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Sound and Complete State Estimation for Linear Dynamical Systems
Under Sensor Attacks Using Satisfiability Modulo Theory Solving

Yasser Shoukry, Alberto Puggelli, Pierluigi Nuzzo,
Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia, and Paulo Tabuada

Abstract— We address the problem of detecting and mitigat-
ing the effect of malicious attacks on the sensors of a linear
dynamical system. We develop a novel, efficient algorithm that
uses a Satisfiability Modulo Theory approach to isolate the
compromised sensors and estimate the system state despite the
presence of the attack, thus harnessing the intrinsic combina-
torial complexity of the problem. Simulation results show that
our algorithm compares favorably with alternative techniques,
with respect to both runtime and estimation error.

I. INTRODUCTION

This paper addresses the problem of detecting and mitigat-
ing the effects of an adversarial corruption of sensory data in
a dynamical system. Such situation can occur, for instance,
whenever an adversarial attacker has access to the software
that processes sensor information [1], is able to spoof data
packets holding sensor data exchanged over a network [2],
or can directly tamper with the sensor environment [3]. In
particular, we distinguish between two coupled challenges:
(i) the ability to detect and isolate the sensors under attack,
and (ii) the ability to estimate the state of the physical system
from corrupted measurements.

In recent years, multiple solutions have been reported to
the secure state estimation problem for linear dynamical
systems. In addition to fast execution time, a key requirement
of an estimation algorithm is to provide formal guarantees
of soundness (i.e., if the algorithm returns a state estimate,
then the system lies indeed in that state) and completeness
(i.e., if the system state can be estimated, then the algorithm
is indeed able to find such an estimate). One approach to
secure state estimation is to formulate the problem as a non-
convex l0 minimization problem when sensor measurements
are noiseless [4], or when they are affected by noise [5].
To improve the efficiency of the estimation algorithm, the
l0 minimization problem is then relaxed into a convex
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lr/l1 problem, which can be solved in polynomial time.
Nonetheless, due to the convex relaxation step, this approach
is not sound, i.e., it may return an incorrect estimate. To avoid
the relaxation step altogether, an alternative formulation of
the state estimation problem, which can be solved by using
time-efficient projected gradient techniques, has also been
proposed [6], [7]. However, restrictive conditions must be
satisfied by the system structure to guarantee the soundness
and completeness of this algorithm, thus limiting its appli-
cability.

A technique that relies on an on-line learning mechanism
based on approximate envelopes of collected data has also
been recently reported [8]. The envelopes are used to detect
any abnormal behavior without assuming any knowledge of
the dynamical system model. However, no formal guarantee
of completeness is provided regarding the ability to detect
and mitigate attacks. Finally, the work reported in [9], [10]
provide a suite of sound and complete algorithms to generate
fault-monitor filters and observers, which can be used to
detect the existence of an attack. However, if only an upper
bound on the cardinality of the attacked sensors is available,
the number of needed monitors is combinatorial in the size
of the attacked sensors, which might hinder the scalability
of the approach.

In this work, we resort to techniques from formal methods
to develop a sound and complete algorithm that can efficiently
handle the combinatorial complexity of the state estimation
problem. We show that the state estimation problem can
be cast as a satisfiability problem for a formula, including
logic and pseudo-Boolean constraints on Boolean variables
as well as convex constraints on real variables. The Boolean
variables model the presence (or absence) of an attack,
while the convex constraints capture properties of the system
state. We then show how this satisfiability problem can be
efficiently solved using the Satisfiability Modulo Theories
(SMT) paradigm [11], specifically adapted to convex con-
straint solving [12], to provide both the attacked sensors and
the state estimate. To improve the execution time of our
decision procedure, we equip the convex constraint solver
of our SMT-based algorithm with heuristics that can exploit
the specific geometry of the state estimation problem. Finally,
we compare the performance of our approach against other
algorithms via numerical experiments.

