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Abstract

Ultra-Clean Mesoscopic Devices in Graphene van der Waals Heterostructures in the

Quantum Hall Regime

by

Liam Augustus Cohen

A successful program for improving the quality of graphene based 2DEGs has been

the steady removal of charged impurities near the graphene surface. This was first ac-

complished by using hBN as a substrate and encapsulant, and then further improved by

using atomically uniform graphite as a gate electrode instead of amorphous evaporated

metal, resulting in the first all ‘van der Waals’ heterostructure. These improvements lead

to the robust observation of even-denominator fractional quantum Hall states in bilayer

graphene, as well as many other interesting correlated ground states at zero magnetic field

such as superconductivity and ferromagnetism in both twisted and un-twisted graphene

multi-layers. Moreover, as many of these states occur at an electron density near charge

neutrality, they may be accessed within a single device simply by field-effect gating.

However, engineering more complex mesoscopic devices which are designed to interface

these exotic phases of electronic matter require fabricating spatially varying potential

profiles on the order of the correlation lengths in these systems, typically around 100nm.

Additionally, these manufactured potentials need to be energetically uniform, i.e., they

must not introduce uncontrolled disorder potentials on the order of the energy gaps of the

systems of interest, again typically around 1meV, on the requisite length scales. Here we

report on a novel fabrication technique, AFM based local anodic oxidation gate lithog-

raphy, to pre-pattern graphite gates with critical feature sizes smaller than 100nm which

does not introduce any unwanted contaminants or damage to the underlying van der
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Waals heterostructure. We then use this technique to fabricate two types of mesoscopic

devices operated in the fractional quantum Hall regime, a quantum point contact and an

edge-state Fabry-Pérot interferometer. We show that our quantum point contact nearly

perfectly mimics a simple model which characterizes electron tunneling between ν = 1/3

and ν = 1 edge modes at any tunneling strength. This indicates that these junctions

are nearly disorder-free validating our novel fabrication technique. Moreover, we use our

nearly defect free junctions to create an edge-state Fabry-Pérot interferometer operating

in ν = 1/3. Here we observe sharp phase jumps in the interference pattern consistent

with the expected braiding phase of anyons in the ν = 1/3 state. These results taken

together show that our method for fabricating mesoscopic devices within the graphene

based van der Waals heterostructure platform, developed over the last four years, makes

these devices comparable to the most modern III-V semiconductor quantum wells, which

took over 30 years of refinement.
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1
Introduction

1.1 How to Read this Thesis

This thesis is divided up into five main sections. Section I. is the introduction and

contains some general overview and current state of the field.

Section II reviews the van der Waals assembly process used in all the devices pre-

sented in this work. In particular it focuses primarily on atomic force microscopy based

local anodic oxidation gate lithography (AFM-AOGL), the key technological advance

which has enabled all of the experiments presented in this thesis. The chapter introduces

1



Introduction Chapter 1

the motivation behind the technique as well as demonstrating the various device geome-

tries that may be fabricated using it. Some additional related van der Waals assembly

techniques are covered.

Section III describes experiments on an all van der Waals quantum point contact

(QPC) in the quantum Hall regime. This section provides a brief overview of the fab-

rication specific to making a QPC. This section will primarily cover the contents pub-

lished in, Cohen, Samuelson et al., Nanoscale electrostatic control in ultraclean van der

Waals heterostructures by local anodic oxidation of graphite gates, Nature Physics; Co-

hen, Samuelson et al., Universal chiral Luttinger liquid behavior in a graphene fractional

quantum Hall point contact, Science, and Cohen, Samuelson et. al Spontaneous localiza-

tion at a potential saddle point from edge state reconstruction in a quantum Hall point

contact, ArXiv. I will discuss the effects of edge state reconstruction and how they may

be mitigated in the presented device geometry, our measurements of edge state tunneling

in the fractional quantum Hall regime, as well as the peculiar consequences of charge

fractionalization in a quantum Hall QPC.

Section IV. discusses the natural evolution of the experiments presented in section

III, i.e., edge state Fabry-Pérot measurements. These experiments require two ultra-

clean QPCs in series to form a resonant cavity. The section begins similarly to section

III discussing the fabrication process specific to the Fabry-Pérot devices. Second, this

section presents measurements of highly robust interference in the integer and fractional

quantum Hall regimes in monolayer graphene as well as measurements of the anyon phase.

The delicate interplay between bulk-edge coupling and non-equilibrium charging effects

is discussed.

The appendices A-D include specific recipes for nanofabrication as well as experimen-

tal procedures and analysis which should aid anyone attempting to reproduce or extend

our results.

2



Introduction Chapter 1

1.2 A Note to Future Graduate Students

Before starting to write this thesis, I put some thought into who the audience would

be. I came to the conclusion that, most likely, the person reading this thesis – in particular

someone who bothered to read the introduction – is a future member of Andrea’s lab

getting oriented and just starting out on their path to a doctorate. So I thought it would

be appropriate, before getting into the physics, to leave a note to his future graduate

students.

Take a deep breath. Everything is going to be okay. The journey to getting a

physics PhD is a long and arduous one, and it is best to take it step-by-step. More likely

than not, you will make stupid mistakes, and if you are anything like me, you will make

the same one more than once. Trust me, the stories of failure in this lab can easily fill

up volumes. As you progress you will break things, experiments will fail, and devices or

experiments you have worked hours, days, weeks, or even months on will blow up right

when you are most vulnerable. You will be left, frustrated, lost, hopeless, and feeling like

you have two functioning brain-cells and one is on vacation. However, all of this is to

say that you are not the only one who has or will feel like this – it is a nearly ubiquitous

experience for all graduate students, and you are not alone.

When things are at their most difficult, just remember research is about uncovering

new knowledge and doing something that has never been done before. This task is far

from an easy one. Remaining stalwart in such a storm of uncertainty will test your mind,

body, and spirit. However, you can make it through. Your lab mates are all pushing

against the same wind and are willing to help you. Reach out for help when you need it,

and take everything slowly. We all overestimate what we can accomplish in six months,

but we also always under estimate how much we can accomplish in six years.
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1.3 Overview

A continued source of improvement for the quality of graphene based 2DEGs, and

the emergence of increasingly delicate correlated states of electronic matter in these

systems, has been the removal of charged impurities near the sample layer. The first

major breakthrough - in 2011 - which substantially improved sample quality without

adding a significant increase in fabrication complexity, came from using an additional

2D material, hexagonal Boron-Nitride (hBN), as a substrate and encapsulant [1]. Before

this, typically, devices were made by patterning metal contacts directly onto graphene

exfoliated onto SiO2 where the bulk conducting Si acted as a global back gate [2]. How-

ever, the large number of charge impurities found in the thermally grown oxide along

with disorder introduced via standard nano-fabrication processes limited 2DEG mobil-

ity. The introduction of hBN as a substrate and the creation of the first “van der Waals

heterostructure,” started a research revolution for graphene, which directly lead to the

observation of the fractional quantum Hall effect in graphene, the demonstration of Hofs-

tader butterfly physics in hBN-graphene Moiré superlattices, and even superconductivity

in twisted graphene multi-layers [3, 4, 5, 6, 7, 8, 9].

It took an additional six years before another leap forward was taken - in 2017 - by

Zibrov et. al with the introduction of graphite gates [10]. Previously, the charge carrier

density in graphene based devices encapsulated by hBN was modulated via amorphous

metal gates fabricated using standard lithography and metal evaporation processes. Both

the grain structure of evaporated metal as well as the charge traps formed via oxidation

of the sticking layer (typically Chrome or Titanium) induced microscopic disorder into

the heterostructure obscuring, for example, fractional quantum Hall physics below 20T

[10, 5]. Graphite, in stark contrast to evaporated metal, is an atomically flat and uniform

crystal (made of several van der Waals bonded sheets of graphene) which behaves like a
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semi-metal, even at temperatures below 1K, for sufficiently high layer-index. Much like

hBN, graphite can be integrated into a van der Waals heterostructure and the relatively

large density of states allows for significant screening of charge impurities from both the

underlying SiO2 and from polymer residue on top of the heterostructure.

Using graphite for the gate layers introduced the concept of an “all van der Waals”

device; an entire mesoscopic structure where every part is composed of a 2D material.

On top of the fact that van der Waals materials appear to be self-cleaning, permanently

expelling hydrocarbon contaminants between layers which naturally accumulate due to

typical 2D material preparation via mechanical exfoliation [2]. Such atomically uniform

dielectric environments for graphene based 2DEGs directly enabled the observation of

even-denominator fractional quantum Hall states in bilayer graphene [10]. These states of

matter are predicted to host non-abelian anyons which may form the basis for intrinsically

fault-tolerant quantum computation and have attracted nearly three decades of intense

theoretical and experimental interest[11, 12]. While these states are exceptionally delicate

in competing platforms such as GaAs/AlGaAs quantum wells, the energy gaps for the

even-denominator states in bilayer graphene all van der Waals heterostructures have been

measured to be an order of magnitude larger: nearly 5K in recent experiments [13].

Moreover, the introduction of graphite gates helped elucidate more subtle fractional

quantum Hall physics and the effects of quantum Hall ferromagnetism. Demonstration

of the multi-component nature of FQH states in bilayer graphene were performed by

studying the electric field induced transitions between isospin flavors of different FQH

states [10]. Such experiments were even extended to monolayer graphene in 2018 where

a multi-component incompressible state was discovered at ν = −1/2 at the degeneracy

point between two isospin orientations at high magnetic fields [14].

While a myriad of other works came forward in the years that followed which high-

lighted the exceptionally high bulk device qualities achieved by dual-graphite gated, hBN
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encapsulated, van der Waals heterostructures [15, 14, 16, 17, 18, 19, 20] there remained a

fundamental problem. Further study of the delicate correlated electronic states of matter

in these devices, in particular the numerous fractional quantum Hall states observed in bi-

layer graphene, requires in situ manipulation of the underlying quasiparticle excitations

or chiral edge modes. Other than a select few carefully implemented thermodynamic

measurements, such as measurements of the underlying chemical potential and entropy

of these states [13, 21], performing such experiments requires complex gate geometries

used to spatially modulate the electronic density in different regions through out the

device. These types of devices include quantum point contacts used to bring the chiral

edge modes of the quantum Hall effect within a single magnetic length to study their

tunneling properties, Fabry-Pérot interferometers which can be used to probe the statis-

tics of many bulk qusiparticles, and quantum dots which can trap single quasiparticles

and manipulate them.

Creating the complex gate structures required of these mesoscopic devices is funda-

mentally in tension with the program of the “graphene revolution.” Either the all van

der Waals geometry needs to be abandoned and some gates patterned using evaporated

metal, or the top graphite gate can be removed post assembly of the heterostructure.

Pioneering work done by Zimmerman et al in 2017 made the first successful QPC in a

graphene van der Waals heterostructure using evaporated metal split gates [22]. Despite

successfully partitioning integer quantum Hall edge modes at high magnetic fields, clear

partitioning of fractional quantum Hall edge modes remained ambiguous. In 2021, De-

prez et al, using a similar methodology to Zimmerman, managed to fabricated two QPCs

in series to form a Fabry-Pérot interferometer [23]. Again, while coherent oscillations

were seen for integer quantum Hall states, no such observations were made for the more

delicate fractional quantum Hall states.

In 2021 Ronen et. al demonstrated the first successful operation of a Fabry-Pérot

6
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interferometer in an entirely van der Waals geometry [24]. Here the gates defining the

interferometer were fabricated by manufacturing a van der Waals heterostructure with an

exposed graphite top gate. The top gate was then selectively etched into the interferom-

eter pattern along narrow trenches using standard reactive ion etching and nanolithog-

raphy techniques. The etch was thoroughly controlled in order to minimally damage the

exposed underlying dielectric in critical regions between separated gates. Remarkably

in this all van der Waals construction, despite having well formed fractional quantum

Hall states in the bulk at 8T no interference fringes were observed for any fractional edge

modes. The stark absence of any successful attempt to manipulate the edge modes of even

the most robust fractional quantum Hall states makes it clear that disorder in regions

between gates at critical junctures, for example within QPCs or along interferometer

arms, is unavoidable using standard nanofabrication techniques.

It is here where the work presented in this thesis falls. In order to solve this problem,

we introduced a new methodology for fabricating mesoscopic devices in an all van der

Waals geometry. The basic premise is to pre-pattern a graphite flake in an entirely resist-

free process and then integrate it directly into the heterostructure using a low-strain

variant of the canonical dry-transfer technique. To pre-pattern the graphite flake we use

electrode free, AFM based, local anodic oxidation gate lithography (AFM-AOGL). The

essence of this technique is that a conductive AFM tip is brought into close proximity to

an exfoliated grpahite flake and due to capillary action a water meniscus forms between

the tip and the flake. By applying an AC voltage to the AFM tip we are able to catalyze

an electrochemical reaction which converts water and graphite into amorphous carbon

and gaseous byproducts enabling nanoscale subtractive lithography [25, 26, 27, 28]. Then

using a low-strain variant of the standard dry-transfer technique for assembling van

der Waals heterostructures, we can directly integrate patterned microstructures into a

stack. This simple concept has enabled a whole new class of experiments that were not
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previously thought possible in graphene; these include demonstration of universal chiral

Luttinger liquid physics, Andreev-like scattering of fractional quasiparticles, interference

of fractional edge modes, and measurements of the statistical phase of anyons.

This is only the beginning. This small insight, which allowed us to fabricate meso-

scopic devices without introducing any additional disorder into the heterostructure, al-

though simple in construction, has changed the game for us. Often times the most

pedestrian of ideas, such as putting graphene on hBN, using graphite as a gate, or pre-

patterning a graphite gate with no polymer steps, can have the biggest impacts on the

types of devices we can make and the physics we can observe. My advisor, Andrea Young,

wrote in his thesis over a decade ago that he learned “experiments are only hard until

they are easy.” We expect this result to generalize and will open up the pathway to a cor-

nucopia of interesting experiments taking advantage of the many interesting states found

in graphene based van der Waals heterostructures, such as superconducting junctions in

rhombohedral graphite multilayers, quantum anomalous Hall superconductor interfaces,

and non-abelian fractional quantum Hall interferometry.

8



2
AFM Based Local Anodic Oxidation

Lithography of Graphite Gates

2.1 Overview

Mesoscopic devices operating in the fractional quantum Hall regime are generally

more sensitive to disorder than devices operated within the integer quantum Hall effect.

For example, at a quantum point contact, due to the chiral Luttinger liquid instability,

an incoming FQH edge mode, at sufficiently low energies is guaranteed to scatter, even

9
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for an arbitrarily small impurity potential [29, 30, 31, 32, 33]. While this type of effect

has no consequence on bulk topological properties, such as the quantized conductance

value of σxy, in situations where the electronic transport depends on the coherence of

the edge wave function, such as inside of an edge state Fabry-Pérot cavity, it becomes

highly important. Even fairly weak impurity potentials distributed along the boundary

of an interferometer will act as which-path detectors and dephase the edge wave function,

reducing the overall measurement signal. Equivalently, interaction with localized states

induced by disorder at the edge amounts to a renormalization of the edge velocity, making

it harder to maintain coherence over large distances leading to shorter coherence lengths

in the fractional quantum Hall regime [34]. Besides the general fact that the ultimate

technological goal is to operate the mesoscopic devices discussed in this thesis in the

even-denominator fractional quantum Hall states, with potential applications towards

error protected quantum information processing, even operation (or inability to operate)

in the simplest Laughlin FQH states (for example at ν = 1/3) will provide a good litmus

test to judge the amount of disorder present in a particular device.

Taking a survey of the field in 2020, by the time this work started in earnest, there

were a number of seminal results in graphene quantum Hall mesoscopics of particluar

note. Before hBN became widely adopted as a clean substrate for graphene, S. Nakaharai

et. al used electron-beam lithography – a standard tool in semiconductor processsing –

to evaporate metal split gates, separated by 150nm, onto an exfoliated graphene flake

with an ALD grown Al2O3 oxide on top [35]. While some dependence of the cross device

conductance on the QPC split gates was observed, the bulk of the observed behavior

was attributed to uncontrolled mixing of the edge modes in each region of the device

due to disorder scattering. This limited any further investigations of quantum Hall edge

modes in a graphene quantum point contact, for example via tunneling spectroscopy at

the QPC, at least for this device architecture.
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A substantial improvement on this device was made by K. Zimmermann, et al., in

2017. While using a similar paradigm to Nakaharai, instead of using an amorphously

grown oxide as the dielectric, Zimmermann evaporated the metal split gates, which

formed their QPC, directly on top of a fully hBN encapsulated graphene stack [22];

a schematic diagram and SEM image of Zimmermann’s device is shown in Fig. 2.11.

Zimmermann was able to demonstrate clear partitioning of integer quantum Hall edge

modes at sufficiently high magnetic fields, as well as elucidate a number of complex

edge mode equillibration processes at the QPC which affect the net transmission across

the device. Zimmermann’s work represented an important step forward in graphene

mesoscopics, however, while the data were beautiful, clean operation in the fractional

quantum Hall regime remained elusive. In particular, work in Zimmermann’s PhD thesis

[36] shows attempted tunneling measurements at the QPC (aimed at extracting the Lut-

tinger parameter, a key measurement which classifies the topological character of FQH

edge modes), while the graphene bulk is set to fractional filling of the first Landau level.

Their results, while showing suggestive non-linearity in the bias dependence of the tun-

neling current, did not agree with the predictions from the chiral Luttinger liquid theory

and were complicated by the presence of disorder inside of the QPC, putting their work

in line with previous results from GaAs quatum wells obtained nearly two decades prior

[37, 38, 32, 39].

In a follow up work from the same group using an identical technique in 2021, C.

Depréz was able to string two quantum point contacts together to form a quantum

Hall Fabry-Pérot interferometer (FPI) [23]. A quantum Hall FPI is a device which

uses two QPCs to form a resonant cavity through which quantum Hall edge states can

traverse. The transmission through the cavity is tuned by the net Aharanov-Bohm

phase picked up as the edge states travel around the cavity (See Chapter 4 for a more

1Images licensed under creative commons attribution 4.0
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Figure 2.1: (a) Schematic cartoon of Zimmermann’s graphene QPC architecture taken
from Tunable transmission of quantum Hall edge channels with full degeneracy lifting
in split-gated graphene devices, Zimmermann et. al, Nature Communications [22]. A
number of Nb ≡ νb quantum Hall edge modes are brought into close proximity to each
other by tuning νqpc with a voltage applied to Vg, the voltage on the metal split gates.
(b) A scanning electron microsocpe (SEM) image of Zimmerman’s device, also taken
from [22] which shows the metal evaporated split gates fabricated on top of the van
der Waals heterostructure.

detailed description of how quantum Hall Fabry-Pérot interferometers work). Moreover,

in the fractional quantum Hall regime the Aharanov-bohm dominated interference fringes

should be subject to sudden phase-slips as a result of the non-trivial braiding phase of

quantum Hall anyons which are populated in the bulk of the interferometer, making

this measurement highly desirable. However, despite fairly robust interference observed

in Depréz’ work in the integer quantum Hall regime, no such interference was observed

while operating within the fractional quantum Hall effect.

After A. Zibrov et. al introduced the all van der Waals heterostructure in 2017 [10],

replacing all gate layers with graphite, there became an obvious direction of improvement

for how to make cleaner graphene mesoscopics that could improve upon Déprez’ and

Zimmermann’s work. The first successful attempt at this came in 2021 by Y. Ronen et.

al [24]. Ronen made a fully dual graphite gated, hBN encapsulated, monolayer graphene

Fabry-Pérot interferometer (FPI); see Fig. 2.2 for an SEM image of their device. Ronen
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Figure 2.2: (a) False color SEM image of Ronen et. al’s device architecture. The
quantum Hall edge state paths are drawn in red and blue respectively. Additionally,
the different gate regions are highlighted where metallic air bridges can be seen mak-
ing contact to the exposed graphite layer. The small trenches etched out between
neighboring gate regions can also be seen.

used electron beam lithography with a PMMA mask and incremental amounts of reactive

ion etching to create 50nm trenches which separated the top-graphite layer of his van

der Waals heterostructure into seven separate gates used to form the interferometer. To

minimize the damage done to the hBN dielectric in the critical region between adjacent

gates, Ronen pre-fabricated electrical contacts to the desired gate regions (using edge

contacts following the recipe in [40]), and performed the etching step in thirty second

increments until neighboring gates, which originally were one contiguous piece of graphite,

were no longer in electrical contact.

With this improvement, Ronen managed to demonstrate robust quantum interference

in the integer quantum Hall regime at a substantially lower field of 8T in comparison to

Déprez’ work which was performed at 14T. However, despite the remarkable amount of

care which went into minimizing the etch induced damage accumulated by the critical
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junctions between neighboring gates (ultimately where the edge state path runs along),

no interference in the fractional quantum Hall regime was observed. This is also despite

having well formed fractional quantum Hall states in the bulk of the device, as detected

by edge state transport, in contrast to Zimmerman and Déprez’ work where the bulk

fractions were not fully developed even at 14T due to the lack of graphite bottom gates

in their devices. Despite substantial effort to minimize charge impurities along the edge

channels (resulting from dielectric damage from the graphite etching process) in Ronen

et. al’s interferometers, the lack of any interference signature in the fractional quantum

Hall regime suggests an entirely new fabrication paradigm is required 2.

Given that FQH edge interference is sensitive even to minute amounts of disorder

introduced during a weak etching step, it stands to reason that a good remedy to this

would be to pre-pattern the required graphite flake before incorporating it into a van der

Waals heterostructure, thus preventing any damage to the dielectric directly above the

active layer of the heterostructure. This captures the spirit of the technique described

in this section in principle, however, if one uses standard EBL and RIE techniques to

pre-define the patterns in graphite, this results in a significantly reduced bulk device

quality. Fig. 2.3 highlights the fabrication process used to construct a dual graphite

gated, hBN encapsulated, monolayer graphene corbino geometry transport device using

EBL and RIE to pre-pattern the top graphite layer. This type of device is used to

probe transport across the bulk in the monolayer; in the quantum Hall regime, when

the device is electrostatically doped to an integer or fractional quantum Hall state, if the

bulk is sufficiently insulating, the conductance between neighboring contacts should drop

to zero. Devices of this type, fabricated without any pre-patterning of the top graphite

2At the time of writing this thesis, new work from Ronen’s group, now at the Weitzmann institute,
used a similar technique as discussed in [24] to fabricate a bilayer graphene Fabry-Pérot interferometer.
With some improvement in their fabrication techniques, they were able to observe Aharanov-Bohm
oscillations in a limited regime at ν = 1/3 at 12T [41]
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layer, have been used in several studies attempting to interrogate delicate gapped states

at high magnetic field, and have consistently demonstrated the high quality bulk of dual

graphite gated, hBN encapsulated, graphene devices [17, 18].

