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ABSTRACT OF THE DISSERTATION

Flow-Based Decomposition for Geometric and Combinatorial Markov Chain Mixing
By
Daniel Frishberg
Candidate for Doctor of Philosophy in Computer Science
University of California, Irvine, 2023

David Eppstein, Chair

We prove that the well-studied triangulation flip walk on a convex point set mixes in time
O(n®log® n), the first progress since McShine and Tetali’s O(n’logn) bound in 1997. In
the process we give lower and upper bounds of respectively Q(1/(y/nlogn)) and O(1/y/n)
—asymptotically tight up to an O(logn) factor—for the expansion of the associahedron
graph K,,—the first o(1) expansion result for this graph. We show quasipolynomial mixing
for the k-angulation flip walk on a convex point set, for fixed k > 4, and a treewidth result

for the flip graph on n x n lattice triangulations.

We show that the hardcore Glauber dynamics—a random walk on the independent sets of
an input graph—mixes rapidly in graphs of bounded treewdith for all fixed values of the
standard parameter A > 0, giving a simple alternative to existing sampling algorithms for
these structures. We also show rapid mixing for analogous Markov chains on dominating sets
and b-edge covers (for fixed b > 1 and A > 0) in bounded-treewidth graphs, and for Markov
chains on the b-matchings (for fixed b > 1 and A > 0), the maximal independent sets, and

the maximal b-matchings of a graph (for fixed b > 1), in graphs of bounded carving width.

To obtain these results, we introduce a decomposition framework for showing rapid Markov
chain mixing. This framework is a purely combinatorial analogue that in some settings gives

better results than the projection-restriction technique of Jerrum, Son, Tetali, and Vigoda.



Chapter 1

Introduction

The study of muixing times—the art and science of proving upper and lower bounds on the
efficiency of Markov chain Monte Carlo sampling methods—is a well-established area of
research, of interest for graph-theoretic sampling problems, spin systems in statistical physics,
probability, and the study of subset systems. Work in this area brings together techniques
from spectral graph theory, combinatorics, and probability, and dates back decades; for a
comprehensive survey of classic methods, results, and open questions see the canonical text by
Levin, Wilmer, and Peres [48]. Recent breakthroughs [2, 3, 4, 16, 17, 18, 43, 47]—incorporating
techniques from the theory of abstract simplicial complexes—have led to a recent slew of
results for the mixing times of graph-theoretic chains for sampling independent sets, matchings,
Ising model configurations, and a number of other structures in graphs, injecting renewed

energy into an already active area.



1.1 k-angulations

In Chapter 2, we focus on a class of geometric sampling problems that has received considerable
attention from the counting and sampling [1, 41] and mixing time [54, 56, 71, 13] research
communities over the last few decades, but for which tight bounds have been elusive: sampling
triangulations. A triangulation is a maximal set of non-crossing edges connecting pairs of
points (see Figure 2.1) in a given n-point set. Every pair of triangles sharing an edge forms a
quadrilateral. A triangulation flip consists of removing such an edge, and replacing it with
the only other possible diagonal within the same quadrilateral. Flips give a natural Markov
chain (the flip walk): one selects a uniformly random diagonal from a given triangulation

and (if possible) flips the diagonal.

McShine and Tetali gave a classic result in a 1997 paper [54], showing that in the special
case of a convex two-dimensional point set (a convex n-gon), the flip walk mizes (converges
to approximately uniform) in time O(n®logn), improving on the best-known prior (and first
polynomial) upper bound, O(n?), by Molloy, Reed, and Steiger [56]. McShine and Tetali
applied a Markov chain comparison technique due to Diaconis and Saloff-Coste [21] and to
Randall and Tetali [63] to obtain their bound, using a bijection between triangulations and a
structure known as Dyck paths. They noted that they could not improve on this bound using
this bijection. Furthermore, they believed that an earlier lower bound of Q(n3/ 2), also by
Molloy, Reed, and Steiger [56], should be tight. We show the following result (see Section 2.3

for the precise definition of mixing time):

Theorem 1.1. The triangulation flip walk on the convexr n + 2-point set mixes in time

O(n®log®n).

Prior to the present work, no progress had been made either on upper or lower bounds
for this chain in 25 years—even as new polynomial upper bounds and exponential lower

bounds were given for other geometric chains, from lattice point set triangulations [71, 13]
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to quadrangulations of planar maps [14], and despite many breakthroughs using the newer

techniques for other problems.

1.1.1 Decomposition framework

To prove our result, we develop a general decomposition framework that applies to a broad class
of Markov chains, as an alternative to prior work by Jerrum, Son, Tetali, and Vigoda [40] that
used spectral methods. We obtain our new mixing result for triangulations, then generalize
our technique to obtain the first nontrivial mixing result for k-angulations. In Chapter 3 we
further generalize this work to obtain the first rapid mixing bounds for Markov chains for
sampling independent sets, dominating sets, and b-edge covers (generalizing edge covers) in
graphs of bounded treewidth, and for maximal independent sets, b-matchings, and mazimal
b-matchings in graphs of bounded treewidth and degree. In that work we also strengthen

existing results [35, 23] for proper g-colorings in graphs of bounded treewidth and degree.

The key observation that unifies these chains is that, when viewing their state spaces as graphs
(exponentially large graphs relative to the input), they all admit a recursive decomposition
satisfying key properties. First, each such graph, called a “flip graph,” can be partitioned into
a small number of induced subgraphs, where each subgraph is a Cartesian product of smaller
graphs that are structurally similar to the original graph—and thus can be partitioned again
into even smaller product graphs. Second, at each level of recursion, pairs of subgraphs are
connected by large matchings. Intuitively, we can “slice” a flip graph into subgraphs that are
well connected to each other, then “peel” apart the subgraphs using their Cartesian product
structure, and repeat the process recursively. Each recursive level of slicing cuts through
many edges (the large matchings), and indeed the peeling also disconnects many mutually

well-connected subgraphs from one another.

Prior work has applied this “slicing” and “peeling” paradigm, also known as projection-



restriction: Jerrum, Son, Tetali, and Vigoda [40] gave a decomposition theorem (Theorem 2.2)
for obtaining bounds on the spectral gap of a chain. The spectral gap of a chain is the difference
between the two largest eigenvalues of the transition matrix of the chain (equivalently, the
adjacency matrix of the flip graph, up to normalization factors). They defined, with respect
to any decomposition of the state space of a chain into subgraphs (“slicing”), a projection
chain—whose states are identified with the subgraphs and whose transitions correspond
to the edges between pairs of the subgraphs—and a restriction chain within each of the
subgraphs. They showed that the gap of the overall chain can be bounded from below by the
product of the gaps of the projection chain and the restriction chain, up to some loss factors.
Using standard inequalities that relate the spectral gap to the mixing time of a chain, their

technique then gives bounds on the mixing time.

One of our contributions is to unify prior applications [40, 35, 23] of projection-restriction into
a sufficient set of conditions—given in Lemma 2.9—under which one can apply the spectral
decomposition theorem. A more substantial technical contribution is our Theorem 2.1, an
analogue to Jerrum, Son, Tetali, and Vigoda’s Theorem 2.2 that uses multicommodity flows
instead of the spectral gap to bound congestion. One can bound the mixing time of a chain
by constructing a multicommodity flow in the corresponding flip graph, and bounding the

congestion of the flow.

One can use our flow-based theorem in place of the spectral theorem and, in some cases,
obtain better mixing bounds. In particular, in the case of triangulations, we obtain polynomial
mixing via an adaptation of our (combinatorial) technique (Lemma 2.12)—and it is not clear
how to adapt the existing spectral theorem to get even a polynomial bound. In the case

of k-angulations, our theorem gives a bound that has better dependence on the parameter k.



1.2 Glauber dynamics on graph-theoretic structures

The Glauber dynamics on independent sets in a graph—motivated in part by modeling systems
in statistical physics—is a Markov chain in which one starts at an arbitrary independent
set, then repeatedly chooses a vertex at random and, with probability that depends on a
fixed parameter A\ > 0, either removes the vertex from the set (if it is in the set), or adds
it to the set (if it is not in the set and has no neighbor in the set). This chain, also known
as the hardcore model, has seen recent rapid mixing results under various conditions. In
addition to independent sets, similar dynamics have been studied for a number of other
structures—including, for example, g-colorings, matchings, and edge covers (more generally,

b-matchings and b-edge covers).

1.2.1 Our contribution

In Chapter 3, we prove that the hardcore Glauber dynamics mixes rapidly on graphs of
bounded treewidth for all fixed A > 0, and that the Glauber dynamics on partial ¢-colorings
(for all A > 0) of a graph of bounded treewidth, and on g-colorings of a graph of bounded
carving width, mix rapidly. Marc Heinrich proved the latter result, namely for g-colorings, in
a 2020 preprint [35]. Heinrich’s result applies to all graphs of bounded treewidth; however,
for graphs of bounded carving width whose degree is less than quadratic in their treewidth,
we improve on Heinrich’s upper bound—provided that ¢ is fixed. We also prove that the
analogous dynamics on the b-edge covers (when b is bounded) and the dominating sets of
a graph of bounded treewidth mix rapidly for all A > 0. In a similar vein, we prove that
three additional chains—on b-matchings (when A > 0), on maximal independent sets, and
on maximal b-matchings—mix rapidly in graphs where carving width is bounded. (For the

latter two chains we consider only the unbiased version.)



To prove our results, we apply the framework we introduce in Chapter 2. As we discuss in
Chapter 2, the framework makes progress towards unifying prior work on similar Glauber
dynamics with prior work on probabilistic graphical models. The application to k-angulations
(proving quasipolynomial mixing) illustrates the applicability of the framework beyond

graphical models and sampling problems in graphs.

1.3 Main Results

1.3.1 Geometric Results

To obtain Theorem 1.1, we show the following result for the expansion of the associahedron:

Theorem 1.2. The expansion of the associahedron Ks 1o is Q(1/(y/nlogn)) and O(1/y/n).

We will prove the lower bound in Section 2.6 and Section A.1 using the multicommodity flow-
based machinery we introduce in Section 2.4, after giving intuition in Section 2.2. Combining
this result with the connection between flows and mixing [67]—with some additional effort in

Section A.1—gives our new O(n?log®n) bound (Theorem 1.1) for triangulation mixing.

Although the expansion lower bound is more interesting for the sake of rapid mixing, the
upper bound in Theorem 1.2—which we prove in Section A.3—recovers Molloy, Reed, and
Steiger’s Q(n*?) mixing lower bound [56]. It is also the first result showing that the
associahedron has combinatorial expansion o(1). By contrast, Anari, Liu, Oveis Gharan, and
Vinzant recently proved [4, 3], settling a conjecture of Mihail and Vazirani [55], that matroids
have expansion one. (Mihail and Vazirani in fact conjectured that all graphs realizable as
the 1-skeleton of a 0-1 polytope have expansion one.) Although the set of convex n-gon
triangulations is not a matroid, it is an important subset system—and this work shows that

it does not have expansion one. More generally, we give the following quasipolynomial bound

6



for k-angulations:

Theorem 1.3. For every fized k > 3, the k-angulation flip walk on the convez (k—2)n+2-point

set mizes in time nOk18m)
In Section 2.8, we give a lower bound on the treewidth of the n x n integer lattice point set

triangulation flip graph:

Theorem 1.4. The treewidth of the triangulation flip graph F,, on the n X n integer lattice
point set is Q(N'=°W) where N = |V (F,)|.

1.3.2 Graph-Theoretic Chain Results

Our main results are the following (see Section 3.1 for relevant definitions).

o(t)

Theorem 1.5. The hardcore Glauber dynamics mizes in time n on graphs of treewidth t

for all fized A > 0.

Theorem 1.6. The (unbiased) Glauber dynamics on q-colorings (when ¢ > A+ 2 is fized)
mizes in time n®® on graphs of treewidth t and degree /. The Glauber dynamics on partial

o(t)

q-colorings (when q > A + 2 is fized) mizes in time n on graphs of treewidth t for all

fized X\ > 0.

Theorem 1.7. The Glauber dynamics on b-edge covers mixes in time no® on graphs of
treewidth t, for all fited b and fired A > 0. The Glauber dynamics on dominating sets mizes in

o(t)

time n on graphs of treewidth t for all fized X > 0. The Glauber dynamics on b-matchings

mizes in time n°Y on graphs of treewidth t, fized b, and fized degree A for all fized X > 0.

Theorem 1.8. There exist flip chains on maximal independent sets and mazximal b-matchings,
whose stationary distributions are uniform, that miz in time n°® on graphs of treewidth t

and fized degree /.



1.4 Organization

1.4.1 Chapter 2 Organization: Geometric Chains

In Chapter 2 we define the Markov chains we are analyzing. In Section 2.2, we give intuition
for the decomposition by describing its application to triangulations. In Section 2.4 we present
our general decomposition meta-theorems, and compare our contribution to prior work by
Jerrum, Son, Tetali, and Vigoda [40]. In particular, we discuss why our purely combinatorial
machinery is needed for obtaining new bounds in the case of triangulations. In Section 2.6 we
prove a general result that gives a coarse bound on triangulation mixing. Improving this bound
to near tightness requires some technical optimizations, which we defer to Appendix A.1; we
give a matching upper bound (up to logarithmic factors) in Appendix A.3. In Section 2.7, we
show that general k-angulations admit a decomposition satisfying a relaxation (Lemma 2.11)
of our general theorem that implies quasipolynomial-time mixing. We analyze the particular
quasipolynomial bound we obtain, and show that our combinatorial technique (Theorem 2.1)
gives a better dependence on k than one would obtain with the prior decomposition theorem.
In Section 2.5 we prove our general combinatorial decomposition theorem, Theorem 2.1. In
Section 2.8 we prove a theorem about lattice triangulations; in Appendix A.4 we fill in a few

remaining proof details.

1.4.2 Chapter 3 Organization: Graph-Theoretic Chains

In Section 3.1, we give some additional relevant definitions and background for our graph-
theoretic chains, including defining the Glauber dynamics and the hardcore model (the chain
on independent sets). In Section 3.2.3, we use the chain on independent sets to illustrate
what we call a “non-hierarchical” version of the framework (actually the version we give in

Chapter 2). This non-hierarchical version works on this chain when carving width is bounded,



and in Sections 3.4.1 and Section 3.4.2 we describe how to apply it respectively to g-colorings,

and to b-edge covers and b-matchings.

To fully prove Theorem 1.5 and Theorem 1.7, we need to deal with unbounded-degree
graphs. In Section 3.3, we discuss how to modify the framework to accomplish this, proving
Theorem 1.5 for A = 1. We defer some of the details of this proof to Section 3.5, in which we

also finish the proof of Theorem 1.6 for A = 1.

We prove the general case A > 0 of Theorems 1.5 and 1.6 in Appendix 3.6. We finish the
proofs of Theorems 1.7 and 1.8 in Section 3.7: applying the framework to the relevant chains

requires a further refinement of the framework.

In all of the above, we prove rapid mixing but defer derivation of specific upper bounds to

Appendix B.1.



Chapter 2

Improved mixing for the convex

polygon triangulation flip walk

2.1 Background

2.1.1 Triangulations of convex point sets and lattice point sets

Let P, be the regular polygon with n vertices. Every triangulation ¢ of P,,5 has n — 1
diagonals, and every diagonal can be flipped: every diagonal D belongs to two triangles
forming a convex quadrilateral, so D can be removed and replaced with the diagonal D’
lying in the same quadrilateral and crossing D. The set of all triangulations of P, ., for
n > 1, is the vertex set of a graph that we denote K. (This notation is standard, but
unfortunate, as it coincides with the notation for a complete graph.) The edges of this graph
are the flips between adjacent triangulations. The graph K, is realizable as the 1-skeleton
of an n — 1-dimensional polytope [49] called the associahedron (we also use this name for

the graph itself). It is also isomorphic to the rotation graph on the set of all binary plane
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trees with n + 1 leaves [69], and equivalently the set of all parenthesizations of an algebraic
expression with n + 1 terms, with “flips” defined as applications of the associative property
of multiplication. union The structure of this graph depends only on the convexity and the
number of vertices of the polygon, and not on its precise geometry. That is, P, need not

be regular for K,, to be well defined.

MecShine and Tetali [54] showed that the mizing time (see Section 2.3) of the uniform random
walk on K, is O(n°logn), following Molloy, Reed, and Steiger’s [56] lower bound of Q(n3/?).
Standard inequalities [67] then imply that the expansion of K, is Q(1/(n*logn)) and O(n'/4).
It is easy to generalize triangulations to k-angulations of a convex polygon P _2y,12, and to
generalize the definition of a flip between triangulations to a flip between k-angulations: a
k-angulation is a maximal division of the polygon into k-gons, and a flip consists of taking a
pair of k-gons that share a diagonal, removing that diagonal, and replacing it with one of the
other diagonals in the resulting 2k — 2-gon. One can then define the k-angulation flip walk
on the k-angulations of P(;_9),+2. An analogous graph to the associahedron is defined over
the triangulations of the integer lattice (grid) point set with n rows of points and 7 columns.
Substantial prior work has been done on bounds for the number of triangulations in this
graph ([1], [41]), as well as characterizing the mixing time of random walks on the graph,

when the walks are weighted by a function of the lengths of the edges in a triangulation ([13]

[12]).

2.1.2 Convex triangulation flip walk and mixing time

Consider the following random walk on the triangulations of the convex n + 2-gon:

fort=1,2,... do
Begin with an arbitrary triangulation t¢.

Flip a fair coin.

11



If the result is tails, do nothing.
Else, select a diagonal in ¢ uniformly at random, and flip the diagonal.

end for

(The “do nothing” step is a standard MCMC step that enforces a technical condition known

as laziness, required for the arguments that bound mixing time.)

At any given time step, this walk induces a probability distribution 7 over the triangulations
of the n + 2-gon. Standard spectral graph theory shows that 7 converges to the uniform
distribution in the limit. Formally, what McShine and Tetali showed [54] is that the number
of steps before 7 is within total variation distance 1/4 of the uniform distribution is bounded
by O(n®logn)—in other words, that the mizing time is O(n°logn). Any polynomial bound

means the walk mizes rapidly. We formally define total variation distance:

The total variation distance between two probability distributions p and v over the same set

Q) is defined as
) = 5 3 Iw(S) ~ (9]
SeQ

Consider a Markov chain with state space {2 with transition matrix P. Given a starting state
S € (), the chain induces a probability distribution 7; at each time step ¢. Suppose the chain
is 1rreducible: it connects every pair of states. Suppose further that the chain is lazy: it
has constant probability of remaining at any given state. Then the distribution converges
in the limit to a stationary distribution 7*. Furthermore, if the transition probabilities are
symmetric (as is the case for the k-angulation flip walk), then the stationary distribution is
uniform. The mizing time is defined as follows: Given an arbitrary € > 0, the mixing time,
7(g), of a Markov chain with state space {2 and stationary distribution 7* is the minimum

time t such that, regardless of starting state, we always have

d(m, ) < €.