The rest of this paper is organized as follows. Section II
introduces the formal setup for the problem under considera-
tion. The main contributions of this paper – the introduction
of an efficient SMT-based detector and the characterization



of its soundness and completeness – are presented in Section
III. Numerical results are then shown in Section IV. Finally,
Section V concludes the paper and discusses new research
directions. For the sake of brevity, we focus on the ideal
case when the all sensors are noise-free and we omit all the
proofs in this paper. For further details, we refer the reader to
our extended report [13], where we discuss the more general
case of noisy sensors along with all the proofs of our results.

II. THE SECURE STATE ESTIMATION PROBLEM

We provide a mathematical formulation of the state es-
timation problem considered in this paper, and discuss the
conditions for the existence and uniqueness of the solution.

A. Notation

The symbols N,R and B denote the sets of natural,
real, and Boolean numbers, respectively. The symbols ∧
and ¬ denote the logical AND and logical NOT operators,
respectively. The support of a vector x ∈ Rn, denoted by
supp(x), is the set of indices of the non-zero elements of
x. Similarly, the complement of the support of a vector x is
denoted by supp(x) = {1, . . . , n}\supp(x). If S is a set, |S|
is the cardinality of S. We call a vector x ∈ Rn s-sparse,
if x has at most s nonzero elements, i.e., if |supp(x)| ≤ s.
For a vector x ∈ Rn, we denote by ‖x‖2 the 2-norm of x
and by ‖M‖2 the induced 2-norm of a matrix M ∈ Rm×n.
We also denote by Mi ∈ R1×n the ith row of M . For
the set Γ ⊆ {1, . . . ,m}, we denote by MΓ ∈ R|Γ|×n the
matrix obtained from M by removing all the rows except
those indexed by Γ. Then, MΓ ∈ R(m−|Γ|)×n is the matrix
obtained from M by removing the rows indexed by the set Γ,
Γ representing the complement of Γ. For example, if m = 4,
and Γ = {1, 2}, we have:

MΓ =

[
M1

M2

]
, MΓ =

[
M3

M4

]
.

B. System and Attack Model

We consider a system under sensor attacks of the form:

Σa

{
x(t+1) = Ax(t) +Bu(t),

y(t) = Cx(t) + a(t)
(II.1)

where x(t) ∈ Rn is the system state at time t ∈ N, u(t) ∈ Rm
is the system input, and y(t) ∈ Rp is the observed output.
Matrices A,B, and C represent the system dynamics and
have appropriate dimensions. The attack vector a(t) ∈ Rp is
an s-sparse vector modeling how an attacker corrupted the
sensor measurements at time t. If sensor i ∈ {1, . . . , p} is
attacked then the ith element in a(t) is non-zero; otherwise
the ith sensor is not attacked. Hence, s describes the number
of attacked sensors. Note that we make no assumptions on
the vector a(t), apart from being s-sparse. In particular, we
do not assume bounds, statistical properties, nor restrictions
on the time evolution of the elements in a(t). The value of
s is also not assumed to be known, although we assume the
knowledge of an upper bound s on the maximum number of
sensors that can be attacked.

C. Problem Formulation

To formulate the state estimation problem, we assume the
state is reconstructed from a set of τ ∈ N measurements,
where τ ≤ n is selected to guarantee that the system observ-
ability matrix, as defined below, has full rank. Therefore, we
can arrange the outputs from the ith sensor at different time
instants as follows:

Ỹ
(t)
i = Oix(t−τ+1) + E

(t)
i + FiU

(t),

where:

Ỹ
(t)
i =


y

(t−τ+1)
i

y
(t−τ)
i

...
y

(t)
i

 , E(t)
i =


a

(t−τ+1)
i

a
(t−τ)
i

...
a

(t)
i

 ,

U (t) =


u(t−τ+1)

u(t−τ+2)

...
u(t)

 ,Oi =


Ci
CiA

...
CiA

τ−1

 ,

Fi =


0 0 . . . 0 0

CiB 0 . . . 0 0
...

. . .
...