Remarkably, when the top layer is pre-patterned - done in principle to eliminate an

extra stack-flipping step required for the corbino-style contact - the resulting device does

not show any well developed insulating states at fractional fillings at high magnetic fields.

This is shown in Fig. 2.3c. The absence of insulating states at fractional filling is held

in stark contrast to other devices made without pre-patterning of the top-graphite layer,

see Fig. 2.3d, which shows many well developed fractional quantum Hall states at similar

magnetic field strengths. In the highest quality devices, deep insulating regions at the

most robust fractional fillings ν = 1/3 and ν = 2/3 can be observed at as low of a field as

3T [18]. It is somewhat unexpected that this methodology would so severely increase the

disorder in the bulk; in principle only the top part of the graphite was processed, so any

remaining residue should remain on top and be screened by the graphite, protecting the

monolayer. Unfortunately, it is hard to pin down an exact mechanism for what causes

the bulk degradation. However, it is likely that after removing a polymer based resist,

such as PMMA, used during an EBL step, the solvent saturated with polymer creeps

under the flake and either damages the under layer, or so severely contaminates it that

the disorder cannot be removed by further device processing.

Ultimately, the technique that we came up with that helps circumvent these issues

is to use AFM based local anodic oxidation to perform nanoscale subtractive lithog-

raphy on graphite flakes. This can be done in an entirely solvent-free and resist-free

process, on as-exfoliated graphite, with minimal setup. The microstructured flakes can

then be directly integrated into a van der Waals heterostructure, where additional car-

bon based contaminants resulting from the initial anodic oxidation process are removed

post-transfer. This process results in ultra-pristine pre-patterned gate structures which
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Figure 2.3: Comparison of bulk transport in corbino-style quantum Hall
devices with pre-patterned graphite gates using EBL/RIE versus standard
processing. (a) Optical micrograph of a pre-patterned graphite flake used to form
the top gate of a corbino-style dual-graphite gated, hBN encapsulated, monolayer
graphene quantum Hall transport device. (b) Optical micrograph of completed device
with the pre-patterned gate in panel (a) transferred into the stack using van der
Waals dry-transfer. Notably, the region between the two islands appears optically
clean and bubble-free. (c) Two terminal, inter-island, conductance versus electronic
density in the monolayer for the device in panel (b). Clear insulating states with zero
conductance are observed for the bulk integer fillings between ν = 0 and ν = 2 at
B = 12T, and T = 20mK, however, no developed fractional quantum Hall states are
observed. (d) Two-terminal, inter-island, conductance versus electronic density in the
monolayer for a separate device fabricated without pre-patterning the graphite-top
gate. Here, clear insulating states are developed for many fractional filling factors
between ν = −1 and ν = −2 at B = 13.5T and T = 20mK. This is in stark contrast
to the number of insulating states observed between two Landau levels in panel (c).
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can be used to form a variety of mesoscopic devices ranging from quantum point con-

tacts to Fabry-Pérot interferometers, quantum dots, and others. While this chapter will

not focus on the results acquired by utilizing this fabrication technique (our results on

QPCs and FPIs in the FQH regime will be discussed at length in chapters 3 and 4), the

remainder of this chapter will detail the capabilities of local AFM based anodic oxida-

tion gate lithography (LAFM-AOGL) as well as describe the physical mechanism behind

the technique. Additionally, some outlook towards improving the reliability and critical

features size of the technique will be discussed.

2.2 Atomic Force Microscope Actuated Local An-

odic Oxidation Lithography of Graphite (LAFM-

AOGL)

The operating principle behind LAFM-AOGL is straightforward. A conducting AFM

tip is brought into proximity of an as-exfoliated graphite flake. Due to capillary action,

in a humid environment, a water meniscus naturally forms between the graphite flake

and the AFM tip, see Fig. 2.4a. A voltage is then applied to the AFM tip relative to

the sample which makes an electrochemical reaction energetically favorable that converts

the graphite into carbon di(mon)oxide and amorphous byproducts [25]. The reaction can

occur as follows:

C +H2O → CO(gas) + 2H(+) + 2e− (2.1)

C + 2H2O → CO2(gas) + 4H(+) + 4e− (2.2)
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By then controlling the speed and direction of the AFM tip while the voltage is being

applied, one can perform nanoscale subtractive lithography on graphite. A schematic

illustration of this process is highlighted, again, in Fig. 2.4a.

AFM based local anodic oxidation itself, not strictly on graphite, actually has a

fairly long history. AFM based local anodic oxidation of some form has been used since

the mid 1990s to fabricate metal-oxide junctions, aluminum quantum dot arrays, and

metallic nanowires [42, 43, 44, 45]. Even as far back as 1991, Dagata et al. managed to

oxidize the surface of a III-V semiconductor using an STM tip in a humid atmosphere

[46]. After 2004 when graphene was first isolated, these techniques were extended to

exfoliated graphite fairly quickly [47, 48, 49, 50, 51, 52]. However, the common thread

between all of these previous results is that they all required attaching an electrode to

the target surface. Depositing an electrode typically involves some type of EBL process,

which naturally requires a polymer resist and dissolution step that leaves a substantial

amount of residue. Consequently, at first pass, this technique would not be able to solve

the issues put forth in the beginning of this chapter where the application of a polymer

resist and its subsequent removal on a single graphite layer embedded into a van der Waals

heterostructure adds unscreened charge disorder. Additionally, early devices fabricated

in this manner, such as QPCs formed by etching the active graphene layer itself into

a narrow trench at a point [53], never displayed particularly clean electronic transport.

So it took another six years before this technique found a more useful application in

graphene mesoscopics.

In 2018 Li et. al worked out that few-layer graphene can be anodically oxidized using

an AC voltage applied to the AFM tip, as opposed to a DC voltage [25]. The advantage

of this technique is that because the graphite is exfoliated onto a conducting Si wafer,

which has a 285nm thermally grown oxide on its surface, the capacitive coupling between

the graphite and the conducting Si lets a displacement current flow from the AFM tip
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Figure 2.4: Local anodic oxidation and integration of graphite gates into
van der Waals heterostructures. (a) A schematic example of an exfoliated
graphite flake etched using atomic force microscope-actuated local anodic oxidation
(AFM-LAO). Here we show the x-shaped geometry used to form the quantum point
contact gates which constitute the device studied in this work. (b) A transfer stamp
with an already picked-up hBN flake is engaged with the etched graphite flake which
has some residual oxide residue from the AFM-LAO process. (c) Once the etched
graphite is laminated onto to the hBN flake the structure can be disengaged, leaving
behind the oxidized residue and resulting in a pristine microstructure. (d) Example
edge state configuration of a quantum point contact resulting from the electrostatic
potential created by an x-shaped graphite gate. (e) Same as panel (d) but with an
array of holes in the top graphite gate used to create a superlattice of quantum dots.
(f) Same as panels (d-e) but with an edge-state interferometer structure. Here the
isolated Fabry-Pérot cavity can be realized by careful alignment of etched graphite
gates in both the top and bottom layers of the heterostructure. (g-i) AFM topography
images of patterns etched into graphite flakes using AFM-LAO corresponding to the
top gate structures in panels (d-f). (j-l) AFM topography images of etched graphite
on hBN post van der Waals pick-up of the flakes in panels (g-i) demonstrating that
most of the oxidized residue (white dots) seen in panel (g-i) is not transferred.
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to ground at sufficiently high frequencies (≈> 10kHz). Moving away from DC anodic

oxidation obviated the need for pre-patterned electrodes and made it possible to perform

nanoscale subtractive lithography without any resist removal steps, making it an ideal

candidate to solve the issues liming Zimmermann’s, Déprez’, and Ronen’s results.

During the beginning of my PhD, we spent some effort trying to improve the overall

resolution and reliability of AFM based local anodic oxidation of graphite. By moving

to PtIr coated AFM tips with a relatively large spring constant, 42N/m, we were able to

produce sub-60nm feature sizes repeatably. Additionally, controlling the humidity inside

of the AFM to above 50%RH was also critical for improving reliability (see Appendix D

for a detailed fab recipe for AFM based local anodic oxidation lithography). However,

what we noticed, is that even under optimal conditions, the graphite always showed some

amount of residue in the trenches along the cut direction. This residue, likely amorphous

carbon or carbon oxide, will result in charge disorder however it ends up integrated into

the heterostructure (either as the active layer itself, or as a gate electrode). However, by

somewhat of a miracle of science, when a nano-textured graphite flake with some anodic

oxidation induced residue is picked up by an hBN using a variation of the standard dry-

transfer process [54, 55, 3, 7], the residue selectively adheres more strongly to the SiO2

than the graphite. This results in a transferred pre-patterned graphite flake on hBN free

from nearly all oxide residue [26]. This process is highlighted schematically in Fig. 2.4a-c.

Additionally, we have found that AFM cut graphite is extremely robust to the van der

Waals transfer process; this is somewhat surprising as the dry-transfer process is fairly

aggressive and the heterostructure undergoes a large amount of strain during transfer (see

Appendix D for details). The only real requirement to ensure a successful transfer is that

the cuts must be patterned into the graphite such that the flake remains simply connected.

Doing this we have found that even sub-100nm nano-ribbons can be transferred inside

the heterostructure with no damage.
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Figure 2.5: Anodic oxidation lithography setup: Our bruker dimension Icon
AFM is equipped with a hot-plate set to 100C and a beaker filled with 300mL of
DI water. The hot plate power is controlled by a humidity sensor which acts as a
bang-bang controller that shuts off the power to the hot plate when a certain humidity
threshold is exceeded. The humidity controller is showed in the figure inset.
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This technique is highly versatile and can be used to form the gate layers for a num-

ber of different mesoscopic strucutres, each of which serves a unique device functionality.

Three examples, all designed to operate in the quantum Hall regime, that we have fab-

ricated are given in Fig. 2.4d-l. Fig. 2.4d shows an x-shaped cut-graphite which can be

used to form four distinct gates that make a quantum point contact. This geometry will

be discussed at length in Chapter 3. Fig. 2.4e shows an array of holes patterned into

the top gate which can be used to form a quantum dot array. Finally, Fig 2.4f shows

a quantum Hall edge state Fabry-Pérot interferometer. Interestingly, in this geometry

by aligning AFM cut gates in two separate layers of the heterostructure, even isolated

regions of local density may be individually controlled. Although this specific geometry

will not be discussed in chapter 4 when I talk about Fabry-Pérot interferometry, we did

fabricate a device of this type and it interfered successfully in the integer quantum Hall

regime. For each of the device geometries shown in Fig. 2.4d-f, we have the correspond-

ing AFM topographs immediately after AFM cutting (pre-transfer), see Fig. 2.4g-i, and

after pick-up with an hBN crystal (imaged on the transfer slide), see Fig. 2.4j-l. A sub-

stantial amount of graphite-oxide or amorphous carbon residue can be seen in the AFM

topographs of Fig. 2.4g-i, indicated by the white dots in the images. However, after

the van der Waals transfer process, this residue is mostly eliminated demonstrating the

pristine topographical quality of the transferred nano-structured gates (the most stark

example of this is the comparison for the hole array in Fig. 2.4h and k).

Not only is this method of patterning sub 100nm nanostructures into graphite gates

and integrating them into a van der Waals heterostructure versatile, but it is also very

accessible to any researcher in this field. Along the spirit of van der Waals device fab in

general, doing such fine, ultra-clean, lithography does not require any specialized tools

but can be made to work in nearly any AFM (as local anodic oxidation itself is fairly

well established platform for nanoscale lithography, most relatively modern AFMs are
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equipped with some way to controllably move the AFM tip around). Fig. 2.5 shows the

setup we have in our own lab, where our Bruker Dimension Icon AFM (which sits inside

of a vibration isolation hood) is fashioned with a humidity sensor which simply turns off

the hot-plate (using bang-bang control) with the beaker filled with 300mL of water on top

of it once the humidity exceeds a certain threshold. With being so easy to implement, we

expect that this technique will be widely adopted in the future for a myriad of possible

experiments both in the quantum Hall regime and at zero magnetic field.

2.3 Multi-layer Alignment via “Slip-n’-Slide” of AFM

Cut Gates

It was briefly mentioned in the previous section, but an important limitation of

LAFM-AOGL is that in order for patterned graphite flakes to remain structurally in-

tegral during the van der Waals transfer process, the cuts must be made such that the

patterned graphite is still one contiguous piece. Once the cut-graphite is put into the

heterostructure, neighboring gate regions can be separated in the non-critical part of the

device using standard a standard RIE process (this is discussed further in chapters 3, 4

and Appendix C). The primary reason for this that the friction between hBN and graphite

is nearly zero, and as a result of the macroscopic strain a heterostructure undergoes dur-

ing assembly, free standing layers of graphite easily move and rotate and typically wind

up shorting to another adjacent gate layer [56]. While this is not exceptionally limiting,

however, it does prevent for example an isolated graphite island from being transferred.

This makes it challenging to replicate the exact experiments performed Ronen et. al or

more recently Werkmeister et. al, as they are able to create an isolated center gate to

control the density within their interferometer bulk [24, 57].
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Figure 2.6: Illustration of slip-n-slide technique (a) An assembled heterostructure
on a transfer slide with a sacrificial PC film (see appendix) containing two patterned
graphite layers that are misaligned, separated by an hBN crystal between them. The
cross in the bottom layer is designed to be aligned to the anti-cross in the first layer. (b)
The stack on the PC film is engaged onto the substrate. (c) Once the stack and the film
are fully engaged onto the substrate at 160C micro-manipulators can be used to push
the heterostructure along the direction the top layer needs to move to re-align the two
graphite layers. (d) Once alignment is achieved the micro-manipulators stop pushing
the stack. (e) The sacrificial PC film is heated to above 180C (the glass transition
temperature) and the stack can be deposited onto the target substrate. (f) The
sacrificial PC film can be dissolved in chloroform, leaving an aligned heterostructure.
This process can actually be repeated in the event of a failed attempt simply by
re-engaging the transfer slide with a new PC film onto the deposited stack and then
starting from panel b.
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Figure 2.7: Example of stack aligned using slip-n-slide (a) A van der Waals
heterostruture with two AFM cut gates that are misaligned. The corners of the
bottom later should meet the centers of the crosses AFM patterned into the top layer.
(b) Device after re-aligning the two grapite layers. The corners of the bottom graphite
gate are nearly aligned with the center of the crosses patterned into the top graphite
layer.

We were able to get around this limitation by using a technique that we’ve dubbed

“slip-n-slide.” By turning the super-lubricity of graphite on hBN from a disadvantage to

an advantage, we realized that because the bottom graphite layer has a higher degree of

friction between itself and the SiO2 than to the hBN layer directly above it, we are able

to re-align the rest of the stack to the bottom layer after it has already been deposited

onto the SiO2 substrate. A schematic illustration of this is given in Fig. 2.6a-f. This

capability opened up the possibility of aligning AFM cut gates in two separate layers.

This made the geometry proposed in Fig. 2.4f feasible from a fabrication perspective,

and allows us to make devices where we may control an isolated island of density in the

active device region. An example of this technique used to align two graphite layers with

AFM cuts embedded in a heterostructure within less than 1um is shown in Fig. 2.7a-b.
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2.4 Outlook and Pathways to Improvement in Con-

sistency

While local anodic oxidation lithography of graphite gates has proved to be a versatile

tool enabling the fabrication of a variety of different mesoscopic devices, it certainly

comes with its own set of limitations that we have not yet overcome. The first challenge

is one of feature size; the current state of the art for us is that with some effort we can

semi-reliably pattern 50nm trenches into a few-layer graphite flake. Achieving smaller

lithographic features is desirable as it directly translates into devices that can be made

with sharper electrostatics, leading to more strongly confined quantum dots and higher

edge velocities in edge-state Fabry-Pérot interferometers.

The primary mechanism which controls the minimum feature width AFM-cutting

can achieve is the size of the water meniscus which forms beneath the AFM tip and the

substrate. This effect has been studied extensively, and is captured by a phenomenological

equation called the Kelvin equation [58]:

rk =
γLV

RT log(p/p0)
(2.3)

Here, rk is called the Kelvin radius - the harmonic mean of the principle radii of the

mensicus (see [58]) - γL is surface tension of the liquid forming the mensicus, V is the

molar volume of the liquid (measured inm3/mole in SI units), R is the ideal gas constant,

T is the temperature, and p/p0 is the relative vapor pressure of the liquid. A smaller

rk will directly translate into smaller meniscus sizes, and consequently smaller feature

sizes during LAFM-AOGL. Naturally, it would be logical to perform the anodic oxidation

lithography in a controlled environment cell, such as is available on many of the more

modern Asylum instruments AFMs, such as the Cypher ES. This would enable precise
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(a) (b) (c)

Figure 2.8: Arrow NcPt tips after cutting (a) SEM image of an unused AFM tip
showing no degradation. (b) SEM image of a used Arrow NcPt AFM tip after the tip
was no longer able to cut graphite. (c) SEM image of the same tip in panel b, but
after 60 seconds of 100W O2 plasma ashing at 300mTorr.

control of γL, V , T , and p/p0 more easily. The most accessible variable will be tempera-

ture, as increasing the temperature will directly decrease rk. Additionally, increasing the

temperature will lower the surface tension and increase the partial pressure, also serving

to indirectly lower rk as well. One may also imagine, in a sealed AFM environment cell,

using a mixture of solvent and DI water to help decrease γL; for example mixing DI

water with IPA in small concentrations can significantly lower the surface tension of the

mixture.

Other features which may serve to improve the minimum feature size achievable with

LAFM-AOGL are the tip geometry as well as the coating material. The current tips

that we use, the NcPt Arrow PtIr coated tips, already have a fairly small radius of

< 25nm shown in Fig. 2.8a, however it is possible that moving to a smaller tip radius

will result in a smaller cut width. The coating material may also matter both because

of how hydrophilic the surface is, as well as how conductive the coating is. A highly

conductive surface is important for not dropping any voltage across the AFM tip itself,

so all of the voltage goes into enabling the oxidation reaction. Furthermore, if the surface
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is hydrophobic the tip will tend to not form a meniscus. We have made several attempts

to pattern graphite flakes with doped-diamond probes, but have had no success in getting

complete ablation of the graphite to occur; it is likely that the doped diamond probes do

not work as well as the metal coated probes for the two reasons stated above.

Beyond getting smaller feature sizes reliability is also an issue. LAFM-AOGL is fun-

damentally a contact mode technique, i.e, the AFM tip is in contact with the surface

as the lithography is performed. For soft-metal coated tips this results in fairly rapid

degradation of the probe. In Fig. 2.8a which shows a fresh PtIr coated AFM tip be-

fore LAFM-AOGL a sharp sub 25nm tip radius may be observed. However, after the

lithography step, Fig. 2.8b shows a smashed tip radius well over 100nm in diameter.

Fig. 2.8c shows the same tip after exposure to O2 plasma showing that the tip itself has

been damaged and it is not amorphous carbon or carbon oxide residue that has attached

itself to the tip. Possibly using PtSi tips, which boast much higher conductivities than

doped-diamond tips, but are considerably more robust to contact mode degradation than

the PtIr tips may improve the tip wear issue.

While it is true that this technology is not at the point where large scale patterns

may be etched in a controlled manner, similar to the extremely well developed techniques

of photolithography or electron-beam lithography, LAFM-AOGL is extremely nascent.

It is hard to say what the ultimate resolution or reliability limit of this technique is;

there does not appear to be any fundamental limitations that would inherently inhibit

the scalability of this technique. I believe that with sufficient development, over time

this technology could produce ultra-clean van der Waals devices with the same level of

complexity as modern-day monolithic integrated circuits.
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2.5 Permissions and Attributions

1. Some of the content of this chapter also appears in Ref.[26]

2. SEM images from Fig. 2.8 were taken by Noah Samuelson, reproduced here with

his permsission.

3. Image in Fig. 2.1 is used under Creative Commons License 4.0 and is reproduced

here purely for academic purposes from Ref. [22].

4. Image in Fig. 2.2 taken from Ref. [24] is used under license number 5731050269832.
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3
Quantum Point Contacts in Graphene van

der Waals Heterostructures

3.1 Overview

In an all-van der Waals heterostructure, the active layer, gate dielectrics, and gate

electrodes are all assembled from two-dimensional crystals that have very few defects.

This design allows two-dimensional electron systems with very low disorder to be created,

particularly in heterostructures where the active layer also intrinsically has low disorder,
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such as crystalline graphene layers or metal dichalcogenide heterobilayers. A key missing

ingredient has been nanoscale electrostatic control, with existing methods for fabricated

local gates typically introducing unwanted contamination. In the previous chapter, we

discussed a resist-free local anodic oxidation process for patterning sub-100 nm features in

graphite gates, and their subsequent integration into an all-van der Waals heterostructure.

To benchmark this technique electronically we first defined a quantum point contact in

the fractional quantum Hall regime and observed signatures of chiral Luttinger liquid

behavior, indicating an absence of extrinsic scattering centers in the vicinity of the point

contact. In the integer quantum Hall regime we demonstrate in situ control of the edge

confinement potential, a key requirement for precision control of chiral edge states.

Utilizing this in-situ control of the potential sharpness, we then go on to demonstrate

an ultra-clean heterojunction between ν = 1/3 and ν = 1 quantum Hall states. In the

low-energy limit we will show the universal scaling laws predicted for a quantized chiral

Luttinger liquid at ν = 1/3 in the sharp-edge limit. In the high energy limit we will also

demonstrate the existence of a hidden quantum number conservation rule which leads to

Andreev-like scattering of fractionalized e/3 quasiparticles. Moreover, we can actually

compare the entire cross-over between the weak-coupling and strong coupling limits of

the heterojunction and see that it very nearly matches an exactly solveable quantum

impurity model.

3.2 Introduction

Van der Waals heterostructures have recently emerged as a rich platform to study the

physics of delicate correlated electronic states, including (but not limited to) fractional

quantum Hall phases[10, 59, 17], exciton condensates[17, 60, 61], quantized anomalous

Hall insulators[16, 62], fractional Chern insulators[63, 64], and superconductors[6, 65, 20,
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66, 67]. A key driver of continued improvement in sample quality has been the removal of

charged impurities, first with the use of high purity two-dimensional crystals of hexagonal

boron nitride (hBN) as a substrate[1] and gate dielectric[8, 68, 40], and more recently

with the use of graphite, rather than amorphous metal, for the gate layers[10]. These ‘all-

van der Waals heterostructures’ take advantage of the fact that none of the components

in the stack host dangling bonds in their two-dimensional bulk. In addition, numerous

van der Waals interfaces appear to be self-cleaning[69], irreversibly expelling hydrocarbon

residues during processing and leaving an atomically uniform interface.