12



Suppose that the chain belongs to a family of chains, whose size is parameterized by a value
n. (It may be that € is exponential in n.) If 7(¢) is upper bounded by a function that is
polynomial in log(1/¢) and in n, say that the chain is rapidly mizing. It is common to omit

the parameter e, assuming its value to be the arbitrary constant 1/4.

2.2 Decomposing the convex point set triangulation

flip graph

2.2.1 Bounding mixing via expansion

We have a Markov chain that is in fact a random walk on the associahedron K,,. We wish to
bound the mixing time of this walk. It turns out that one way to do this is by lower-bounding
the expansion of the same graph K,. Intuitively, expansion concerns the extent to which
“bottlenecks” exist in a graph. More precisely, it measures the “sparsest” cut—the minimum
ratio of the number of edges in a cut divided by the number of vertices on the smaller side of

the cut:

The edge expansion (or simply expansion), h(G), of a graph G = (V| E) is the quantity

[251/151,

min
SCViSI<IV]/2

where 0S5 = {(s,t)|s € S,t ¢ S} is the set of edges across the (S, V '\ S) cut. A lower bound

on edge expansion leads to an upper bound on mixing [39, 67]:

Lemma 2.1. The mizing time of the Markov chain whose transition matriz is the normalized
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adjacency matriz of a A-regular graph G is

A%log((V/(G)))
© ( (h(G))? ) |

One can do better [22, 67] if the paths in a multicommodity flow are not too long (Section 2.3).

2.2.2 “Slicing and peeling”

We would like to show that there are many edges in every cut, relative to the number of
vertices on one side of the cut. We partition the triangulations V(K,,) into n equivalence
classes, each inducing a subgraph of K,,. We show that many edges exist between each pair
of the subgraphs. Thus the partitioning “slices” through many edges. After the partitioning,
we show that each of the induced subgraphs has large expansion. To do so, we show that
each such subgraph decomposes into many copies of a smaller flip graph K;, i < n. This
inductive structure lets us assume that K; has large expansion—then show that the copies of
the smaller flip graph are all well connected to one another. We call this “peeling,” because
one must peel the many K; copies from one another—removing many edges—to isolate
each copy. Molloy, Reed, and Steiger [56] obtained their O(n**) mixing upper bound via
a different decomposition, namely using the central triangle, via a non-flow-based method.
That decomposition is the one we use for our quasipolynomial bound for general k-angulations
in Appendix 2.7. However, we use a different decomposition here, one with a structure that
lets us obtain a nearly tight bound, via a multicommodity flow construction. We formalize

the slicing step now:

Fix a “special” edge e* of the convex n + 2-gon P, . For each triangle T" having e* as
one of its edges, define the oriented class C*(T) to be the set of triangulations of P, that

include T" as one of their triangles. Let 7, be the set of all such triangles; let S,, be the set of
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all classes {C*(T)|T € T,.}.

Orient P, 2 so that e* is on the bottom. Then say that T' (respectively C*(T")) is to the left
of T" (respectively C*(T")) if the topmost vertex of T lies counterclockwise around P, ;2 from

the topmost vertex of T”. Say that T” lies to the right of T. Write T < T’ and T" > T.

See Figure 2.1.

/

Figure 2.1: Left: A triangulation of the regular octagon. Center: a class C*(T) € S,,
represented schematically by the triangle 7" that induces it. We depict the regular n+2-gon as a
circle (which it approximates as n — c0), for ease of illustration. Each triangulation ¢t € C*(T")
consists of T' (the triangle shown), and an arbitrary triangulation of the two polygons on
either side of T'. Notice that C*(T') = K;,0K,, where T partitions the n + 2-gon into an [-
gon and an 7-gon. Right: the matching £*(T,T") between classes C*(T") = K,0K,;; and
C*(T") = K,4;0Kj, is in bijection with the triangulations in K;0K;0K; (induced by the
quadrilateral containing 7" and 7”). Therefore, |E*(T,T")| = C;C;C}.

We make observations about the structure of each class as an induced subgraph of K,

The Cartesian product graph GOH of graphs G and H has vertices V(G) x V(H) and edges

{((w, 0), (', 0))|(u, ) € E(G),v € V(H)} U{((1,v), (u,0))[(v,0) € E(H),u € V(G)}.

Given a vertex w = (u,v) € V(G) x V(H), call u the projection of w onto G, and similarly
call v the projection of w onto H. (Applying the obvious associativity of the Cartesian
product operator, one can naturally define the product G,00G,0---0G, = 08, G;.)

We can now characterize the structure of each class as an induced subgraph of K,,:
Lemma 2.2. Fach class C*(T) is isomorphic to a Cartesian product of two associahedron
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graphs K; and K., withl+r =n —1.

Proof. Each triangle T" partitions the n + 2-gon into two smaller convex polygons with side
lengths [ + 1 and r + 1, such that [ +r = n — 1. Thus each triangulation in C*(7") can be
identified with a tuple of triangulations of these smaller polygons. The Cartesian product
structure then follows from the fact that every flip between two triangulations in C*(T") can

be identified with a flip in one of the smaller polygons. ]

Lemma 2.2 will be central to the peeling step. For the slicing step, building on the idea in

Lemma 2.2 will help us characterize the edge sets between classes:

Given classes C*(T'),C*(T") € S,,, denote by £*(T,T") the set of edges (flips) between C*(T')
and C*(1"). Let B;, +(T') and B;, 7(1") be the boundary sets—the sets of endpoints of edges
in £*(T,T")—that lie respectively in C*(T") and C*(1").

Lemma 2.3. For each pair of classes C*(T') and C*(1"), the boundary set By, 1.(T) induces a
subgraph of C*(T') isomorphic to a Cartesian product of the form K;,OK;0Ky, for some i+

Jj+k=n-—2.

Proof. Each flip between triangulations in adjacent classes C*(T") involves flipping a diagonal
of T to transform the triangulation t € C*(7') into triangulation ¢’ € C*(7"). Whenever this is
possible, there must exist a quadrilateral @, sharing two sides with T (the sides that are not
flipped), such that both ¢ and ¢’ contain @). Furthermore, every ¢t € C*(7T") containing @) has a
flip to a distinct ¢ € C*(T"). The set of all such boundary vertices t € C*(T') can be identified
with the Cartesian product described because () partitions P, into three smaller polygons,
so that each triangulation in By ;. (T') consists of a tuple of triangulations in each of these
smaller polygons, and such that every flip between triangulations in B} . (T') consists of a

flip in one of these smaller polygons. O
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Lemma 2.4. The set E*(T,T") of edges between each pair of classes C*(T) and C*(T") is a
nonempty matching. Furthermore, this edge set is in bijection with the vertices of a Cartesian

product K;OK;UOK, i +7+k=n—2.

Proof. The claim follows from the reasoning in Lemma 2.3 and from the observation that
each triangulation in B} ;. (T') has exactly one flip (namely, flipping a side of the triangle T

to a neighbor in B}, 1(T"). O

Lemma 2.4 characterizes the structure of the edge sets (namely matchings) between classes;

we would also like to know the sizes of the matchings. We will use the following formula:

Let C,, be the nth Catalan number, defined as C,, = —(2")

1
n+l\n
Lemma 2.5. [46, 36]: The number of vertices in the associahedron K, is C,, and this

1 . 92n
number grows as Wore 25",

We will prove the following in Section A.4:

Lemma 2.6. For every T,T' € T,

e (T)f[e(17)]
Cn

€T, T =

Lemma 2.6—which states that the number of edges between a pair of classes is at least equal
to the product of the cardinalities of the classes, divided by the total number of vertices
in the graph |V (K,)| = C,,—is crucial to our results. To explain why this is, we will need
to present our multicommodity flow construction (Appendix 2.6). We will give intuition in
Section 2.4. For now, it suffices to say that Lemma 2.6 implies that there are many edges
between a given pair of classes, justifying (intuitively) the slicing step. For the peeling step,
we need the fact that Cartesian graph products preserve the well-connectedness of the graphs

in the product [31]:
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Lemma 2.7. Gwen graphs G1,Ga, . ..,Gy, Cartesian product GiUG,0 - - - UGy satisfies

1

Lemma 2.2 says that each of the classes C*(T') € S, is a Cartesian graph product of
associahedron graphs K, K, | < n,r < n, allowing us to “peel” (decompose) C*(7T) into
graphs that can then be recursively sliced into classes and peeled. Lemma 2.7 implies that
the peeling must disconnect many edges, as it involves splitting a Cartesian product graph

into many subgraphs (copies of K;).

We will make all of this intuition rigorous in Section 2.6 by constructing our flow. The
choice of paths through which to route flow will closely trace the edges in this recursive
“slicing and peeling” decomposition. We will then show that, with this choice of paths, the
resulting congestion—the maximum amount of flow carried along an edge—is bounded by a

suitable polynomial factor. This will provide a lower bound on the expansion.

Figure 2.2: Left: The associahedron graph K3, with each vertex representing a triangulation
of the regular heptagon. Flips are shown with edges (in blue and red). The vertex set V(K,)
is partitioned into a set S,, of five equivalence classes (of varying sizes). Within each class, all
triangulations share the same triangle containing the bottom edge e*. Flips (edges) between
triangulations in the same class are shown in blue. Flips between triangulations in different
classes are shown in red. To “slice” Kj into its subgraphs, one must cut through these red
matchings. Right: A class C*(T) from the graph Ky on the left-hand side, viewed as an
induced subgraph of K5. The identifying triangle T" is marked with a blue dot. This subgraph
is isomorphic to a Cartesian product of two Ky graphs; each copy of K5 induced by fixing the

rightmost diagonal is outlined in green. “Peeling” apart this product requires disconnecting
the two red edges connecting the Ky copies.
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2.3 Bounding expansion via multicommodity flows

The way we will lower-bound expansion is by using multicommodity flows [67, 42]. A
multicommodity flow ¢ in a graph G = (V, E) is a collection of functions {fy: A = R | s,t €
V'}, where A =y, ,yep{(w,v), (v,u)}, combined with a demand function D : V x V' — R.

Each fy is a flow sending D(s,t) units of a commodity from vertex s to vertex ¢ through the
edges of G. We consider the capacities of all edges to be infinite. Let fy(u,v) be the amount

of flow sent by fi across the arc (u,v). (It may be that fg(u,v) # fa(v,u).) Let

1
f(u7v) = m Z fst(uvv)7

s,teV XV

and let p = max(y y)ea f(u,v). Call p the congestion. Unless we specify otherwise, we will
mean by “multicommodity flow” a uniform multicommodity flow, i.e. one in which D(s,t) =1
for all s,t. The following is well established and enables the use of multicommodity flows as

a powerful lower-bounding technique for expansion:

Lemma 2.8. Given a uniform multicommodity flow f in a graph G = (V, E) with congestion p,

the expansion h(G) is at least 1/(2p).

Lemma 2.8, combined with Lemma 2.1, gives an automatic upper bound on mixing time
given a multicommodity flow with an upper bound on congestion—but with a quadratic
loss. As we will discuss in Appendix 2.5, one can do better if the paths used in the flow are

short [22, 67].
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2.4 Our framework

In addition to the new mixing bounds for triangulations and for general k-angulations, we
make general technical contributions, in the form of three meta-theorems, which we present
in this section. First, Theorem 2.1 provides a general recursive mechanism for analyzing the
expansion of a flip graph in terms of the expansion of its subgraphs. Equivalently, viewing the
random walk on such a flip graph as a Markov chain, this theorem provides a mechanism for
analyzing the mixing time of a chain, in terms of the mixing times of smaller restriction chains
into which one decomposes the original chain—and analyzing a projection chain over these
smaller chains. We obtain, in certain circumstances such as the k-angulation walk, better
mixing time bounds than one obtains applying similar prior decomposition theorems—which

used a different underlying machinery.

The second theorem, Lemma 2.9, observes and formalizes a set of conditions satisfied by a
number of chains (equivalently, flip graphs) under which one can apply either our Theorem 2.1,
or prior decomposition techniques, to obtain rapid mixing reuslts. Depending on the chain,
one may then obtain better results either by applying Theorem 2.1, or by applying the prior
techniques. It is Lemma 2.9 that we apply to a number of other chains in Chapter 3 The
case of general k-angulations satisfies a relaxation of this theorem (Lemma 2.11), giving
a quasipolynomial bound. This bound will come from incurring a polynomial loss over

logarithmic recursion depth.

The third theorem, Lemma 2.12, adapts the machinery in Theorem 2.1 to eliminate this
multiplicative loss altogether, assuming that a chain satisfies certain properties. One such
key property is the existence of large matchings in Lemma 2.6 in Section 2.2. Another
property, which we will discuss further after presenting Lemma 2.12, is that the boundary
sets—the vertices in one class (equivalently, states in a restriction chain) having neighbors in

another class—are well connected to the rest of the first class. When these properties are

20



satisfied, one can apply our flow machinery to overcome the multiplicative loss and obtain a
polynomial bound. However, the improvement relies on observations about congestion that

do not obviously translate to the spectral setting.

2.4.1 Markov chain decomposition via multicommodity flow

In this section we state our first general theorem. To place our contribution in context
with prior work, we cast our flip graphs in the language of Markov chains. As we discussed
in Section 2.1.2, any Markov chain satisfying certain mild conditions has a stationary
distribution 7* (which in the case of our triangulation walks is uniform). We can view such a
chain as a random walk on a graph M (an unweighted graph in the case of the chains we
consider, which have uniform distributions and regular transition probabilities). In the case

of convex polygon triangulations, we have M = K,,.

The flip graph M has vertex set €2 and (up to normalization by degree) adjacency ma-
trix P—and we abuse notation, identifying the Markov chain M with this graph. When 7*
is not uniform, it is easy to generalize the flip graph to a weighted graph, with each vertex
(state) t assigned weight 7(t), and each transition (edge) (¢,t') assigned weight 7(¢)P(¢,t') =
m(t")P(t',t). We assume here that this latter equality holds, a condition on the chain M known
as reversibility. We then replace a uniform multicommodity flow with one where D(¢,t) =

w(t)7(t") (up to normalization factors).

Consider a Markov chain M with finite state space {2 and probability transition matrix P, and
stationary distribution 7. Consider a partition of the states of €2 into classes €2y, €2, ..., Q.
Let the restriction chain, for ¢ = 1,...,k, be the chain with state space €2;, probability
distribution 7;, with m(z) = 7(z)/(3_,cq, 7(y)), for x € €, and transition probabili-
ties (v, y) = P(2,9)/(X_.cq, P(7,2)). Let the projection chain be the chain with state

space Q = {1,2,...,k}, stationary distribution 7, with 7(i) = > ecq, ™(1), and transition
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probabilities P(i, j) = erther P(z,y).

Theorem 2.1. Let M be a reversible Markov chain with finite state space €2 probability tran-
sition matriz P, and stationary distribution 7. Suppose M is connected (irreducible). Sup-
pose M can be decomposed into a collection of restriction chains (1, Py), (Q2, Pa), ..., (Qu, Py),
and a projection chain (Q, P). Suppose each restriction chain admits a multicommodity flow
(or canonical paths) construction with congestion at most pmax. Suppose also that there exists
a multicommodity flow construction in the projection chain with congestion at most p. Then
there ezists a multicommodity flow construction in M (viewed as a weighted graph in the

natural way) with congestion

(14 2p7A) prmaxs

where y = MaX;c[k MaXgcq, Zymi P(z,y), and A is the degree of M.

The proof of Theorem 2.1 is in Section 2.5. Jerrum, Son, Tetali, and Vigoda [40] presented
an analogous decomposition theorem, which we restate below as Theorem 2.2, and which has
become a standard tool in mixing time analysis. The key difference between our theorem
and theirs is that our theorem uses multicommodity flows, while their theorem uses the
so-called spectral gap—another parameter that can use to bound the mixing time of a chain.
Often, the spectral gap gives tighter mixing bounds than combinatorial methods. Their
Theorem 2.2 gave bounds analogous to our Theorem 2.1, but with the multicommodity flow
congestion replaced with the spectral gap of a chain—and with a 3y term in place of our 2.
(They also gave an analogous version for the log-Sobolev constant—yet another parameter for
bounding mixing times.) The spectral gap of a chain M = (€2, P), which we denote A, is the
difference between the two largest eigenvalues of the transition matrix P (which we can view
as the normalized adjacency matrix of the corresponding weighted graph). The key point is
that while on the one hand the mixing time 7 satisfies 7 < A~ log|€|, the bound on mixing
(h(M))?

using expansion in Lemma 2.1 comes from passing through the spectral gap: A > =55+,

where A is the degree of the flip graph and h(M) is the expansion of M. The quadratic loss
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in passing from expansion to mixing is not incurred when bounding the spectral gap directly,
so one can obtain better bounds via the spectral gap. Jerrum, Son, Tetali, and Vigoda gave

a mechanism for doing precisely this:

Theorem 2.2. [/0] Let M be a reversible Markov chain with finite state space ) probability
transition matriz P, and stationary distribution ©*. Suppose M is connected (irreducible).
Suppose M can be decomposed into a collection of restriction chains (21, P), (Qg, Py),
.o, (U, Pp), and a projection chain (Q, P). Suppose each restriction chain has spectral gap

at least Amin. Suppose also that the projection chain has spectral gap at least X. Then M has

. AInin S\Amin
mms-—,——= ¢,
3 3y+A

gap at least

where 7y is as in Theorem 2.1.

Our Theorem 2.1 has a relatively simple proof (Section 2.5) and shows that the earlier spectral
machinery can be replaced with a purely combinatorial technique. We also obtain a tighter
bound on expansion than would result from a black-box application of Theorem 2.2. The cost
to our improvement is in passing from expansion to mixing via the spectral gap. Nonetheless,
we will show that in the case of triangulations, our Theorem 2.1 can be adapted to give a
new mixing bound whereas, by contrast, it is not clear how to obtain even a polynomial
bound adapting Jerrum, Son, Tetali, and Vigoda’s spectral machinery. We will also show
that for general k-angulations, one can, with our technique, use a combinatorial insight to
eliminate the « factor in our decomposition in favor of a A™! factor (for k-angulations we

have v = k/A)—whereas it is not clear how to do so with the spectral decomposition.