CiA
τ−2B CiA

τ−3B . . . CiB 0

 .
Since all the inputs in U (t) are known, we can simplify the
output equation as:

Y
(t)
i = Oix(t−τ+1) + E

(t)
i , (II.2)

where Y (t)
i = Ỹ

(t)
i − FiU (t). We also define:

Y (t) =


Y

(t)
1
...

Y
(t)
p

 , E(t) =


E

(t)
1
...

E
(t)
p

 , O =

O1

...
Op

 (II.3)

to denote, respectively, the vector of outputs, attacks and
observability matrices related to all sensors over the same
time window of length τ . Here, with some abuse of notation,
Yi, Ei and Oi are used to denote the ith block of Y,E and
O. We also denote by YΓ, EΓ, and OΓ the blocks indexed
by the elements in the set Γ.

D. Problem Statement

For each sensor, we define a binary indicator variable bi ∈
B such that bi = 0 when the ith sensor is attack-free and
bi = 1 otherwise. Based on the formulation in Sec. II-C, our
goal is to find x(t−τ+1) in (II.2), knowing that:

1) if a sensor is attack-free (i.e., bi = 0), then (II.2) reduces
to Y (t)

i −Oix(t−τ+1) = 0;
2) the maximum number of attacked sensors is s.

Therefore, using the binary variables bi, we can pose the
problem of secure state estimation as follows.

Problem 2.1: (Secure State Estimation) For the linear
control system under attack Σa (defined by (II.1)), construct



an estimate η = (x, b) ∈ Rn × Bp such that η |= φ, i.e., η
satisfies the formula φ, where φ is defined as:

φ ::=

p∧
i=1

(
¬bi ⇒ ‖Yi −Oix‖2 = 0

)

∧

(
p∑
i=1

bi ≤ s

)
.

In Problem 2.1, Yi and Oi are the vectors of outputs and the
observability matrix related to sensor i as defined in Sec. II-
C. The first conjunction of constraints requires (Yi − Oix)
is 0 if sensor i is attack-free. The last constraint enforces
an upper bound on the number of attacked sensors. We drop
the time t argument in Problem 2.1 since the satisfiability
problem is to be solved at every time instance. Although we
reconstruct a delayed version of the state x(t−τ+1), we can
always reconstruct the current state x(t) from x(t−τ+1) by
recursively rolling the dynamics forward in time.

The secure state estimation problem 2.1 does not ask
for the minimal number of attacked sensors for which the
estimated state matches the measured output. That is, if b∗

is the vector of indicator variables characterizing the actual
attack, any assignment η = (x, b) |= φ with supp(b∗) ⊆
supp(b) is a valid solution for Problem 2.1. Therefore, it is
useful to modify Problem 2.1 to ask for the minimal number
of attacked sensors that explains the collected measurements
as follows.

Problem 2.2: (Minimal Attack Support) For the linear
control system under attack Σa (defined by (II.1)), construct
the estimate η = (x, b) ∈ Rn × Bp obtained as the solution
of the optimization problem:

min
(x,b)∈Rn×Bp

p∑
i=1

bi

s.t.
p∧
i=1

(
¬bi ⇒ ‖Yi −Oix‖2 = 0

)
.

It is straightforward to show that the solution to Problem
2.2 can be obtained by performing a binary search over s and
invoking a solver for Problem 2.1 at each step, starting with
s = s and then decreasing s until Problem 2.1 becomes
unfeasible or s = 0. Since any solution of (II.2) must
necessarily satisfy the constraints of Problem 2.1, such a
procedure will terminate by returning the solution with the
minimal attack support. We denote this solution as minimal
support solution. In the reminder of the paper, we will focus
on the analysis of the feasibility problem 2.1, since a solution
to the optimization problem 2.2 can be obtained by solving
a sequence of instances of Problem 2.1.