A central feature of these platforms is electrostatic tunability, enabling a variety of

correlation-driven ground states to be accessed by field effect gating in a single device.

Electrostatic control on the nanoscale, then, allows one- and zero-dimensional structures

to be created within a correlated two-dimensional state, opening the door to experi-

ments that probe the structure of interfaces between distinct phases as well as adiabatic

manipulation of individual quasi-particles and edge modes. A wide class of these exper-

iments require electrostatic confinement on length scales comparable to the correlation

length of superconductors or fractional quantum Hall states, which is typically below

100 nm. The confining potentials are also required to be energetically uniform, in the

sense that they should not introduce uncontrolled local electrical potentials larger than

the ≈ 1meV energy gaps of the correlated states to be studied. There are two options

empowered by traditional electron beam lithography, which is capable of patterning at

the length scales required for constructing such nano-scale potentials. First, the all-van

der Waals geometry may be abandoned, patterning at least some gates from evaporated

metal. Second, heterostructures may be assembled and then graphite gates patterned

by subtractive processes. However, both techniques lead to disorder in critical regions of

the device. For example, edge state interferometers manufactured using either technique

remain limited to the integer quantum Hall regime despite the presence of well formed
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fractional quantum Hall phases in the two-dimensional sample bulk [24, 22, 23, ?].

3.3 Fabrication

Here we show how high-quality mesoscopic devices may be created by abandoning

traditional lithographic techniques in favor of patterning graphite gates at sub-100 nm

length scales using a resist-free process which takes advantage of atomic force microscope-

actuated local anodic oxidation (AFM-LAO) of graphite [25]. 1 These gates are then

integrated directly into a van der Waals heterostructure using a low-strain variation of

the standard dry-transfer process [40, 55, 48]. Fig. 2.4a-c portray a schematic description

of this processs. Fabrication begins with the use of an atomic force microscope (AFM) to

locally oxidize[48, 25] a region of the graphite flake. In this process, a conductive AFM

tip is brought close to the graphite surface in a humid environment. Capillary forces form

a nano-scale water meniscus[70] connecting the tip and graphite surface. When a high

frequency excitation is applied to the tip, the voltage drop across the water meniscus

catalyzes oxidation of the graphite into gaseous and amorphous byproducts. Scanning

the tip across the graphite surface while this reaction occurs allows nano-scale subtractive

lithography[25] without introducing contaminants to the two dimensional graphite bulk,

as would occur in solvent-based resist removal processes (see Fig. 2.3). The patterned

graphite gate can then be integrated into a van der Waals heterostructure through pick-

up by an unpatterned van der Waals flake (see Fig. 2.4b-c) to produce a wide array of

geometries, several examples of which are depicted in Figs. 2.4d-f.

In the anodic oxidation process, amorphous residue–likely carbon and carbon oxides–

typically remains, manifesting as features localized at critical interfaces in the AFM

topographs of Figs. 2.4(g-i). However, these byproducts adhere more strongly to the orig-

1This technique is discussed at length in Chapter 2, however I will briefly recap here for the sake of
making this chapter reasonably self-contained.
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inal SiO2 substrate than to the hBN flake used for pick-up. This results in a self-cleaning

process that enables the transfer of pristine microstructures into the middle layers of

the heterostructure. Figs. 2.4(j-l) show AFM topographs of the patterned graphite after

pick-up by a hexagonal boron nitride flake–i.e., imaged with the graphite in the configu-

ration shown in Fig. 2.4c. Etch byproducts visible in the as-cut graphite (Fig. 2.4g-i) are

not transferred, leaving pristine nano-scale subtractive patterns. Notably, in this process

the areas closest to the critical regions are not exposed to additional fabrication residues,

in contrast to graphite gates patterned by plasma-etching [24].

Remarkably, our process permits transfer of high-density patterns without degrada-

tion or tearing. Three examples are shown in Figs. 2.4d-f, depicting a quantum point

contact, quantum dot array, and Fabry-Pérot interferometer, all meant to be operated

in the quantum Hall regime. We note that to preserve the alignment of fine lithographic

features during pattern transfer, the patterned graphite flakes must remain contiguous:

free-floating graphite pieces will typically slide during transfer leading to electrical shorts

between nominally disconnected areas. In most cases, additional conventional subtrac-

tive processing is used to electrically disconnect different gate regions and make electrical

contact to sample and gate layers, this is typically done with a standard RIE plasma etch.

However, certain desirable electrostatic geometries can be realized using complementary

patterns in both the graphite top- and bottom- gates and aligning the two during transfer.

An example of this strategy, used to construct a quantum Hall edge state Fabry-Pérot

interferometer, is shown in Figs. 2.4f, i, and l, in which a patterned bottom gate is used

to create an isolated, independently density-tunable region in a graphene device without

requiring a free-floating gate.

While the process described above produces topographically pristine gate geometries,

topography alone is not a guarantee of electronic quality. In particular, without electrical

characterization, we cannot exclude that the anodic oxidation itself produces unaccept-
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ably large local potentials on the graphite edge. To qualify our technique, then, we use

a monolayer graphene quantum point contact (QPC) device operating in the quantum

Hall regime. A QPC is formed when a narrow constriction in a two-dimensional device

restricts the number of quantized channels through which electrons can flow[71]. In the

quantum Hall regime, when the constriction is on the order of the magnetic length ℓB, the

transmission of chiral edge modes through the QPC varies sensitively with the width. To

form a QPC using our fabrication method, we start from the cross gate geometry of Fig.

2.4d, and perform additional lithographic processing (see Appendix A) to isolate the four

quadrants of the graphite top gate producing four isolated gates we denote North (N),

South (S), East (E) and West (W). Voltages applied to these gates and a global graphite

bottom gate can be used to deplete the monolayer into the ν = 0 gap in the N and S

regions, forming a narrow constriction, with the filling factor in the E and W regions

held constant. An optical micrograph of the completed device is shown in Fig. 3.2a.

3.4 Partitioning of Integer Quantum Hall Edge Modes

To characterize the operation of our QPC we measure the four-terminal ‘diagonal

conductance,’ GD (this is essentially a Hall conductance across the device, see Appendix

B for details of the measurement setup), which in the integer quantum Hall (IQH) regime

gives a direct measure of the number of edge modes Nqpc transmitted across the device

such that GD = Nqpc
e2

h
[72, 22]. Fig. 3.2b shows GD measured at B = 6 T and T=300 mK

as the gate voltages are adjusted to tune Nqpc from 0 to 2. In this measurement, we fix

the value of VEW+αVB (where α = cb/ct is the ratio of the bottom- and top-gate capaci-

tances to the monolayer, and VEW denotes a single voltage applied to the E and W gates

– see Fig. 3.1a-c). This fixes the bulk filling factor in the E and W regions within the

ν = −4 plateau. We also fix VNS + αVB to keep the N and S regions within the ν = 0
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Figure 3.1: (a) Longitudinal and Hall conductance in the W region of the device
for two values of the bottom gate, VB = 1.0V and VB = 2.0V , at B = 10T. All
other regions are set to ν = 0. (b) Calculated shift ∆VW applied to the VB = 1.0V
trace shows overlap of identical features between the two traces. (c) The region of
vanishing longitudinal conductance in ν = -2/3 was used to numerically determine
the shift ∆VW by minimizing the sum of the norm-squared differences between the
two traces over a region around ν = -2/3. (d) σxx and σxy versus VW at B = 13T
and VB = 1V . (e) 1/Rxy measured on the west side of the device versus VW while
νN = νS = νE = 0 is kept fixed, and VB = −0.33V . Inset: current measured during
1/Rxy sweep showing ν = 0 gap.

plateau. Tuning VEW − VB then controls the QPC width independent of the bulk filling

factors in the four quadrants. As is evident in Fig. 3.2b, we observe integer-quantized

conductance plateaus separated by monotonic transitions; in particular, we do not ob-

serve non-monotonic conductance features characteristic of disorder-mediated or resonant

tunneling effects, typical of quantum point contacts in both III-V semiconductors and

graphene [32, 22, 24, 38, 73].

Fig. 3.3a shows a map of the GD at B=6 T and T=300 mK as we vary the VNS ≡

VN = VS and VEW ≡ VE = VW . As expected for IQH transport, the conductance maps

in Fig. 3.3a-c are dominated by regions of fixed conductance at integer multiples of e2

h
,

corresponding to transmission of an integer number of chiral edge states across the device.
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Figure 3.2: Quantum point contact operation in the integer quantum Hall
regime. (a) Optical micrograph of measured device. Transport contacts are denoted
by C1-C8. Gate contacts are labeled by Vi with an appropriate subscript to denote
which region the gate controls. b) Diagonal conductance, GD, versus VEW − VB

demonstrating integer QH edge mode partitioning at the QPC. Here the east/west
gates are swept simultaneously with the back gate such that the bulk filling factor,
νEW ∝ VEW + αVB, remains constant. Additionally, νNS ∝ VNS + αVB = 0 is held
constant.

For each conductance map in Fig. 3.3a-c, the graphite bottom gate, VB, is fixed to a

different voltage. Using the capacitive lever arm α ≡ CB/CT = 1.773 (see Fig. 3.1a-c),

the ranges of VEW and VNS are chosen such that the electronic density in each region

of the monolayer is kept in the same range in all three panels. The precise mapping of

gate voltages to ν is determined by measuring the Hall effect in the W quadrant (see

Fig. 3.1d-e).

Tracing the behavior of the transitions between conductance plateaus reveals two
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distinct regimes. In the first, plateau transitions are controlled by only VEW or VNS,

producing steps in GD along either horizontal or vertical lines in the (VNS, VEW) plane.

In this regime, the diagonal conductance is primarily determined by the number of edge

states transmitted along the physical edge of the device, far from the QPC. For example

at point I in Fig. 3.3a, the filling factor of the north and south regions, νNS = νN = νS,

is fixed to νNS = 0, while the E/W regions are fixed to νEW = νE = νW = −4. Point I

sits to the right of a vertical transition, solely controlled by VNS, where GD goes from 0

to 1. Decreasing VNS starting at point I changes the filling νNS from 0 to -1, adding an

edge mode in the N/S regions at the physical device boundary and increasing GD.
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Figure 3.3: Quantum point contact operation in the integer quantum Hall
regime. (a) Diagonal conductance GD plotted as a function of VNS and VEW at
B=6 T and T=300 mK for VB = 0.56, (b) VB = −0.33, and (c) VB = −1.22. In
panels a-c, VNS and VEW denote the voltages applied to north and south or east and
west gates, respectively. The ranges of VNS and VEW are chosen such that the filling
factor νEW = νE = νW ∈ [−6, 0] and νNS = νS = νN ∈ [−2, 1] for each conductance
map in a-c. The range over which νNS = 0 is marked in each plot by the white bar.
(d) The same trace as in the main text Fig. 2b. The trace in the multidimensional
parameter space intersects the GD maps of panels a-c at the position marked I, II,
and III (e) Schematic depiction of the filling factors within the QPC at point I in
panel a, (f) point II in panel b, and (g) point III in panel c. For points I-III, the
filling factor in the N/S/E/W regions is constant but the fringe fields vary with VB,
fully modulating transmission of the two outermost edge modes through the QPC.
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In the second regime, the plateau transitions are influenced by both VEW and VNS,

producing a step in GD along lines of slope ≈ −1 in the (VNS, VEW) plane. This behavior

is expected when edge modes are transmitted through the center of the QPC, where they

are equally sensitive to the fringe electric fields of each of the N/S/E/W gates. Consider

again point I which sits just above a diagonal transition, where GD goes from 0 to 1. Near

the transition, νNS = 0 and no conduction across the device can occur along the etched

boundary – all current must be carried via edge modes through the QPC. However, at

the transition, GD may change sharply by either an equal perturbation in VNS or VEW

while maintaining νNS = 0. The existence of such transitions in GD implies the filling

factor in the QPC center can be held fixed via equal and opposite modulations of VNS

and VEW: lines separating differing values of GD which are parallel to VNS + VEW = 0

demarcate sharp boundaries between regions of different filling factor in the center of the

QPC itself.

The location in density of the diagonal steps in GD shift as a function of VB (Figs.

3.3b-c), in contrast to the horizontal and vertical transitions whose locations in density

are unaffected. This behavior follows from the device electrostatics: Near the device

boundary, transport is determined directly by the bulk filling factor in the N/S/E/W

regions. Since the graphite bottom gate uniformly modulates the density of the whole

monolayer, the role of VB is merely to induce a chemical potential shift in the whole

device which is compensated by offsetting the applied gate voltages. This is not true in

the central region, however, which is doped by the fringe fields of N/S/E/W gates.

It follows that tuning the bottom gate while keeping the densities in the N, S, E,

and W regions constant changes the electrostatics of the QPC. Points I-III in Figs. 3.3a-

c correspond to identical carrier densities away from the QPC, with νEW = −4 and

νNS = 0. At point I, all the edge modes are pinched off and GD = 0. As VB is decreased,

the filling factor in the QPC changes, leading to the transmission of one additional
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Index GD[
e2

h
] νEW νNS νqpc

I 1 -4 0 -1
II 1 -2 -1 -1
III 1 -1 -2 0
IV 1 -1 -2 -1
V 2 -2 -2 -2
VI 0.7 -1 -4 -2

Figure 3.4: Key Table for Fig. 3.5

edge modes at point II and and two additional modes at point III. Fig. 3.3d shows the

continuous evolution between points I, II, and III as a function of VEW−VB, corresponding

to tuning the QPC electrostatics. A schematic depiction of the corresponding filling factor

maps in real space are shown in Figs. 3.3e-g.

The full parameter space that determines the value of GD when tuned with VNS and

VEW has features which depend on either VNS or VEW individually or features perpendic-

ular to VNS + VEW = 0 (indicated as dashed white lines in Fig. 3.5a). The former are

dominated by physics at the etched edge of the device where the edge modes of a pp′p

junction are fully equilibrated [22]. The latter are interpreted as boundaries between

operating points that have differing values of νqpc – the filling factor in the center of the

device, determined by the fringe fields of the four quadrant top gates (for a fixed VB).

Fig. 3.5a has several points denoted by roman numerals which correspond either to QPC

operation or conductance through the edge of the device. Fig. 3.5b shows an illustration

of the inferred filling factor in each region of the device for each point marked in Fig. 3.5a.

This information, along with the associated GD for each point is repeated in the table in

Fig. 3.4.

Point VI is of particular note since it falls to the left of a boundary in GD, where

GD is a fractional value below 1, that is intersected by a dashed line. This indicates the

transition is sensitive to the potential at the QPC, but is in a region where at least one
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Figure 3.5: Extended Integer QPC Operation: (a) GD plotted versus VNS and
VEW with VB = −0.33V . Lines parallel to VNS + VEW = 0 demarcate transitions
between integer GD values indicating a rapid change in the density at the QPC.
Roman numerals I-VI correspond to various unique combinations of νNS , νEW , and
νqpc, where νqpc is the filling factor at center of the QPC. (b) Illustrations of the
inferred filling factor in each region of the device corresponding to the operating
points in panel a.
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edge mode is transmitted along the edge of the device since νNS < −1. The corresponding

filling factors at VI are νNS = −4, νEW = −1, and νqpc = −2. Starting from point IV,

where νqpc = −1, as VNS becomes more negative, the filling factor in the QPC is more

strongly doped towards νNS. Eventually, at point VI, the filling factor in the QPC

increases to νqpc = −2, and an edge mode bridges the north and south regions through

the νEW = −1 bulk. This creates a scattering channel across the device that reduces the

conductance to the expected value of GD ∼ 2/3 for a pp′p junction of the given filling

factors (-1, -2, -1) [22, 23]. This shows it is possible to see QPC behavior even with a

background conductance through the etched edge of the device, however the value of GD

requires some interpretation. Consequently, for most experiments presented in the this

thesis we focus exclusively on regimes where there is no conduction along the edge of the

device, simplifying possible interpretations of fractional values of GD.

3.5 Partitioning of Fractional Quantum Hall Edge

Modes

While we are able to transmit multiple edge modes through the QPC in the absence

of defect mediated resonant states, an even more stringent characterization of disorder at

the QPC can be obtained in the fractional quantum Hall (FQH) regime. Fig. 3.7a shows

GD plotted as a function of VB and VNS + αVB at B=13T and T=300mK. Throughout

this range, the filling factor of the E and W region is fixed at ν = −5/3, and that of the

N and S regions is fixed within the ν = 0 plateau. Data taken along the white dashed

line in Fig. 3.7a is plotted in Fig. 3.7b, and shows two distinct quantized plateaus at

GD = 4/3 and 5/3 , in addition to the integer plateau at GD = 1. This observation

suggests the ν = −5/3 state hosts two edge modes each with conductance − e2

3h
. Notably,
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this is not consistent with theoretical expectations for a sharp confining potential[74, 75].

In that limit, a pair of counter propagating edge modes is expected where one carries a

conductance of − e2

h
and the other carries a conductance of e2

3h
(see Fig.3.8a); evidence

for this structure was observed recently in carefully designed III-V heterostructures[76].

Our observation is instead consistent with a picture of the 5/3 edge which includes the

effects of edge state reconstruction resulting from a soft confinement potential defining

the boundary of the topological bulk[77]. Theoretically, softly confined edges of hole-

conjugate fractional quantum Hall states are expected[78, 79] to host neutral modes

along with the observed fractionally quantized charged modes (see Fig. 3.8b). While

these neutral modes do not directly couple to an applied electric field, they may affect

thermal transport or renormalize the tunneling spectra of nearby charged modes [80].

The edge modes at the boundary of a fractional quantum Hall state are expected to

behave like chiral Luttinger liquids[30, 80]. In this state of matter, the quasi-particle wave

functions are orthogonal to the electrons from which they are microscopically constructed.

This ‘orthogonality catastrophe’ results in a soft gap in the electron tunneling density

of states which vanishes like ρ ∝ (E − EF )
1/g−1, where the constant g is known as the

Luttinger parameter [81], this will be discussed in further detail in the following sections,

and was overviewed in Chapter 1. A remarkable consequence of this fact is that even

arbitrarily weak barriers between edge modes will suppress tunneling at sufficiently low

temperature and bias voltage.

Fig. 3.7c shows GD as a function of source-drain voltage Vbias and VNS, corresponding

to the dashed blue trajectory in Fig. 3.7a. The data shows a single sharp zero-bias

conductance dip throughout the transmission plateau at GD ≈ 4
3
e2

h
–in contrast with the

weak bias dependence observed for an integer edges (see Fig. 3.6). In Fig. 3.7c, VNS

tunes the electrostatic confinement at the QPC and thus the height of the tunnel barrier

separating the two outermost edge modes incident upon the junction. As expected, a
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Figure 3.6: (a) Plot of the tunneling conductance across an integer conductance
step, in the ν = 1 state. In the fully reflecting and fully transmitting limits, the
conductance is constant for VDC less than about ≈ 1 mV, and smoothly varies as
the edge is transmitted. (b) For a fractional edge state, the conductance remains
highly suppressed even when the edge state is partially transmitted, with a sharply
nonlinear dI/dV near VDC = 0. Even when the edge state is fully transmitted, and
dI/dV (VDC = 0) = 4/3, the tunneling conductance remains nonlinear. (c) and (d)
present linecuts of the data in (a) and (b) respectively for comparison.
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decrease in VNS lowers the potential barrier at the QPC and enhances transmission. The

lack of resonant structure in Fig. 3.7c, features observed in previous experiments[32, 38,

73, 22], even at high transmission suggests that scattering between edge modes occurs at

a single, gate-controlled saddle point.

To compare our data with expectations from the chiral Luttinger liquid theory [30, 80],

Fig. 3.7d shows the reflection coefficient, R, which measures the probability of backscat-

tering the outermost fractional edge mode (see also Appendix C for a detailed analysis,

which follows Refs. [82, 38, 83]). For two fractional quantum Hall edges which are

weakly tunnel coupled via the exchange of quasi-particles, the reflection coefficient R, as

a function of Vbias, may be computed perturbatively [30, 84]. Evidently, even for high

transmission, voltage bias alone can tune R from over 75% to nearly zero, demonstrating

that the incident edge modes become decoupled a low energies – a manifestation of the

‘orthogonality catastrophe’ – a hallmark of chiral Luttinger liquid physics.

At zero bias, when quasi-particle backscattering is weak (corresponding to small R),

R is expected to follow a simple power law with respect to temperature, R ∝ T 2g−2.

We plot the zero-bias R in Fig. 3.7e. For T between 300-550mK—corresponding to

R ≲ 0.4—the reflection coefficient is well fit by a power law with g = 0.47. In this weak-

backscattering regime, the dependence of R on Vbias and T is theoretically expected[84]

to follow a scaling form,

R(x)

T 2g−2
= Aβ(g + i

e∗x

2π
, g − i

e∗x

2π
)×

[
π cosh(

e∗x

2
) + 2 sinh(

e∗x

2
)Im[Ψ(g + i

e∗x

2π
)]

]
(3.1)

where x = eVbias

kbT
is the scaled voltage bias, β and Ψ denote the corresponding Euler

integrals, e∗ is the effective quasi-particle charge in units of the electron charge, and A

is a constant related to the height of the tunnel barrier.