2.4.2 General pattern for bounding projection chain congestion

Our second decomposition theorem, which we will apply to general k-angulations, states that

if one can recursively decompose a chain into restriction chains in a particular fashion, and if
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the projection chain is well connected, then Theorem 2.1 gives an expansion bound:

Lemma 2.9. Let F = {M1, Ms, ...} be a family of connected graphs, parameterized by a
value n. Suppose that every graph M,, = (V,,,E,) € F, for n > 2, can be partitioned into a

set S, of classes satisfying the following conditions:

[

1. Each class in S, is isomorphic to a Cartesian product of one or more graphs C(T') =

M, O- - M,,, where for each such graph M;, € F, i; <n/2.
2. The number of classes is O(1).

3. For every pair of classes C(T),C(T") € S,, that share an edge, the number of edges

between the two classes is (1) times the size of each of the two classes.

4. The ratio of the sizes of any two classes is O(1).

Suppose further that V1| = 1. Then the expansion of M,, is Q(n=°W).

Lemma 2.9 follows from applying induction to Theorem 2.1. An analogue in terms of spectral
gap follows from applying induction to Theorem 2.2. Furthermore, as we will prove in

Appendix 2.5, a precise statement of the bounds given by Lemma 2.9 is as follows:

Lemma 2.10. Suppose a flip graph M,, = (V,,, E,,) belongs to a family F of graphs satisfying
the conditions of Lemma 2.9. Suppose further that every graph My = Vi, &) € F, k < mn,
satisfies

|Vk|/|gk,min| S f(k)a

for some function f(k), where Eymin is the smallest edge set between adjacent classes

C(T),C(T") € S, where Sy is as in Lemma 2.9. Then the expansion of M, is

Q(1/(2f(n))"5™)).
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Proof. Constructing an arbitrary multicommodity flow (or set of canonical paths) in the
projection graph at each inductive step gives the result claimed. The term |V|/|Ek min| bounds
the (normalized) congestion in any such flow because the total amount of flow exchanged by
%,

all pairs of vertices (states) combined is |Vi|*, and the minimum weight of an edge in the

projection graph is |Ex min-

Notice that we do not incur a YA term here, because even if a state (vertex) in ; C Vy
has neighbors = € Q;,y € €, z still only receives no more than [Vi|?/Eymin} flow across the

edges (z,z) and (z,y) combined. O

Remark 2.1. The vA factor in Theorem 2.1, which does not appear in Lemma 2.10, does

appear in a straightforward appliation of Jerrum, Son, Tetali, and Vigoda’s Theorem 2.2.

We will show that k-angulations (with fixed & > 4) satisfy a relaxation of Lemma 2.9:

Lemma 2.11. Suppose a family F of graphs satisfies the conditions of Lemma 2.9, with
the (1), O(1), and O(1) factors in Conditions 3, 2, and 4 respectively replaced by Q(n=CM),

O(n°W), and ©(n°W). Then for every M,, € F, the expansion of M,, is Q(n=00en),

Lemma 2.9 enables us to relate a number of chains admitting a certain decomposition process
in a black-box fashion, unifying prior work applying Theorem 2.2 separately to individual
chains. Marc Heinrich [35] presented a similar but less general construction for the Glauber
dynamics on g-colorings in bounded-treewidth graphs; other precursors exist, including for
the hardcore model on certain trees [40] and a general argument for a class of graphical
models [20]. In Chapter 3, we apply Lemma 2.9 to chains for sampling independent sets
and dominating sets in bounded-treewidth graphs, as well as chains on g-colorings, maximal

independent sets, and several other structures, in graphs whose treewidth and degree are

bounded.
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2.4.3 Eliminating inductive loss: nearly tight conductance for

triangulations

We now give the meta-theorem that we will apply to triangulations. Lemma 2.9—using
either Theorem 2.1 or Theorem 2.2—gives a merely quasipolynomial bound when applied
straightforwardly to k-angulations, including the case of triangulations—simply because the
f(n) term in Lemma 2.10 is w(1) and thus the overall congestion is w(1)'°¢™ (not polynomial).
However, it turns out that the large matchings given by Lemma 2.6 between pairs of classes
in the case of triangulations (but not general k-angulations), combined with some additional
structure in the triangulation flip walk, satisfy an alternative set of conditions that suffice for

rapid mixing. The conditions are:

Lemma 2.12. Let F = {My, My, ...} be an infinite family of connected graphs, parameter-
ized by a value n. Suppose that for every graph M,, = (V,,E,) € F, for n > 2, the vertex
set V,, can be partitioned into a set S, of classes inducing subgraphs of M,, that satisfy the

following conditions:

[a)

1. Each subgraph is isomorphic to a Cartesian product of one or more graphs C(T) =

M, O- - M, , where for each such graph M;, € F, i; <n.

2. The number of classes is n°W).

3. For every pair of classes C(T),C(T") € S,, the set of edges between the subgraphs induced

by the two classes is a matching of size at least le@iiean)

(1]
Wnl -

4. Given a pair of classes C(T),C(T") € S,, there exists a graph M; in the Cartesian
product C(T'), and a class C(U) € S; within the graph M;, such that the set of vertices
in C(T') having a neighbor in C(T") is precisely the set of vertices in C(T') whose projection
onto M, lies in C(U). Furthermore, no class C(U) within M, is the projection of more

than one such boundary.
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Suppose further that |Vi| = 1. Then the expansion of M,, is Q(1/(k(n)n)), where k(n) =

maxi<;<p |C(S;)| is the mazimum number of classes in any M;,i < n.

Unlike Lemma 2.9, this lemma requires a purely combinatorial construction; it is not clear
how to apply spectral methods to obtain even a polynomial bound. Condition 4 is crucial.
To give more intuition for this condition, we state and prove the following fact about the

triangulation flip graph (visualized in Figure 2.3):

C(T) = M;0---OMO---OM,,
\ C (T) C <T’) B‘,r\}) = Aﬁu . ‘D»ECzDU)D? OM,,
,

Figure 2.3: Left: (Lemma 2.13) The set of edges £*(T,T") has K;[OC*(T}) as its set of
boundary vertices in C*(T"). Center: An illustration of Condition 3 in Lemma 2.12, showing
a large matching £(T,T") between two classes (subgraphs) C(T') and C(7"). Right: An
illustration of Conditions 1 and 4 in Lemma 2.12: C(T') as a Cartesian product of smaller
graphs M; ..., M;, ..., M;, in the family F. The schematic view shows this Cartesian
product as a collection of copies of M, connected via perfect matchings between pairs of the
copies—with the pairs to connect determined by the structure of the Cartesian product. The
boundary Br/(T') (center) is isomorphic to a class C(U) (right) within M;, a graph in the
product. Within each copy of M;, many edges connect C(U) to the rest of M.

Lemma 2.13. Given T, T" € Ty, suppose T" lies to the right of T. Then the subgraph of C*(T')
induced by By, (1) is isomorphic to a Cartesian product KLIC*(T},), where I +1 =n — 1,
and where Ty, has as an edge the right diagonal of T', and as the vertex opposite this edge the

topmost vertex of T'. A symmetric fact holds for By, +(T").

Proof. Every triangulation in B}, ,(T') (i) includes the triangle 7" and (ii) is a single flip
away from including the triangle 7”. As we observed in the proof of Lemma 2.3, this implies
that By (1) consists of the set of triangulations in C*(7") containing a quadrilateral Q.

Specifically, () shares two sides with T": one of these is €*, and the other is the left side of T
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One of the other two sides of @ is the right side of C*(7”). Combining this side with the “top”

side of () and with the right side of T', one obtains the triangle T}, proving the claim. m

Lemma 2.13 implies that there are many edges between the boundary set B}, ;,(T') and the
rest of C*(T'): C*(T') = K,UK,, where K; and K, are smaller associahedron graphs, so C*(T')
is a collection of copies of K, with pairs of copies connected by perfect matchings. Each K.,
copy can itself be decomposed into a set S, of classes, one of which, namely C*(7}), is the
intersection of By ,,(T") with the K, copy. Applying Condition 3 to the K, copy implies that
there are many edges between boundary vertices in C*(T}) to other subgraphs (classes) in

the K, copy. That is, the boundary set B} . (7T') is well connected to the rest of C*(T').

Figure 2.3 visualizes this situation in general terms for the framework. We have now proven:

Lemma 2.14. The associahedron graph K,, along with the oriented partition, satisfies the

conditions of Lemma 2.12.

Proof. The graph K, is connected [54]. Conditions 1 and 3 follow from Lemma 2.2, Lemma 2.4,
and Lemma 2.6. Concerning the boundary sets, Condition 4 follows from Lemma 2.13 and

from the discussion leading to this lemma. O]

Together with Lemma 2.1 and the fact that K, is a ©(n)-regular graph, Lemma 2.14 implies

rapid mixing, pending the proof of Lemma 2.12—which we prove in Appendix 2.6.

2.4.4 Intuition for the flow construction for triangulations

We will prove Lemma 2.12 in Appendix 2.6, from which a coarse expansion lower bound for
triangulations—and a corresponding coarse (but polynomial) upper bound for mixing—will
be immediate by Lemma 2.14. We give some intuition now for the flow construction we

will give in the proof of Lemma 2.12; and in particular for the centrality of Condition 3 and
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Condition 4 (corresponding respectively to Lemma 2.6 and Lemma 2.13 for triangulations).
Consider the case of triangulations, for concreteness. Every ¢t € C*(T),t € C*(T") must
exchange a unit of flow. This means that a total of |C*(T")||C*(T")| flow must be sent across
the matching £*(T,T"). To minimize congestion, it will be optimal to equally distribute this
flow across all of the boundary matching edges. We can decompose the overall problem of
routing flow from each t € C*(T') to each ' € C*(71") into three subproblems: (i) concentrating
flow from every triangulation in C*(7") within the boundary set B}, »(T'), (ii) routing flow
across the matching edges £*(T,T"), i.e. from B}, 1»(T) € C*(T) to B}, (T") € C*(1"), and

(iii) distributing flow from the boundary B; ;(1") to each t' € C*(1"). Now, the amount of

Figure 2.4: Left: The problem of sending flow from each ¢ € C*(T) to each t' €
C*(T"), decomposed into subproblems: (i) concentrating flow within By, . (T), (ii) trans-
mitting the flow across the boundary matching £*(7,7"), and (iii) distributing the flow
from Bj (1) throughout C*(7"). Center: Within each copy of M; in the prod-
uct C*(1") = M, 0O---OM,;0---0M,;,, the distribution problem in Figure 2.4 induces
the problem of distributing flow from a class C*(U)—namely the projection of B; ,(T")
onto M;—throughout the rest of M;. Right: The problem in the center figure induces
subproblems in which C*(U) C M; must send flow to each C*(U’) C M,. These subproblems
are of the same form as the original C*(7"),C*(1") problem (left), and can be solved recursively.
The large matchings £*(T,T"), £*(U,U’) guaranteed by Condition 3 prevent any recursive
congestion increase.

flow that must be concentrated from C*(T') at each boundary triangulation u € B}, 1, (T") (and

symmetrically distributed from each v € B;, (T") throughout C*(1")) is equal to

c(@lies()] _ e @)l ()] _ emliex) _
B2/ (T)] B, 1(T")] ey =

where we have used the equality |B;, 1.(T)| = By +(T")] = [€*(T,T")| by Lemma 2.3 and

Lemma 2.4, and where the inequality follows from Lemma 2.6. As a result, in the “con-
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centration” and “distribution” subproblems (i) and (iii), at most C,, flow is concentrated
at or distributed from any given triangulation (Figure 2.4). This bound yields a recursive
structure: the concentration (respectively distribution) subproblem decomposes into a flow
problem within C*(T) (respectively C*(7")), in which, by the inequality, each triangulation
has C,, total units of flow it must receive (or send). We will then apply Condition 4, observing
(see Figure 2.4) that the concentration (symmetrically) distribution of this flow can be done
entirely between pairs of classes C*(U),C*(U’) within copies of a smaller flip graph M, in the
Cartesian product C*(7") = M;,0O---0OM,0---0OM,,.

The C*(U),C*(U’) subproblem is of the same form as the original C*(7),C*(T") problem
(Figure 2.4), and we will show that the C,, bound on the flow (normalizing to congestion one)
across the £*(T,T") edges will induce the same C,, bound across the £*(U,U’) edges in the
induced subproblem. We further decompose the C*(U),C*(U’) problem into concentration,
transmission, and distribution subproblems without any gain in overall congestion. To see
this, view the initial flow problem in K, as though every triangulation ¢ € V(K,) is initially
“charged” with |V (K,)| = C, total units of flow to distribute throughout K,. Similarly, in
the induced distribution subproblem within each copy of M; = K in the product C*(7"),
each vertex on the boundary B;T/(T) is initially “charged” with C, total units to distribute
throughout K;. Just as the original problem in K, results in each £*(T,7T") carrying at
most C,, flow across each edge, similarly (we will show in Section 2.6) the induced problem
in K; results in each £*(U, U’) carrying at most C,, flow across each edge. This preservation

of the bound C), under the recursion avoids any congestion increase.

One must be cautious, due to the linear recursion depth, not to accrue even a constant-factor
loss in the recursive step (the coefficient 2 in Theorem 2.1). In Theorem 2.1, it turns out
that this loss comes from routing outbound flow within a class C*(T')—flow that must be
sent to other classes—and then also routing inbound flow. The combination of these steps

involves two “recursive invocations” of a uniform multicommodity flow that is inductively
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assumed to exist within C*(7"). We will show in Section 2.6 that one can avoid the second
“Invocation” with an initial “shuffling” step: a uniform flow within C*(T") in which each

triangulation t € C*(7T') distributes all of its outbound flow evenly throughout C*(7).

It is here that Jerrum, Son, Tetali, and Vigoda’s spectral Theorem 2.2 breaks down, giving
a 3-factor loss at each recursion level, due to applying the Cauchy-Schwarz inequality to a
Dirichlet form that is decomposed into expressions over the restriction chains. Although
Jerrum, Son, Tetali, and Vigoda gave circumstances for mitigating or eliminating their

multiplicative loss, this chain does not satisfy those conditions in an obvious way.

2.5 Proof that the conditions of Lemma 2.9 imply rapid

mixing

In this section we prove Theorem 2.1. Lemma 2.9 will then follow by way of Lemma 2.10.

Figure 2.5: In the flow construction we use for quasipolynomial mixing (Theorem 1.3), we
first find a flow in C(7") (similarly C(7”)) and bound its congestion. (Actually, we assume
such a flow exists, for the inductive hypothesis.) We then reuse the paths from this flow in
routing the flow between ¢ and ¢’. Reusing these paths results in compounding the amount of
flow across each path by f(n), where f(n) is the amount of flow across an edge between the
two classes.

Theorem 2.1. Let M be a reversible Markov chain with finite state space €0 probability tran-

sition matriz P, and stationary distribution 7. Suppose M is connected (irreducible). Sup-
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pose M can be decomposed into a collection of restriction chains (21, P1), (Q2, Py), ..., (., Pr),
and a projection chain (), P). Suppose each restriction chain admits a multicommodity flow
(or canonical paths) construction with congestion at most pyax. Suppose also that there ezists
a multicommodity flow construction in the projection chain with congestion at most p. Then
there exists a multicommodity flow construction in M (viewed as a weighted graph in the

natural way) with congestion

(1 + Qﬁ’VA)pmaxa

where vy = MaX;c[k MaXzeq, Z?ﬁéﬂi P(z,y), and A is the degree of M.

Here, instead of a uniform flow in which each pair of states exchanges a single unit, it will
be convenient to use a specification of demands and definition of congestion that are closer
to standard in the analysis of Markov chains: the demands are D(z,w) = m(z)7(w), and
the congestion across an edge (z,y) produced by a multicommodity flow f that satisfies the
demands {D(z,w)|z,w € Q} is p(x,y) = f(z,y)/(A-Q(z,y)), where Q(z,y) = w(x)P(x,y) =
7(y)P(y,x) (by reversibility). One can check that in the uniform case, this definition is
equivalent to our definition in Section 2.3. Furthermore, Lemma 2.8 and Lemma 2.1 work for

the weighted case [67] with this adjusted definition of congestion.

The proof of Theorem 2.1 is in fact not difficult to describe intuitively: if one finds a flow
(collection of fractional paths) through the projection graph between every pair of classes
(restriction chains), this flow induces a subproblem in each class €;, in which each “boundary
vertex”—each vertex (state) z € €Q; that brings in flow from a neighbor w € Q,—must
route the flow it receives throughout §2;. The state z may bring in an amount of flow up
to pyA from such neighbors, and z must route this flow (which we will show in the proof
is at most pyAmn(z)) throughout ;. By assumption, it is possible for z to route 7(z) flow
throughout ; with congestion at most pyay, and therefore z can route the pyAmn(z) flow

throughout €2; with congestion at most pyApmax. The factor of 2 in the term 1+ 2pyA comes
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from applying the above reasoning twice: once for “inbound flow” that z brings into €2;, and
once for “outbound flow” that z must route from €2; to other classes. Finally, the factor of 1

comes from routing flow between pairs of states within €2;.

We now make this reasoning precise:

Proof. (Proof of Theorem 2.1) Let {f;,i =1,...,k} be a collection of flow functions over the
restriction chains with congestion p; < ppqz, as supposed in the theorem statement. Suppose

we have a flow f with congestion p in the projection chain.

We construct a multicommodity flow f in the overall chain M as follows: for every edge e =
(z,y),r € Q,y € Q,i # j between restriction state spaces, let f., = f(i,7)Q(x,y)/Q(i, 7).
For pairs of states z,y € €;, simply use the same (fractional) paths to send flow as in f;.
Now, for non-adjacent pairs of states z € Q;,y € Q;, i # j, we will use the flow f to route
the z — y flow, perhaps through one or more intermediate restriction spaces. We need to
consider how to route the flow through each intermediate restriction space. This induces a
collection of subproblems over each restriction space €2; in which each state z € {; “brings in”
and similarly “sends out” at most >-;.; >~ co, pQ(i,7)Q(z,w)/Q(i, ) < pm(2)yA units of
flow. We reuse the (fractional) paths that produce the flow with congestion p;,q., scaling the
resulting congestion by pyA. More precisely, if e = (z,y) is an edge internal to a restriction
space €;, let

fzu($,y> = (Dm(z7u> + Dout(uv Z))(fi,zu(m’y) :

and denote

f(x7y) = Zfzu($ay) = Z (Dm(Z,U) + Dout(ua Z))(fl,zu(xvy) ' ’/T—

Z,u€N;
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and p(x,y) = é;((zz)), where

m(u _m(z)m(u
— (XY F60)Qw)/Q. ) - ) < T
prliord 7(2) 7 ()
is the share of the demand brought in by z to €2; that must be sent to w, and D, (u, 2) is
similar. This definition f,,(z,y) indeed satisfies the demands Dy, (2, 1) and Doy (u, 2): fizu
m(2)m(u)

is defined as sending =0 units of flow along a set of fractional paths from z to u, so the

function

Fou(,y) = (Din(2,1) + Dour (1, 2))(fizu(, y) - 7(2)m(u)
sends Dy, (z,u) + Dyyi(u, z) units of flow along the same set of fractional paths.