In Sec. II-E, we discuss the conditions for the uniqueness
of the minimal support solution of Problem 2.2. However, we
first recall that the satisfiability problem over real numbers,
and specifically over Rn, is inherently intractable, i.e., de-
cision algorithms for formulas with non-linear polynomials
already suffer from high complexity [14], [15]. Moreover,
linear programming and convex programming solvers usually

perform floating point (hence inexact) calculations, which
may be inadequate for some applications. Therefore, to pro-
vide formal guarantees about correctness of Problem 2.1, we
resort to the notion of δ-completeness previously introduced
in [16].

Definition 2.3: Soundness and Completeness of Deci-
sion Algorithms for Problem 2.1 Let a minimal solution
η∗ = (x∗, b∗) (the true state and indicator variables) exist for
Problem 2.1. Then, a solution η = (x, b) |= φ is said to δ-
satisfy φ (or δ-SAT for short) if supp(b∗) ⊆ supp(b) and
‖x∗ − x‖22 ≤ δ for some δ ∈ R. Moreover, an algorithm that
solves Problem 2.1 is said to be δ-complete if it returns a
δ-SAT solution.

Definition 2.3 asks for an algorithm which terminates and
returns a solution η = (x, b) that is correct (up to the
tolerance δ). Hence, a δ-complete decision algorithm in the
sense of Definition 2.3 is also (δ-)sound since, if it returns
a solution η, η is actually a δ-SAT solution.

E. Uniqueness of Minimal Support Solutions

To characterize the existence and uniqueness of solutions
to Problem 2.2, we recall the notion of s-sparse observabil-
ity [7].

Definition 2.4: (s-Sparse Observable System) The linear
control system Σa, defined by (II.1), is said to be s-sparse
observable if for every set Γ ⊆ {1, . . . , p} with |Γ| = s, the
system ΣΓ is observable, where ΣΓ is defined as:

ΣΓ

{
x(t+1) = Ax(t) +Bu(t), t ∈ N
y(t) = CΓx

(t)
. (II.4)

In other words, a system is s-sparse observable if it is
observable from any choice of p− s sensors. For 2s-sparse
observable systems, the following result holds.

Theorem 2.5: (Existence and Uniqueness of the Solu-
tion)[Theorem III.2 in [7]] Problem 2.2 admits a unique
solution η∗ = (x∗, b∗) if and only if the dynamical system
Σa defined by (II.1) is 2s-sparse observable.

Problem 2.2 can be solved by transforming it into a Mixed
Integer-Quadratic Program (MIQP) as follows:

min
(x,b)∈Rn×Bp

p∑
i=1

bi (II.5)

s.t. ‖Yi −Oix‖2 ≤Mbi 1 ≤ i ≤ p,

where M ∈ R is a constant that should be “big” enough to
make each constraint not active when bi = 1. The relaxation
in (II.5) is typically used to express constraints including
logical implications [17]; however, in this case, the choice of
M affects the completeness of the approach. For example,
since ‖Yi −Oix‖2 is ultimately bounded by the power of
the attack ‖Ei‖2, a value of M < ‖Ei‖2 = ‖Yi −Oix‖2,
can produce an incorrect result. While a physical sensor
has a bounded dynamic range in practice, such a bound
is not known a priori in our formulation, which makes no
assumptions on ‖Ei‖2. Therefore, completeness of the MIQP
formulation (II.5) cannot be guaranteed in general.

In the sequel, we detail an algorithm which exploits the
geometry of the state estimation problem and the convexity



of the quadratic constraints to generate a provably correct
solution using the SMT paradigm. We then compare the
SMT-based solution with the MIQP formulation in (II.5)
using a commercial MIQP solver.

III. SMT-BASED DETECTOR

To decide whether a combination of Boolean and convex
constraints is satisfiable, we construct the detection algorithm
IMHOTEP1-SMT using the lazy SMT paradigm [11]. As in
the CalCS solver [12], our decision procedure combines a
SAT solver (SAT-SOLVE) and a theory solver (T -SOLVE)
for convex constraints on real numbers. The SAT solver effi-
ciently reasons about combinations of Boolean and pseudo-
Boolean constraints, using the David-Putnam-Logemann-
Loveland (DPLL) algorithm [18], to suggest possible assign-
ments for the convex constraints. The theory solver checks
the consistency of the given assignments, and provide the
reason for the conflict, a certificate, or a counterexample,
whenever inconsistencies are found. Each certificate results
in learning new constraints which will be used by the SAT
solver to prune the search space. The complex detection
and mitigation decision task is thus broken into two simpler
tasks, respectively, over the Boolean and convex domains.
We denote the approach as lazy, because it checks and learns
about consistency of convex constraints only when necessary,
as detailed below.

