk, where |E∗(T, T ′)| = Ki□Kj□Kk. Therefore, |C∗(T)| = Ci−1Cj+k−1, |C∗(T ′)| =

Ci+j−1Ck−1, and |E∗(T, T ′)| = Ci−1Cj−1Ck−1. Thus we have

|C∗(T)||C∗(T ′)|
|E∗(T, T ′)|Cn−1

≤ Cj+k−1Ci+j−1

Cj−1Cn−1

.

This ratio increases as j increases, for any fixed i (similarly, for any fixed k). This is because,

if i is fixed, maximizing the ratio is equivalent to maximizing

Ci+j−1

Cj−1

.

151

It suffices to show that Ci+j−1/Cj−1 increases whenever j increases by one, i.e.

Ci+j/Cj

Ci+j−1/Cj−1

> 1.

I.e., it suffices to show that

Ci+j

Ci+j−1

>
Cj

Cj−1

,

i.e.

i+ j

i+ j + 1

(2(i+ j))!(i+ j − 1)!2

(2(i+ j − 1))!(i+ j)!2
>

j

j + 1

(2j)!(j − 1)!2

(2(j − 1))!j!2
,

i.e.

2(i+ j)− 1

i+ j + 1
>

2j − 1

j + 1
.

The latter inequality clearly holds for all i ≥ 1.

Therefore, the ratio in the lemma statement is maximized when j is maximized, i.e. j = n− 2

and i = k = 1. Thus we have

|C∗(T)||C∗(T ′)|
|E∗(T, T ′)|Cn−1

≤ Cn−2Cn−2

Cn−3Cn−1

.

It is immediate from the definition of Catalan numbers that Cn−1/Cn−2 ≥ Cn−2/Cn−3, so

this ratio is at most one, and the claim follows.

Lemma 2.15. Let J = G□H. Given multicommodity flows g and h in G and H respectively

with congestion at most ρ, there exists a multicommodity flow f for J with congestion at

most ρ.

Proof. Let g and h be as stated; we construct f as follows:

1. Within each copy of H in J , construct the flow internally according to h. Similarly, use

g internal to each G copy for each pair of vertices within the G copy.

152

2. Order the copies of H arbitrarily H1, . . . , H|V (G)|. For each pair of H copies Hr and Hs,

s < r, and for each vertex hr ∈ Hr, hs ∈ Hs, let the flow from hr to hs go through (i)

the h flow in Hr from hr to the counterpart vertex u ∈ Hr of hs, then through (ii) the

g flow that goes from u to hs (in the G copy that hs and u both belong to).

Part 1 generates no additional flow. Part 2 generates at most |V (H)| extra flow through each

existing g flow, and at most |V (G)| extra flow through each existing h flow. This results in

scaling the amount of g flow using any given edge in a G copy by a factor of |V (H)|—while

replacing the 1
|V (G)| term in the congestion definition by 1

|V (J)| =
1

|V (G)||V (H)|—and similarly

scaling the amount of h flow using an edge in an H copy by |V (G)|. The result follows.

153

Appendix B

Missing details for Glauber dynamics

B.1 Derivation of upper bounds in main theorems

We now analyze the specific polynomial upper bounds that we obtain from each version of

the framework.

In the following bounds, we consider all logarithms to be base two, unless otherwise stated. The

log n terms in the exponents of these bounds come from the balanced separators guaranteed

by bounded treewidth. Technically, as we have defined balanced separators, one of the two

mutually disconnected subgraphs obtained by removing a balanced separator may have size

greater than n/2. However, one can show [27] that no connected component of the resulting

disconnected graph has size greater than n/2. It is straightforward to modify many of our

proofs to account for Cartesian products with multiple factor graphs, by iterating Lemma 2.15.

When this is not possible, we will explicitly state the base we use.

We proved the following in Chapter 2:

Lemma 2.10. Suppose a flip graph Mn = (Vn, En) belongs to a family F of graphs satisfying

154

the conditions of Lemma 2.9. Suppose further that every graph Mk = (Vk, Ek) ∈ F , k < n,

satisfies

|Vk|/|Ek,min| ≤ f(k),

for some function f(k), where Ek,min is the smallest edge set between adjacent classes

C(T), C(T ′) ∈ Sk, where Sk is as in Lemma 2.9. Then the expansion of Mn is

Ω(1/(2f(n))logn)).