Now, we know by the definition of the congestion p; produced by f; that

Z fi,zu<x>y> S szz(:E?y)?

Z,u€);

where Q;(x,y) = % Therefore

7

N () N o )
p(x,y) - Q(x,y) - Q(m,y) Z%Z(Dm( ) )+D0ut)(fz,zu< ’y) W(Z)?T(u))
ZuZEQ ZPP}/A Z)( )(fl zu(m y) % - 2p7A2629 fgu ’y)> < 257Apmax

Now, for z,y € €; and for u € ;,v € §2; # ;, we let

fvuxy vazuwy

z€Q;

where

Fozu(@,9) = (Doin(2,1) 4 Dot (1, 2)) (fi o, y) - T (@)
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where
QSQk,z) _ 7(v)
Qk,i)  7(j)

Dy in(z,u) = — Z ik, i) -

ﬂ-(Z) k:3weQ,,w~z
and Dy, oui(u, ) is symmetric. The function f,, indeed is a valid flow sending 7(u)m(v) units

from v to u, and also that

Z Z fv,zu = fzu

]757, ’Ueﬂj

Therefore

RO DD zfm” > = fM _ ) < 27D

uef); vgQ; u,z€Q; v u,z2€€);

Finally, in the term p(z,y) we have only considered u, v flow where u, v lie in different classes.
Adding the congestion p; < ppe: produced by reusing the flow f; for pairs u, v € €); justifies

the expression

(1 +207A) prmaa-

Lemma 2.9 and Lemma 2.10 are now immediate, as is Lemma 2.11.

2.6 Proof that the conditions of Lemma 2.12 imply

rapid mixing

In this section we prove Lemma 2.12:

Lemma 2.12. Let F = { My, My, ...} be an infinite family of connected graphs, parameter-
ized by a value n. Suppose that for every graph M,, = (V,,E,) € F, for n > 2, the vertex

set V,, can be partitioned into a set S, of classes inducing subgraphs of M,, that satisfy the
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following conditions:

1. Each subgraph is isomorphic to a Cartesian product of one or more graphs C(T) =

M;, O M, , where for each such graph M;, € F, i; < n.

2. The number of classes is n°W.

3. For every pair of classes C(T),C(T") € S,, the set of edges between the subgraphs induced

¢ LLOlle@)

by the two classes is a matching of size at leas Vil

4. Given a pair of classes C(T),C(T") € S,, there exists a graph M; in the Cartesian
product C(T'), and a class C(U) € S; within the graph M;, such that the set of vertices
in C(T") having a neighbor in C(T") is precisely the set of vertices in C(T') whose projection
onto M; lies in C(U). Furthermore, no class C(U) within M; is the projection of more

than one such boundary.

Suppose further that |Vi| = 1. Then the expansion of M, is Q(1/(k(n)n)), where k(n) =

maxi<;<p |C(S;)| is the mazimum number of classes in any M;,i < n.

We will use the fact that one can prove an analogue of Lemma 2.7 for multicommodity

flows—mnamely one that does not lose a factor of two. We prove this in Appendix A .4:

Lemma 2.15. Let J = GUH. Given multicommodity flows g and h in G and H respectively
with congestion at most p, there exists a multicommodity flow [ for J with congestion at

most p.

We will construct a “good flow”—that is, a uniform multicommodity flow with polynomially
bounded congestion—in any M, € F satisfying the conditions of Lemma 2.12, via an
inductive process. The base case, |V| = 1, is trivial. For the inductive hypothesis, we assume

that for all ¢ < n, there exists a good flow in M;. For the inductive step, we begin by
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combining Lemma 2.15 with Condition 1 to obtain a good flow in each C(7'): since each class
is a product of smaller graphs {M;} in the same family, the inductive assumption that those

smaller graphs have good flows carries through to C(7) by Lemma 2.15.

The more difficult part of the inductive step is then to route flow between pairs of vertices
that lie in different classes. We now introduce machinery, in the form of multi-way single-
commodity flows, that we will apply to the boundary set structure in Condition 4 to find the

right paths for these pairs.

Define a multi-way single-commodity flow (MSF), given a graph G = (V, E), with source set
S CV and sink set T C V, and a set of “surplus” and “deficit” amounts ¢ : S — R and

0: T —R,asaflow f: A(E) — R in G, such that:

1. the net flow out of each vertex s € S\ T is o(s),
2. the net flow into each vertex t € T'\ S is 0(1),
3. the net flow out of each vertex u € SNT is o(u) — §(u), and

4. the net flow into (out of) each vertex u € V' \ (SUT) is zero.

Denote the MSF as the tuple p = (f,5,T,0,6). (Here A(E) is the directed arc set obtained
by creating directed arcs (u,v) and (v, u) for each edge {u,v} € E.) When o and § are
constant functions, abuse notation and denote by ¢ and ¢§ their values. Intuitively, an MSF
describes sending flow from some set of vertices (the source set) in a graph to another set
(the sink set). It differs from a multicommodity flow in that it is not important that every
vertex in S send flow to every vertex in T'. For instance, in a bipartite graph, if the source
set and sink set are the two sides of the bipartition, and all surpluses and demands are one,

it suffices to direct the flow across a matching.

It will also be useful to talk about an MSF problem, in which we are given surpluses and
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demands but need to find the actual flow function. Define a multi-way single-commodity flow
problem (MSF problem) as a tuple m = (S, T, 0,0), where S, T, 0, are as in the definition of

an MSF, but no flow function f is specified.

(One could alternatively formulate an MSF problem as a more familiar s — ¢ flow problem
by adding extra vertices and edges. However, the definition of an MSF will make our flow

construction more convenient. )

The main lemma of this section is as follows:

Lemma 2.16. Let a graph M,, € F be given, with n > 1 and F satisfying the conditions of
Lemma 2.12. Suppose that for all 1 < i < n, the graph M; has a uniform multicommodity
flow with congestion at most p, for some p > 0. Then there exists a uniform multicommodity
flow in M, with congestion at most p + k, where k = |S,| is the number of classes in the

partition described in Lemma 2.12.

Lemma 2.16 forms the inductive step of an argument that proves Lemma 2.12.

To prove Lemma 2.16, we will start by partitioning M,, into the classes §,, as described
in Lemma 2.12. Now consider any vertex s € C(T'), for a given class C(T') € S,,, and consider

any other class C(T") # C(T'). Consider a multi-way single-commodity flow problem

s = ({S}’C(T/)7Us - |C(T/)|755 = 1)'

We will “solve” this problem—construct a flow function f; that satisfies the surpluses
and demands of the problem. Notice that to solve 7, is to send a unit of flow from s
to every t € C(T"). Thus if we construct such a function f; for every s € C(T), and
construct similar flows for every pair of classes C(T"),C(T"), we will have constructed a
uniform multicommodity flow in M,,. We will do precisely this, then analyze the congestion

of the sum of these flow functions.
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To construct fs, we will express the problem 7 as the composition of four MSF problems

, IC(T")]
Tshuf ({S},C( )70-shuf Os |C( )|7 shuf |C(T)|)a
C(T")]
conc — CTaB’Ta conc:58U7500nc: )
Q ( ( ) T( ) g huf ’BT/<T)‘)

, c(T)| _ e(T)]
ran — B/T,B T s ran:(sran:(sconc: = )
e = (Brr ) Br (). an = O Br ()] 1B:()

Tdist = (BT<T/)7 C(T/)7 Odist = 6tran7 5dist = 53 = 1)

(Here we have defined the matching (7', T") and the boundary set Br/(T') for the general
family F in the same way we defined £*(T,T") and B;, (T) for the associahedron. We
have implicitly used the equality |Br/(T)| = |E(T,T")| = |Br(1")|, which follows from the

assumption in Condition 3 that these boundary edges form a matching.)

Remark 2.2. Comparing o and § values and comparing source and sink sets shows that if
one specifies flow functions solving the four subproblems Tspyf, Teone, Ttran, Tdist, ON€ can take

the arc-wise sum of these functions as a solution to the original MSF problem .

C(T) (1)

Ttran

Figure 2.6: The decomposition of the MSF problem 7,. Left: 7y, r, solved in aggregate for
all s € C(T') by a uniform multicommodity flow in C(7"). Right: the problems Teone, Tiran,
and 7y, in which the (single) commodity from s € C(T') begins uniformly spread through-
out C(T"). The flow must then be concentrated on the boundary B/ (T) (for meone), sent
to C(T") (for Tyran), and distributed uniformly throughout C(7") (for mast).

Intuitively, 7, describes the problem of “shuffling,” or distributing evenly throughout C(T'),

the flow that s must send to vertices in C(T"). We solve this subproblem in aggregate
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Figure 2.7: Left: An illustration of ..., to which we reduce mgy in Lemma 2.19, in
which C(U) must distribute its flow throughout M;, inducing a corresponding distribution of
flow from Br(T") throughout C(7T'), by the isomorphism in Condition 4.

Right: a decomposition of the flow 7.y from Lemma 2.20, which decomposes
into Teone, Mran, Taist, Which are similar to Teone, Tiran, Taise and thus admit a recursive
decomposition (Lemma 2.21).

for every s € C(T) by applying the inductive hypothesis and Lemma 2.15, obtaining a
uniform multicommodity flow fr in C(T') with combined congestion at most p. We then
let fshusr = fsshup be the part of fr that sends flow just for s—since fr can be written
as a sum ZSQC(T) fs,shuf, Where fg = ZS’GC(T) fs,s» where f; o is the single-commodity flow

function already defined for the s, s’ pair.

Thus we prove the following:

Lemma 2.17. The MSF subproblem mgp,s as defined in this section for any two classes
C(T),C(T") € S, with S,, partitioning M,, € F, n > 1, with F satisfying the conditions of
Lemma 2.12, can be solved in aggregate for all s € C(T) and for all C(T") # C(T), while

generating at most congestion p—uwhere p is as in the statement of Lemma 2.16.

Proof. As in the discussion leading to this lemma, the uniform multicommodity flow fr
in C(T') given by the application of the inductive hypothesis and Lemma 2.15 has congestion
at most p. More precisely, in this uniform multicommodity flow, the un-normalized congestion
(as we have previously defined), is at most p|C(T")|. Under the definition of ogp,r = |C(T7)],
and summing over all s and over all C(7”), what we in fact need is a scaled version of fr—in

which the amount of flow sent between each pair of vertices s, s’ € C(T'), and therefore the
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overall congestion across each edge within C(T), is scaled so that each s sends to each s’

units of flow, instead of just one unit.

Thus we increase the un-normalized congestion from p|C(T)| to p|V,|. However, since we are
now considering congestion within the graph M,, instead of the induced subgraph C(7T'), the

normalized congestion p does not change. O]

We define fi.,,—solving the problem 7., of transmitting the flow from the boundary edges
Br:(T) CC(T) to Br(T") C C(T") in the natural way: for each directed arc (u,v) € E(T,T"),
let f(u,v) = Oran = Otran. Summing the resulting flow over every s € C(T') gives (normalized)
congestion

1 CD)[IC(T)]

—|C(T ran — <1
|Vn|| ( )|Ut

EC,T)IVal —

where the inequality follows from Condition 3 of Lemma 2.12.

Thus we have proven:

Lemma 2.18. The MSF subproblem Ti.., as defined in this section for a given pair of
classes C(T'),C(T") can be solved by a function fi.q, while generating at most congestion

one—uwhen summing over all s € C(T).

It remains to solve 7., and mgs. We observe that these two problems are of the same
form up to reversal of flows: m..,. describes beginning with flow from a single commodity
distributed equally throughout C(T"), and ending with that flow concentrated (uniformly)
within the boundary B (T). On the other hand, my describes just the reverse process
within C(7"). We will construct 7y within C(7"), in aggregate, for all s € C(T); the form of

this construction will give a symmetric construction for .., within C(7T).
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Our construction is recursive, and it is here that we use the boundary set structure in

Condition 4: we use this condition to reduce the problem 7y, to a problem

C(T’
Trec = <C<U> € Sia Mi; Orec = Odist = %7 67’60 = (55 = 1)
T

We obtain a reduction that allows us to pass from the problem mg, to the problem m,..:
by Condition 4, we have that the projection of Br(7”) onto some M, in the Cartesian
product C(T') = ;M is precisely C(U), for some C(U) € S;. Therefore, if one views g5 as
a process of distributing flow throughout C(7"), the flow is initially uniform within every copy
of M;, for all graphs M, in the product other than M. It therefore suffices to distribute

the flow within each copy of M;, in which it is initially concentrated uniformly within C(U).

Thus we prove:

Lemma 2.19. The problem my;s described in this section can be solved by any flow func-
tion fre. that solves the MSF problem m,.. as described in this section. Furthermore, if frec
generates congestion at most p, then fg4 also generates congestion at most p. The prob-
lem Teone 18 of the same form as the reversal of wgse and therefore is solved by a flow function

similar to fre., also with congestion at most p.

Proof. The first part of the lemma statement—the reduction—is justified by the discussion
leading to this lemma. That is, we can construct a flow function fg that solves 7y as the
arc-wise sum of many separate (but identical) functions f,..—one such function within each

copy of M; in the Cartesian product C(T").

The preservation of the congestion bound p follows from the fact that these functions are

defined over disjoint sets of arcs, since the copies of M; are all mutually disjoint.

Finally, the symmetry of 7., and 7y follows from the discussion leading to this lemma. [J
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Furthermore, notice that in m,.., we have the problem of flow that is initially concentrated
uniformly within a class C(U) € §;, such that an equal amount must be distributed to each
vertex t € C(U’), for every class C(U’) € S;. Let m,ecup be this problem of sending the flow

that is bound for vertices in C(U’). We now have:

Lemma 2.20. The problem m,.., defined with respect to s € C(T') and C(U) € M,, can be

decomposed into a collection of problems myec v, one for each C(U') € ;.

Proof. Following the discussion leading to this lemma, it suffices to define

Trec,UU = (C(U)7 C(U/), Orec,U,U" = Orec ;5rec,U,U’ = 67"60)’

The definitions of 0ecyyr and dyec 7 are indeed correct (achieve the decomposition of 7.

stated in the lemma): d,ec .17 = Oree Obviously agrees with 7., and one can check that

§ Orec,UU" = Orec,
U/

as needed. O

Furthermore, since M; is in the family F and thus satisfies the conditions of Lemma 2.12, the
problem 7.y is of the same form as our original problem ( Teone, Teran, Taist) Of sending
flow that was uniformly concentrated within C(T") to vertices in C(1"), where C(T),C(T") € S,

were classes in the original graph M,,.

That is, just as we decomposed the original problem 7, into the “concentration” problem 7.y,
the “transmission” problem .., and the “distribution” problem 74, We can recursively
decompose e,y in the same fashion. In particular, we can solve the resulting transmission
problem, in the same fashion as before. Furthermore, recall that the original problem 7, was
defined with respect to a single s € C(T'). We claim that even after solving the transmission

problem for all s € C(T'), we obtain congestion at most one.
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Furthermore:

Remark 2.3. Summing o4 over all s € C(T') produces

_le)ie(T)|
IC(T)|oaist = W| < |Val

flow “concentrated” within each boundary vertex.

These facts, we claim, indicate that the congestion does not increase as we pass from one
level of recursion to the next. Remark 2.3 implies that in this reduction, we have within M,
a problem similar to the original problem in M,,: that is, in the original problem, the overall
flow construction, we have a collection of MSF problems {{7s}|s € V,,}, in which each s € V,
is “charged” with initial surplus values > ., |C(T")| = |V,|. What we have now is a single
MSF problem, in M;, in which each u € By(T") N M; = C(U) has a surplus (summing over
all s € C(T)) of |C(T)|caist < |Vaul, by Remark 2.3. Furthermore, just as the original problem
of distributing |C(T')||V,| outbound flow from vertices s € C(T') throughout M, induces
the subproblem of sending |C(T")||C(T")| flow from C(T") to C(T") (and thus by Condition 3
producing < |V, | flow across each £(T,T") edge), similarly the subproblem of distributing |V,|

flow from each u € C(T) throughout M, induces the subproblem of sending

rcwmm%

flow from C(U) to each C(U’) in M;, since each C(U’) receives a portion of the |C(U)||V,|
outbound flow from C(U) that is proportional to the cardinality of C(U’) within V' (M;). This

generates at most

COIVal s VMVl _

A

flow across the matching edges £(U, U’), producing (normalized) congestion one, and matching

the flow across £(T,T"). (Here, in the first inequality, we have applied Condition 3 to the
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matching £(U, U’).) Thus we have a recursive decomposition in which the congestion does

not increase in the recursion.

Lemma 2.21. Let the problem mccupr be defined as in this section, with respect to s € C(T),

class C(U),C(U") being classes in M;, with M; a graph in the Cartesian product C(T).

Then Treeuur can be recursively decomposed into Treccone, Trectrans ANG Treedist, With each

problem solved by a respective flow freccone, frectrans frecdist, Such that:

(i) The sum total congestion incurred by all of the frectran Subproblems induced by all s €

C(T), is at most one, and

(11) Trecccone ONA Trecdist are similar to the problems Ty and Teone described in this section

and thus admit a recursive decomposition as in Lemma 2.19, and

(111) the demand Oreccone 15 upper-bounded by deone, the surplus value in the original concen-

tration problem Teone; similarly, Orecdist < Tdist-

Proof. We prove (ii) first: define

Mreccone = <C(U>’ BU’<U)7 Orecconc = Orecs 0. |C<U)| ) ,

recconc — Urecconcm
Trectran = (BU’(U)a BU(U/)7 Orectran = 5rectran = 5recconc)7

By (U’
Trecdist = (BU(U/)v C(U/)a Orecdist — 57’ect7"ana 5recdist | U< )| ) .