It follows from this equation that if R(x) is scaled appropriately by the temperature,
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Figure 3.7: Partitioning of fractional quantum Hall edges and quasi-par-
ticle tunneling. (a) GD map at fixed νEW = −5

3 . As VB is adjusted along the
y-axis, VEW is swept in tandem to keep VEW + αVB ∝ νEW constant while allow-
ing VB − VEW to vary, adjusting the saddle point electrostatics. On the x-axis, the
range of VNS is varied as VB changes in order to keep the range VNS + αVB within
the ν = 0 plateau. (b) GD along the dashed white contour in panel a. Two frac-
tional plateaus are highlighted at 4/3 and 5/3 resepctively. (c) Bias dependence
of the GD = 4

3 plateau, along the dashed blue line shown in panel a. The tun-
neling conductance is suppressed at zero bias well into the plateau, a distinct sig-
nature of chiral Luttinger liquid behavior. (d) Extracted back-scattered conduc-
tance, R, versus scaled DC bias, Vbias, at a fixed VNS = 3.925V for the temperatures
T = 141mK, 169mK, 199mK, 229mK, 259mK, 289mK, 320mK, 350mK, 379mK,
410mK, 440mK, 470mK, 499mK, 530mK, 534mK, 540mK, 544mK, 550mK. (e)
Back-scattered conductance, R, at zero DC bias versus temperature. Power-law be-
havior onsets above 300mK; we find R ∝ T−1.057±0.008, yielding a Luttinger pa-
rameter of g = 0.47 ± 0.004. The cross-over energy scale between weak electron
tunneling and weak quasi-particle back-scattering is estimated to be T ∗ = 64± 3mK
(notably power-law behavior with negligible contributions from electron tunneling for
quasi-particle back scattering is not expected unless T >> T ∗). (f) Scaling col-
lapse of DC bias dependent tunneling curves for different temperatures above pow-
er-law onset. Here R/T−1.06 is plotted against eVbias/kbT for the temperatures T
= 299mK, 320mK, 340mK, 360mK, 379mK, 399mK, 420mK, 440mK, 460mK,
480mK, 499mK, 520mK, 540mK. The black-dashed is a fit to the expected bias
dependence for a chiral Luttinger liquid with g = 0.47 (see Eq. (3.1)) yielding an
effective quasi-particle charge of e∗ = (0.55± 0.001)|e|.
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Figure 3.8: (a) Hole-conjugate FQH states such as the ν = 2/3, 5/3 states can be
modeled by a Laughlin- like FQH state of holes within a bulk integer quantum Hall
state, leading to a small strip of increased filling factor around the edge of the sample.
This is shown schematically in panels a and c by plotting the filling factor of holes
νh ≡ −ν at the boundary between a ν = −5/3 and ν = −1 state, where the relevant
fractional edges measured in the experiment occur. The MacDonald model [74] of
the resulting edge structure posits a downstream integer mode at the outermost edge
of the sample, as well as an upstream (counter-propagating) fractional mode. (b) In
real experiments, the two counter-propagating charged modes are rarely observed, but
rather mix through the presence of inter-edge interactions, yielding a single effective
charge-2e/3 mode propagating downstream, as well as an upstream charge-neutral
mode, as explained by the Kane-Fisher-Polchinski model [75]. (c) A sufficiently soft
confining potential may make it energetically favorable to redistribute the charge in
the system and create an additional strip of density νh = 4/3, introducing a set
of two additional counter-propagating fractional edge modes: the Meir model [79].
(d) In a real system, where these modes can also mix, the resulting mode structure
may contain two downstream fractional-conductance modes as well as two upstream
neutral modes. This scenario is consistent with the observation of multiple fractional
conductance steps within the ν = −5/3 state.
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tunneling spectra taken in the temperature range where the zero-bias power law applies

should follow a universal curve, with e∗ providing a single additional adjustable param-

eter. Fig. 3.7f shows R/T−1.06 versus eVbias/kbT for several temperatures in the range of

300mK to 550mK. The curves are observed to collapse onto each other fixing g = 0.47.

The collapsed curves are then averaged and fit to Eq. (3.1) extracting the quasi-particle

charge as e∗ = 0.55± 0.001.

The observed scaling collapse provides evidence of tunneling between chiral Luttinger

liquids at a single point within the QPC. However, the measured values of g = 0.47 and

e∗ = 0.55 are at odds with predictions that that the boundary of a fractional quantum

Hall phase should host a chiral Luttinger liquid with a quantized Luttinger parameter and

quasi-particle charge, namely g = 1/3 and e∗ = 1/3[30]. We attribute this discrepancy to

the presence of neutral modes at the ν = −5/3 boundary, consistent with an electrostat-

ically shallow edge permitting significant Coulomb-induced reconstruction effects[80, 79]

(See Fig. 3.8 2b). While a universal regime is always expected to exist, for the electrostatic

configuration explored here, this regime most likely occurs significantly below 300mK,

outside of the weak quasi-particle backscattering limit. Notably, past experiments on a

variety of fractional Hall states in III-V semiconductor systems[85, 86, 32, 38, 85, 86]

have also shown significant deviations from the expected universal behavior. The devi-

ation from universality in all of these experiments, including the one presented here, is

likely traceable to the complex edge structure arising from the shallow edge confinement

typical of gate-defined tunnel barriers.

3.6 Tuning Edge Sharpness in situ

This deficiency may be addressed in our geometry using in situ control of the con-

finement potential. The softness of the confinement potential is quantified by the ratio
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of EV ≡ e∂ϕext

∂x
ℓB (here x is the coordinate perpendicular to the confined edge, and ℓB

is the magnetic length) and the Coulomb energy EC ≡ e2

4πϵℓB
. In our geometry, indepen-

dent control of the voltages applied to the N/S, E/W, and bottom gates is equivalent to

independent control of the filling factor in the E/W regions, the number of transmitted

modes Nqpc, and EV , allowing us to explore the effects of the confinement energy within

the QPC independently of the barrier height.

To illustrate this, Figure 3.9a shows a map of GD measured at B = 2 T with fixed

ν = −6 in the E/W regions. In this plot, moving along a diagonal from lower left to

upper right reduces Nqpc, while moving along a diagonal from upper left to lower right

increases EV . We observe a qualitative change in the nature of the transition between

GD = 2 e2

h
to GD = 6 e2

h
as a function of EV . For small EV—i.e. soft confinement—we

observe distinct conductance plateaus corresponding to each integer quantum Hall state

between ν = −2 and ν = −6, indicating that the four distinct edge modes corresponding

to the ν = 3 through ν = 6 states can be individually partitioned. For large EV , in

contrast, the steps merge into one continuous jump from GD = 2 e2

h
to GD = 6 e2

h
, with no

discernible intermediate plateaus at partial transmission (see Fig. 3.9b).

This behavior can be understood in the context of the competition between EV and

EC at the QPC. In the regime of Fig. 3.9, in the bulk, the four-fold spin and valley

degeneracy of the Landau levels is lifted due to quantum Hall ferromagnetism[17]. In the

presence of a soft confining potential, the electron system can lower its energy by forming

islands of incompressible fluid at integer filling factor within the QPC saddle point,

due to the emergence of EC-scale integer quantum Hall ferromagnetic gaps. However,

as EV is increased it is no longer energetically favorable to form such incompressible

islands within the QPC, and instead a smooth change in electron density at the QPC

as function of transmission is preferred. Finite element electrostatics calculations show

EV /EC is approximately 1.5 and 2.8 for the trajectories marked AB and CD in Fig. 3.9a,
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Figure 3.9: Tuning edge sharpness via electrostatic gating. (a). GD map at
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Figure 3.10: (a) The filling at the center of the QPC, νQPC as a function of VB and
VNS + αVB, with the bulk filling of the east/west regions fixed at νEW = −6. The
result qualitatively mimics the measured GD shown in Fig. 4a since νQPC determines
the number of transmitted modes and therefore the diagonal conductance. Two line
cuts which correspond to EV /EC =2.2 and 4.4 are shown in Fig. 4c. (b-c) Calculated
filling factor ν for a realistic device geometry at B = 2 T for (b) EV /EC = 4.4
and (c) EV /EC = 2.2. When EV /EC = 2.2, there exists an incompressible island
with νQPC = −4 at the center of the QPC. Contours of ν = n + 1/2 are shown as
white dotted lines, indicating the location of chiral edge modes, two-pairs of which
are transmitted through the QPC. This illustrates the rule NQPC = νQPC + 2.

respectively, where we take EV from the maximum value of the potential slope at the

boundary between the N and W regions.

To assess the plausibility of this explanation, we perform simulations of the electron

density in our device within the Thomas-Fermi approximation (Thomas-Fermi calcula-

tions were preformed by Taige Wang and Kai Klocke, Michael P. Zaletel’s students; plots

are reproduced here with their permission. Details of the calculations may be found in

[26, 28]). These simulations take as inputs the device electrostatics as well as a phe-

nomenological model for the graphene chemical potential, which influences the quantum

capacitance. For EV /EC = 2.2, the simulated density in the vicinity of the QPC ex-

hibits a “wedding cake” profile, with well defined strips of integer filling, while for larger

EV /EC = 4.4 the density drops sharply in a single step across the quantum point contact

(see Fig. 3.10). As a heuristic proxy for GD, we plot the simulated filling factor at the

center of the QPC, |νQPC|, in Fig. 3.9c. The soft confinement regime shows a series of

integer steps, while sharp confinement does not. This indicates that only in the case of
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soft confinement do the edge-states remain well separated at the QPC, allowing their

transmission to be partioned individually as observed in Fig. 3.9a.

As discussed previously, rearrangement of the electron density also causes significant

effects on the edge in the fractional quantum Hall regime. These effects, referred to

generally as “edge-reconstruction,” can nucleate additional edge modes at soft potential

boundaries with quantitative effects on tunneling behavior. We estimate EV /EC ∼ 1.3

for the fractional quantum Hall tunneling experiment of Fig. 3.7, squarely in the regime

where edge reconstruction effects are expected. Adjusting EV such that the effects of

EC at the edge are negligible should allow exploration of universal edge mode physics in

both tunneling and interferometry experiments. One thing to note, is that while EV can

be tuned in-situ, EC is controlled primarily by the magnetic field, and in fact the ratio

of EV /EC scales linearly with B. Generically one expects the effects of reconstruction

to become more important at high magnetic fields where we wish to operate for FQH

physics. The following section describes the effects of reconstruction at high field, and

how despite their ubiquity EV retains sufficient tunability that they can still be avoided.

3.7 Additional Effects of Edge State Reconstruction:

Spontaneously formed Quantum Dots at an Elec-

trostatic Saddle Point

Quantum point contacts (QPCs) operated in the quantum Hall regime ubiquitously

show resonant tunneling features as edge modes are successively pinched off. These

features are generally assumed to arise from uncontrolled disorder potentials introduced,

for example, during the fabrication of local split gates[73, 32, 23, 22, 24]. Here we present

evidence that repeatable resonant tunneling features can also arise independently of local

52



Quantum Point Contacts in Graphene van der Waals Heterostructures Chapter 3

disorder via the same Coulomb-interaction driven mechanism that leads to edge-state

reconstruction[78]. Theoretically, electrostatic confinement in the quantum Hall regime

is characterized by the confinement energy, EV = edϕext

dx
ℓB, where ϕext is the applied

electric potential. The spatial structure of the electron density in the presence of an

external potential is controlled by the dimensionless ratio between EV and the Coulomb

energy, EC = e2

4πϵℓB
. In the sharp-edge regime, EV /EC >> 1, the electron density is

expected to decrease sharply and monotonically at the edge of the quantum Hall bulk,

leading to the simplest possible (unreconstructed) edge structure. At lower sharpness,

corresponding to EV /EC ∼ 1, a delicate balance between the Coulomb interaction and

confining electric potential leads to a more complicated spatial structure in the electron

density, which may include a nonmonotonic dependence of the density on position.

Edge-state reconstruction is often invoked as a complicating factor in experiments

seeking to probe universal properties of fractional quantum Hall states. For example, the

emergence of charge-neutral modes related to edge reconstruction is tied to the suppres-

sion of visibility in edge-state interference experiments[87] or the unexpected observation

of upstream heat-transport in certain experiments[77, 88]. Universal, reconstruction-free

edges[89] have been observed using scanning tunneling microscopy at the physical edge

of graphene systems[90, 91], where the confining potential is atomically sharp. How-

ever direct measurements of the edge profile have been elusive at the softer, gate-defined

edges that constitute the essential ingredient for mesoscopic devices, such as edge state

interferometers, that allow for in situ edge state control. Such a device was discussed

at length in the previous section, and while the demonstration of Luttinger liquid-like

tunneling near the QPC suggests an absence of scattering centers in vicinity of the point

contact, the resulting power laws were not quantized to the expected value for a 1/3 edge

mode.

Here, we study a monolayer graphene device fitted with an electrostatically tunable
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quantum point contact (same device studied in the previous section). Our geometry al-

lows the sharpness of the confinement potential at the QPC to be controlled in situ (see

Fig. 3.9), allowing us to directly probe the nature of the edge through its effects on the

transmission of charge through the point contact. Our main result is an unexpected man-

ifestation of Coulomb-induced reconstruction: the spontaneous formation of a quantum

dot localized at an electrostatic saddle point. Our observations imply a local discrep-

ancy between the applied electrostatic potential set by the voltages applied to each gate

electrode and the total electronic potential, which takes into account electron-electron

interactions and the finite compressibility of the 2DEG at high magnetic fields.

We study a dual-graphite gated hBN-encapsulated graphene van der Waals het-

erostructure described previously. To recap, local anodic oxidation lithography [25] is

used to pattern an “X” shape in a graphite flake, which is then integrated into the van

der Waals heterostructure[26]. A subsequent reactive ion etch defines the overall device

outline, electrically separating the graphite into four separate gates which we label north

(N), south (S), east (E) and west (W). Together, these tune the electron density in each

of four quadrants separately. The E and W gates are used to tune the electron density on

either side of the device while the N and S gates deplete the electron density to form the

QPC constriction. The graphite bottom gate, controlled by a voltage VB, can be used in

conjunction with the top gates to control the fringe-fields at the boundaries between all

four regions while maintaining a fixed electron density within the bulk of each quadrant,

directly tuning EV /EC along the edge and at the potential saddle point. This fabrica-

tion method, by avoiding subtractive processing in the critical regions of the completed

device, results in significantly lower disorder within the quantum point contact[26, 29].

To characterize the operation of our QPC we excite an AC voltage on one side of

the device and measure the current I into a contact on the opposite side of the QPC

and the diagonal voltage drop VD to calculate the four terminal “diagonal conductance”,
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Figure 3.11: Coulomb blockade at a gate-induced saddle point. (a) GD at
VB = −0.25 V and B=13 T spanning zero to full transmission of a single IQH edge
mode. Inset: applied potential ϕext, as determined by electrostatic simulations, across
the N-W boundary at the points marked I and II in the main panel. EV /EC ≈ 0.4, 1.8
for I and II respectively. (b) Two-terminal differential conductance dI/dVSD mea-
sured across the QPC. Data are plotted as a function of VSD along the white contour
in panel a, parameterized by ∆V = VNS −VEW . Diamond-shaped conductance peaks
are indicative of Coulomb blockade, consistent with resonant transmission of edge
modes through a localized state at the center of the QPC, as depicted in the inset.
(c) dI/dVSD along the black contour in panel a. Resonant reflection is observed, con-
sistent with backscattering of edge state through the localized state, depicted in the
inset. (d) Zero-bias traces of (b) and (c) illustrate that the resonant transmission and
resonant reflection regimes evolve from fractional plateaus at 1/3 and 2/3 respectively
as ∆V = VNS − VEW is increased.
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GD ≡ I/VD (see Appendix B). In the integer quantum Hall (IQH) regime this quantity

gives a direct measure of the number of edge modes Nqpc transmitted across the device

such that GD = Nqpce
2/h[72, 22].

Fig. 3.11a shows GD measured over a large range of VN = VS = VNS and VE =

VW = VEW at B=13T and T = 300mK with νEW ≤ 0. The plot is centered around

the transition between GD = 0 and GD = e2/h. The lower left of the plot corresponds

to full transmission of the outermost integer quantum Hall edge mode, while lower right

corresponds to full pinch-off. The bulk filling factor varies from νEW = 0 at VEW = 0.5

to νEW = −2 at VEW = −2.5V . Despite the range of bulk filling factors spanned in

Fig. 3.11a, GD varies only from 0 to e2/h indicating that only the outermost integer

quantum Hall edge mode is transmitted across the device.

Tuning the gate voltages from upper left to lower right in Fig. 3.11a, corresponding

to lines of constant VNS + VEW , leaves the applied potential in the middle of the QPC

constant. Naively, we expect GD to also remain constant; however, we observe intricate

structure to the measured conductance characterized by the emergence of sharp conduc-

tance peaks and dips at the plateau transition. These features are tuned both by the

sum and difference of VNS and VEW .

We attribute this structure to the reconstruction of the saddle point potential due to

electron-electron interactions. The inset to Fig. 3.11a shows finite-element simulations of

the applied electrostatic potential across the boundary between N and W regions, with

the gate voltages set to the values given at the points labelled I and II in Fig. 1a. Within

our simulations, EV /EC can be tuned by more than a factor of four between points I and

II, significantly changing the sharpness of the confinement. It is natural to attribute the

resonant structure to the effect of this variable; evidently, transmission across the device

is highly sensitive to the sharpness of the potential at the the saddle point.

A notable feature of the data in Fig. 3.11a is the approximate reflection symme-
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try across the expected line of GD = 1
2
e2/h that relates the two marked trajectories.

Figs. 3.11b and c show the differential conductance across the quantum point contact,

dI/dVSD, plotted as a function of the source-drain voltage VSD as well as the coordinate

∆V = VNS − VEW parameterizing the contours shown in Fig. 3.11a. Along the white

contour the junction is nearly pinched off, with conductance dropping to zero between

high conductance peaks. Nonlinear conductance in this regime shows diamond structure

typical of transport across a Coulomb blockaded quantum dot, with charging energies as

large as 1 meV. This is consistent with a scenario where resonant transmission through

a dot, located at the QPC center, allows charge transport between two otherwise fully-

reflected edge states in the E and W regions. This scenario is illustrated schematically

in the inset to Fig. 3.11b.

Along the dashed black arrow in Fig. 3.11a, nonlinear conductance shows an almost

identical diamond structure, except this time with the on-resonance condition corre-

sponding to a decrease in conductance (Fig. 3.11c). This is again consistent with a

Coulomb blockaded quantum dot in the QPC, but one whose effect on transport is to

allow backscattering between two otherwise fully-transmitted edge states (see Fig. 3.11c,

inset).

In both scenarios, as ∆V is increased, or equivalently, as the potential sharpness is

increased, the level spacing of the quantum dot increases. This is consistent with the

size of the quantum dot decreasing with increasing ∆V , either making the quantum

mechanical level spacing smaller, or simply decreasing the island capacitance leading to

an increase in the charging energy. Additionally, in Figs. 3.11b and c, the stability of

the Coulomb diamonds decreases with ∆V , eventually giving rise to fractional plateaus

at GD = 1
3
e2/h and GD = 2

3
e2/h. This is highlighted in Fig. 3.11d which plots zero-bias

data extracted from Figs. 3.11b and c.

The existence of a quantum dot is not näıvely expected in a quantum point con-
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Figure 3.12: Quantum dot position and polarizability. (a) dI/dVSD at VSD = 0
across several Coulomb blockade peaks, plotted as a function of VN and VS with
other voltages held constant. Near VN = VS , dVS/dVN ≈ −1 indicating that the
dot is equidistant from the N and S gates. The peak follows a contour of positive
curvature, indicating the dot is repelled by positive VN or VS . (b) Cartoon schematic
demonstrating a negative quantum dot polarizability as measured in panel a. Here
the trapped charge moves in the opposite direction as the applied electric dipole
moment. (c) The same, but plotted in the (VW , VE) plane. Again, dVE/dVW ≈ −1
indicates that the dot is equidistant from the E and W gates at zero detuning. The
curvature is negative, opposite to that in the (VN , VS) plane. (d) Cartoon schematic
demonstrating a positive quantum dot polarizability as measured in panel c. Here
the trapped charge moves along the applied electric dipole moment. The opposite
sign of polarizability along orthogonal directions for the same Coulomb blockade peak
indicates the localized charge tracks the equipotentials of the gate-defined saddle point.
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tact where the unscreened electrostatic potential realizes a saddle point. The question

thus arises as to whether such behavior can arise intrinsically, or if electron confinement

might arise from the presence of uncontrolled impurity potentials near the quantum point

contact. To address this question, we use the four-quadrant gate geometry [26] to de-

termine both the position of the localized charge and its polarizability within the 2D

plane. Fig. 3.12a shows several representative Coulomb blockade peaks as function of

VN and VS with all other gate voltages constant. The Coulomb peaks follow the con-

dition CNdVN + CSdVS = 0, where CN and CS are the capacitances to the N and S

gates, respectively. The ratio of these capacitances may be inferred from the slope of

the Coulomb peak trajectory in the (VN , VS) plane, dVS

dVN
= −CN

CS
. When VN = VS, we

find that CN/CS ≈ 1, implying that the dot is equidistant from the two gates. The

curvature of the peak trajectory, meanwhile, reveals how the capacitances are changed

by the motion of the dot. Taking CN = CS, the curvature is defined by the expression

d2VS

dV 2
N

= − 1
CS

(dCN

dVN
− dCS

dVN
). In Fig. 2a, the curvature is observed to be positive, implying

dCN

dVN
< dCS

dVN
. Since CN/S is inversely proportional to the distance between the gate and

dot, this implies that a positive bias on VN repels the dot from the N gate, as schemat-

ically illustrated in Fig. 3.12b. This behavior is consistent with a charge trapped at an

electrostatic minimum in the N/S direction.

Analogous measurements as a function of VE and VW are shown in Fig. 3.12c. Again,

for VE = VW , CE/CW ≈ 1, indicating the dot is equidistant from the E and W gates.

However, the curvature of the peak trajectories in Fig. 3.12c are opposite in sign from

those in Fig. 3.12a. This behavior is consistent with a particle trapped in an electrostatic

maximum along the E/W direction, as illustrated in Fig. 3.12d. Taken together, these

measurements show that the quantum dot is centered at an electrostatic saddle point.

The Coulomb blockaded resonant structure is fairly ubiquitous in this device. Fig. 3.13

presents a series of several resonances which exhibit Coulomb blockade on the electron
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Figure 3.13: Coulomb blockaded resonances on the electron side. All data
in this figure was taken at B = 9T and T = 20mK. (a) Two terminal conductance
across the device plotted against VNS and VEW . (b) Differential conductance versus
source-drain bias plotted along the white dashed line in (a) as well as the corresponding
zero-bias line cut. Along the white dashed line νEW = 3 and νNS = 0. (c-d) Two
terminal conductance plotted against VN(W ) and VS(E) for the Coulomb blockaded
resonances marked by the white dashed line in (a). The primary resonance shown
in (d) is demarcated by the white dot in (a). (e-f) Diagonal conductance across the
device plotted against VN(W ) and VS(E) for the transmission step between GD = 1,
and GD = 2.

side of the device at 9T and 20mK. Fig. 3.13a shows the resonances in the (VNS, VEW )

plane, where νEW ∼ 3 and νNS ∼ 0. The chemical potential of the quantum dot is

modulated directly with the N/S gates as VNS is swept along the dashed white line in

Fig. 3.13a. Fig. 3.13b shows the differential conductance as a function of VNS and VSD

along this VNS trajectory along with the zero-bias cut.