A. Overall Architecture

As illustrated in Algorithm 1, we start by mapping each
convex constraint to an auxiliary Boolean variable ci to
obtain the following (pseudo-)Boolean satisfiability problem:

φB ::=

 ∧
i∈{1,...,p}

¬bi ⇒ ci

 ∧
 ∑
i∈{1,...,p}

bi ≤ s


where ci = 1 if ‖Yi −Oix‖2 ≤ 0 is satisfied, and zero
otherwise. By only relying on the Boolean structure of the
problem, SAT-SOLVE returns an assignment for the variables
bi and ci (for i = 1, . . . , p), thus hypothesizing which sensors
are attack-free, hence which convex constraints should be
jointly satisfied.

This Boolean assignment is then used by T -SOLVE to
determine whether there exists a state x ∈ Rn which
satisfies all the convex constraints related to the unattacked
sensors, i.e., ‖Yi −Oix‖2 ≤ 0 for i ∈ supp(b). If x is
found, IMHOTEP-SMT terminates with SAT and provides
the solution (x, b). Otherwise, the UNSAT certificate φcert
is generated in terms of new Boolean constraints, explaining
which sensor measurements are conflicting and may be under
attack. This augmented Boolean problem is then fed back to
SAT-SOLVE to produce a new assignment. The sequence of
new SAT queries is then repeated until T -SOLVE terminates
with SAT.

1Imhotep (pronounced as “emmo-tepp”) was an ancient Egyptian poly-
math who is considered to be the earliest known architect, engineer and
physician of the early history. He is famous for the design of the oldest
pyramid in Egypt, the Pyramid of Djoser (the Step Pyramid) at Saqqara,
Egypt, 2630 – 2611 BC.

Algorithm 1 IMHOTEP-SMT
1: status := UNSAT;
2: φB :=

(∧
i∈{1,...,p} ¬bi ⇒ ci

)
∧
(∑

i∈{1,...,p} bi ≤ s
)

;
3: while status == UNSAT do
4: (b, c) := SAT-SOLVE(φB);
5: (status, x) := T -SOLVE.CHECK(supp(b));
6: if status == UNSAT then
7: φcert := T -SOLVE.CERTIFICATE(b, x);
8: φB := φB ∧ φcert;
9: return η = (x, b);

Algorithm 2 T -SOLVE.CHECK(I)

1: Solve: x := arg minx∈Rn ‖YI −OIx‖22
2: if ‖YI −OIx‖22 = 0 then
3: status = SAT;
4: else
5: status = UNSAT;
6: return (status, x);

By the 2s-sparse observability condition (Theorem 2.5),
the existence and uniqueness of a solution to Problem 2.2 is
guaranteed, hence Algorithm 1 will always terminate. How-
ever, to help the SAT solver quickly converge towards the
correct assignment, a central problem in lazy SMT solving is
to generate succinct explanations whenever conjunctions of
convex constraints are unfeasible, possibly highlighting the
minimum set of conflicting assignments. The rest of this sec-
tion will then focus on the implementation of the two main
tasks of T -SOLVE, namely, (i) checking the satisfiability of
a given assignment (T -SOLVE.CHECK), and (ii) generating
succinct UNSAT certificates (T -SOLVE.CERTIFICATE).