= Orecdist W

Comparing source and sink sets, and comparing ¢ and § functions shows that 7. decomposes
INtO Treccone Trectrans N Trecqist- Fach class C(U) and C(U’) decomposes as a Cartesian
product satisfying Condition 1 in Lemma 2.12, and similarly the boundary sets By (U), By (U’)
satisfy Condition 4. Thus exactly the same form of decomposition used to reduce the
original 7y and Teone 0 Tpee also works for meceone and Tpecqise- We can thus recursively

construct freccone and frecdist, proving (ii).
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For (i), we need to define fcctran and to bound the resulting congestion.

Define f,cctran in the same natural way we defined fi,.q,: simply assign orectran = Orectran 1O

each arc.
We observe that

CW)] CU) _ e [ew)]

Orecconc = Orec,UU’ = Orec |Vz’ = Odist ’Vz| - |BT(T,)| |Vz‘ )

by the definitions of the MSF problems we have given in this section. Also,

(V)]

Orectran — Orectran = 6recconc = Orecconc |B .
v (U)]

Combining these facts gives

S i (1| I 1 Cio] g (<15 s I C0 I B,
BT il IBe(U)] T E(T T T

where the inequality follows from the fact that the matching £(U, U’) satisfies Condition 3 of

Lemma 2.12.

Now, to obtain the un-normalized congestion p,cciran that results from frcciran, we sum over

all s € C(T), scaling the above quantity by a factor of |C(T")|, giving

_ lem)fje(T)]

Orectran = C(T rectran — c(r ran — < nl»
Prect | ( )|U t | ( )|Ut |(9(T,T’)| |V|

where we have again applied Condition 3 of Lemma 2.12.
Thus we obtain normalized congestion at most Wnl < proving (i).

Vnl =

For (iii), claim (i) also implies that the congestion does not increase in the recursive decom-

46



position given by (ii)—that is, passing from mg;s, t0 Trec, t0 Trec, 07, 1O Treedist, Preserves

the bound

Orecdist S Odist-

The analogous fact for 0 cceone 1S Symmetric. O

We now have all the pieces we need to prove Lemma 2.16:

Lemma 2.16. Let a graph M,, € F be given, with n > 1 and F satisfying the conditions of
Lemma 2.12. Suppose that for all 1 <1 < n, the graph M; has a uniform multicommodity
flow with congestion at most p, for some p > 0. Then there exists a uniform multicommodity
flow in M,, with congestion at most p + K, where k = |S,| is the number of classes in the

partition described in Lemma 2.12.

Proof. To construct the desired uniform multicommodity flow, it suffices to construct, for
every C(T),C(T") € S, and for every s € C(T'), the flow f; solving the MSF problem 7. As
shown in this section, 7, decomposes (Remark 2.2) as the subproblems 7y f, Teone, Ttrans

and gt

For 7y f, summing over all s € C(T) and over all s € C(T”), the sum of the fy,,s flows given
by the inductive hypothesis and the Cartesian flow structure (Lemma 2.15) of C(T') gives

congestion at most p, by Lemma 2.17.

For a given C(T),C(T") pair, again summing over all s € C(T"), we obtain flows fi,qn for Ty an

whose sum is congestion one, by Lemma 2.18.

Dividing 7y (and symmetrically 7 ,,.) into copies of the 7. problem as in Lemma 2.19, and
further dividing each . into problems 7,.. 7 (by Lemma 2.20), each of which we further
divide into T eccones Trectran, and Treeqist- Furthermore, by Lemma 2.21, these subproblems

are of the same form as Teone, Tiran, and g, with the natural solution fectran to the
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“transmission” problem 7., being of the same form as f;.., and producing, like f;,q,, overall

congestion one after summing over all s € C(T).

We then recursively decompose Treccone and mpeegise in the same fashion as we did 7o
and 7y, with, by Lemma 2.21, congestion one in the transmission problems at each level
of recursion. Since all flow produced by solving the subproblems in this decomposition is
counted by the transmission flows, and since (it is easy to see) each arc occurs in only one

such transmission flow, we obtain overall congestion one for 7. vy

Recall that me.pps is defined with respect to a given C(T),C(1") pair, where C(U) is
determined by C(T'), as a class within the graph M;, within the Cartesian product C(T") =
;M. Thus we must sum this bound of congestion one for f..uy - over all C(U’) € S;. By
assumption |S;| < k, so we obtain k flows each with congestion one, giving overall congestion

at most ~.

One may worry that the x? pairs of classes exchanging flow may produce >

congestion,
since we do obtain x? subproblems. Fortunately, we can justify the x bound as follows:
consider k MSF problems instead of x? problems. In each of the xk MSF problems, a given
class C(T') must send flow to all other classes. This introduces some asymmetry, as the
concentration flow within C(7") involves only a single commodity, while the distribution flow

within C(T) involves k — 1 commodities. Thus we can break this distribution flow into k — 1

recursive distribution flows that each involve a single commodity distributed throughout C(7")

from By (T') for some C(71").

The concentration flow takes slightly more work: it involves a single commodity but induces
a subproblem in which every pair of subclasses within C(7") must exchange a unit of flow.
Consider the boundary sets Br/(T') and By~ (T') along which C(T") must send flow to any
two of the other classes C(T") and C(7"). By Condition 4, we know that all of this flow

occurs between subclasses within copies of smaller flip graphs. Say these subclasses are C(U")
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and C(U"). Notice that we do not need to send flow in both directions, because we have
only a single commodity. Only the amount of low sent matters. This observation gives us
a convenient subproblem in which for each pair of subclasses C(U’),C(U”), one class sends
to the other an amount of flow that, by Condition 3, generates congestion at most one,

producing appropriate recursive subproblems without an increase in congestion. O]

Lemma 2.16 forms the inductive step of Lemma 2.12 (with a trivial base case), and thus we

have proven Lemma 2.12.

2.7 k-angulations of convex point sets: quasipolynomial

mixing

2.7.1 Generalizing triangulations

As we stated in the introduction, one can generalize triangulations to k-angulations. We
do so in more detail here. A quadrangulation of a point set is a maximal subdivision of
the point set into quadrilaterals, where each quadrilateral has all of its vertices in the point
set. Consider Ps,2, the regular polygon with 2n 4 2 vertices. We denote by K4 9,12 the
graph whose vertex set is the set of all quadrangulations of P, 2, and whose edges are the
flips between quadrilaterals. Here, a flip is defined as follows: each diagonal belongs to two
quadrilaterals, which together form a hexagon. Replace the diagonal with one of the other
two diagonals in the hexagon. (Thus each diagonal in a quadrangulation can be flipped in

two possible ways [14].)

There is a polytope, analogous to the associahedron, known as the accordiohedron [38, 5],
whose vertices and edges are those of a subgraph of K, 2,,+2. However, we ignore this polytope

and just consider the graph Ky o, 42.
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We refer to a k-angulation of a point set as a maximal subdivision of the point set into
k-gons, each of whose vertices all belong to the point set. A bijection exists [36] between the

k-angulations of F(;_2),12 and the set of all k — 1-ary plane trees with n internal nodes.

It is easy to generalize the definition of a flip between triangulations or quadrangulations to
a flip between k-angulations: each diagonal in a k-angulation belongs to two k-gons, which
together form a 2k — 2-gon. A flip then consists of replacing this diagonal—which connects

two opposite vertices in the 2k — 2-gon—with one of the & — 2 other such diagonals.

We generalize the associahedron graph K, as follows: Define the k-angulation flip graph
K, (k—2)n+2 as the graph whose vertices represent the k-angulations of P;_2),42, and whose

edges represent the flips between k-angulations.

Define the k-angulation flip walk as the natural Markov chain whose state space is Kj; (x—2)n2-

2.7.2 (Generalized) Catalan numbers

The usual notation for Catalan numbers is simply C,,; we will now consider a generalization:

m(( . ) These numbers, which generalize Catalan numbers,

are similar but not identical to the Fuss-Catalan numbers.

We will use the following fact in proving that the random walk on k-angulations mixes in

quasipolynomial time:

Lemma 2.22. [}0, 36/ The number of k-angulations of the convex (k — 2)n + 2-gon is

counted by Cl, ,,.

One can show using Stirling’s formula, and in particular a result by Robbins [64], that:
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Figure 2.8: Left: a class C(T') in K3 ,42. Each triangulation in C(7") contains the central
triangle depicted. We depict the polygon P,.5 as a circle for simplicity. Right: the set of
edges E(T,T") (which form a matching) between two classes.

Lemma 2.23. For all k> 3 andn > 1, e_l/G%f(k,n) < Cip < e/12. f(k,n), where

VE—1 (k= 1)
Vor((k —2)n)3/2  (k —2)k-2n

f(k,n) =

We will prove the following;:
Lemma 2.24. The flip graph Ky (x—2yn+2, along with the partition Sy (k—2nt2, Satisfies

Lemma 2.11.

Theorem 1.3, as we will show in Appendix 2.7, will follow from tracing the particular

quasipolynomial factors in the proof of Lemma 2.24.

To prove Lemma 2.24, we will partition K} ,_2)n42 into a set of classes S in a suitable
fashion. We will define a partition that generalizes one by Molloy, Reed, and Steiger [56]. In

order to define Sy, we need some observations about the structure of the graph Kj, (;—2)n42-
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2.7.3 Partition into classes

Given a k-gon T containing the center of the regular (k—2)n+2-gon P;_2),+2 and sharing all of
its vertices with P;_9),42, identify 7" with the class C(T) of k-angulations v € V(K (xr—2)n+2)
such that T' forms one of the k-gons in the k-angulation v. Let Sy ,—2)n42 be the set of all
such C(T') classes. (If P,yo has an even number of edges, we perturb the center slightly so

that every triangulation lies in some class.)

Remark 2.4. The set S (r—2yn+2 1S a partition of V(Kk7(k_2)n+2), because no pair of k-gons

whose endpoints are polygon vertices can contain the origin without crossing.

(This generalizes the partition of Molloy, Reed, and Steiger [56].)

Given classes C(T),C(T") € Sk (k—2)n+2, let E(T,T") be the set of edges between with one
endpoint in C(7T") and one endpoint in C(7”). Let Br(T') denote the set of vertices in C(T")

that have at least one neighbor in C(7”). See Figure 2.8.

Remark 2.5. The set of edge sets of the form E(T,T") is a partition of all edges between

pairs of vertices in different classes.

Cardinalities of classes and of edge sets

We make some observations about the nature and cardinalities of the classes in S, (x—2)n+2,

and of the sets and numbers of edges between the classes.

Lemma 2.25. Each k-gonal class in Sy (k—2ym+2 induces a subgraph of Ky (—oymto that
is isomorphic to the Cartesian product Ky, —2)i, 420Ky (k—2)ip4+200 -+ - Ky (k—2)i,+2, for some

1<ip << <n/2, 0+ F+ip=n—1.

Proof. Each k-gon T partitions the regular (kK — 2)n 4 2-gon into smaller convex polygons

with side lengths (k — 2)i; + 2, (k — 2)is + 2,..., (k — 2)ix + 2. Thus each k-angulation in
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C(T) can be identified with a tuple of k-angulations of these smaller polygons. The Cartesian
product structure then follows from the fact that every flip between two k-angulations in

C(T) can be identified with a flip in one of the smaller polygons. O

Lemma 2.26. For each pair of classes C(T') and C(T"), the boundary set By:(T) induces a sub-
graph of C(T') isomoprhic to a union of Cartesian products of the form K,_oy; 420K 1—2)iy+2

O OK(k—2)igy_ot2, for some iy < - <igpg <nf2, i1 4+ +lgpo =n — 2.

Proof. Each flip between k-angulations in adjacent classes C(T") involves flipping a diagonal of
the k-gon T to transform k-angulation ¢ € C(T) into k-angulation ¢’ € C(7"). Whenever this
is possible, there must exist a 2k —2-gon @, sharing k — 1 sides with T" (the k£ — 1 sides that are
not flipped), such that both ¢ and ¢’ contain (). Furthermore, every ¢t € C(T") containing () has
a flip to a distinct ¢ € C(T”). The set of all such boundary vertices ¢ € C(T") can be identified
with the Cartesian product described because () partitions F;_s),12 into a collection of
smaller polygons, so that each k-angulation in Bz (T") consists of a tuple of k-angulations
in each of these smaller polygons, and such that every flip between k-angulations in By (T')
consists of a flip in one of these smaller polygons. (There may be many such 2k — 2-gons for

a given pair of classes, but the claim holds as a lower bound.) O

Lemma 2.27. Each set of edges between classes in Sy (r—2)n+2 @5 in bijection with the vertices
of a union of Cartesian products of the form K ;_ayi, 420K 1—9)is420 - - - UK (4—2yip, ,+2, fOT
i1 <o <lgpo <n/2, 0 + -+ +ig_o =n — 2. Furthermore, no two edges in any such edge

set share a vertex, i.e. the edge set is a matching.

Proof. The claim follows from the reasoning in Lemma 2.26. m

Corollary 2.1. Each k-gonal class in Sy (x—2)nt2 has cardinality Cy;, Cr, - - - Cry,, and each
edge set between classes has cardinality at least Cy;,Chriy -+ Chrig._,- Here, i1, ..., 19,2 are

as in Lemmas 2.25 and 2.27.
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2.7.4 Applying the framework

We are almost ready to prove that Kj, (,_2),12 satisfies the conditions of Lemma 2.11, but

first we need the following known fact:

Lemma 2.28. K, (x_2)n42 @S connected.

One way to prove Lemma 2.28 is via the isomorphism [36] between flips on k-angulations and
rotations on k — l-ary plane trees. One can prove that the rotation graph on k — l-ary plane
trees is connected as follows: find a path from any given tree to a “spine,” where all internal
nodes belong to a simple path via left children from the root to the leftmost leaf [19]. (This
path consists of repeated left rotations.) Every non-spine tree has some internal node at
which a left rotation can be performed. Furthermore, when no such operation is still possible,

one has a spine.

Nakamoto, Kawatani, Matsumoto, and Urrutia [58] also gave a proof of connectedness for
the special case k = 4. Sleator, Tarjan, and Thurston proved [69] that the diameter of K, o

is at most 2n — 6 for n > 11.

We now prove Lemma 2.24:
Lemma 2.24. The flip graph K (—2)ny2, along with the partition Sp (k—2ym+2, Satisfies
Lemma 2.11.

(k—2)n+2

0 ) classes, the

Proof. By Lemma 2.25 and the observation that there are at most (
partition S, (x—2)n4+2 meets Conditions 1 and 5 of the framework, with the modification to
Condition 1 that the O(1) term is replaced with O(n®™), and Condition 6 follows from the

identification of each class with a k-gon containing the center of the (k — 2)n + 2-gon.

Corollary 2.1 gives a formula for the size of each class and each edge set between classes.

Lemma 2.23 then gives a polynomial bound on the ratio of N = |V (K}, (x—2)n42)| to the size
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of the smallest class (similarly the smallest edge set). Conditions 2, 3, and 4 follow, with the

modification that the O(1) terms are replaced with O(n°™M) terms. O

To derive the specific quasipolynomial bound in Theorem 1.3, we first observe the following:

Remark 2.6. The smallest edge set between classes in Sy (x—2)nt+2 has size at least

. f(kyiy) - f(k,dar—2)
e(?k—2)/6+1/12((k _ 1)/(k _ 2))2k—2f(k7 n)

o ez (B2 11
= (k— 1)3—5/2 " (2m)k=3/2 3k’

Ckﬂ'l e Ck,i%fz >N

The next fact we need comes from Lemma 2.10:

Lemma 2.10. Suppose a flip graph M,, = V., E,) belongs to a family F of graphs satisfying
the conditions of Lemma 2.9. Suppose further that every graph My = Vi, &) € F, k <n,
satisfies

Vil /|Ekmin| < f(K),

for some function f(k), where Epmin is the smallest edge set between adjacent classes

C(T),C(T") € Sk, where Sy is as in Lemma 2.9. Then the expansion of M,, is

Q(1/(2f(n))"=™)).

Applying Lemma 2.10, and using the fact that Kj (x—oyn42 is a < (kK — 2)n-regular graph with
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log N < (k— 1)nlog(k — 1), gives mixing time

O((2N/Ewin)*'*#" (k — 1) (log(k — 1))n?)

)/12 (k — 1)%=5/2
' (k — 2)k=3/2

= O((k — 1)*(log(k — 1))n®(2e“M/12 . (k — 1)% . (2mr)F . pF)2losm)

= O((k — 1)3(10g(k' — 1))n3(26(4k_3 . (Qﬂ)k—?»/? . n3k‘)210gn)

_ O((k’ . 1)3(10g(k' . 1)) . n2(3klog(k—1)+k(1+log7r)+3k:logn+k)+5)‘

Here we have implicitly used Lemma 2.1 to pass from the expansion bound given by
Lemma 2.10 to a mixing bound. Actually, we can do better using the following stan-

dard lemma, which allows for passing from congestion to mixing without a quadratic loss:

Lemma 2.29. [22, 67] Suppose a uniform multicommodity flow f exists in a graph G = (V, E)

with congestion p, in which for every s,t € V,

max |P| <,
PEFst

for some 1 > 0, where Uy s the set of (simple) paths in G from s to t, and where we use the
shorthand fo(P) to denote the fraction of the s,t commodity that f sends along the path P.

Then the mixing time of the uniform random walk on G s
pl
0 (L 1os(viG))).
where d is the mazimum degree of G.

Then we obtain mixing time

O((2N/Emin)' 8" (k — 1) (log(k — 1))n? - 1),
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where [ is the maximum length of a path in the flow construction. It is not difficult to see

that since the diameter of the projection graph is at most k, we obtain a recurrence

| =T(n) =k + 2kT(n/2) = O(n'e2 1),

giving total mixing

O((2N/Emin) 8" (k — 1)*(log(k — 1))n? - nlos2*+1),

As noted in Remark 2.1, we did not incur a term A in this calculation. Furthermore, it is
not clear how one could avoid this YA = k factor using the spectral decomposition technique

(Theorem 2.2). That technique would give a mixing bound of

O(((3N/Ewin) - k - k)'8™ - (k — 2)n).

(Here we have ignored an additional log || term, as one might be able to reduce this term
via, for instance, the log-Sobolev version of the Jerrum/Son/Tetali/Vigoda decomposition.)