The sharp peaks in Fig. 3.13b have some finite curvature in the (VSD, VNS) plane.

Since the slope here is a direct measure of −CNS/CΣ, where CΣ is the total capacitance

of the dot, this indicates that as VNS is increased, the capacitance of the N/S gates to the

dot is decreasing relative to CΣ. This is consistent with the dot being squeezed in the N/S

direction as VNS is increased. This can be further corroborated by the observation that
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as VNS is increased in Fig. 3.13a, the slope of successive resonances decreases, indicating

a decreased sensitivity to modulations in VNS – i.e., CEW > CNS as VNS increases.

Additionally, Fig. 3.13c-d shows a representative resonance as as function of VN vs. VS

as well as VE vs. VW . Much like the analysis in the main text (Fig. 2), when VN = VS or

VE = VW , the slope in the VN/VS plane or the (VE, VW ) plane is near −1, indicating the

dot is roughly centered in the QPC.

The behavior of a monotonic transition in GD as a function of VN vs. VS and VE

vs. VW can be seen in Fig. 3.13e-f. It has been well established that monotonic steps in

conductance at a quantum Hall QPC can be described by the scattering of electrons in a

magnetic field at a saddle point potential [92]. Qualitatively, the behavior of the mono-

tonic transmission step, and the Coulomb blockaded resonances in 3.13c-d are similar;

the monotonic transmission step and the resonance both have the same curvature in the

(VN , VS) or (VE, VW ) plane. The similarity between the behavior of the quantum dot and

the delocalized edge mode supports the idea that the charge in the dot localized precisely

at the saddle point. This is a surprising result given that a saddle point potential does

not support localized states even in a magnetic field [93, 92].

These obsevations can be understood by considering the effects of the Coulomb inter-

action. Generally, edge state reconstruction may lead to non-monotonic density profiles

along a smooth potential step [78, 94]. Along the translation-invariant electrostatic edge

between two quantum Hall phases, the resulting electronic density retains the spatial

symmetry of the underlying potential, resulting in formation of a series of strips at the

boundary between the two phases. In a more complex geometry such as the QPC po-

tential studied here, the same mechanism can favor the formation of more complicated

structures that still maintain the 180◦-rotation symmetry of the underlying potential,

such as an isolated dot of nonzero density at the center of the QPC.

To evaluate the plausibility of a reconstruction-induced quantum dot we use a self-
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Figure 3.14: Thomas-Fermi simulations. (a) ν calculated for B = 13T and
EV /EC = 0.44. The continuous strip of ν = 1

3 corresponds to transmission of a single
e/3 mode, as is observed at point I in Fig. 3.11a. (b) ν calculated for EV /EC = 0.49.
For this range of parameters, a small island of ν = 1

3 forms at the center of the QPC,
separated by depletion regions with ν = 0 from the E and W regions consistent with
the Coulomb blockade observed at point II in Fig. 3.11. (c) The unscreened potential
Φext induced externally by the applied gate voltages compared with the reconstructed
carrier density ν as a function of x with y = 0 for EV /EC = 0.44 (d) Φext and ν for
EV /EC = 0.49.
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consistent Thomas-Fermi model to calculate the reconstructed density within the QPC.

Our calculations account for the density-dependent chemical potential within a partially-

filled LL extracted from thermodynamic experiments[21], as well as a realistic device

geometry (for details of the calculation see [26, 28]). Fig. 3.14a-b shows the calculated

density for νEW = 1 and νNS = 0. For the softest potential, in panel a, an intermediate

side-strip of fractional filling ν = 1/3 is observed at each boundary between ν = 0 and

ν = 1. As EV /EC increases, reconstruction becomes less favorable, and an isolated island

of filling factor ν = 1/3 spontaneously forms in the center of the junction. Crucially, this

island is isolated from the surrounding regions of non-zero density by depletion regions

with ν ≈ 0. In a transport experiment, these regions may form tunnel barriers between

the dot and the reservoirs on either side.

Both regimes of reconstruction correspond directly to observations in Fig. 3.11. At

point I along the dashed white line, where ∆V = VNS−VEW = 1V and the applied poten-

tial is thus the softest, we observe fractionally-quantized conductance, GD = 1/3, corre-

sponding to transmission of a single fractional edge mode, in agreement with Fig. 3.14a.

Additional evidence for the existence of incompressible strips at fractional filling fac-

tors within the QPC, maintained over a wide array of electrostatic configurations where

EV < EC , is given in Fig. 3.17, despite the bulk being set to ν = −1. As ∆V is increased

to ∆V ∼ 2.5V , Coulomb peaks appear corresponding to the existence of a quantum dot

as in Fig. 3.14b. Simulations show that the size of the quantum dot shrinks with further

increase of ∆V , while the reflected edge mode still maintains strips of ν = 1/3 away

from the QPC, leading to an increase in the level spacing as observed in Fig. 3.11b-d.

At sufficiently large ∆V , reconstruction should no longer be favorable anywhere within

the device, and one is expected to recover the sharp-edge limit with a single chiral edge

mode for a bulk ν = 1 quantum Hall state. This is observed in the Thomas-Fermi cal-

culations, see Fig. 3.15. Data from a second, identical device shows resonant structure
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for EV /EC < 2.2 but a single monotonic step in GD for EV /EC > 2.2, see Fig. C.2.

Evidently, for appropriate electrostatic conditions the non-reconstructed limit can be

recovered in experiment even for gate defined edges. This becomes highly valuable ex-

perimentally, as having a distinct signature of the presence of reconstruction in simple

DC transport and its removal as sufficiently high values of EV make doing experiments

in the unreconstructed limit more accessible.
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Figure 3.15: Extended reconstructed electron density profiles in a QPC
geometry in the fractional regime. (a-b) Fractional reconstruction in an integer
bulk filling (ν = 1) with EC = 46.4 meV in the regime where the confining potential
is sharper than presented in main text Fig. 3a. (a) With EV /EC = 0.50, the ν = 1

3
island disappears and the ν = 1

3 strips become narrower. (b) With EV /EC = 0.57,
the ν = 1

3 strips disappear completely.
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Figure 3.16: Signatures of reconstruction in G between ν = 1 edge modes.
(a) The conductance measured across the QPC with both the East andWest regions in
ν = 1 at B = 8T. The East andWest gate voltages are swept in the opposition direction
of VBG along the y axis, through the range VEW ∈ (0.6V,−2.191V ), to maintain a fixed
filling factor while varying the voltage difference and thereby the potential sharpness.
(b) The simulated electric potential at the monolayer, corresponding to the operating
point I. (c) Same as (b) but at the operating point II, where the potential is much
softer. (d) Simulated potential along the contours marked in grey and black in panels
B and C, respectively. The softness is quantified by the maximum magnitude of the
in-plane confining electric field, E∥ (i.e. simply the gradient of the potential normal
to the boundary between the N(/S) and E(/W) regions).

More interestingly, within our simulations the quantum dot is composed of an island

at fractional filling. This suggests that single fractionally charged quasiparticles can be

localized even in a geometry which forbids trapping single particles in the absence of

Coulomb interactions. Additionally, in light of our simulations the highly symmetric

nature of the resonant reflected features observed in Fig. 3.11a may likely be interpreted

as the particle-hole conjugate to the scenario presented in Fig. 3.14b. Future experiments,

for example measuring the shot noise across the QPC, may give direct evidence for the

trapping of fractional quasiparticles in the saddle-point quanutm dot.

In conclusion, we have shown that QPCs in the quantum Hall regime can host

Coulomb blockade physics even in the absence of an applied confining potential or dis-
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Figure 3.17: Evidence for fractional edge modes at the boundary of a bulk
integer state: (a) GD at a fixed νEW = −1 versus VNS + αVB and VB. Here VNS

is swept in a range dependent on VB such that the range VNS + αVB is kept fixed.
Additionally, as VB is swept, VEW is swept concomitantly to keep the bulk filling
factor, set by VEW + αVB, fixed at ν = −1, but varying VEW − VB. The x-axis range
corresponds to the full width of the ν = 0 plateau. (b) The diagonal conductance map
of the νEW = −1 state at B=13T presented in panel (a) shows a number of features
between GD = 1 and GD = 0. The statistical frequency of conductance values across
the entire plot, reveals a number of sharp peaks corresponding to conductance plateaus
between 0 and 1. The most prominent occurs atGD = 2/3. A broader peak is observed
near 1/3, though the quantization is less exact, and several further sharp peaks are
seen centered near 0.2, 0.5, and 0.8. The origin of these peaks is unknown, and may be
due to a more complicated reconstructed edge structure than is accounted for by any
model discussed in this work. (c) Diagonal conductance map with the E/W regions in
a fixed filling factor νEW = −2 and N/S regions entirely within the νNS = 0 plateau.
On the y-axis, the bottom gate and E/W gates are swept in opposite directions to vary
(VB − VEW ) while keeping νEW = −2 fixed. On the x-axis, the N/S gates are swept
across the entire ν = 0 plateau. (d) Line cut given in (c) showing two integer plateaus
and an intermediate fractional plateau near GD = 1.33 demarcated by the red lines.
In both (a) and (b) a correcting scale factor of 0.95 is applied uniformly to GD to
correct for a parallel conduction channel created in our device due to fringe doping
from the Si gate, leading to over-quantized plateaus. Here only one e/3 edge mode
is observed, in contrast to the data at B = 13T where two e/3 modes are observed.
This is similar to previous reports in GaAs [87], however, the reason why one plateau
is favored at low field compared to B = 13T remains unclear.
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order effects, resulting from the spontaneous formation of a quantum dot due to the in-

terplay between the applied gate potential and interparticle Coulomb interactions. The

discrepancy between the applied electrostatic potential and the total potential at the

QPC provides direct evidence for edge state reconstruction. By characterizing edge-state

reconstruction in comparatively simple direct current transport measurements, more-

over, we show that these effects may be identified and mitigated in experiments to probe

fractional statistics in graphene based devices using QPCs[22, 26, 29] and Fabry-Perot

interferometers[24, 23, 57, 95].

3.8 Demonstration of Universal Chiral Luttinger Liq-

uid Behavior at ν = 1/3 Edge in the Sharp Edge

Limit

The Landau theory of Fermi liquids provides a near-ubiquitous description of in-

teracting fermion systems. One exception is provided when electrons are confined to

one dimension, where arbitrarily weak interactions favor a distinct phase known as the

Tomonaga-Luttinger Liquid[81, 96, 37, 97]. In this phase, the low-energy collective exci-

tations are orthogonal to the single-electron operators from which they are microscopi-

cally constructed. This ‘orthogonality catastrophe’ manifests experimentally as a power-

law suppression of the electron tunneling density of states, N(E) ∝ (E − EF)
1/g−1,

at the Fermi energy EF, despite the fact that the system remains conductive. The

power law is characterized by an exponent g known as the Luttinger parameter, which

depends continuously on the nature and strength of the interparticle interactions[98].

Experimentally, Luttinger liquid behavior can manifest through a non-Ohmic current-

voltage relation I(V ) ∝ V 1/g, as observed, for example, in ropes of single-walled carbon
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nanotubes[99, 100].

An alternative means of creating a one-dimensional wire is at the boundary of a

topologically ordered phase, as occurs in the fractional quantum Hall (FQH) effect[101].

Here, the right- and left- moving modes are physically separated to opposite edges of the

two dimensional sample, resulting in a chiral Luttinger liquid in which backscattering

is suppressed entirely and the Luttinger parameter g becomes quantized[30]. In this

setting, g becomes a fingerprint of the topological order of the enclosed bulk; for example

g = 1
3
for the Laughlin state at Landau level filling ν = 1

3
[30, 80]. In such a scenario,

tunneling of whole electrons into the fractionalized edge of the ν = 1
3
state is predicted

to exhibit a quadratic scaling G ∝ T 2, V 2. The quadratic scaling is a direct result of the

quantized value of g = 1/3, and a central prediction of the theory is that this behavior

is universal and independent of microscopic details at sufficiently low temperatures and

bias voltages[30].

Experimentally, one of the most successful tests of the chiral Luttinger liquid theory

was obtained by studying tunneling between the edge of a two dimensional electron gas

(2DEG) hosting a FQH state at ν = 1/3 and a three dimensional electrode grown on

the cleaved edge of the semiconductor wafer[85, 37]. While striking power-law behavior

was observed over a wide range of bias voltages and temperatures[85], the exponent

1/g ∼ 2.7 was found to vary across samples and within the ν = 1/3 plateau[102, 86]—in

disagreement with the predicted quantized exponent 1/g = 3. This sparked a thorough

discussion about the nature of bulk-boundary correspondence and whether or not g is

indeed a distinct imprint of the topological order of the bulk [103, 104, 105]. However,

the possibility of edge reconstruction was soon identified as a confounding factor that

could reconcile the range of observed exponents with the chiral Luttinger liquid theory

[106, 89, 107].

In principle, a quantum point contact between integer and fractional quantum Hall
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Figure 3.18: Universal conductance scaling at weak coupling. (A) Optical
micrograph of the device with schematic depiction of chiral edge states. (B) Device
schematic showing the patterned top graphite layer, graphene monolayer, and global
bottom graphite gate[108]. The tunneling conductance across the junction is deter-
mined from the transmitted current I and diagonal voltage VD as G ≡ I/VD. (C) G
measured as function of V at Tprobe = 56mK, with VNS = −2.465V and B = 10 T. The
inset shows a parabolic fit to the low-V regime, giving T0 = 9.02± 0.007K as defined
in Eq. (3.3). The main panel shows G−Gmin, where Gmin = 7.5×10−4e2/h is the min-
imum conductance. Fitting a power-law gives an exponent of 2.00 ± 0.06 (Appendix
C), where the error represents the standard deviation in the fit parameter. (D) G
measured at V = 0 as a function of temperature at the same gate voltages as panel (c).
The dashed line is a plot of the conductance given by the first term of Eq. (3.3), using
T0 = 9.02 ∼K. (E) Nonlinear differential conductance for Tprobe =202mK, 245mK,
290mK, 344mK, 450mK, 549mK, 618mK, 666mK at VNS = −2.456V . (F) The same
data as in panel (e) after scaling G and V as described in the main text. The black
dashed line is G̃ as predicted by Eq. (3.3).

69



Quantum Point Contacts in Graphene van der Waals Heterostructures Chapter 3

edge states[30, 109, 98, 80, 110, 111, 112] provides a richer test-bed for chiral Luttinger

liquid physics. In this geometry, the collective modes of the ν = 1
3
and ν = 1 edges may

be modeled as chiral bosonic fields ϕa and ϕb, respectively, coupled by a single point

scatterer of strength Γ. The low energy physics is described by the Lagrangian

L =
1

4π

∑
i=a,b

∂xϕi(∂t − ∂x)ϕi + Γδ(x)
(
ψ†
aψb + ψ†

bψa

)
(3.2)

where the operators ψa = ei
√
3ϕa and ψb = eiϕb remove an electron on the ν = 1/3 and

ν = 1 edges, respectively. In Eq. (3.2), the first term describes the gapless bosonic edge

modes on either side of the junction, while the second term describes inter-edge tunneling

of electrons at the point contact. In the language of the renormalization group, the scaling

dimensions of the electron operator [ψb] = 1/2 while [ψa] = 3/2 is three times larger,

reflecting the topological order of the ν = 1/3 fractional quantum Hall bulk. In order for

the corresponding 2D Euclidean action to remain dimensionless, [Γ] = 1−[ψa]−[ψb] = −1,

meaning that edge-to-edge tunneling is irrelevant and becomes increasingly less important

at low energies. This leads to the remarkable conclusion that no matter how “open” the

junction is made—in other words, no matter how large the bare value of Γ is— the

conductance will vanish at a sufficiently low temperature and voltage bias[31]. Near this

decoupled fixed point, the conductance can be computed within perturbation theory [37],

giving

G(V, T ) =
e2

2h
(
2πT

T0
)2
[
1

3
+ (

eV

2πkbT
)2 + · · ·

]
(3.3)

for small temperatures T and voltage bias V . Here the bare tunneling strength is rep-

resented by T0, where for weakly coupled edges T0 ∝ 1/Γ. In this limit, the power law

exponent 1/g − 1 = 2 describing the T and V dependence provides a direct probe of the

bulk topological order.
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Quantum point contact experiments in semiconductor quantum wells have indicated

power-law behavior near the decoupled fixed point (close to full pinch-off) over a lim-

ited temperature range[32, 33]; however, the presence of disorder at the tunnel junction

often complicates the physical interpretation [32, 33, 82, 38, 113, 114, 73]. In a more

recent experiment [83] focused on the weak quasiparticle backscattering limit, the con-

ductance showed clear characteristics of a Luttinger liquid, but remained quantitatively

inconsistent with the predictions of chiral Luttinger liquid theory: the measured value

of the Luttinger parameter g did not align with predictions for any candidate incom-

pressible ground states at the filling factors studied in Ref. [83]. Interestingly, in our first

quantum point contact experiment, we also found non-quantized Luttinger liquid be-

havior resulting from a reconstructed fractional edge, this was described in the previous

sections. It appears that for both quantum point contact and cleaved-edge overgrowth

experiments, non-universal effects arising from the detailed structure of experimentally

realized edges[78, 115, 111, 116] push the universal scaling regime to energy scales beyond

experimental reach.

Prior studies of quantum point contacts have been limited to regimes dominated

by resonant tunneling effects, due at least in part to disorder introduced during the

fabrication of local split gates[22, 117, 23, 24]. Here, identically to the device described

in the previous section, we use anodic oxidation lithography to pattern nanoscale features

in graphite gates, which are then incorporated into a van der Waals heterostructure to

produce a clean quantum point contact [108]. A micrograph and schematic of our device

is shown in Fig. 3.18A-B. 44nm-thick hexagonal boron nitride (hBN) dielectric layers are

used as spacers between the monolayer graphene layer and the top and bottom gates. The

device architecture features a four-quadrant split gate geometry[108] where independent

voltages may be applied to the North, South, East and West top gates (VN, VS, VE and

VW, respectively) and a global bottom gate (VBG). With VBG held constant, VE and
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VW fix the filling factors of the East and West regions to 1 and 1/3, respectively, while

VNS = VN = VS is used to create a constriction by tuning the filling of the North and

South regions to ν ≤ 0.

The choice of VBG controls the ‘sharpness’ of the potential profile at the constriction,

parameterized by the energy scale EV ≡ e∂V
∂x
ℓb. Here V , which is defined as the applied

potential, is purely a function of the applied gate voltages and does not take into account

the finite compressibility of the 2DEG at high magnetic field. EV plays a key role in the

physics of fractional quantum Hall edges: when the confinement energy EV is smaller

than the Coulomb energy, the edge may reconstruct [78, 118], introducing additional edge

modes which may push the universal tunneling behavior to experimentally inaccessible

energy scales. As described in Refs. [108, 119], as well as thoroughly in the previous

sections covering our first QPC experiment, the control available in our geometry allows

us to access the universal regime of EC < EV while maintaining independent control of

the bulk filling factor and quantum point contact transparency.

We begin by investigating the ‘weak-coupling’ regime where G ≪ e2/h. This cor-

responds to the limit of eV ≪ 2πkbT0 and T ≪ T0/2π represented by Eq. (3.3). We

measure G ≡ I/VD (see Fig. 3.18B), which is a four-terminal measurement of the tun-

neling conductance [108, 119]. We tune T0 via VNS. Fig 3.18C shows G measured as a

function of the DC voltage bias, V , at a fixed Tprobe = 56mK and VNS = −2.465V . As

seen in the inset, the V -dependence is well fit by a parabola, with a curvature correspond-

ing to T0 = 9.02K in Eq. (3.3). To assess the quality of the power law fit, we subtract the

minimum conductance, Gmin and plot G−Gmin on a logarithmic scale (Fig. 3.18C). We

find a simple V 2 power law over one order of magnitude in V , corresponding to two orders

of magnitude in G−Gmin. Specifically, we find an exponent of 2.00± .06 (Appendix C).

While we have not studied the filling factor dependence in detail, a second measurement

taken at a different magnetic field and different value of the bulk filling factor within the
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ν = 1/3 plateau shows the same exponent(Appendix C).

We next compare experiment with the predicted zero-bias temperature dependence,

G(V = 0, T, T0), of Eq. (3.3). The result for T0 = 9.02K is shown in Fig. 3.18D. In

contrast to the voltage dependence, a T 2 power law is observed only for a limited range

of T, between 200mK and 700mK. We attribute deviations at lower temperatures to a

decoupling of the electronic temperature from Tprobe. At high temperatures, deviations

are expected as corrections to Eq. (3.3) become important, with significant deviations

onsetting for T > T0/(4π) ≈ 750mK(Appendix C). While the range of the power law

behavior in T occurs over a limited range, the observed power law in T is consistent with

the more robust power law in V , which is a manifestation of a general scaling relation.

Defining G̃ = 2G ·
(

T0

2πT

)2 · h
e2

and x = eV/ (2πkBT ), it follows that G̃ = 1/3 + x2 + · · ·

provides a universal low-energy collapse.

Fig. 3.18E shows G as a function of V for several different temperatures at VNS =

−2.456V . The same data, plotted as G̃(x), is shown in Fig. 3.18F. In these data sets,

T0 = 6.87K is determined by fitting the lowest temperature curve in Fig. 3.18E to

Eq. (3.3). For low values of V where universality is expected (Appendix C), the curves

collapse onto the universal parabolic curve expected from chiral Luttinger liquid theory.

3.9 Perfect Andreev Scattering of e/3 Quasi-particles

at a ν = 1/3 to ν = 1 Point Heterojunction

As seen in Fig. 3.18E, G approaches e2

2h
at high bias. Naively, this is surprising:

one might expect that full transmission of the incoming fractional edge mode would

cause the conductance to saturate at G = e2

3h
. In fact, the observed G ≈ e2

2h
can be

understood from the peculiar properties of the point contact at strong coupling, defined
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Figure 3.19: Andreev-like quasiparticle scattering. (A) G versus VNS taken at
B = 9T with a finite DC voltage bias of 145µV . Here, VBG=2.0V, VE=-1.460V, and
VW=-1.775V to maintain ν = 1 and ν = 1/3 on the ‘East’ and ‘West’ sides of the
junction respectively. (B) Schematic representation of the Andreev scattering process
for fractionally charged quasiparticles in the strong coupling limit[112] of a ν = 1/3
to ν = 1 point heterojunction. (C) Ratio of the reflected voltage Vr to the source
voltage Vi versus VNS; all other gate voltages are the same as in panel (a).

as eV ≫ kbT0 or T ≫ T0. The strong coupling regime is accessed most readily by

lowering T0 (i.e., increasing VNS) at fixed V and T , leading to a plateau in the differential

G ≈ e2

2h
(Fig. 3.19A).