In the case of q-colorings, tracing the constant factors in the proof of Lemma 3.12, we

see that N/Emin ≤ q2∆(t+1), that ∆M ≤ (q − 1)n, and that N ≤ qn. Combining this with

Lemma 2.1 and Lemma 2.8 gives the bound claimed in Theorem 1.6. More precisely, the

bound is

O((q − 1)2 log q · n4(t+1)∆ log q+5).

Recall Lemma 3.14, which we proved in Section 3.5:

Lemma 3.14. Suppose a Glauber graph M(G) satisfies the conditions of the hierarchical

framework. Then the mixing time of the corresponding Glauber dynamics is

O(((2(K + 1))2 logn) ·∆2
M logN),

where ∆M is the maximum degree of the Glauber graph M(G), n = |V (G)|, K is the number

of classes in the partition, and N = |V (M(G))|.

The unbiased case of the bound in Theorem 1.5 now follows from combining Lemma 3.14

with the observation that for this chain, logN ≤ n, ∆M = n, and K ≤ 2t+1. Similarly, as

we will see, the bound for the unbiased case of partial q-colorings in Theorem 1.6 will follow

155

from the fact that K ≤ (q + 1)t+1, ∆M ≤ qn, and N ≤ (q + 1)n, so that

(2(K + 1))2 logn∆2
M logN = n2 log 2(K+1)∆2

M logN ≤ q2 log(q + 1) · n2(t+2) log(q+1)+5.

B.2 Deferred Proof Details

Lemma 3.6. Let G be a graph with bounded treewidth t and bounded degree ∆, let MIS(G)

be as we have defined, and let SIS(G) be as we have defined with respect to a small balanced

separator X with |X| ≤ t+ 1. For every pair of classes CIS(T), CIS(T ′) ∈ SIS(G), |CIS(T)| =

Θ(1)|CIS(T ′)|.

Proof. Consider the class CIS(Tr) whose vertex set in X is the empty set, and consider any

class CIS(T) ̸= CIS(Tr). CIS(Tr) consists of the set of all pairs (SA, SB), where SA is an

independent set in A, and SB is an independent set in SB. CIS(T) consists of the set of all

pairs (S ′
A, S

′
B), where S ′

A is an independent set in A \NA(T), and S ′
B is an independent set

in B \NB(T).

Clearly every independent set S ′
A in A \ NA(T) is also an independent set in A (and the

situation is the same for S ′
B), so a trivial injective mapping exists from the sets in CIS(T) to

the sets in CIS(Tr). For the other direction, consider the mapping f : P(A) → P(A \NA(T))

that sends every independent set SA ⊆ A to its restriction S ′
A = SA \NA(T). Because the

degree ∆ of G is bounded, |NA(T)| ≤ t∆ = O(1), and thus f is at worst a 2t∆ = O(1)-to-one

mapping. This shows that the classes differ in size by a factor of O(1), proving the lemma.

Lemma 3.7. Let G be a graph, let MIS(G) be as we have defined, and let SIS(G) be as we

have defined with respect to a separator X. Let CIS(T), CIS(T ′) ∈ SIS(G) be two classes. No

independent set in CIS(T) has more than O(1) flips to independent sets in CIS(T ′).

156

Proof. Each edge (S, S ′) between independent sets S ∈ CIS(T) and S ′ ∈ CIS(T ′) ̸= CIS(T)

consists of flipping a single vertex v ∈ X. It is clear that S has no other flips to independent

sets in CIS(T ′).

Lemma 3.8. Let G be a graph with bounded treewidth t and bounded degree ∆, let MIS(G)

be as we have defined, and let SIS(G) be as we have defined with respect to a small balanced

separator X with |X| ≤ t + 1. Let CIS(T), CIS(T ′) ∈ SIS(G) be two classes. Suppose there

exists at least one flip between an independent set in CIS(T) and an independent set in CIS(T ′).

Then there exist at least Ω(1)|CIS(T)| flips between independent sets in CIS(T) and independent

sets in CIS(T ′).

Proof. T and T ′ differ by exactly one vertex; call it v. (Or else no flip could exist between

CIS(T) and CIS(T ′).) Suppose v ∈ T and v /∈ T ′; then every independent set in CIS(T) has a

flip to some independent set in CIS(T ′). (See Figure 3.3.) Thus the number of edges from

CIS(T) to CIS(T ′) is |CIS(T)|; the lemma now follows from Lemma 3.6.