Comparing the two expressions above shows that our technique gives an improvement of

O nloga (k) QB 52 (o log
= 082 F—
nloga k+1 . kn IOg k (n /( og ))

2.8 Integer lattice triangulation flip graphs

2.8.1 Definition

The integer lattice triangulation flip graph, studied extensively in prior work ([1, 13, 12, 41,

71]), is analogous to the associahedron and is defined as follows:
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Figure 2.9: Left: a triangulation of the 9x9 integer lattice. Center: a division of the lattice
into 9 3x3 sections, as described in the proof of Theorem 1.4. Right: a full triangulation
compatible with the division of the lattice.

Let the integer lattice triangulation flip graph be the graph F, whose vertices are the

triangulations of the n x n integer lattice point set (integer grid), and whose edges are the

pairs of triangulations that differ by exactly one diagonal.

It will be useful to define notation for the number of triangulations in this graph: Let g(n)

be the number of triangulations of the n x n integer lattice point set.

In fact, g(n) is unknown in general, though much progress has been made on upper and lower

bounds, including the following result of Kaibel and Ziegler [41]:

Lemma 2.30. Forn > 1,

hin) = 6(2™),

for some constant c.

As discussed in the introduction, in recent years progress has been made ([13, 12, 71]) in
studying the mixing properties of the natural flip walk on the integer lattice triangulation
flip graph. However, this work has focused on biased versions of the flip walk, in which a real
parameter A > 0 induces a weight function on the triangulations of the lattice, and in which
the random walk is biased in favor of triangulations with larger weights. The case of A =1
is the unbiased version of the walk. It is now known [12] that when A > 1, the walk does

not mix rapidly, but that rapid mixing does occur for certain values of A smaller than one.
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However, the question is open for the biased version.

We do not settle the question—which would equate to showing that the integer lattice
triangulation flip graph has expansion at least 1/p(n) for some polynomial function p, but
we do show a weaker result in a similar spirit: that the flip graph has large subgraphs with
large expansion. Expansion measures the extent to which bottlenecks exist in a graph: large
expansion corresponds to a graph that does not have bottlenecks, roughly speaking. Thus,
even if bottlenecks exist in Fj,—that is, if rapid mixing does not occur, i.e. if the expansion
is too small—then there still exist regions of the graph that are not prone to bottlenecks,
and thus internally induce rapidly mixing walks. Although far from clear evidence of large
expansion in F), itself, one might hope that if bottlenecks exist, this result may suggest places

to look for them.

2.8.2 Additional preliminaries: treewidth, separators, and vertex

expansion

The treewidth of a graph G is a different density parameter from expansion. There are many
equivalent definitions of treewidth; one of the standard definitions is in terms of a so-called

tree decomposition.

Closely related to treewidth are verter separators: A wvertex separator for a graph G is a
subset X C V(G) of the vertices of G such that G \ X is disconnected. X is a balanced
separator if G\ X consists of two subgraphs, A and B, such that no edge exists between A
and B, and such that [V (G)|/3 < |[V(A)] < |[V(B)| < 2|V(G)|/3. We also say, if | X| < s for

a given s > 1, that X is an s-separator.

With respect to an integer s > 1, a graph G is recursively s-separable if either |V (G)| < 1, or

G has a balanced s-separator X such that the two mutually disconnected subgraphs induced
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by removing X from G are both recursively s-separable. The following relates treewidth

and recursive separability [27]:

Lemma 2.31. For everyt > 1, every graph with trecwidth at most t is recursively t + 1-

separable.

Treewidth in general is of interest in large part because many NP-hard problems become
tractable on graphs of bounded treewidth. For a survey of this phenomenon, known as
fixed-parameter tractability, see [9]. Our interest in treewidth, however, is mainly in its role

as a density parameter, in particular for Theorem 1.4.

Treewidth, as a density parameter, is weaker than vertex expansion, in the sense that a
high vertex expansion implies a high treewidth, but not vice versa. The following following

corollary to Lemma 2.31 makes this precise:
Corollary 2.2. If the vertex expansion of a family of graphs G(N) on N wvertices is at least

ho(N), then the treewidth t(N) of the family is Q(N - hy(N)).

Proof. Suppose G(N) has vertex expansion at least h,(/N). Then every balanced separator
X is of size at least

| X[ > ho(N) - N/3,

by the definition of a balanced separator and the definition of vertex expansion. n

In this section we prove Theorem 1.4.

Theorem 1.4. The treewidth of the triangulation flip graph F,, on the n X n integer lattice
point set is Q(N'=°W) where N = |V (F,)|.

Proof. We will show that F,, has a large induced subgraph with large expansion, which will

imply large treewidth. Partition the points of the n X n grid into n grids of size v/n x y/n. (If
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n is not a perfect square, we can take \/m .) That is, fill in a partial triangulation as follows:
let each point in the grid have coordinates (7, j), where 1 <i <n and 1 < j <n. Fill in all
vertical edges connecting two consecutive points with the same j coordinate whenever j = 0
(mod /n) or j = 1 (mod y/n), and fill in all horizontal edges connecting two consecutive

points with the same i coordinate whenever ¢ =0 (mod /n) or i =1 (mod /n).

Fill in also all unit horizontal and unit vertical edges connecting vertices in adjacent y/n X /n
sub-grids, and fill in all unit diagonals with negative slope inside the resulting squares. See
Figure 2.9, center. (The choice of these edges and diagonals to fill in between subgrids is

arbitrary, but must be consistent.)

Now consider the subgraph H,, of F,, induced by restricting V' (F},) to the triangulations that
extend this partial triangulation. That is, the vertices of H,, are the triangulations that
consist of separately triangulating each of the y/n x /n grids. H, is the Cartesian product
of n graphs that are each isomorphic to F 5. See Figure 2.9, right, for an example of such a

triangulation.

Assuming the smallest possible expansion for a graph on g(y/n) vertices, F; graph has
expansion (1/g(y/n)). The degree of F), is O(n?). Now, by Lemma 2.7, H,, has expansion

Q(1/9(vn)).
Therefore, by Corollary 2.2, H,, has treewidth Q(g(n)/(n?g(y/n))).
Now, by Lemma 2.30, H,, has treewidth

2

g(n)/(n?g(v/n))) = Q27 ~r=21o8m) — (0o = (1)

Y

proving the theorem. [
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Chapter 3

Rapid mixing for the hardcore
Glauber dynamics and other Markov

chains in bounded-treewidth graphs

In this chapter we apply the machinery we developed in Chapter 2 to a number of graph-
theoretic chains. Recall from Chapter 2 that a multicommodity flow in a graph M is a set of
|V(M)|? flows, one flow for each ordered pair of vertices (u,v), where each flow sends one
unit of a commodity from u to v. If a flow exists in M with small congestion—i.e. one in
which no edge carries too much flow—then the natural Markov chain whose states are the

vertices of M mixes rapidly. (We make this precise in Section 3.1.4.)

All of the chains we analyze can be seen as natural random walks on a “Glauber graph”
M (G) whose vertices are subsets of an underlying set. (For our purposes, this underlying set
is either the vertex set or the edge set of the input graph G.) Thus each of these random
walks is performed on a graph that may be exponentially large with respect to the size of the

input graph. In Chapter 2, we showed that when all of a certain set of conditions hold, we
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can construct a multicommodity flow in M (G) with congestion polynomial in n = |V (G)|,

implying that the unbiased random walk on M (G) mixes rapidly.

Recall that the conditions specify that M (G) can be partitioned into a small number of
induced subgraphs, all of which are approximately the same size, with large numbers of
edges between pairs of the subgraphs. The conditions also require that each of these induced
subgraphs have a special structure, allowing for the decomposition of each induced subgraph
into smaller Glauber graphs that are similar in structure to M (G). This self similarity allows
for the inductive construction of a multicommodity flow, by assembling flows on smaller

Glauber graphs together into a flow in M(G) with small congestion.

3.0.1 Prior work and our contribution

Prior work on rapid mixing of Markov chains on subset systems includes the special case
of matroid polytopes. For this case, recent results [4, 3] have partly solved a 30-year-old
conjecture of Mihail and Vazirani [55]. Other prior work uses multicommodity flows (and the
essentially equivalent canonical paths technique) to obtain polynomial mixing upper bounds
on structures of exponential size, including matchings and 0/1 knapsack solutions [57, 32].
Madras and Randall [52] used a decomposition of the hardcore model state space to prove
rapid mixing under different conditions. We also decompose the state space, but our approach
is different from that of Madras and Randall and is more similar to Heinrich’s [35] application
of the projection-restriction technique (see Chapter 2) pioneered by Jerrum, Son, Tetali, and
Vigoda [40]. Essentially, the projection-restriction technique involves partitioning the state
space of a chain into a collection of sub-state spaces, each of which internally mixes rapidly,
and all of which are well connected to one another. Heinrich used the vertex separation
properties of bounded-treewidth graphs to obtain an inductive argument: the resulting

sub-spaces are themselves Cartesian products of chains on smaller graphs, and thus mix
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rapidly. (See Lemma 2.15.)

We partition the state space recursively using the same vertex separation properties, and
indeed the framework conditions from Chapter 2, which we restate, in Section 3.2.3, in terms
more conducive to our graph-theoretic chains, suffice for rapid mixing using the projection-
restriction technique. Thus part of our contribution is simply to observe that these conditions
suffice. The main contribution in this chapter is to extend the framework to the chains we
analyze—for most of which this is not trivial. Thus our main contribution in this chapter is
to give conditions under which rapid mixing occurs in the projection chains. In particular, in
the case of independent sets, Jerrum, Son, Tetali, and Vigoda [40] applied their technique to
a special case of the hardcore model, namely regular trees. However, it was not clear how to
generalize this application to non-regular trees or to bounded-treewidth graphs. We resolve
this with the hierarchical version of our framework, and show that this version also gives an

analogous result for dominating sets.

Our framework solves another key problem that arises in applying the projection-restriction
technique: to apply that technique in a straightforward fashion, one needs each of the state
spaces in the partition to be a Cartesian product of chains on smaller spaces. For four of
our eight chains, the sub-spaces obtained in the decomposition are not Cartesian products
but may be non-disjoint unions of Cartesian products. In some cases, the sub-spaces may
not even be mutually disjoint and may induce non-ergodic restriction chains. We solve this
problem by using the structure of the state spaces of Glauber dynamics as graphs to obtain
multicommodity flows with bounded congestion. We will discuss this further in Section 3.8.
Our approach is also inspired by Kaibel’s [42] construction of a flow with bounded congestion
in any graph whose vertices are hypercube vertices and whose edges can be partitioned into

bipartite graphs in a hierarchical fashion.
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3.0.2 Application to graphical models

Prior work [11, 30] has shown that related chains, including softcore models—in which the
sampled sets need not be independent—mix rapidly on graphs of bounded treewidth. However,
all of the Glauber dynamics we consider pertain to graph-theoretic sampling problems, in
which one is sampling a subset of either the vertices or the edges of a graph, where the
subsets must obey certain constraints, e.g. independence. As a result, and as Bordewich and

Kang [11] note, their technique does not extend to these models.

Similarly, in the setting of probabilistic graphical models, De Sa, Zhang, Olukotun, and
Ré [20] considered graphs with bounded hierarchy width. They showed—via arguments
similar to the projection-restriction technique [40]—that graphs with logarithmically bounded
hierarchy width admit rapid mixing for the Glauber dynamics on models with bounded
mazimum factor weight. It is straightforward to apply their argument to the Ising and
Potts models with fixed parameters, on graphs of bounded carving width. This case of these
models also admits application of projection-restriction (and in the special case of the path
graph Jerrum, Sinclair, Tetali, and Vigoda observed this for the Ising model [40]), and it fits
our framework. Since our framework does not give a substantial improvement on existing
results for these models, we do not address them in detail in this paper; we simply note that
the framework we developed in our prior work [26, 25] applies to these cases and to every
undirected graphical model having only pairwise and unary factors, bounded maximum factor
weights, constantly many values for each random variable, and bounded carving width. This
shows that the framework unifies these models—in which all states have positive probability
and which prior work has addressed in these graphs—with graph-theoretic chains where some
states have zero probability—for which our results are new. We give a brief sketch of how to
apply our framework in Section 3.6.2. See Bordewich, Greenhill, and Patel [10] and Chen,

Liu, and Vigoda [17] for definitions of and results for these models.
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3.0.3 Further discussion of prior work

Sly [70] showed that, except for restricted values of A < 1, the hardcore Glauber dynamics does
not mix rapidly on general graphs unless RP = NP, and in fact showed that approximately
sampling from the corresponding distribution is hard unless RP = NP. However, Anari, Liu,
and Gharan [2] used a technique known as spectral independence to obtain rapid mixing
for the hardcore Glauber dynamics when A is below the so-called uniqueness threshold that
depends on the maximum degree of the input graph. They showed, by exhibiting an infinite
family of examples, that the technique they used could not be further improved (namely
beyond the uniqueness threshold) even for trees. By contrast, we show that rapid mixing, for
all fixed values of A\, indeed holds not only for trees but for all graphs of bounded treewidth.
Chen, Galanis, Stefankovi¢, and Vigoda [16] and Feng, Guo, Yin, and Zhang [28] generalized

this work and applied it to graph colorings.

Other results exist for trees beyond the uniqueness threshold, however: Martinelli, Sinclair,
and Weitz [53] showed that the Glauber dynamics on the hardcore model mixes in O(nlogn)
time on the complete A — 1-ary tree with n nodes. They also showed that the dynamics
on g-colorings (¢ > A + 2) mixes in O(nlogn) time on the same trees. Lucier, Molloy, and

Peres [51] showed that the dynamics mixes rapidly on general trees of bounded degree, namely

in time O(nO(+8/(alogA)y

Prior work also exists for g-colorings of bounded-treewidth graphs: Berger, Kenyon, Mossel,
and Peres [6] showed rapid mixing for g-colorings of trees. Tetali, Vera, Vigoda, and Yang [72]
gave upper and lower bounds for complete trees. Vardi [73] showed that the so-called single-
flaw dynamics—a variaton on the Glauber dynamics in which at most one monochromatic edge
is permitted in a valid state—mixes rapidly on bounded-treewidth graphs when ¢ > (1 +¢)A,
for any fixed parameter € > 0. The proof used the vertex separaton properties of bounded-

treewidth graphs to construct a multicommodity flow with bounded congestion, although

66



the construction was substantally different from our divide-and-conquer approach. Dyer,
Goldberg, and Jerrum [23] showed rapid mixing when the degree of the graph is at least
2t and g > 4t, where t is the treewidth. On the other hand, Heinrich [35] showed that the
Glauber dynamics on g-colorings of a bounded-treewidth graph mixes rapidly when ¢ > A+ 2.
Our construction, as we will discuss in more detail in Section 3.0.1, bears some similarity to
Heinrich’s. We also require that ¢ (and therefore A) be bounded. However, due to a more
general analysis of the state spaces of Glauber dynamics as graphs, we obtain a more general

framework that holds for a greater variety of chains.

Planar graphs have unbounded but sublinear treewidth. For planar graphs, Hayes [33] showed
that the Glauber dynamics on g-colorings of a planar graph of maximum degree A mixes
rapidly when ¢ > A + O(v/A). Later, Hayes, Vera, and Vigoda [34] proved rapid mixing
for g-colorings of planar graphs when g = Q(A/log A), generalizing further to a spectral

condition on the adjacency matrix of the graph.

Bezékova and Sun showed [8] that the hardcore model mixes rapidly in chordal graphs
with bounded-size separators. Lastly, Chen, Galanis, Stefankovi¢, and Vigoda applied the
spectral independence technique to prove that the Glauber dynamics on the g-colorings of a
triangle-free graph with dgree A mixes rapidly provided that ¢ > oA + 1, where « is greater
than a threshold approximately equal to 1.763. We show that when the carving width of G
is bounded, GG need not be triangle free, and it suffices that ¢ > A 4 2 be bounded. We prove

a similar result for the natural Glauber dynamics on partial g-colorings.

Although our mixing results are new, Wan, Tu, Zhang, and Li showed [74] that exact counting
of independent sets is fixed-parameter tractable in treewidth. Furthermore, our result does
not technically constitute a proof of fixed-parameter tractability, as the treewidth appears in
the exponent of the polynomial we obtain. For this problem and all the other problems we
consider, the problem of exact counting—and therefore also uniform sampling—has already

been solved on the graphs we consider by an extension of Courcelle’s theorem [61]. In fact,

67



the standard reduction from approximate sampling to approximate counting [68] gives a
somewhat different rapidly mixing Markov chain on a larger state space. Nonetheless, our
result does settle the question of rapid mixing for a natural chain, and it implies a simpler

scheme for approximately sampling independent sets than one would obtain via this reduction.

Such a scheme is known as a fully polynomial randomized approzimation scheme (FPRAS).
Huang, Lu, and Zhang provided an FPRAS for sampling b-edge covers in general graphs
when b < 2, and for sampling b-matchings when b < 7 [37]. This FPRAS relied on a rapid
mixing argument for a somewhat different Markov chain than ours. Existing dominating set

results for certain regular graphs are also known [7].

Exact counting of maximal independent sets—which would give an FPRAS by the equivalence
of counting and sampling—was shown in [60] to be hard for chordal graphs but is known [15]
to be tractable in graphs of bounded treewidth. However, again our result improves on the

simplicity of existing algorithms.

3.1 Preliminaries

In this section we define the hardcore Glauber dynamics. We also define in this section the
standard notion of carving width and the additional graph-theoretic chains we explore. See
Chapter 2 for definitions of the standard notions of expansion, multicommodity flows, and

treewidth.

3.1.1 Rapid mixing and Glauber dynamics

As we discussed in Chapter 2, rapid mixing is of interest in the random generation of certain

graph-theoretic objects, including such subset systems as the set of matchings in a graph. To
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generate, approximately uniformly at random, an object of a given class—say, an independent
set in a given graph—it suffices to conduct a random walk on a graph whose vertices are
the objects of interest, and whose edges are flips between the objects, under some suitable
definition of a flip. (For technical reasons, self loops need to be added to the graph in a
standard fashion.) Basic spectral graph theory shows that, under mild conditions, the walk
converges to the uniform distribution in the limit. It is of interest for efficient sampling
algorithms to determine how rapid the convergence is. In the case of subset systems such as
those we consider, the walk takes place over an exponentially large number of subsets defined
over an underlying set of size n. If the convergence, or mizing time, of the walk is polynomial

in n, then the random walk is said to be rapidly mizing.