Microscopically, the excess conductance can be understood by analogy to Andreev

scattering at a metal-superconductor interface [112, 111, 120]. In this picture, conduction

occurs when a pair of incident quasiparticles, each with charge e∗ = −e/3, is transmuted

into a single electron on the ν = 1 side through the simultaneous retro-reflection of a
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charge-e/3 quasi-hole into the downstream chiral edge state (see Fig. 3.19B). This process

leads to the observed nearly-quantized increase in G. Moreover, when the Andreev pro-

cess is the dominant form of charge transfer across the junction, the downstream ν = 1/3

edge hosting the retro-reflected hole is expected to develop a negative chemical potential

with magnitude that is one half of the voltage of the incoming edge[121, 112]. Fig. 3.19C

shows the measured reflected voltage Vr under the same conditions as the G data in

Fig.3.19A. The near-quantization of both G and Vr/Vi over the same broad range of

junction transparency implies that the described Andreev process completely dominates

charge transfer. This contrasts with previous experiments in semiconductor wells[114],

where a much smaller effect was observed, likely mediated by resonant scattering.

3.10 Comparison of Tunneling Characteristics of a

ν = 1/3 to ν = 1 Heterojunction to an Exactly

Solveable Quantum Impurity Model

In our discussion, we have considered only single electron tunneling between edges,

parameterized by Γ; however, additional processes such as electron co-tunneling may

also contribute, which would be represented by additional operators not included in

Eq. (3.2). Renormalization group analyses have shown[80] that as Γ → 0 these terms are

more irrelevant than Γ. This guarantees that regardless of microscopic details Eq. (3.2)

becomes a good approximation to the physical system at sufficiently low energies. This

is characteristic of a stable fixed point of the renormalization group, and accounts for the

universal scaling behavior demonstrated in Fig. 3.18.

A different result is obtained at strong coupling—formally Γ → ∞—which represents

an unstable fixed point[112, 122]. At this fixed point the dominant process that transfers
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Figure 3.20: Crossover from weak to strong coupling. (A) Schematic of renor-
malization group flow in the Γ-U , where U represents additional perturbations to
Eq. (3.2). (B) G as a function of the voltage on the North/South gates, VNS, and
the DC voltage bias V at B = 10T . (C) Line cuts of panel (b) at the values of VNS

indicated by the colored points. Black dashed lines are plotted using the value of G
predicted by Eq. (3.4) where the parameter T0 is extracted from the low-bias conduc-
tance. (D) The zero-bias conductance also scales with temperature in agreement with
Eq. (3.4) for low energies. While the data deviates from the model at high energies,

G nevertheless exceeds G = e2

3h for T ≫ T0, indicating strong coupling at high T . (E)
The data from panel d, after scaling T by T0. The curves collapse onto the universal
scaling formula Eq. (3.4), shown in black.
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charge across the junction is Andreev scattering. However, while other processes vanish

when Γ = ∞—giving G = e2

2h
—for any finite value of Γ, G is expected to vanish at

low energies as the system flows toward the stable Γ = 0 fixed point. This is shown

schematically in Fig. 3.20A, which depicts a renormalization group flow diagram indicat-

ing the trajectory of the conductance as the energy is lowered. In this plot, the y-axis,

Γ, represents the coefficient of the operator which transfers an electron between the two

edge modes, while the x-axis represents the coefficient ‘U’ of any operator not explicitly

captured in Eq. (3.2). As is seen in the diagram, finite U , expected for realistic het-

erojunctions would seem incompatible with approaching the strong coupling fixed point.

For this reason, the strong coupling limit was previously thought to be practically in-

accessible except through highly tuned resonant scattering [123, 121]. While fine-tuned,

this limit would arise if the QPC forms an adiabatic constriction in which approximate

momentum conservation along the QPC prevents backscattering between the N and S

edge [124].

The fact we observe near-perfect Andreev reflection when the junction is highly trans-

missive suggests the microscopics of the system approach the strong-coupling fixed point

with negligible contributions from the additional operators represented by U . When

U = 0, Eq. (3.2) can be mapped to an integrable ‘quantum impurity model’ with an

exact solution for all values of Γ[31, 122]. The solution provides an expression for G at

arbitrary V , T , and T0,

G(V, T ) =
e2

2h

∫ ∞

−∞
dE

−(2E + eV )2

(2E + eV )2 + (kbT0)2
f ′(E) (3.4)

where f(E) is the Fermi-Dirac function[122]. Eq. (3.4) provides a universal crossover

function which describes the transition between weak and strong coupling, depicted as a

single line along the y-axis (U = 0) of Fig. 3.20A[111, 112, 122]. The integral reduces to
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Eq. (3.3) for T0 → ∞, corresponding to the weak coupling fixed point, and gives e2

2h
for

T0 → 0 corresponding to strong coupling.

Fig 3.20B shows G as a function of V and VNS at a probe temperature Tprobe = 56mK.

Throughout the plotted range, the high V conductance saturates to approximately e2

2h
as

expected for the strong coupling fixed point. Meanwhile a zero-bias dip remains visible

for all VNS, indicative of the instability of the point contact to edge decoupling at low

energies. To quantify how closely the quantum impurity model describes our system,

we compare Eq. (3.4) to our experimental data as a function of V and T , and T0. In

Fig. 3.20C, we plot four curves extracted for different values of VNS. For each curve,

T0 is determined from a fit to the low bias behavior with an appropriate low-energy

expansion of Eq. (3.4) (Appendix C). For the largest fit values of T0, the residual value

of G when V = 0 can then be used as a primary thermometer—in effect allowing us

to correct for a possible lack of equilibration between the electron temperature and the

probe thermometer. Using this method, we find Telectron = 91mK for the T0 = 9.02K

trace, in contrast to the measured probe temperature of 56mK. Taking 91mK as the

electron temperature for the remaining data sets in Fig. 3.20C, Eq. (3.4) may then be

used to generate V -dependent curves interpolating between weak and strong coupling.

These curves are overlaid in black on the experimental data in Fig. 3.20C(Appendix C).

Fig. 3.20D shows G(V = 0, T ) plotted as a function of the probe temperature for

the same values of VNS as in Fig. 3.20C, along with the results of Eq. (3.4) for the

corresponding values of T0. While Eq. (3.4) does not provide a simple scaling between

temperature and voltage as is available at the weak coupling fixed point, for V = 0 the

conductance can be written as a function of the scaled temperature, T/T0. Fig. 3.20E

shows the V = 0 conductance plotted as a function of T/T0. The four data sets shown

in unscaled form in Fig. 3.20E collapse onto different parts of the universal crossover

function between weak and strong coupling. Note that for panels D-E, the temperature
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is measured on the probe and no corrections are made for disequilibrium between Telectron

and Tprobe, leading to systematic deviations between experiment and theory at the lowest

temperatures. The collapse of the experimental data onto a single universal curve over

nearly two orders of magnitude in T0 strongly supports the conclusion that our quantum

point contact realizes the exactly-solvable Lagrangian of Eq. (3.2) to a high degree of

accuracy, and in particular, that tunneling predominantly occurs via a single point at

the QPC rather than via a number of disorder-induced scattering centers.

3.11 Nearly Adiabatic ν = 1/3 to ν = 1 Heterojunc-

tion - Making a Dissipationless, Passive, DC

Step-up Transformer

At the strong coupling fixed point the quantum point contact acts as a nearly dissi-

pationless splitter, partitioning current injected on the ν = 1 edge equally between the

downstream ν = 1/3 and the upstream ν = 1 edge states[112]. For Γ = ∞, the partition-

ing happens with unit probability. In this limit, no entropy is generated and dissipation

does not occur, leading to unity power efficiency[121]. This contrasts with the more con-

ventional case of partial transmission of edge modes at a quantum point contact, where

fluctuations arising from partition noise lead to dissipation. The dissipationless current

splitting property of the strong coupling fixed point allows us to operate our device as

a voltage step-up transformer[121, 112]. Fig. 3.21 shows the differential gain, dVo/dVi,

where Vi is the input voltage applied to the upstream ν = 1 edge state and Vo is the

output voltage measured on the downstream ν = 1/3 edge state with all other contacts

grounded. The differential gain is very close the theoretically expected value of 3/2 [121].

Remarkably, because it is built on a purely zero frequency effect, the transformer gain
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Figure 3.21: Zero frequency voltage step-up transformer. (A) The differen-
tial gain dVo/dVi and resulting integrated DC gain β = Vo/Vi, measured in the con-
figuration shown in the inset, with B=9T, Tprobe=48mK, VE=-1.460V, VW=-1.775V,
VNS=-3.225V, VBG=2.0V. The FQH Andreev scattering process yields an enhance-
ment of the output voltage on the FQH side [121], with the DC gain predicted to reach
a value of 1.5 in the dissipationless limit. Experimentally, we find a gain β = 1.46,
despite the nonlinearity at low bias arising from the suppression of the Andreev scat-
tering at low energies. (B) The DC power dissipation ratio, calculated from β via
Pout/Pin = (2β/3)2 − (2β/3) + 1, is plotted versus V, and reaches a maximum value
of 97.6% [124].
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remains almost the same even in the ‘direct current’ (DC) limit, as can be seen in the

behavior of the integrated gain, Vo/Vi, in comparison to its differential counterpart. The

exceptionally high power efficiency, which peaks at 97.6%, is a testament to how closely

the experiment realizes the strong-coupling fixed point, and contrasts favorably with zero

frequency voltage amplification based on superconductors[125, 126] and bilayer quantum

Hall systems[126, 124].

Our observation of universal chiral Luttinger liquid physics at both weak- and strong-

coupling directly paves the way for experiments on two dimensional systems where meso-

scopic electrostatic control plays a key role in addressing unanswered questions about

strong correlations, topological order, and quantum statistics. Examples include even

denominator fractional quantum Hall states observed in mono-[14, 127] and bilayer

[128, 10, 59] graphene, where taming edge reconstruction in a quantum point contact

may allow for unambiguous experimental constraints on the ground state topological

order [129, 130, 131, 132, 120]. In addition, the flexibility inherent in anodic oxidation

prepatterning will also allow independent tuning of quasiparticle number, edge sharp-

ness, and quantum point contact transparency in interferometer geometries where direct

access to quantum statistics are possible[133, 134]. Finally, gate-defined point contacts

may allow for precision measurements of order parameters in the recently discovered

crystalline graphene superconductors[20, 66, 67].
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3.12 Permissions and Attributions

1. The content of this chapter also appears in Ref. [26, 27, 28].
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4
Edge State Interferometers in Graphene van

der Waals Heterostructures

4.1 Overview

Anyons are two dimensional particles with fractional exchange statistics which emerge

as elementary excitations of fractional quantum Hall phases[135, 136, 137, 138]. Abelian

anyonic statistics may be accessed in a Fabry-Pérot interferometer through the phase Nθa

accumulated by a delocalized edge state encircling N localized anyons [139, 140, 141, 142],
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where θa is twice the exchange phase[143]. Previous experiments on Fabry-Pérot inter-

ferometers in semiconductor quantum wells have revealed phase slips indicating the re-

versible entry and exit of anyons into the interferometer loop at filling factors ν = 1/3

and ν = 2/5[144, 145]. Here, we describe measurements of the anyonic phase in a mono-

layer graphene based Fabry-Perot interferometer at ν = 1/3. Operating in Aharonov-

Bohm dominated regime, we find a preponderance of phase slips with θa ≈ 2π/3, as

expected when a single Laughlin quasiparticle enters the interferometer loop. Strikingly,

we find that the phase slips occur instantaneously and irreversibly on typical laboratory

timescales. We show that this effect is a consequence of slow underlying charge dynamics

in our devices, in which single anyons may remain trapped in the interferometer loop out

of equilibrium for as long as 10 minutes. The quenching of charge dynamics on practi-

cally relevant timescales allows us to separate the dynamical tuning of the interferometer

area from changes in the anyon number, denoted as Nqp, allowing us to measure the

interferometric phase shift of individual single-anyon events as a function of a single gate

at fixed magnetic fields. Besides providing a replication experiment giving θa = 2π/3

at ν = 1/3 in a different two dimensional electron system, our results show that the

topological dephasing time represented by unwanted anyon motion can be made prac-

tically infinite. This is a necessary condition for the eventual implementation of robust

topological quantum information processing at more fragile non-abelian filling factors in

graphene heterostructures.
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4.2 Introduction

When an abelian anyon is brought along a closed trajectory encircling Nqp localized

anyons, its wave function accumulates a phase

Φ = 2π
e∗

e

AI(B,Nqp)B

ℏ
+Nqpθa (4.1)

where AI(B,Nqp) is the area of the loop (which may vary with applied magnetic field

and quasiparticle number in a non-trivial way), B is the applied magnetic field, Nqp

is the number of anyonic quasiparticles localized inside the bulk of the interferometer,

and θa is the anyonic braiding phase, or twice the exchange phase accrued when two

identical anyons are swapped. Quantum Hall Fabry-Perot interferometers (FPIs) exploit

the contrast between localized anyonic quasiparticles in the fractional quantum Hall

bulk and propagating anyonic quasiparticles of the gapless chiral edge modes to directly

observe this phase[139, 140, 141, 142]. In a FPI, delocalized anyonic quasiparticles enter

the cavity via a quantum point contact and propagate along the edge to a second quantum

point contact; they can then either exit the cavity immediately or complete an integer

number of additional circuits before exiting. Trajectories undergoing different numbers

of circuits of the sample bulk give an interference contribution to the conductance, δG ∝

cos(θ), which may be measured as a function of B, AI , or Nqp. The clearest signature of

anyonic statistics is expected if Nqp changes discretely while keeping AI and B fixed; the

resulting jump in θ then gives θa directly.

Initial investigations into the behavior of Fabry-Perot interferometers in the quantum

Hall regime in GaAs 2DEG systems quickly revealed that the effects of the Coulomb

interaction may have a deleterious effect on efforts to observe the anyon phase[146, 147,

142]. In particular, as charges enter the bulk of the interferometer, Coulomb repulsion
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may lead to a change in AI regardless of whether θa is finite. If this “bulk-edge coupling”

is large, the resulting change in the Aharanov-Bohm (AB) phase obscures the phase-

slip θa. Recently, a breakthrough in the design of GaAs heterostructures led to the

observation of phase shifts that agree quantitatively with expectations for θa in the ν =

1/3 state[134, 144, 148, 145]. In these experiments, screening layers are used to suppress

the bulk-edge coupling to the point where it plays a quantitative role in the observed

interference but does not obscure the contribution of the anyon phase.

Graphene heterostructures are a natural venue in which to extend these results owing

to the large energy gaps observed for both Abelian and non-Abelian filling factors as well

as the screening provided by nearby graphite gates in standard dual-gated geometries.

Indeed, several recent experiments have observed Aharonov-Bohm dominated interference

at both integer and fractional fillings[23, 24, 95, 149, 150]. However, measurements of θa

in graphene have not been previously reported.

4.3 Fabrication and Device Geometry

In this chapter we study a monolayer graphene-based FPI, shown schematically in

Fig. 4.1 and Fig. 4.2a. We use anodic-oxidation lithography of a graphite flake com-

bined with van der Waals assembly and standard processing to fabricate a device with

six separated regions that can function as independent top gates[26, 27]. The NE/SE

and NW/SW gates function as depletion gates to define two quantum point contacts.

A plunger gate (P) provides additional control of the interferometer area. The center

gate (C) is used to set the filling factor, while a global bottom gate is used to adjust

transmission through the quantum point contacts. The additional post heterostructure

assembly fabrication steps follow an identical process to that laid out in Appendix B for

our quantum point contact devices. The only difference is the structure of the AFM top
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gate; an optical image of the device studied here is shown in Fig. 4.1a. This is shown

along with the AFM topograph of the cut top gate forming the interferometer and the

device heterostructure in Fig. 4.1b-c.

As described in Appendix B, during transfer of the pre-patterned graphite the flake

remains contiguous to improve strutural integrity of the microstructure. After the het-

erostructure is assembled, standard RIE plasma etching is used to fully etch away un-

wanted regions of the stack and in the process separating the previously connected

graphite gates in non-critical regions away from the interferometer. This results in the six

individually tunable gate regions, controlled by voltages labeled VNE, VSE, VNW , VSW ,

VCG, and VP respectively.

NW NE

SW SE
P

CG

(a)

50nm hBN

50nm hBN

(b) (c)

Figure 4.1: (a) Optical micrograph of device discussed in this section. (b) AFM
topograph of anodically oxidized graphite gate layer after pick-up with an hBN flake
with the various gate regions labeled respectively (NW, SW, NE, SE, and P). (c)
Heterostructre layout: the device consists of an AFM cut top gate, which is later
separated into six individually addressable gates, a monolayer graphene (middle layer),
and a global graphite bottom gate. Each conducting layer is separated by an exfoliated
50nm hBN dielectric. Electrical contacts to the edge of the monolayer are shown in
yellow. The edge-state trajectory which creates the Fabry-Pérot interferometer from
the applied gate potentials is shown by the red-arrows.
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4.4 Interference and Measurement of θa at ν = 1/3

Here we report the observation of phase slips associated with the statistical phase

of individual anyons within our interferometer loop. As compared to existing litera-

ture, the key distinguishing feature of our work is the exceptional stability of individual

configurations with fixed Nqp localized anyons. In previous works, equilibrium charging

dynamics are evident in the interference patterns; in both integer and fractional regimes,

interference patterns are typically characterized by a smooth crossover between states of

defined charge, where thermal fluctuations Nqp lead to dephasing [41, 144]. In contrast,

we find that the quasiparticle charge of the interferometer equilibriates only over kilosec-

ond timescales. Our results demonstrate that the topological charge of a graphene-based

FPI can be held stable over timescales long enough for any near-term efforts to control

single anyons.
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Figure 4.2: Fabry-Pérot Interference in the ν = 1/3 State (a) Schematic of
our dual-graphite gated monolayer graphene quantum Hall edge state Fabry-Pérot
interferometer. The gates defining the interferometer are labeled C, NW, SW, NE,
SE and P respectively. Edge states are formed under the center gate and enter the
interferometer via two, independently tunable QPCs defined by the NW/SW and
NE/SE gates respectively. There is also a global graphite back gate, which we label
BG. (b) 1/Rxy measured across the devie as a function of VTOP , all the top gates
held at the same voltage. Here VBG = −1.5V . (c) Conductance through each QPC
vs. DC bias, VBG = −2V . The blue trace is taken with VNW/SW = 2.232V and
VNE/SE = −4.1V . The red trace is taken with VNW/SW = 0.5V and VNE/SE = 2.232.
(d) GD(e

2/h) plotted against B(T) and VP (V ) for VCG = 2.23V and corresponding
to the filling indicated by the blue arrow in panel b (ν = 1/3). Periodic oscillations
in the conductance indicative of Aharanov-Bohm type interference are observed to
be interrupted by sudden jumps in the phase as a result of the tunneling of a single
anyon into the bulk of the interferometer. (e) Extracted magnitude of the phase slips
observed in (d), ∆Θ = θ − θAB.

Transport data at B=9T (Fig. 4.2b) shows well developed plateaus corresponding

to filling factor 1/3 and 2/3 as the charge density is varied by applying a single volt-

age to all six top gates. We operate our interferometer within the 1/3 plateau at the
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point indicated. To probe the transmission through the interferometer, we measured

the diagonal conductance, shown schematically in Fig. 4.2a. The diagonal conductance

is defined as GD ≡ Iout/(V+ − V−). To confirm that our experiment is probing chi-

ral edge modes of the 1/3 state, we individually measure the bias dependence of the

two quantum point contacts in their partial transmission regime (Fig. 4.2c). Both show

strong suppression of the conductance at low bias, as expected for chiral Luttinger liquids

where arbitrarily weak impurity potentials lead to strong backscattering at sufficiently

low energies[30, 85, 37, 32, 38, 27]. Notably, this behavior is neither expected nor ob-

served in the integer quantum Hall regime, giving us confidence that a single ν = 1/3

edge state is transmitted through our quantum point contacts.

Tuning both QPCs to partial pinch off (see supplementary information), we observe

high visibility oscillations in GD as a function of all gate voltages and applied magnetic

field B. A scan using VP to tune the interferometer area over a range of B that spans the

ν = 1/3 plateau is shown in Fig. 4.2d. Lines of constant phase follow a negative slope on

this plot, implying that increasing the depletion region, and thus decreasing the inter-

ferometer area, requires a concomitant increase in magnetic field to maintain a constant

phase. This is a the signature of the Aharonov-Bohm regime[142]. The Aharanov-Bohm

behavior can consequently be used to characterize the device parameters. From their pe-

riodicity in B of ∆B ≈ 14− 18 mT, we obtain a loop area of AI = 0.69− 0.89µm2 from

the relation e
3
AI∆B/h = 1. This is similar to the nominal device area of 0.74− 0.83µm2,

whose range is defined by the area of the center gate including or excluding the surround-

ing gaps between the top gates. By analyzing the period ∆VCM of the interference as

the voltage of the 2DEG itself is varied (i.e., the common mode of the transport leads),

we obtain the capacitance of the edge state CI = e/∆VCM = e2/235µeV. Within the

chiral Luttinger liquid theory f the edge, we may then extract the edge velocity via the

relation hv
νL

= 235µeV. Taking L = 3300± 110nm, we obtain v = 6.2× 104m/s.
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The oscillatory conductance depicted in Fig. 4.2d is punctuated by sharp ‘slips’

in the interference phase. These are effectively instantaneous with respect to the 30-

second measurement time of each individual line trace. To extract the value of the

individual phase slips, we first Fourier transform GD with respect to VP for each value of

B and extract the phase of the largest-magnitude peak, which determines Φ(B). Φ(B)

is expected to contain a smoothly-varying AB part, plus the anyonic part: Φ(B) =

e∗AI(B)B/ℏ+Nqpθa. To isolate the latter, we extract the AB contribution ΦAB using a

trimmed mean of the phase evolution observed between phase slips. The residual phase,

Φa = Φ − ΦAB, is shown Fig. 4.2d. Excepting three events, the phase exhibits nearly

quantized jumps of |∆Φ|/2π = 0.334±0.027, where the uncertainty reflects the standard

deviation across the 13 phase slips shown in Fig. 4.2e.