Lemma 3.2. The graph MMIS(G) is connected.

Proof. Let S ̸= S ′ be maximal independent sets, and consider the symmetric difference

S ⊕ S ′: if |S ⊕ S ′| > 0, choose some v ∈ S ′ \ S. Obtain a new set S ′′ by adding v to S and

removing all neighbors of v from S, then greedily adding neighbors of neighbors of v until an

maximal independent set is obtained. Repeat this process with a new vertex v′ ∈ S ′ \ S ′′,

and so on, for every vertex in S ′ \ S, obtaining a sequence of sets S1 = S, S2 = S ′′, S3, . . . , Sk.

Crucially, once a vertex v is selected from S ′ in this process, giving set Si, we have v ∈ Sj

for all i ≤ j ≤ k. This is because the only way for a vertex to be removed in the process is

for one of its neighbors to be selected from S ′. However, since S ′ is an independent set, no

neighbor of v belongs to S ′.

Thus we have Sk = S ′, proving that there is a path in MMIS(G) between every pair of

maximal independent sets.

157

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	k-angulations
	Decomposition framework

	Glauber dynamics on graph-theoretic structures
	Our contribution

	Main Results
	Geometric Results
	Graph-Theoretic Chain Results

	Organization
	Chapter 2 Organization: Geometric Chains
	Chapter 3 Organization: Graph-Theoretic Chains

	Improved mixing for the convex polygon triangulation flip walk
	Background
	Triangulations of convex point sets and lattice point sets
	Convex triangulation flip walk and mixing time

	Decomposing the convex point set triangulation flip graph
	Bounding mixing via expansion
	``Slicing and peeling''

	Bounding expansion via multicommodity flows
	Our framework
	Markov chain decomposition via multicommodity flow
	General pattern for bounding projection chain congestion
	Eliminating inductive loss: nearly tight conductance for triangulations
	Intuition for the flow construction for triangulations

	Proof that the conditions of Lemma 2.9 imply rapid mixing
	Proof that the conditions of Lemma 2.12 imply rapid mixing
	k-angulations of convex point sets: quasipolynomial mixing
	Generalizing triangulations
	(Generalized) Catalan numbers
	Partition into classes
	Applying the framework

	Integer lattice triangulation flip graphs
	Definition
	Additional preliminaries: treewidth, separators, and vertex expansion

	Rapid mixing for the hardcore Glauber dynamics and other Markov chains in bounded-treewidth graphs
	Prior work and our contribution
	Application to graphical models
	Further discussion of prior work

	Preliminaries
	Rapid mixing and Glauber dynamics
	Carving width
	Dominating sets, b-matchings, and b-edge covers
	Glauber dynamics with parameter > 0

	= 1: Bounded carving width
	Partitioning the vertices of MIS(G) into classes
	Rapid mixing of the independent set flip chain when G has bounded carving width
	Abstraction into framework conditions

	= 1: Unbounded degree
	Hierarchical framework
	Independent sets
	Hierarchical Framework Conditions

	Bounded carving width: application of framework beyond independent sets
	q-colorings
	b-edge covers and b-matchings
	Maximal independent sets and maximal b-matchings

	Hierarchical framework
	Proof that conditions of the hierarchical framework imply rapid mixing
	Independent sets
	Partial q-colorings

	All > 0
	(Weighted) Conductance
	Analysis of flow construction

	Dealing with non-independence
	Framework relaxation to allow non-independence
	b-edge covers in the relaxed hierarchical framework
	Dominating sets in the relaxed hierarchical framework
	Rapid mixing in the relaxed hierarchical framework for all > 0
	Rapid mixing of the Glauber dynamics on b-matchings for all > 0
	Maximal independent sets and maximal b-matchings in the non-hierarchical framework

	Open Questions

	Bibliography
	Appendix Missing details for triangulations
	Nearly tight conductance for triangulations: lower bound
	Eliminating |V(Kn)|: mixing time O(n3 3 n) for triangulations
	Associahedron expansion upper bound
	Finding a sparse cut

	Missing details from k-angulation walk proofs

	Appendix Missing details for Glauber dynamics
	Derivation of upper bounds in main theorems
	Deferred Proof Details