Recall that the mixing time, denoted 7, is the minimum number of steps in the random walk
before convergence is guaranteed, regardless of the starting point of the walk. Convergence is
measured via the total variation distance [67] between the distribution over states induced by
the walk at a given time step, and the uniform distribution. One can obtain convergence to

other distributions by adding weights to the vertices and edges of the graph—see Section 3.6.1.

Of interest for our mixing results is the hardcore Glauber dynamics, defined as follows: The
hardcore Glauber dynamics on the independent sets of a graph G is the following chain,

defined with respect to a fixed real parameter A > 0:

1. Let Xy be an arbitrary independent set in G.
2. For t > 0, select a vertex v € V(@) uniformly at random.
3. If v ¢ X; and X; U {v} is not a valid independent set, do nothing.

4. Otherwise:
Let X;11 = X; U {v} with probability A/(\ + 1).
Let X;11 = X; \ {v} with probability 1/(A + 1).
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3.1.2 Carving width

The carving width of a graph is a density parameter that is weaker than treewidth, in the
sense that high treewidth implies high carving width, but the converse is not true. Carving
width is defined with respect to a so-called carving decomposition [24] of a given graph G—in
short, a binary tree T" whose leaves are identified with the vertices of G. Each node X € T is
identified with the subgraph of G induced by the vertices of G (leaves of T') having X as an
ancestor in 7. Each edge of T" induces a cut in 7T'; this cut induces a partition of the leaves of

T (vertices of G) into two sets. This partition is naturally identified with a cut in G.

The width of a carving decomposition is the maximum number of edges of G' across any such
cut, where the maximum is taken over all edges in T'. The carving width of G is the minimum
width of a carving decomposition of G. See Seymour and Thomas [66] for a detailed treatment.
For our purposes, carving width is of interest due to its relationship to the treewidth and
degree of a graph. Specifically, Eppstein [24] observed the following fact that follows from

results of Nestoridis and Thilikos [59] and of Robertson and Seymour [65]:

Lemma 3.1. Given a graph G with mazimum degree A, let tw(G) denote the treewidth of
G, and let cw(G) denote the carving width of G. For every graph G, (2/3)(tw(G) + 1) <
cw(G) < A(tw(G) — 1).

It follows from the definition of carving width that every graph with bounded carving width

also has bounded degree. Combining this fact with Lemma 3.1 implies the following:

Corollary 3.1. A graph has bounded degree and treewidth if and only if it has bounded

carving width.

3.1.3 Dominating sets, b-matchings, and b-edge covers

A dominating set in a graph G = (V, E) is a set S C V of vertices such that for every vertex
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v € V, either v € S or there exists some vertex u € S such that (u,v) € E.

b-matchings [45] and b-edge covers [29, 44] generalize the definitions of matchings and edge
covers respectively: Let G = (V, E) be a graph. Let b: V — Z=° be any function assigning
a nonnegative integer to each vertex. A b-matching in a graph G = (V| E) is a set S C F of

edges such that every v € V' has at most b(v) incident edges in S.

Let G = (V,E) be a graph. Let b: V — Z=° be any function assigning a nonnegative integer
to each vertex. A b-edge cover in a graph G = (V, E) is a set S C E of edges such that every

v € V has at least b(v) incident edges in S.

Sometimes, as in the result by Huang, Lu, and Zhang [37], b-edge covers and b-matchings are

defined so that b is a constant, i.e. b(u) = b(v) for all u,v € V.

For dominating sets, b-edge covers, and b-matchings, we consider a chain similar to the
hardcore dynamics, except that in the case of b-edge covers and b-matchings, we are of course
selecting edges instead of vertices. Also, in the case of dominating sets and b-edge covers,
instead of verifying independence before adding a vertex (or edge), we verify validity of a set

(e.g. domination) before dropping a vertex (or edge).

We also consider the Glauber dynamics on g-colorings: A g-coloring of a graph G is an
assignment of a color from the list [q] = {1,2,...,q} to each vertex of GG, such that no two
adjacent vertices have the same color. A partial g-coloring of a graph G is an assignment
of a color from [g] to each of a subset of the vertices of G, such that no two adjacent vertices

have the same color.

The Glauber dynamics on the partial g-colorings of G is as follows: Let the Glauber dynamics

on the partial g-colorings of a graph GG be the following chain defined with respect to A > 0:

1. Let Xy be an arbitrary partial g-coloring of G.
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2. For t > 0, select a vertex v € V(G) uniformly at random, and select a color ¢ € [¢ + 1]
uniformly at random.
3. fe=q+1, then:
If v is already colored in X, remove the coloring of v with probability 1/(A + 1).

OtherWise, let Xt+1 = Xt'

4. If ¢ < g, then:
If v is not already colored with ¢ in Xj, set the color of v to ¢ with probability
AJ(A+1).

Otherwise, let X;,; = X;.

Finally, the Glauber dynamics on the (complete) g-colorings of G is as follows (for this chain
we do not define a biased version): Let the Glauber dynamics on the g-colorings of a graph

G be the following chain:

1. Let Xy be an arbitrary g-coloring of G.

2. Fort > 0, select a vertex v € V(G) uniformly at random, and select a color ¢ € [g]—other

than the color of v—uniformly at random.

3. If v has no neighbor with color ¢, then change the color of v to ¢ with probability 1/2

to obtain Xy 1.

4. Otherwise, do nothing, i.e. let X;,; = X,.

We define a graph whose vertices are the maximal independent sets of an underlying graph G,
and then define the flip chain as a random walk on this graph: Given a graph G = (V, F),
let the mazimal independent set Glauber graph be the graph Myus(G) whose vertices are the
maximal independent sets of GG, and whose edges are the pairs of maximal independent sets

that differ by one flip, where a flip is defined as:
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1. adding one vertex v to a given independent set S C V,

2. removing every u € S such that (u,v) € E, and

3. adding a subset of the vertices at distance two in G from v.
Since Myus(G) is undirected, we also define the reversal of a flip as a flip. See Figure 3.5 for
an example of a flip.

Lemma 3.2. The graph Myus(G) is connected.

Proof. The proof relies on a greedy transformation argument and is in Section B.2. O

For maximal b-matchings, we define a Glauber graph similar to the maximal independent
set Glauber graph, except that we are of course selecting edges instead of vertices in our
sets. A flip consists of adding some edge e = (u, v) to the b-matching, then removing edges
incident to u and v as needed until a valid b-matching is obtained, then adding edges incident

to neighbors of u and v as needed to obtain maximality.

3.1.4 Glauber dynamics with parameter A\ > 0

Formally, the Glauber dynamics is defined as follows:

The Glauber dynamics is a Markov chain, parameterized by A > 0, with state space () =

V(M(G)) and probability matrix P, where for S, 5" € V(M (QG)) with S # 5,

P(5,5) = M(Am(A+1))

when |S"\ S| =1, and
P(S,5') = 1/(An(A+1)
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when [S\ S| = 1. If S =5, then P(S,5") =1~} g5 P(5,5").

Here Ajq is the maximum degree of the Glauber graph—i.e. the maximum number of

neighboring states that a state S can have.

The two cases described for S # S’ are exhaustive for all of the chains that we have
parameterized by A. For all of the chains for which A is not defined, the transition probability

is in every case 1/(2A ).

3.2 )\ =1: Bounded carving width

To build up to the proof of Theorem 1.5, we first show a weaker result: that the unbiased
Glauber dynamics on independent sets mixes rapidly in graphs of bounded carving width. The

full proof of Theorem 1.5, even in the unbiased case, requires the non-hierarchical framework.

The main technical lemma in this section, Lemma 3.10, comes from Chapter 2. Our
contribution in this chapter is the application to independent sets in graphs of bounded

carving width—which we strengthen to graphs of bounded treewidth in Section 3.3.

The independent set flip chain (the hardcore model) is the natural random walk on what
we will call the independent set Glauber graph: Given a graph G, let the independent set
Glauber graph Mis(G) be the graph whose vertices are the independent sets of G, and whose
edges are the pairs of independent sets S, .S” such that |S @ S’| = 1. The following is known,

but we give a proof:

Lemma 3.3. The independent set Glauber graph is connected.

Proof. Consider the empty independent set (). Every independent set S € V(Mis(G)) has a

path of length |S| to @), formed by removing each vertex in S in arbitrary order. O
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Figure 3.1: Two independent sets in a graph G, belonging to the same class, induced by the
restriction of the sets to X.

3.2.1 Partitioning the vertices of M;s(G) into classes

The vertices of the Glauber graph Ms(G) are subsets of the vertices of an underlying graph
G. When G has bounded treewidth, we can choose a small separator X that partitions
V(G) \ X into two mutually disconnected vertex subsets, A and B, neither of which is too
large. Consider the problem of sampling an independent set S from G. Given a separator X

for GG, partition the independent sets in G into equivalence classes as follows:

Let G = (V, E) be a graph. Let Mg(G) be as we have defined. Let X C V be a vertex
separator for G. Let Sig(G) be the set of equivalence classes of V(Mg(G)) in which two
independent sets S and S’ are in the same class if SN X =5 NX. Let T'= 5N X, and call

the corresponding class Cis(7).
See Figure 3.1 for an example of a partitioning and a class.

Let A and B be the mutually disconnected vertex subsets into which the removal of X
partitions G[V \ X|. Given a fixed independent subset 7' C X, identify the independent sets
in Cig(T") with the pairs of the form (S4, Sg), where Sy is an independent set in A\ N4 (7)),
and Sp is an independent set in B\ Ng(T'), where N4(T') and Ng(T') denote the union of the
neighborhoods of vertices in T', in A and B respectively. That is, identify each independent

set in Cig(7T") with a pair of an independent set in A that avoids neighbors of vertices in T,
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Figure 3.2: A schematic view of three classes in the independent set Glauber graph Mis(G).
The large circles denote classes under the partition described in Section 3.2.1. The curved
arrows illustrate the construction of a flow in Mjg(G) from an independent set S € Cis(T")
to another independent set S” € Cis(T)—and also to an independent set S” € Cis(7”). Here,
Cis(T') and Cig(T") are adjacent classes in Mg(G), connected by a large number of edges,
and similarly Cis(7") and Cis(T") are adjacent. In Section 3.2.2 we formalize this flow.

and a similar independent set in B. Consider the two Glauber graphs Mig(A \ Na(T))
and Mis(B\ Np(T')), whose vertices are respectively the independent sets in G[A \ Na(T)],
and those in G[B \ Ng(T')]. If two independent sets S = (S, Sg) and S" = (5, S%z) belong
to the same class, then a flip exists between S and S’ in Mg(G) precisely when a flip exists
between the restrictions of S and S’ to either Mig(A \ Na(T)) or Mis(B \ Ng(T)) (but
not both). See Figure 3.1. Therefore, each class induces, in Mjs(G), a subgraph that is

isomorphic to a Cartesian product of two smaller Glauber graphs:

Lemma 3.4. Given a graph G and a vertex separator X that partitions V(G) into subgraphs A
and B, for every class T € Si5(G),

Cis(T) = Mis(A\ Na(T))OMus(B \ Np(T)).

(Here we identify the class Cig(T") with the subgraph it induces in Mis(G).)
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Figure 3.3: Two independent sets in a graph G: S (left) and S’ (right), belonging to distinct
classes. S and S’ differ by a flip, with the separator X inducing the classes to which the sets
belong. S’ results from adding v to S. |S’| < |S|, since S” excludes those independent sets
that contain the vertex wu.

3.2.2 Rapid mixing of the independent set flip chain when G has

bounded carving width

As described in Section 3.2.1, we use a small vertex separator X in G to give a decomposition
of Mis(G) into subgraphs, each of which has a Cartesian product structure—in which both
factor graphs in the product are themselves Glauber graphs. Since Cartesian products
preserve flow congestion upper bounds (see Lemma 2.15), this decomposition provides a

crucial inductive structure. We analyze this structure in this section.

Lemma 3.5. Let G be a graph with bounded treewidth t, let Mis(G) be as we have defined,
and let Sis(G) be as we have defined with respect to a small balanced separator X with

| X| <t+1. The number of classes in Sis(G) is O(1).

Proof. The lemma follows from the fact that |Sis(G)| < 21 < 2!+1 = O(1), where the first

inequality is true because each class is identified with a subset of the vertices in X. ]

Lemma 3.6. Let G be a graph with bounded treewidth t and bounded degree A, let Mis(G)
be as we have defined, and let Sis(G) be as we have defined with respect to a small balanced
separator X with | X| <t + 1. For every pair of classes Cis(T),Cis(T") € Sis(G), |Cis(T)| =
O(1)[Cs(T")].
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Lemma 3.7. Let G be a graph, let Mis(G) be as we have defined, and let Sig(G) be as we
have defined with respect to a separator X. Let Cis(T),Cis(T") € Sis(G) be two classes. No

independent set in Cis(T') has more than O(1) flips to independent sets in Cis(T").

Lemma 3.8. Let G be a graph with bounded treewidth t and bounded degree A, let Mis(G)
be as we have defined, and let Sis(G) be as we have defined with respect to a small balanced
separator X with |X| < t+ 1. Let Cis(T),Cis(T") € Sis(G) be two classes. Suppose there
exists at least one flip between an independent set in Cis(T') and an independent set in Cis(T").
Then there exist at least Q(1)|Cis(T")| flips between independent sets in Cis(T') and independent

sets in Cs(1").

The proofs of Lemma 3.6, Lemma 3.7, and Lemma 3.8 are in Section B.2. We will use these

facts to prove the following, applying the framework from Chapter 2, in Section 3.2:

Lemma 3.9. Given a graph G with bounded carving width, the natural random walk on the

independent set Glauber graph Mis(G) has mizing time T7(n) = O(n®), where ¢ = O(1).

To prove Theorem 1.5, however, we need to get rid of the assumption that degree is bounded.

We address this issue in Section 3.3.

3.2.3 Abstraction into framework conditions

The observations in Lemmas 3.5 through 3.8 correspond to the set of conditions we gave in

Lemma 2.10 (Chapter 2).

The conditions are, given a connected Glauber graph M (G), on some set of structures over

an underlying graph G with n vertices:

1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).
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2. The ratio of the sizes of any two classes in S is ©(1).

3. Given two classes C(T'),C(T") € S, no vertex in C(T") has more than O(1) edges to

vertices in C(T7).

4. For every pair of classes that share at least one edge, the number of edges between the

two classes is ©(1) times the size of each of the two classes.

5. Each class in S is the Cartesian product of two Glauber graphs M (G;) and M (G,),

each of which can be recursively partitioned in the same way as M(G).

6. The recursive partitioning mentioned in Condition 5 reaches the base case (graphs with

one or zero vertices) in O(logn) steps.

Conditions 1 through 4 correspond respectively to Lemmas 3.5 through 3.8; Condition 5
corresponds to Lemma 3.4. Condition 6 is satisfied by our chains due to the assumption
of bounded treewidth, which ensures a recursive decomposition in which the classes are
isomorphic to Cartesian products of Glauber graphs over an underlying graph whose number
of vertices has been reduced by a constant factor. Thus all of these conditions are satisfied
by the chain on independent sets in graphs of bounded carving width, and Lemma 3.9 will
follow from the claim that the above conditions imply rapid mixing. Indeed, we proved the

following in Chapter 2 (Lemma 2.9):

Lemma 3.10. Given a graph M(G) satisfying the conditions in this section, the expansion

of M(G) is Q(1/n°), where ¢ = O(1).

We revisit the proof sketch in Section 2.5, restating it in terms more conducive to the Glauber

dynamics in this chapter:

Proof Sketch. The idea of the proof is first to partition M(G) into classes as we have

described. By Lemma 3.4, each class C(T') € S(G) is isomorphic to the Cartesian product
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M(A\ NA(T))OM(B\ Np(T)). We make an inductive argument, in which the inductive
hypothesis assumes that for each such Cartesian product, the graphs M (A \ N4(T)) and
M (B\ Np(T)) have multicommodity flows with congestion py < c8IV(AI=1 pp < oglV(G)I-1
respectively, for an appropriate constant c. Lemma 2.15 then implies that C(T") has a flow fr

with congestion pp < o8!V(@)I-1,

The inductive step is then to combine the fr flows for all of the classes, constructing a
multicommodity flow f in M(G) with small congestion. We need to route flow between
every pair of Glauber graph vertices S and S" in M(G). If S and S’ belong to the same class
C(T), this is easy: use the same flow that S uses to send its unit to S’ in fr. If S € C(T)

and S" € C(T") # C(T) belong to different classes, we do the following (see Figure 3.2):

1. Find a path from C(T') to C(T"), where each pair of consecutive classes on the path

share at least one edge. Let this path be

C(T) = C(T1),C(Ty), . ...C(Ty) = C(T").

2. Let S send an equal fraction of the S-S unit (through paths in C(7")) to each Z € C(T)
that has a neighbor Y € C(T3).

3. For i = 2,...,k — 1, within C(T}), for every Y that receives flow from a neighbor
in C(T;-1), let Y send an equal fraction of its S-S’ unit (using paths in C(7})) to

every Z € C(T;) with a neighbor in C(T}41).

4. Fori=1,...,k—1, let each Z € C(T;) having a neighbor Y € C(T};1) send its fraction
of the S — S’ unit to Y across the edge (Z,Y).

5. Let S’ receive an equal fraction of the S-S unit (through paths in C(7")) from each Y €

C(T") that has a neighbor in C(T}_;).
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We specified in Chapter 2 how to route the flow at each intermediate step, making use of the
existing flows within each class guaranteed by the inductive hypothesis. We then derived
upper bounds on the amount of flow resulting from this routing across any given edge within

a class, as well as on the amount of flow across each boundary edge e between classes. We

showed that the latter is O(N), where N = |[V(M(G))|, i.e. ple) = +O(N) = O(1); we

- N

showed that the former is at most an O(1) factor times the existing congestion pr.

This leads to a total congestion of O(1)!, where [ is the number of levels of induction. The
fact that X is a balanced separator implies that [ = O(logn); the lemma now follows from

Lemma 2.1. O

Lemma 3.9 now follows.

We will use the phrase “non-hierarchical framework” to describe this set of conditions—which

apply to the chains we study when the underlying graph G has bounded carving width.

Although Jerrum, Son, Tetali, and Vigoda [40] did not consider bounded-treewidth graphs
generally, these conditions do allow their projection-restriction technique to be applied. In
effect, Lemma 3.10 characterizes a sufficient set of conditions for applying Jerrum, Son, Tetali,

and Vigoda’s technique.