B. Satisfiability Checking
Given an assignment of the Boolean variables b, with

|supp(b)| ≤ s, the following condition holds:

min
x∈Rn

∥∥Ysupp(b) −Osupp(b)x
∥∥2

2
= 0 (III.1)

if and only if (x, b) is a solution of Problem 2.1. This is
a direct consequence of the 2s-sparse observability property
discussed in Section II. The preceding unconstrained least-
squares optimization problem can be solved very efficiently,
thus leading to Algorithm 2. In practical implementations,
(III.1) should actually be replaced with:

min
x∈Rn

∥∥Ysupp(b) −Osupp(b)x
∥∥2

2
≤ ε,

where ε > 0 is the solver tolerance, accounting for numerical
errors. However, for the sake of clarity, we focus here on the
case when ε is zero. For a full treatment of correctness in
the presence of numerical errors, we refer the reader to [13].

C. Generating UNSAT Certificates
Whenever T -SOLVE.CHECK provides UNSAT, a certifi-

cate could be easily generated as follows:

φtriv-cert =
∑

i∈supp(b)

bi ≥ 1, (III.2)



indicating that at least one of the sensors, which was initially
assumed as attack-free (i.e. for which bi = 0), is actually
under attack; one of the bi variables should then be set to
one in the next assignment of the SAT solver. However, such
trivial certificate φtriv-cert does not provide much information,
since it only excludes the current assignment from the search
space, and can lead to exponential execution time [13].

D. Enhancing the Execution Time

To generate a compact Boolean constraint that explains a
conflict, we aim to find a small set of sensors that cannot all
be attack-free. We first compute the (normalized) residuals
ri for all i ∈ I, as defined in Algorithm 3, and sort them
in ascending order. We then pick the p − 2s minimum
(normalized) residuals indexed by I min r, and search for
one more affine subspace that leads to a conflict with the
affine subspaces indexed by I min r. To do this, we start by
solving the same optimization problem as in Algorithm 2, but
on the reduced set of affine subspaces indexed by Itemp =
I min r∪I max r, where I max r is the index associated
with the affine subspace having the maximal (normalized)
residual. If this set of affine subspaces intersect in one point,
they are labelled as “non-conflicting”, and we repeat the
same process by replacing the affine subspace indexed by
I max r with the affine subspace associated with the second
maximal (normalized) residual from the sorted list, till we
reach a conflicting set of affine subspaces. Once the set
is discovered, we stop by generating the following, more
compact, certificate:

φconf-cert :=
∑

i∈Itemp

bi ≥ 1.

The cardinality of Itemp heavily affects the overall exe-
cution time of Algorithm 1: the smaller |Itemp|, the more
information is learnt and the faster is the convergence of
the SAT solver to the correct assignment. For example, a
certificate with |Itemp| = 1 would identify exactly one
attacked sensor at each step, a substantial improvement with
respect to the exponential worst-case complexity of the plain
SAT problem, which is NP-complete. On the other hand, to
generate φconf-cert, we only pay the cost of a linear search over
I and, for each step, a least-square optimization problem,
which amounts to an overall complexity that is polynomial.

Finally, as a post-processing step, we can further reduce
the cardinality of Itemp by exploiting the dimension of
the affine subspaces corresponding to the index list. In-
tuitively, the lower the dimension, the more information
is provided by the corresponding sensor. For example, a
sensor i, for which the dimension of the affine subspace
Hi is dim(Hi) = dim(kerOi) = 0 corresponds to only one
point O−1

i Yi. This restricts the search space to the unique
point and makes it easier to generate a conflict formula.
Therefore, to converge faster towards a conflict, we iterate
through the indexes in Itemp and remove at each step the
one which corresponds to the affine subspace with the highest
dimension until we are left with a reduced index set that is
still conflicting.