We interpret these sharp slips as the sudden entrance of an e/3 anyon into the in-

terferometer. The very small deviation of these phase slips from the predicted fractional

statistics implies a remarkably low degree of bulk-edge coupling[142]. This may arise if

the anyons predominantly enter into localized impurity states a distance R > d from the

edge, where d = 45 nm is the gate distance. When a charge e/3 fills such a state, the

compressible edge will partially screen the resulting potential, effectively increasing AI ,

an effect known as bulk-edge coupling. Accounting for the electrostatics of a double-gated

device, this screening will induce a charge

δQI ≈ −e
3

CI

π
√
ϵxyϵzL

exp

(
−πR

2d

√
ϵz
ϵxy

)
, (4.2)

where CI is the capacitance of the edge state, L is the perimeter, and ϵxy = 6.6 and

ϵz = 3 are the dielectric constants of the hexagonal boron nitride dielectric. Taking the

measured values of CI = e/(235µV ) and L, the bulk-edge coupling contribution to the

phase slip is δθ = 2π × δQI/e ≈ 2π × 0.57 e−R/45nm. For R > 120 nm, corresponding
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to approximately 50% of the area of our interferometer, this correction is less than our

experimental uncertainty. Our uncertainty is not dominated by statistical uncertainty,

taking the standard deviation of θ inside of each stable phase-class, we see that δθ ≈ ±2π∗

0.01. Our error is primarily dominated by a systematic introduced during the Fourier

transform analysis; different choices for how to extract the phase of the dominant Fourier

component lead to slightly different results for each phase slip. This is a natural result

as the interference pattern is not perfectly periodic in VP . We estimate this uncertainty

to be about δθ = ±2π ∗ 0.04. Assuming impurity sites to be randomly distributed, then,

it is reasonable that the plurality of events will have undetectable bulk-edge coupling.

We also observe two “soft” horizontal features near VP ∼ 0,−0.75V. These features

occur reversibly in B and VP , and exhibit a slip with ∆Φ/2π ∼ 0.2. We interpret these

soft slips as impurity states which are very close to the edge controlled by the plunger gate,

which can therefor equilibriate with the edge on a time-scale faster than our measurement

sweep. Such states would also have a larger degree of bulk-edge coupling, explaining the

relatively smaller magnitude of the phase slips. Moreover, these “soft” slips have a nearly

vertical trajectory in the B-VP plane indicating extremely strong coupling to the plunger

gate, implying this charge state is strongly localized to defect near the edge. In fact,

in the integer quantum Hall regime we observe a number of these defects where we can

deduce their location by studying the relative lever arm of the charge degeneracy point

to each gate in our device vs. magnetic field (see Appendix D).

We note that the cascade of events which begins at B > 8.95T is consistent with the

chemical potential exiting the nearly-incompressible region of a ‘hard gap’, though the

system may remain within the transport plateau. In line with theoretical analysis of gated

devices, for B < 8.95T we interpret the bulk to be nearly incompressible, so that anyon

charging events are rare. In contrast, outside the gap one e/3 anyon enters with every flux

quanta so as to keep the density constant. In this regime, the AB and statistical phases
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cancel so that Φ(B) is (on average) constant, as we observe. Remarkably, however, this

still occurs through a series of sharp phase slips. This analysis does leave a mystery as to

why, within the gap, the rare charging events have an opposite sign from expected. We

conjecture this is actually a non-equilibrium effect due to the preparation history before

the trace, as will be explored in the following sections.

These striking features can be contrasted with the signals observed in previous frac-

tional quantum Hall edge state interference measurements [134, 144]. In these works,

repeatable, reversible phase slips in the interference phase were observed, whose location

in the B − V plane exhibited a clear dependence on both the magnetic field and gate

voltage. Additionally, rather than a sharp jump as observed here, the phase slip occurs

continuously over a narrow range of magnetic field and plunger gate. In this range the in-

terference is also suppressed. This is interpreted as a consequence of thermal fluctuations

between occupation of Nqp and Nqp + 1 anyons in the inteferometer at the degeneracy

point, which contributes a strong ‘topological dephasing’. Taken together, their observa-

tions suggest the bulk anyon occupation Nqp is in equilibrium with the edge on the time

scale of the measurement.

4.5 Quasi-particle Dynamics in ν = 1/3

Having established the existence of events consistent with a nearly-quantized value

of the predicted anyonic braiding statistics, we now turn to the quasiparticle charging

dynamics. Fig. 4.2a shows two interference plots taken over the course of 10 minutes

each. The two QPC voltages are set to the same set points as in Fig. 4.2d. In these

plots, the plunger gate is fixed while the C gate is swept rapidly around an average

value of V̄C = 2.23V ; interference fringes are plotted against the deviations δVC about

this average. As in Fig. 4.2d, a series of discrete slips are observed. However, in these
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rapid measurements, phase slips do not occur until several minutes into the sweep. As

a result, the initial minutes of the sweep show only continuous phase evolution arising

from the Aharanov-Bohm effect as the flux through a loop of fixed anyon charge and

approximately fixed size. This hysteretic behavior arises naturally in the presence of

slow charge dynamics. In this scenario, slow charging leads to a lag between the system’s

chemical potential and its equilibrium value. This effect will be most pronounced within

the where quasiparticle states are decoupled from the edge, as expected for localized

states pinned to disorder potentials deep in the sample bulk, consistent with the seemingly

random charging events within the plateau region in Fig. 4.2d.

To probe these dynamics directly, Fig. 4.3c, the magnetic field is ramped back and

forth over a 40mT range, pausing for 10 minutes at each extreme, while VC is continuously

ramped over a ∼1.5 mV range. In this regime, no charge equilibration is observed over

many sweeps, despite the fact that the number of flux quanta in the loop are modulated

several flux quanta. This either implies a hard gap, devoid of available quasiparticle

states, or equilibration times considerably in excess of ten minutes. Evidence for slow

equilbration is visible in Fig. 4.3d, taken for a slightly different values of V̄C . Here

the field is ramped and then held fixed for 35 minutes. Several phase jumps are visible

after a time delay of 15 minutes. Notably, in two cases, different time domains show

nearly identical interference curves, despite the presence of phase slips (summing to 2π)

separating them. We identify these with a return to the same quasiparticle number state

further implying that charge equilibrates into the interferometer through a small number

of highly pinned charge states.

It’s possible that the observed pattern of phase slips lends itself to a simple interpre-

tation in terms of two or more defect states. One defect state is located near the edge,

and charges and discharges randomly on a timescale of one minute or less. This defect

contributes the phase slips observed at t = 4.8 7, and 11 minutes, with a magnitude
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Figure 4.3: Charging dynamics for quasi-particles at ν = 1/3 (a) GD vs. VC

as the magnetic field is swept from 8.6T to 9T. The latter half of the measurement
shows a series of sudden phase jumps like in Fig. 4.2d, beginning after B > 8.750T and
continuing until the end of the sweep. Inset cartoon illustrates the how the chemical
potential would be changing in equilibrium as the magnetic field is changed from 8.6T
to 8.9T, however the true chemical potential (in gray) lags behind its equilibrium
value as the charge slowly trickles into the interferometer while the chemical potential
passes by a series of localized states. (b) Same as panel a, however the magnetic
field is swept in the reverse direction, back from 9T to 8.7T. Now, the sudden phase
jumps differ in exact location, number, and magnitude, not beginning until B < 8.9T .
Notably the region in field between 8T and 8.9T is phase slip free and exhibits pure
AB oscillations, indicating no quasi-particles have been added to the interferometer
bulk. (c) Upper panel: GD plotted against VC versus time while the magnetic field is
varied. Lower panel: B-field magnitude versus time for the data in the upper panel.
(d) Upper panel: GD potted versus VC and time. Middle panel: B-field magnitude
versus time for the data in the upper panel. After the field is swept to its final value
at t = 5min a series of sharp phase slips is observed indicating a slow equilibration of
Nqp in the interferometer. Lower panel: magnitude of the sudden phase jumps in the
upper panel.
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which is significantly less than 2π/3, as expected for an edge-coupled defect. In contrast,

the charging of one or more defects deep in the interferometer bulk is slower, occuring

on 10 minute timescales and giving a nearly perfectly quantized phase slip magnitude.

4.6 Evolution of Phase Slips in ν = −1 and Localiza-

tion Transitions

To study the evolution of the bulk charging time, we study integer filling of ν = −1

at B = 4T in a second device of identical structure to one shown in Fig. 4.1c. Working

at integer filling allows us to operate the quantum point contacts over a larger range of

voltages, while the single chiral edge mode of ν = −1 avoids the complexities of multiple

edges, which can give complex interference behavior [87, 57]. Moreover, because no anyon

phase slips are expected, working at ν = −1 allows us to characterize bulk edge coupling

which is responsible for any observed phase shifts[142]. Here we show the interference

patterns at three distinct locations within the ν = −1 field plateau marked in Fig. 4.4a.

Fig. 4.4b shows interference data taken at the low-field end of the ν = −1 plateau.

Notably, as this data was taken at ν = −1, depleting the interferometer area requires

positive instead of negative voltage. Here we observe repeatable ‘soft’ small magnitude

phase slips. These phase-slips occur along lines of positive slope in the B-AI plane which

is consistent with the Rosenow-Stern-Halperin model of bulk-edge coupling where the

bulk is highly compressible and adding charge affects the outer area of the interferometer

resulting in a phase slip with every charge added.

As we increase the magnetic field and move closer to the center of the ν = −1

transport plateau, we observe a qualitative change in the behavior of the ‘soft’ phase

slips. While the phase slips are still both regular and visible with positive slope in the

96



Edge State Interferometers in Graphene van der Waals Heterostructures Chapter 4

B-AI plane, instead of having a continuous evolution with plunger gate and magnetic

field, we observe ‘glitchy’ behavior near each charge degeneracy point; this is shown in

Fig. 4.4b. As we increase the magnetic field further near the center of the ν = −1 plateau,

the ’glitchy’ behavior stops, and we recover the same behavior observed in the fractional

quantum Hall regime where the interference data shows lines of AB phase interrupted by

sharp non-repeatable phase slips, shown in Fig. 4.4d. The magnitudes of the extracted

phase slips in Fig. 4.4d are shown in Fig. 4.4; the values are extracted in an identical

manner to those in Fig. 4.2d.

This behavior for a graphene based system is not fundamentally unexpected. As

the magnetic field increases and the filling factor moves closer into the hard gap at

ν = −1 one expects any remaining quasiparticle density of states to become localized

at sharp coulombic impurity potentials created by defects in the hBN substrate [?, ?].

A cartoon of this transition is shown in Fig. 4.4f. In region I the expectation is the

bulk is highly compressible and there is a large set of quasi-particle states which have

some net capacitance to the edge of the interferometer. This coupling is expected to

shift AI(B,Nqp) for every additional flux-quantum threaded through the interferometer,

leading to the repeatable ‘soft’ slips observed. In region II as the field is increased and the

filling factor moves more towards the center of the transport plateau. The expectation

here is that the states begin to become localized eventually becoming sharp localized

impurities as depicted in the cartoon in Fig. 4.4f for region III.

As the quasiparticle density of states becomes more localized the average distance

from any bulk impurity to the edge should decrease. The tunneling rate Γ for a quasi-

particle on the edge to a local impurity in the bulk scales as Γ ∼ e−(L/lb)
2
, where L is

the distance from the edge to the impurity, and lb is the magnetic length. While the

tunneling rate is gaussian in the distance from the edge, the bulk-edge coupling scales

exponentially in the gate distance (from the monolayer to the top gate), which in our
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Figure 4.4: Evolution of the quasi-particle charging timescale in the IQH
regime. (a) Three ranges within the ν = −1 field plateau at fixed density, in which
the Fabry-Perot interference pattern is measured and shown below. (b) Interference
in region I, showing gradual phase slips that occur approximately with every addition
of one flux quantum. The phase slips occur along positively sloped lines. (c) Interfer-
ence data across region II, showing phase slips which are now observed as two-state
switching noise concentrated along positively sloped “glitchy lines”. (d) In region
III, the phase slips are now sudden in time and do not reverse as the measurement
continues, a manifestation of a switching time much longer than the time taken to
measure several line traces. (e) The phase calculated from the FFT of panel D, with
a linear-in-B Aharonov-Bohm contribution subtracted. The average magnitude of the
discrete jumps, determined from the hard-slip regime (III), is ∆θ = −0.087, consis-
tent with a mild amount of bulk-edge coupling as observed in panel b. f Schematic
illustration of bulk quasi-particle distribution for the corresponding regions I, II and
III respectively.
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Figure 4.5: Two-state switching noise for “glitchy” phase slips in region II.
(a) A line trace of an interference fringe measured slowly across a noisy line by tuning
the plunger gate. The interference signal can be seen to be switching between two
envelopes (drawn in as guides to the eye) which are phase shifted. (b) The transmitted
current plotted as a function of time while the plunger gate is fixed on one of the noisy
charge-degeneracy lines. (c) The characteristic time τ as a function of magnetic field,
determined from fitting the time separation of switching events to an exponential
distribution, from switching noise measured at four distinct charge-degeneracy lines
near region II.

device is ≈ 45 nm > 3.5lb. This remarkable difference in length scale enables us to ob-

serve an increase of over three orders of magnitude in the tunneling time τ ∼ 1/Γ by

measuring the effect on the interference phase resulting from weak bulk-edge coupling.

For B < 4.0T where we observe the continously tunable ‘soft’ slips, the tunneling

time from the edge to states in the bulk is less than the measurement time, set to

10ms (set via our lock-in time constant). Similarly, for B > 4.4T where the phase slips

become unrepeatable and occur instantaneously, the tunneling time should be much

greater than the time it takes to perform a single line trace, in this case 1 minute. To

extract τ quantitatively as a function of magnetic field we focus on the ‘glitchy’ slip

regime in Fig. 4.4c. A line trace of the transmission coefficient, T ≡ Iout/Isrc where

Isrc is the sourced current into the interferometer, versus VP measured slowly across a

characteristic ‘glitchy’ phase slip is shown in Fig. 4.5a. Here the tunneling time into a

bulk quasi-particle state from the edge is shorter than the line-trace time, but longer
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than the measurement averaging time set by the lock-in amplifier. As the plunger gate

is swept at a fixed magnetic field (B = 4.183T), near the charge degeneracy point T

can be observed to bounce between two possible curves (guides to the eye are drawn

in red and blue in Fig. 4.5a). We attribute these two envelopes to the two possible

interference patterns which correspond to either N or N+1 quasi-particles in the bulk,

and the phase shift simply comes from a small bulk-edge coupling effect as in region I

but now the average distance from the edge to the bulk is on the order of ℓb such that

10ms << τ << 1min.

To verify that indeed the noise observed in Fig. 4.5a is really the result of a two-state

quantum switching model, we park at a fixed value of VP = 1.45V and B = 4.183T

and monitor T as a function of time as shown in Fig. 4.5b. We see that the trace

takes on a binary distribution and switches instantaneously back and forth between two

values. At the charge degeneracy point we expect that the tunneling rate has some

characteristic time τ , however at an arbitrary magnetic field and plunger gate voltage

de-tuned in energy slightly from the the charge degeneracy point we expect that the ratio

P1→2/P2→1 = e−∆/kbT , where P1→2 is the probability for an electron to hop from state

1 to state 2, P2→1 is the probability for the electron to hop from state 2 to 1, and ∆ is

the de-tuning in energy away from the charge degeneracy point. This implies there are

two characteristic time scales: τ12 which is the average occupation time in state 1 before

transitioning to state 2 and τ21 which is the average occupation time in state 2 before

transitioning to state 1. In a two-state switching model then the expected τ at charge

degeneracy follows the equation

1

τ
=

1

τ12
+

1

τ21
(4.3)

If we define the low conductance value to be state 1 and the high conductance value to

be state 2 in Fig. 4.5b, then we may histogram the values of τ12 and τ21 respectively.
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Following equation (4.2) we find that for this point at B = 4.183T τ = 200ms.

We can repeat this analysis for several ‘glitchy’ slips at increasing values of magnetic

field. The extracted τ is plotted verus B-field in Fig. 4.5c. The tunneling time τ is

observed to increase by nearly an order of magnitude with only a 40mT change in mag-

netic field. This rapid increase in τ with magnetic field shows that as the filling becomes

close to the hard-gap region, the bulk quasi-particle states rapidly become localized and

edge quasi-particles can no longer tunnel into the edge on short time scales leading to

the non-repeatable instantaneous hard-slips observed in region III. At ν = 1/3 at B =

9T, the data is primarily analogous to region III. However, the observed phase shifts no

longer only come from bulk-edge coupling effects, but also pick up a contribution from

the anyon phase, θa. In the middle of the hard-gap at ν = 1/3 there will be a few edge-

coupled local defects, however the majority of tunneling events will come from strongly

localized defects deep in the bulk. These should have negligible bulk-edge coupling and

they account for the vast majority of phase slips we observe at ν = 1/3 that are nearly

quantized to a magnitude of 2π/3.

4.7 Measurements at fixed B and AI but different

Nqp

The fact that the quasi-particle content of the interferometer seems to be out of

equilibrium for 10s of minutes makes it extremely easy to identify different phase classes

related to addition of anyons into the bulk. Fig. 4.6a shows GD versus VC and time.

Initially, VC is rapidly pulsed near the edge of the ν = 1/3 plateau at VC = 2.2V ,

this is done to populate a series of quasi-holes out of equilibrium. Then VC is rapidly

returned to near the center of the plateau. In Fig. 4.6a VC is varied rapidly back and
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forth over a range of about 4mV. Here nearly 12 periods may be observed within the

4mV window indicating a change of 12 flux-quantum through the active interferometer

area. In principle VC should directly control the electronic density in the bulk of the

interferomter, however despite changing the flux through the interferometer by several

flux-quanta, the phase remains stable implying no anyons have tunneled into the bulk.

As the average value of VC is increased, a series of 17 distinct phase slips can be observed.

These slips are nearly quantized to ∆θ/2π = 1/3, and the phase slip magnitude versus

time is plotted in Fig. 4.6b.
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Figure 4.6: Percolation of anyons into the interferometer (a)GD versus VC and
time. Here VC is swept in a ≈ 4mV window rapidly back and forth. The mean value of
this window is moved slowly over the course of 30 minutes, as the average value of VC

is increased anyons can be seen to slowly percolate into the interferometer, each time
causing a sharp sudden slip in the phase of the interference. Notably before this sweep
occurred, VC made large, rapid excursion to the edge of the ν = 1/3 plateau to 2.2V
to populate a series of states in the bulk out of equilibrium. (b) Phase slip magnitude
versus time for each detected slip. The average value of ∆θ/2π = −0.346± 0.038.

Remarkably, because the charge equilibration time is so long, we are able to take

many traces within the same range of VC and at fixed B while the anyon charge slowly

equilibrates. This implies that we can perform measurements at exactly the same AI and

at exactly the same B and purely isolate the effect of Nqp. Fig. 4.7 shows a representative
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Figure 4.7: Anyon phase classes Representative traces of the interference as a
function of the center gate voltage as the center of the sweep range is varied over
time. The traces are seen to fall into three distinct classes of phase, and the phase
remains stable on the timescale minutes as the sweep location changes.

set of 1d traces of the interference taken at different average values of VC in Fig. 4.6a.

Despite rapid sweeping of VC over several interference periods, the phase remains stable

on minute time scales. Eventually when an anyon percolates into the bulk of the inter-

ferometer, the trace is seen to shift by ∆Φ ≈ 2π/3, and then the phase then remains

stable over many additional sweeps of VC . In Fig. 4.7 we only observe three distinct

phase classes which we attribute to -1, 0, and 1 anyon in the interferometer mod 3.
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Appendix A: QPC Fabrication

To fabricate our quantum point contact devices, the Graphene and hBN crystals were

mechanically exfoliated from bulk crystals using a combination of thermal release tape

and scotch magic tape. The initial mother-tape is prepared using 3M Scotch-brand

magic tape for graphite or 3M Scotch-brand greener magic tape for hBN, and additional

daughter tape for each crystal is prepared by placing a piece of tape over the original

mother tape on the exposed crystal side. The daughter-tape is removed from the mother-

tape, cleaving the bulk crystals along the c-axis, then transferred onto a 1cm x 1cm

doped Si chip with 285nm of thermally-grown SiO2 on the surface for hBN, and 90nm
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of thermally grown SiO2 for graphite. For graphite, the substrate is heated to 110◦ C

for 60 seconds, before removing the tape quickly to reduce glue residue remaining on

the SiO2 surface. For hBN, the daughter-tape is transferred onto the SiO2 surface at

room temperature and is removed from the SiO2 slowly. The Si/SiO2 substrates are

cleaned by a standard solvent process: the chip is cleaned in acetone for 5 minutes in

a high power ultrasonic bath, followed by an IPA wash, and finished with an N2 blow-

dry. Additionally, for graphite the SiO2 surface is treated in O2 plasma at 100W and

300mTorr for 60 seconds in order to promote adhesion of large multilayers. The resulting

exfoliated crystals are then characterized by optical microscopy.

AFM-LAO was performed on a Bruker Dimension Icon AFM. Exfoliated graphite

flakes, prepared as described above, are loaded into the AFM. The humidity is controlled

using a bang-bang style humidity controller. The plant is formed by a beaker filled with

250mL of deionized water placed on a hot plate at 120◦ C. Once the humidity sensor

measures higher than 50% RH, the hot-plate is switched off. We pattern sub 100 nm

crosses into a 3 nm graphite flake to form the top gate of the quantum point contact.

This is accomplished using a Pt/Ir coated Arrow-NcPt AFM probe from nanoandmore.

A topographical map of the graphite flake is obtained and the cross pattern is placed

in an area with no visible defects. The lithography is performed in Bruker’s Nanoman

software package which allows for precise control of the direction, speed, and deflection

of the conducting AFM probe. Graphite can be etched with AFM-LAO under a variety

of conditions, however we have found that lithography performed in contact mode with

an 18V peak-to-peak excitation at 150kHz provided the smallest line-widths achievable

in our system. For new AFM probes, typical line-widths are on the order of 60-70 nm.

This leads to a QPC critical dimension (tip-to-tip distance) between 90 and 100 nm .

However, due most likely to hydrocarbon build up or natural wear on the AFM probe,

the cut-width broadens to 100 nm after ∼150 µm of cutting.
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Before assembling the van der Waals heterostructure we fabricate a ‘transfer-slide:’ a

PDMS stamp adhered to a glass slide with a polycarbonate laminate transferred on top

used to ‘pick-up’ the first layer of hBN. Initially, 8g of Sylgard 184 PDMS is mixed in a

10:1 ratio by weight with a curing agent and poured into a standard 100 mm plastic petri

dish. The PDMS is left to cure at room temperature for 24 hours in a vacuum chamber

in order to remove any bubbles that formed during mixing. Additionally, another 3g

of Sylgard 184 PDMS solution is mixed with a curing agent and left to cure partially

at room temperature under vacuum for 2 hours. A PDMS cylinder is cut out using a

2 mm hole punch from the 8g PDMS batch and is then adhered to a glass slide using

the partially cured PDMS. An additional droplet of partially cured PDMS is pipetted

onto the cylinder in order to form a dome. Slides are left to finish curing for another

24 hours at room temperature. The resulting slides are then inspected under an optical

microscope for dirt particulates.