The first main technical contribution of this chapter is in Section 3.3, in which we give an
alternative set of conditions—which we will call our “hierarchical framework”—that allows us
to handle underlying graphs of unbounded degree (though treewidth still must be bounded),
and to handle chains other than the hardcore model. This will allow us to complete the

proofs of Theorems 1.5, 1.6, and 1.7.
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Figure 3.4: Left: a schematic representation of the classes in the independent set Glauber
graph and edges between them when degree is unbounded. Right: a class Cig(T), with
two parents, Cis(P) and Cig(P’), and two children, Cig(C') and Cis(C"). (Classes with larger
cardinality are drawn larger.) The parallel edges depict the fact that a child class always
has every one of its vertices adjacent to a vertex in a given parent class, and that the edges
between any given pair of classes are vertex-disjoint.

3.3 A =1: Unbounded degree

3.3.1 Hierarchical framework

We now sketch a set of “hierarchical” framework conditions that guarantee rapid mixing in
the case of unbounded degree (when treewidth is bounded). Several of the chains we consider

satisfy these conditions so long as the treewidth of the underlying graph is bounded.

In the original framework, we assumed that the classes were approximately the same size.
Although all of the Glauber graphs to which we apply this hierarchical framework satisfy
this condition in graphs with bounded carving width, this is not the case when the degree is
unbounded. Fortunately, in the case of independent sets, partial ¢-colorings, dominating sets,

and b-edge covers, we can solve this problem with some modifications to the framework.

3.3.2 Independent sets

In the proof of Lemma 3.10, the assumption that the classes were approximately the same

size allowed us to argue that even in the worst case, any given class Cig(7") can route flow for
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all pairs of vertices without being too congested, because Cis(7) is sufficiently large. Once we
discard this assumption, we need to be more explicit in specifying the path through which
any given Cis(T') routes flow to any given Cis(7”). Namely, we show that one can engineer the
flow so that for any such Cig(T"), Cis(7”) pair, every intermediate class Cis(7") that handles
flow between sets S € Cis(T') and S” € Cig(T”) has a larger cardinality than one of Cis(7") or
Cis(7"). This allows us to bound the number of pairs of sets, relative to |Cis(7")|, for which

Cis(T") carries flow.

To accomplish this, we observe that for any pair of classes Cis(7") and Cis(7”), if there exists
one flip between an independent set in Cis(7”) and an independent set in Cis(7"), then without
loss of generality every independent set in Cig(7”) has a flip to some independent set in Cis(7').
Namely, this flip consists of dropping some vertex v from 77 C X to obtain T". In this case
we call Cig(T') a parent of Cig(T"), and Cis(T") a child of Cis(T'). See Figure 3.4. Since the
set of these edges is vertex disjoint, this implies that |Cis(7)| > |Cis(7”)]. In fact, whenever
T C T, we have |Cis(T)| > |Cis(T")].

Thus for any pair of classes Cis(T") and Cis(7”), one can find paths from the two classes to a
“common ancestor”, and route flow along these paths, through the common ancestor. Since
for every class Cis(7") on this path, either [Cis(T")| > [Cis(T)| or |Cis(T")| > |Cis(T")], we
are still able to bound the congestion in a fashion similar to the non-hierarchical framework.

We make this precise and derive the resulting congestion bounds in Section 3.5.

Recall that in the proof sketch of Lemma 3.10 (Section 3.2.2), for every pair of Glauber
graph vertices S € C(T'),S" € C(1T") # C(T), we found a sequence of classes C(T') =
C(Th),C(Ty),...,C(Tx-1),C(T}) = C(T"), through which to route the S — 5’ flow. As discussed
in Section 3.3, when degree is unbounded, the classes are no longer nearly the same size, and
thus if this sequence is chosen carelessly, some C(7;) may carry flow for too many S — 5’

pairs.
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The solution is to choose the sequences carefully. This is possible provided that there exists a
partial order < on the classes with a unique maximal element, where C(T") > C(T") implies
|IC(T)| > |C(T")|. Under this condition, we can simply choose our sequence of classes so that for

some @ with 1 <4 <k, [C(T)| < [C(T2)| < -+ <|C(TH)] = [C(Tia)[ = -+ [C(Thr)| = [C(Th)]

3.3.3 Hierarchical Framework Conditions

The conditions are as follows. Conditions 2 through 4 are new and concern the partial order
described above; Condition 1 and Conditions 5 through 7 are as in the non-hierarchical

framework.

1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).

2. There exists a partial order < on the classes in S, such that whenever C(T"),C(T") € S
and C(T) > C(T"), we have |C(T)| > |C(T")].

3. The partial order < has a unique maximal element.

4. Whenever an edge exists between vertices in C(7") and C(7") with C(T") > C(1"), the

number of such edges is |C(T7)].

5. For every pair of classes C(T') and C(7") that share an edge, the maximum degree, in
C(T), of a vertex in C(T"), is O(1), and the maximum degree, in C(7"), of a vertex in
C(T),is O(1).

6. Each class in S is the Cartesian product of two Glauber graphs M (G;) and M (G,),

each of which can be recursively partitioned in the same way as M(G).

7. The recursive partitioning mentioned in Condition 6 reaches the base case (graphs with

one or zero vertices) in O(logn) levels of recursion.
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Lemma 3.11. Given a graph M(G) satisfying the conditions in Sectionz 3.5.3, the expansion
of M(G) is Q(1/n°), where ¢ = O(1).

We defer the proof of Lemma 3.11 to Section 3.5.

3.4 Bounded carving width: application of framework

beyond independent sets

3.4.1 ¢g-colorings

We now apply the non-hierarchical framework to g-colorings in graphs of bounded carving
width. For reasons that will soon become apparent, we need to generalize to list colorings:
A list coloring of a graph G = (V, E), given a function L : V — 209 assigning a list of colors
to each vertex in V| is a coloring of G consistent with L. A partial list coloring is a coloring

of some of the vertices of GG consistent with L.

We consider the Glauber graph Mcor(G, L), defined as follows: Let the Glauber graph
Mecor(G, L), given an input graph G and a set of colors [¢] and a function L as in the
definition of list colorings, be the graph whose vertices are the list colorings of G consistent
with L, and whose edges are the pairs of list colorings C, C” that differ by a color assignment

to exactly one vertex v € V(G).

The Glauber dynamics is clearly the natural random walk on Mcor (G, L), with self-loops
added in the standard fashion. The following lemma therefore suffices to prove the first claim

in Theorem 1.6:

Lemma 3.12. Mcor(G, L), defined over a graph G and a list L : V(G) — 2, with

L(v) > 0(v)+2 for every v € V(G), satisfies the conditions of the non-hierarchical framework
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whenever G has bounded carving width and q is fized.

Proof. We partition V(Mcor(G, L)) into classes induced by a small balanced separator
X, where each class is identified with a list coloring 7" of G[X]. This partitioning satisfies
Condition 5 since each class Ccor(T) consists of the tuples of the form (Cy, Cp), where Cy
is a valid list coloring of G[A], and Cp is a valid list coloring of G[B]—with A and B being
the mutually disconnected subsets of V() resulting from the removal of X. Here, we adjust
the list L(u) for each u € N4(X) U Np(X), removing from L(u) every color that is assigned

to a neighbor of v in X under the coloring C.

The subproblems on A and B are independent, and that a flip within Ccor,(7') corresponds
to a flip within either A or B but not both. Furthermore, the condition that L(u) > 6(u) + 2
is preserved even after L is modified, since every color removed from L(u) corresponds to a
neighbor of u in X—i.e. a neighbor that is not part of the subproblem on A or B. Condition 5

follows.

Condition 1 follows from the fact that |X| and ¢ are bounded. Condition 2 can be seen from
the bounded carving width of G by considering the following mapping f : V(Mcor(G, L)) —
Ccor(T') for any T given a list coloring C' € V(Mcor(G, L)), let C" = f(C) be the list
coloring that (i) agrees with 7" on its restriction to X, (ii) agrees with C' on its assignment of
colors to all vertices having no neighbor in X, and (iii) is consistent with both (i) and (ii) on

its assignment of colors to neighbors of vertices in X.

We can always satisfy (iii) because for each u € No(X) U Ng(X), we have |L(u)| > §(u) + 2.
(There may be multiple list colorings satisfying (iii); resolve ambiguity in defining f(C) via

an arbitrary ordering on the list colorings of G.) Condition 4 follows from a similar mapping.

Condition 3 is follows from the definition of a flip; Condition 6 follows from the bounded

carving width of G. O
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3.4.2 b-edge covers and b-matchings

For b-edge covers and b-matchings, we now apply the non-hierarchical framework in graphs of
bounded carving width. As with independent sets, dealing with unbounded degree in b-edge

covers requires the hierarchical framework.

Lemma 3.13. Given an input graph G of bounded carving width, the Glauber dynamics on
b-matchings and on b-edge covers satisfy the conditions of the non-hierarchical framework,

when the maximum value of the function b is bounded.

Proof. The proof involves verifying that the chain on b-edge covers satisfies the non-hierarchical
framework conditions, as we have done for independent sets. There are a few additional

details, however.

In defining a b-edge cover, we are selecting subsets of edges instead of vertices. Thus, to
define our flip chain on b-edge covers, we modify the flip chain on independent sets in the
natural way: dropping or adding edges instead of vertices. The corresponding Glauber graph
MpEec(G) is connected, since every b-edge cover has a path in Mggc(G) to the trivial b-edge
cover (where every edge is selected). We identify each class Cgpc(7) with the set T' of edges
chosen incident to vertices in X. Since degree is bounded and | X| < t, there are O(1) classes,

satisfying Condition 1.

Given a class Cggc(T), we pass recursively to subproblems on A and B, where we update b(v)
for each v € AU B according to the number of edges in T" incident to v. That is, for each
vertex u selected in T, and for each edge (u,v) with v € A (similarly v € B), decrement b(v)
when passing to the subproblem on A (similarly B). The choices made in the A subproblem
and the B subproblem are independent, giving the required Cartesian product structure
for Condition 5, and there are still O(logn) levels of recursion, satisfying Condition 6. For

Condition 3, the proof is the same as for independent sets. Conditions 2 and 4 follow from a
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similar mapping argument to that in the proof of Lemma 3.6.

The proof for b-matchings is similar to that for b-edge covers. O]

3.4.3 Maximal independent sets and maximal b-matchings

The main idea of applying the framework to maximal independent sets and maximal b-
matchings is similar to that for independent sets, b-matchings, and b-edge covers, but some
adaptation is required: the definition of a flip is somewhat different, and the proof that
classes have the required Cartesian product structure has a few more details. We thus defer

dealing with these chains to Section 3.7.6.

3.5 Hierarchical framework

In this section we complete the proof of the unbiased case of Theorem 1.5 and Theorem 1.6,
by fully specifying the hierarchical framework, and showing that the chain on independent
sets satisfies the conditions. Fully proving Theorem 1.7 and Theorem 1.8 requires some

adaptation of the framework, which we defer to Section 3.7.

3.5.1 Proof that conditions of the hierarchical framework imply

rapid mixing
We are ready to prove the counterpart of Lemma 3.10 for the hierarchical framework, from
which the unbiased case of Theorem 1.5 will follow.

Lemma 3.11. Given a graph M(G) satisfying the conditions in Sectionz 3.3.3, the expansion
of M(G) is Q(1/n), where ¢ = O(1).
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Proof. We use the scheme in the proof of Lemma 3.10, with the following specification:
when routing flow from S € C(T') to S" € C(T") # C(T'), we find a sequence of classes
C(T) =C(Th),C(Ty),...,C(Tx-1),C(T}) = C(T") as before, where each consecutive pair of
classes in the sequence shares an edge in M (G). In the proof of Lemma 3.10, this sequence
was arbitrary; we now require that, under the partial order < in Condition 2, for some
1<i<k C(Th) <---<C(T;) > C(Ti41) > --- > C(1T}); Condition 3 guarantees that this

requirement can be satisfied.

We now bound the resulting congestion. As in the proof of Lemma 3.10, for : =2,..., k — 1,
the congestion added to edges in C(T;) in the inductive step is at most N?/(|Y;||Z;]) - closn~L.
Unfortunately, without assuming that the classes are approximately the same size, we can
no longer say that |Y;| = Q(N) or |Z;] = Q(N). Instead, we argue as follows: thanks to
the choice of our sequence, for every pair of classes C(T") and C(T") that use a given class
T; to route flow, either |C(T;)| > |C(T)| (and |C(T})| > |C(T;-1)|) or |C(T;)| > |C(T")| (and
|IC(T})| > |C(T;41)|). Assume the former case without loss of generality. For every pair of
classes C(T') and C(T") that use the edges between C(7T;_1) and C(T;), |C(T)| < |C(T;-1)|, and

therefore the number of pairs S, S” of Glauber graph vertices that use these edges is at most

> IC(T)[|C(T")] < NIS||C(T;-1)| = O(1)N|[C(T;-1)].

T1":|C(T)|<IC(Ti-1))]

Therefore, since there are |C(T;—1)| edges between C(T;_1) and C(7;) (by Condition 4),
each such edge carries at most N|S||C(T;-1)|/|C(T;-1)| = O(N) units of flow, giving O(1)

congestion.

To bound congestion within C(7}), we specify the routing of flow from ); (the set of vertices
on the C(T;_1),C(T;) boundary) to Z; (the set of vertices on the C(T;),C(T;41) boundary) as
follows: first let each Y € ); send an equal fraction of its flow—of which it receives O(NV)

units from each of O(1) edges—to every vertex in C(1;), using the flow that is assumed to
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exist within C(7;) to route the flow. Then let each Z € Z; receive its flow similarly from all

vertices in C(T;). The resulting congestion across each edge is at most

(20(N)/IC(T3)]) - ¥ HC(T;)| /N < =™,

for a constant c¢. This gives the desired congestion bound, proving the lemma. O]

We now prove Lemma 3.14 by tracing the polynomial factors in the proof of Lemma 3.11:

Lemma 3.14. Suppose a Glauber graph M(G) satisfies the conditions of the hierarchical

framework. Then the mizing time of the corresponding Glauber dynamics is

O(((2(K +1))**5") - Al log N),

where Ay is the maximum degree of the Glauber graph M(G), n = |V(G)|, K is the number
of classes in the partition, and N = |V (M (Q))|.

Proof. The analysis is similar to the proof of Lemma 2.10, with the following modifications:
each edge set E(T,T") from C(T') to a parent C(T") has |E(T,T")| = |C(T)|. Therefore,
outbound flow along each edge in such an edge set is at most N|C(T)|/|E(T,T")| = N: each
vertex (all vertices in C(T") are boundary vertices) then receives from each other vertex at
most N/|C(T')| units. As we will show shortly (see analysis of through flow below), edges to
children each carry at most K|C(7T")|. Thus we will count the flow resulting from edges to

children with through flow.

Inbound flow is symmetric. The result is to scale the amount of flow across each edge internal

to C(T') by a factor of 2N/|C(T)|.

For through flow (including the outbound flow to children as described above), each boundary

vertex in C(7T") carrying flow from (or to) a set of child classes {C(T7),...,C(1})} carries at
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most S°F, N|C(T})|K;/(|C(T!)|) units, where K; is the number of classes descendent from
C(T}), including C(77) itself. This sum is at most NK. Each boundary vertex carrying flow

from (or to) an ancestor similarly carries at most NK units. Thus through flow contributes

a factor of 2NK/|C(T)|.

The resulting overall congestion is therefore at most
(2(K +1))"=",

and applying Lemma 2.8 and Lemma 2.1 gives the resulting mixing bound. O

3.5.2 Independent sets

We now finish the proof of the unbiased case of Theorem 1.5.

Verification of conditions

To show that the chain on independent sets satisfies the conditions of the hierarchical
framework when treewidth is bounded (but degree is unbounded), we first define a partial
order < on the classes in Sig(G). Recall that these are the classes induced by the separator
X in the underlying graph G. For Ci5(T'),Cis(1") € Sis(G), let Cis(T') < Cig(T7) if T C T"
and T' # T'. Call Cig(T) an ancestor of Cis(1”"), and Cis(T") a descendant of Cig(T). If Cis(T')
covers Cig(T") in this relation, call Cig(7) a parent of Cis(1"), and Cig(1") a child of Cig(T).

We now prove that the chain on independent sets satisfies the conditions of the hierarchical

framework on graphs of bounded treewidth.

Lemma 3.15. Given a graph G with fixed treewidth t — 1, the hardcore Glauber dynamics on

the independent sets of G satisfies the conditions of the hierarchical framework.
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Proof. Let Mis(G), X, and Sis(G) be as previously defined. We have already proven

Condition 1 and Conditions 4 through 7 in Lemmas 3.5 through 3.8.

The partial order we have defined satisfies Condition 2 because for every parent class Cis(7")
and child class Cig(7”), the recursive subproblems in the Cartesian product comprising Cis(7”)
are at least as constrained as the subproblems in the product comprising Cis(7"). That
is, Cis(T") and Cis(T") are each a Cartesian product of two smaller Glauber graphs on the
independent sets in subgraphs A7 and Br of GG, and subgraphs A7 and By of G respectively.
We have V(Ar) C V(Ar) and V(Br) C V(Br), where the set V(Ar) \ V(A7) consists of

the vertices in A that have a neighbor in 7" but not in 7.

Condition 3 follows from the fact that the empty independent set is the unique set that is an

ancestor of all other independent sets.

It now follows by Lemma 2.8 that M (G) has expansion Q(1/n°("); and Theorem 1.5 follows
from this fact and from Lemma 2.1. More precisely, observing that the number of classes in the
partition is at most 27! and applying Lemma 3.14 gives the bound claimed in Theorem 1.5,

namely

O(((l+5\)5\)2<1_'_logj\)nZ(t+2)(1+log5\)+5>’

where A = max{\,1/A}. (We will give the machinery that justifies the terms involving A, A

in Section 3.6.)

3.5.3 Partial g-colorings

We now prove the unbiased case of the claim about partial colorings in Theorem 1.6:
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Let Mpcor(G, L), given an input graph G and function L : V(G) — 29, be the graph
whose vertices are the partial list colorings of G, and whose edges are the pairs of partial list

colorings that differ by the removal or addition of a color assignment to a single vertex.

We show that this Glauber graph satisfies the conditions of the hierarchical framework:

Lemma 3.16. Given a graph G with bounded carving width and list function L : V(G) — 214,
where ¢ > A+2 is fized and L(v) > 6(v)+2 for allv € V(G), the Glauber graph Mpcor(G, L)
has expansion Q(1/n°), where ¢ = O(1).

Proof. The partitioning is the same as in the p