Algorithm 3 T -SOLVE.CERTIFICATE-CONFLICT(I, x)

1: Compute normalized residuals
2: r :=

⋃
i∈I {ri} , ri := ‖Yi −Oix‖22 / ‖Oi‖

2
2 , i ∈

I;
3: Sort the residual variables
4: r sorted := sortAscendingly(r);
5: Pick the index corresponding to the maximum resid-

ual
6: I max r := Index(r sorted{|I|,|I|−1,...,p−2s+1});
7: I min r := Index(r sorted{1,...,p−2s});
8: Search linearly for the UNSAT certificate
9: status = SAT; counter = 1;

10: I temp := I min r ∪ I max rcounter;
11: while status == SAT do
12: (status, x) := T -SOLVE.CHECK(I temp);
13: if status == UNSAT then
14: φconf-cert :=

∑
i∈I temp bi ≥ 1;

15: else
16: counter := counter + 1;
17: I temp := I min r ∪ I max rcounter;
18: [Optional] Sort the rest according to dim(ker{O})
19: I temp2 = sortAscendingly(dim(ker{OI temp}));
20: status = UNSAT; counter2 = |I temp2| − 1;
21: I temp2 := I temp2{1,...,counter2};
22: while status == UNSAT do
23: (status, x) := T -SOLVE.CHECK(Itemp);
24: if status == SAT then
25: φconf-cert :=

∑
i∈I temp2{1,...,counter2+1}

bi ≥ 1;
26: else
27: counter2 := counter2 - 1;
28: I temp2 := I temp2{1,...,counter2};
29: return φconf-cert

E. Soundness and Completeness of Algorithm 1

We are now ready to state the main result of this section,
which is a direct consequence of our previous results.

Theorem 3.1: Let the linear dynamical system Σa defined
in (II.1) be 2s-sparse observable. Let ε = 0 be the numerical
solver tolerance for Algorithm 2. Algorithm 1 is δ-complete
(in the sense of Definition 2.3) with δ = 0. Moreover, the
upper bound on the number of iterations of Algorithm 1 is(

p
p−2s+1

)
.

IV. RESULTS

We developed our theory solver in MATLAB, and inter-
faced it with the pseudo-Boolean SAT solver SAT4J [19].
All the experiments were executed on an Intel Core i7 3.4-
GHz processor with 8 GB of memory. We compared the
performance of IMHOTEP-SMT against the MIQP formula-
tion (II.5), the ETPG algorithm [7], and the lr/l1 decoder [4],
with respect to both execution time and estimation error.

The MIQP is solved using the commercial solver
GUROBI [20], the ETPG algorithm is implemented in MAT-
LAB, while the lr/l1 decoder is implemented using the
convex solver CVX [21]. Figure 1 reports the numerical
results in two test cases. In Figure 1(a), we fix the number
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Fig. 1. Simulation results showing number of iterations, execution time,
and estimation error with respect to number of states and number of sensors.

of sensors p = 20 and increase the number of system
states from n = 10 to n = 150. In Figure 1(b), we fix
the number of states n = 50 and increase the number of
sensors from p = 3 to p = 150. In both cases, half of
the sensors are attacked. Our algorithm always outperforms
both the ETPG and the lr/l1 approaches and scales nicely
with respect to both n and p. In particular, as evident from
Figure 1(a), increasing n has a small effect on the overall
execution time, which reflects the fact that the number of
constraints to be satisfied does not depend on n. Conversely,
as shown in Figure 1(b), as the number of sensors increases,
the number of constraints, hence the execution time of
our algorithm, also increases. The runtime of the MIQP
formulation in (II.5) scales worse than our algorithm with n,
but better with p, because GUROBI can efficiently process
many conic constraints (whose number scales with p) but is
more sensitive to the size of each conic constraint (which
scales with n). Finally, Figure 1(a) (right) shows that the
lr/l1 decoder reports incorrect results in multiple test cases,
because of its lack of soundness, as discussed in Section I.

V. CONCLUSIONS

We proposed a sound and complete algorithm which
adopts the Satisfiability Modulo Theories paradigm to tackle
the intrinsic combinatorial complexity of the secure state es-
timation problem for linear dynamical systems under sensor
attacks. Our approach was validated via numerical simula-
tions, and compares favorably with alternative techniques.
Future directions include the extension and the characteri-
zation of the proposed algorithm for nonlinear and hybrid
dynamical systems.
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