The polycarbonate laminate is made from a 13.3% wt/vol ratio of Bisphenol-A poly-

carbonate (PC) in cyclopentanone. Unaided, cyclopentanone will only dissolve a 4%

wt/vol solution of PC, however by using the QSonica 500 ultrasonic wand, solutions up

to 15% wt/vol can be made. This recipe was derived from previous work by Abbas [?].

Due to its significantly lower vapor pressure than chloroform, PC dissolved in cyclopen-

tanone can be effectively spun onto a Si substrate. Thin films of PC are prepared by

spinning the mixture onto a Si substrate at 1400 rpm for 60 seconds. The thin film is

then subsequently transferred onto a domed PDMS stamp. The transfer slide is heated

between 160◦C to 180◦C for 5 minutes in order to increase the adhesion between the PC

film and the PDMS stamp as well as to remove any air bubbles that may have formed

during transfer of the film.

We begin the assembly of the van der Waals heterostructure by picking up an hBN

flake larger than 100um in both width and length. Ensuring the first hBN has the largest

107



Appendix A: QPC Fabrication Chapter A

area aids in assembling the remaining layers since subsequent crystals will adhere entirely

to another van der Waals material. The transfer slide is engaged at a 0◦ tilt angle, with

the substrate heated to 70◦C, and with the touch-down point 100-150um away from the

center of the first hBN layer. Once the transfer slide is brought into near contact the

substrate is heated to 105◦C. This causes the transfer slide to fully engage and laminate

over the first hBN layer. The substrate is then cooled naturally back down to 70◦ which

retracts the transfer slide and removes the target hBN flake from the SiO2. Next, the

AFM-LAO etched graphite top gate is picked up while entirely encapsulated by the large

initial hBN layer. There are a number of advantages to using a domed PDMS transfer

slide, one of which is that the engage point is in the center of the PDMS stamp, as opposed

to the edge, which has fewer dust particulates that can interfere with assembly. Moreover,

domed PDMS transfer slides are known to reduce strain during vDH assembly [?]; it turns

out this technique is critical for picking up AFM-LAO nano-structures without inducing

tears or folds.

The PC laminate is extremely uniform as a result of being spun onto a Si substrate.

This also minimizes a common issue in assembling van der Waals heterostructures where

the polycarbonate exhibits stochastic adherence to the SiO2 substrate. This often causes

a ‘jerk’ like motion during stacking which easily can cause graphite nano-structures to

tear. The remaining layers are assembled in the same manner; the full resulting device

stack can be seen in Fig. 2.4c. The stack is then deposited onto a doped silicon substrate

with 285nm of thermally grown oxide, which forms the basis for a global bottom gate

used to dope the graphene contacts. This is accomplished by engaging the transfer slide

and heating the substrate to 180◦C (above the glass transition temperature of PC) to

detach the PC from the PDMS stamp. The laminate is then dissolved in chloroform for

a minimum of 30 min. Afterwards, the sample is rinsed in acetone and IPA, and then

blown-dry with N2.
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Heterostructures are post-processed using standard electron beam lithography, vac-

uum deposition, and dry-etching processes. A device-defining plasma etch is used to

separate the nanotextured graphite into four quadrants that we label North (N), South

(S), East (E), and West (W): this is accomplished by inductively coupled plasma (ICP)

etching in 40 sccm of CHF3 and 4 sccm of O2. This etch also separates the graphene

contacts C1-8 such that any two contacts are only connected through the dual-gated re-

gion. Additionally, the conducting Si substrate is used to dope each contact and prevent

the formation of p-n junctions at the boundary between the contacts and the dual-gated

region. Finally, several trenches are etched across the boundary to the dual-gated region

to introduce local scattering sites that improve equilibration between the contacts and

quantum Hall edge modes in the device region.

The etch mask is patterned by lifting off 40nm of Al using a polymethyl methacrylate

(PMMA) A4 495K / A2 950K bilayer resist. The PMMA is exposed using a 30kV

electron-beam in an FEI SEM at 4004uC/cm2 and developed in a mixture of DI:IPA 1:3

kept at 10◦C. Al is deposited at 0.3A/s and the lift off is done for over 12 hours in N-

Methyl-2-Pyrrolidone (NMP). Post etching, the Al is dissolved in AZMIF300 photoresist

developer which contains < 3% by weight of Tetramethylammonium hydroxide (TMAH).

Edge contacts are deposited onto the exposed graphene contacts and graphite gates using

the same bilayer PMMA mask. Before vacuum deposition, a brief contact cleaning etch

in an ICP with 40 sccm of CHF3 and 9 sccm of O2 is performed. Subsequently, a metal

stack of Cr/Pd/Au 3/15/185 nm is deposited and lifted off. Special care is taken to

deposit the Cr layer at 0.3A/s in order to improve coating uniformity.
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Appendix B: Measurement Methods

B.1 QPC Experiments Chapter 3, Sections 3.3 - 3.6

Experiments were performed in a dry dilution refrigerator with a base temperature

of 20mK. Electronic filters are used in line with transport and gate contacts in order

to lower the effective electron temperature. To improve edge mode equilibration to the

contacts most measurements are performed at 300mK unless otherwise noted. Electronic

measurements were performed using standard lock-in amplifier techniques. For the di-

agonal conductance measurements an AC voltage bias at 17.77Hz is applied via a 1000x
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resistor divider to (see Fig. 3.2a or Fig. B.1 for contact references) C3-4 and the result-

ing current is measured using an Ithaco 1211 trans-impedance amplifier on C5-6 with a

gain of 10−7 A/V. We use transport contacts in pairs to decrease the contact resistance

and improve edge-state equilibration, exciting an AC voltage on contacts C3/C4, and

the measuring the current Iout on contacts C5/C6. The diagonal voltage drop, VD, is

measured between C1/C2 and C7/C8. We then define GD ≡ Iout/VD. Note that the sign

convention used here is such that GD is positive for data measured on the hole side of

the device, ν < 0. The voltage is measured between contacts C1-2 and C7-8 with an

SR560 voltage pre-amplifier with a gain of 1000. For two terminal measurements the

same AC bias is applied to contacts C1-4 and the current is measured via C5-8. DC bias

was added on top of the AC bias using a passive summer.

B.2 QPC Experiments Chapter 3, Section 3.7

B.2.1 Measurement

Experiments were performed in a dry dilution refrigerator with a base temperature

of 20mK. Electronic filters are used in line with transport and gate contacts in order

to lower the effective electron temperature. To improve edge mode equilibration to the

contacts most measurements are performed at 300mK unless otherwise noted. Electronic

measurements were performed using standard lock-in amplifier techniques. For the di-

agonal conductance measurements an AC voltage bias at 17.77Hz is applied via a 1000x

resistor divider to (see supplementary Fig. 1 for contact references) C3-4 and the result-

ing current is measured using an Ithaco 1211 trans-impedance amplifier on C5-6 with

a gain of 10−7 A/V. The voltage is measured between contacts C1-2 and C7-8 with an

SR560 voltage pre-amplifier with a gain of 1000. For two terminal measurements the
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same AC bias is applied to contacts C1-4 and the current is measured via C5-8. DC bias

was added on top of the AC bias using a passive summer.

We use transport contacts in pairs to decrease the contact resistance - improving

transport quality (See Fig. B.1). The diagonal conductance is determined by exciting

an AC voltage on contacts C3/C4, and then measuring the resulting AC current Iout on

contacts C5/C6. The diagonal voltage drop, VD, is measured from C1/C2 to C7/C8.

The differential diagonal conductance is then defined as GD = Iout/VD.

VN

VS

VW VE

VB

N

S
EW

C1
C2
C3
C4

C5
C6
C7
C8

VW

VE

Figure B.1: Optical Micrograph of Measured Device Transport contacts to the
monolayer are labeled C1-8, while the gates are labeled by their corresponding control
voltages Vi.
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Appendix C: Analysis and Supplementary

Information for Chapter 3

C.1 Paritioning FQH Edge Modes

C.1.1 DC Voltage Bias Correction

We used a set of cryogenic filters at the mixing chamber in order to help equilibrate

the electrons in the graphene 2DEG to the temperature of the dilution refrigerator (at
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the mixing chamber). These filters contain a set of RF pi-filters with small component

values which at low meausrement frequencies are negligible. In addition, there are a set

of RC filters with a roll-off frequency of 6.6kHz; these filters have a series resistance of

R = 3kΩ each. In order to investigate the DC bias directly across the QPC it is necessary

to take into account known filter resistances since they inherently form a voltage divider

between themselves and the two-terminal resistance across the QPC defined as RDUT.

Determining the relationship between the applied DC voltage at the input of the filters

(a known value defined as VDC) and the voltage bias across the sample, defined as VDUT,

is straightforward. At low frequencies, the current drawn to any floating contacts is

negligible so the DC voltage across the sample is well approximated by

VDUT = VDC − (2(R/2) + 50Ω) · I (C.1)

where I is the DC current through RDUT. In all tunneling measurements performed in

this work pairs of contacts are tied together, so the effective series filter resistance is R/2.

The 50Ω is the lock-in output impedance. While the DC current is not known a priori,

differentiating with respect to VDUT the above equation gives:

1 =
dVDC

dVDUT

− (R + 50Ω)
dI

dVDUT

(C.2)

This equation can be rearranged to isolate dVDUT and dVDC, given below.

dVDUT =
dVDC

1 + (R + 50Ω) dI
dVDUT

(C.3)

The differential conductance across the QPC, GD = dI/dVDUT, appears in the denomina-

tor. Integrating this equation leaves the final correction formula, which can be expanded
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for 3050Ω ·GD ≪ 1 to give:

VDUT =

∫ VDC

0

dV ′
DC

1 + (R + 50Ω)GD(V ′
DC)

≈ VDC − (3050Ω)

∫ VDC

0

dV ′
DCGD(V

′
DC) (C.4)

This correction is applied for all the tunneling curves in the main text Fig. 3.7d and the

collapsed curves in the main text Fig. 3.7f.

C.2 Luttinger Liquid Tunneling Data Analysis

The theoretical expectation given by main text Eq. (1) is that the reflection coefficient

R has no terms which depend solely on voltage bias and not temperature. Consequently,

to compare our raw data with the predictions from chrial Luttinger liquid theory we

need to remove a temperature independent background. Fig. C.1a shows the unprocessed

dependence of 1/GD versus Vbias for the same series of temperatures listed in main text

Fig. 3d. At large voltage bias, the temperature dependent part of 1/GD is expected to

flatten out, however while we do observe negligible temperature dependence for |Vbias| >

500µV, there is a smooth variation in the bias dependence which is the same for all

temperatures. Fig. C.1b shows the standard deviation of 1/GD over temperature, denoted

as σT (1/GD), versus Vbias. We define the voltage bias value for which there is no longer

any discernible temperature variation between the data sets by choosing Vbias such that

σT (1/GD) < 0.0012. This range includes all values of Vbias which fall outside the bounds

of the black dashed lines in Fig. C.1b. Fig. C.1c shows 1/GD versus Vbias averaged over

all data sets at varying temperatures between 141mK and 550mK, defined as 1/GD

(additional data sets not shown in Fig. C.1a for clarity are included in this average).

The background, plotted in Fig. C.1d, is then defined by 1/GD where ever σT (1/GD) <

0.0012; the black dashed line in the same panel is the best-fit fourth order polynomial
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to the extracted background. Fig. C.1e shows 1/GD, for the same temperatures in

Fig. C.1a, with the background polynomial subtracted (not including the constant offset).

Here we define the saturation resistance Rsat as the value 1/GD saturates to at high

bias for all temperatures; practically this is computed by averaging 1/GD over Vbias ∈

[−1mV,−0.75mV] and Vbias ∈ [0.75mV, 1mV], yielding an Rsat = 0.775 h/e2. Knowing

Rsat, the value of the reflection coefficient can be computed from RD ≡ 1/GD, given by

the formula inset into Fig. C.1f, following the procedure outlined in Refs. [82, 38, 83].
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Figure C.1: Extended analysis of temperature dependent tunneling data (a)
Diagonal resistance, defined as 1/GD, versus Vbias for the same gate configuration
as main text Fig. 3c at VNS = −3.925V and same temperature values as main text
Fig. 3d. (b) The standard deviation of RD defined as σRD versus bias taken across
all temperatures between T = 141mK and T = 550mK. Additional temperature
values at finer increments are included which are not shown in panel (a). Dashed lines
indicate threshold in Vbias where σRD < 0.0012. (c) RD versus Vbias averaged over all
temperatures. (d) Portion of the temperature averaged RD in panel (c) plotted only
where the standard deviation σRD falls below 0.0012. The black dashed line is a fit
to a quartic polynomial which then defines the temperature independent background.
(e) RD plotted versus Vbias for various temperatures with the quartic background
extracted in panel d subtracted (except for the constant term). A value for Rsat,
i.e, the resistance which panel (e) saturates to can be defined by averaging RD over
a window of 250µV on either side of Vbias = 0 at high bias, and then averaging
together the results. (f) R plotted versus Vbias for the same temperatures in main
text Fig. 3.7d.
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C.3 Universal Chiral Luttinger Liquid Behavior at a

Graphene Fractional Quantum Hall Point Con-

tact

C.4 Junction Electrostatics: Reconstruction Effects

and Resonant Scattering

If the slope of the confining electric potential is soft a bevy of edge reconstruction

effects may arise. These include resonant transmission through reconstruction-stabilized

local states, complicating the interpretation of the conductance across the QPC. In this

manuscript we focus on the regime of “sharp” electrostatics where the edge reconstruc-

tions are negligible, which can be achieved by tuning the gates in our device geometry[26].

The sharpness of a potential is defined via the competition between two energy scales:

the “confinement energy” associated with the applied potential, EV ≡ e|∇V |ℓB, and the

Coulomb energy, EC = e2

4πϵℓB
. EV < EC corresponds to the “soft” electrostatic regime;

here, the charge may distribute itself primarily by minimizing the Coulomb repulsion

energy. Along a translation-invariant quantum Hall edge, this leads to the formation of

additional incompressible strips along the boundary, resulting in additional edge modes

that do not correspond to the primary bulk filling factor[78, 94]. In quantum point

contacts made identically to the one presented in this work, the soft-edge regime is char-

acterized by local islands of charge stabilized at the potential saddle point, which mediate

resonant tunneling between edge modes across the quantum point contact[26]. In con-

trast, in the sharp electrostatic regime where the confinement energy is larger than the

Coulomb energy, EV /EC > 1, simple tunneling between two edge modes at a point is

recovered.

117



Appendix C: Analysis and Supplementary Information for Chapter 3 Chapter C

The gate voltages necessary to achieve appropriately sharp confinement can be iden-

tified by observing the qualitative behavior of the conductance near pinch-off. First we

examine a regime where the phenomenology is simplest—Fig. C.2A presents a plot of

the conductance measured with a fixed filling factor ν = 1 in both the East and West

quadrants. On the x-axis, VNS is changed to vary the filling factor in the North and South

quadrants across a fixed range of densities by changing the quantity VNS + αVBG, where

α is the capacitance ratio between the top and bottom graphite gates. Along the y axis,

VBG is swept while concurrently sweeping VEW in the opposite direction to fix the quan-

tity VEW + αVBG, maintaining a constant filling factor in the East and West quadrants

while varying the difference VEW − VBG, which effectively tunes the confinement energy

EV .

To illustrate this in more detail, we analyze the electrostatics near the points marked

I and II in Fig. C.2A, which are representative of the “sharp” and “soft” regimes,

respectively. In the “sharp” regime represented by point I, the conductance exhibits a

monotonic step from G = 0 to G = e2

h
as the QPC is opened; this is what is expected

for non-resonant tunneling between two integer edge modes at a QPC. In contrast, for

the “soft” regime represented by point II, the conductance behaves non-monotonically,

displaying several peaks and dips as the junction is opened.

Fig. C.2B-C present finite element analysis simulations of the electrostatic potential

at the graphene layer of the device (calculated using COMSOL Multiphysics) for an

idealized device geometry with voltages corresponding to these two operating points.

Note that COMSOL calculates the unscreened potential applied by the gates. The

two dimensional system will then screen this potential. Theoretical literature on quan-

tum Hall edges[78, 115, 111, 116] indicates that the nature of the charge carrier density

caused by the this screening undergoes one or more phase transitions as a function of the

steepness, leading to the well known edge reconstruction; roughly, simple edge structures
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Figure C.2: Signatures of reconstruction in G between ν = 1 edge modes. (a)
The conductance measured across the QPC with both the East and West regions in
ν = 1 at B = 8T. The East andWest gate voltages are swept in the opposition direction
of VBG along the y axis, through the range VEW ∈ (0.6V,−2.191V ), to maintain a fixed
filling factor while varying the voltage difference and thereby the potential sharpness.
(b) The simulated electric potential at the monolayer, corresponding to the operating
point I. (c) Same as (b) but at the operating point II, where the potential is much
softer. (d) Simulated potential along the contours marked in grey and black in panels
B and C, respectively. The softness is quantified by the maximum magnitude of the
in-plane confining electric field, E∥ (i.e. simply the gradient of the potential normal
to the boundary between the N(/S) and E(/W) regions).

obtain for when EV /EC ≳ 1, and more complex edges including counterpropagating

modes obtain for EV /EC < 1. A phenomenological treatment of edge reconstruction in

graphene devices with the same device geometry is described in [26].

Fig. C.2D shows the potential along the illustrated lines normal to the boundary

between the ν = 1 and depleted regions. We can quantitatively characterize the threshold

sharpness by estimating the ratio EV /EC from the simulated confining electric field. At

B = 8 T the Coulomb energy is EC ≈ 33 meV, where the relevant ϵ =
√
ϵ⊥ϵ∥ ≈ 4.8 taking

ϵ⊥ = 3.5 and ϵ∥ = 6.6. Experimentally, the effects of resonant transmission disappear

above EV ≈ 61 meV, so EV /EC > 1.85.

Fig. C.2A makes it clear that in the IQH regime, local effects from edge reconstruction
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Figure C.3: Signatures of reconstruction in G between ν = 1 and ν = 1/3
edge modes (a) The conductance measured across the QPC with νW = 1/3
and νE = 1 at B = 9T. Along the y-axis, both the East and West gates must
be swept in the opposite direction of the back gate, but at distinct voltages
VE ∈ (0.57V,−2.475V ), VW ∈ (0.256V,−2.79V ), to maintain fixed filling factors. (b)
The simulated electric potential at the monolayer, corresponding to the operating
point I. (c) Same as (b) but at the operating point II, where the potential is much
softer. (d) Simulated potential along the contours marked in grey and black in panels
B and C, respectively, at the boundary of the νW = 1/3 region. The boundary of the
νE = 1 region is necessarily sharper since VE − VBG > VW − VBG.

can be suppressed by making the confining potential sufficiently sharp. To find a similarly

universal regime for the ν = 1 to ν = 1/3 configuration, we repeat the characterization

above with the East and West regions fixed to those filling factors, shown in Fig. C.3A.

While many additional peaks and dips occur beyond the initial conductance step, many

features are consistent with the ν = 1 to ν = 1 case. First, focusing only on the region

near the first conductance step, when the QPC is just barely open, the qualitative features

are similar Fig. C.2A, with a smooth step up to a plateau (here with a value of G ≈ e2

2h
)

in the sharp regime, near point I, and number of resonant peaks arising in the soft

regime at point II. Notably, resonant transmission effects near the initial conductance

step disappear at a threshold of about EV > 30 meV, indicating a much lower threshold

than in the IQH case. The data sets presented in the main text are measured at relatively
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Figure C.4: Resonances at high QPC transmission. (a) The differential con-
ductance across the 1-1/3 junction vs. North/South gate voltage VNS and DC bias
voltage V : B=9T, T=56mK, VE=-1.460V, VW=-1.775V, VBG=2.0V. A large number
of resonant dips and peaks arise as the voltage VNS is increased, effectively widening
the junction. (b) The zero-bias conductance G in the same regime, but varying VN

and VS independently. Following the rationale of reference [26] we may determine the
ratio of the capacitance of the local island to the North and South gates from the
slope of the resonant peak trajectory: dVN

dVS
= − CS

CN
. (c) The ratio of the reflected

voltage to the incident voltage, Vr/Vi, plotted against the DC voltage bias V , and the
North/South gate voltages VNS under the same conditions as panel A.

sharp confinement, similar to that of point I for the B = 9 T and B = 10 T data.

The most obvious difference between Figures C.2A and C.3A is the sheer number of

features visible within the range beyond the initial conductance step, where the QPC is

very “open.” The presence of nontrivial structure in this regime is due to a fundamental

difference between the ν = 1 to ν = 1 junction and the ν = 1 to ν = 1/3 heterojunction,

with the latter involving a change in the topological order of the bulk. To explore this

further, Fig. C.4A shows the differential conductance as a function of both the DC bias

V and VNS starting near the operating point marked I in Fig. C.3A. The data in the main

text focuses on the regime near the first step (analogous to VNS < −3.25V in Fig.C.4A).

However, extending the range of VNS reveals additional structure. Throughout the plot,

the conductance dips nearly to 0 several times near V = 0. Notably, the first several

low-bias dips are reminiscent of the initial conductance step analyzed in the main text,

where the nonlinearity results from the chiral Luttinger liquid nature of the ν = 1/3 edge.
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An appealing narrative is that at least the first several resonances arise intrinsically, from

reconstruction within the point contact, resulting in a single re-entrant resonant scatterer

with similarly universal physics[123].

We may test this idea by independently varying VN and VS, shown in Fig.C.4B. From

this data, it is evident that the first several features follow curved trajectories in VN vs.

VS, as expected for a scattering center that varies its position strongly with gate voltages.

This is consistent with an intrinsic effect tied to reconstruction, where the scatterer is

pinned to the saddle point in the applied potential (see [26] for a similar analysis). To

further explore the role of resonant scattering, Fig. C.4C shows the voltage of the reflected

ν = 1/3 edge, measured in the same configuration shown in Fig. C.4A. Vr/Vi attains a

negative value at finite bias even when the low-bias conductance is suppressed, both on

the initial conductance step discussed in the main text but also between the first few

resonances; indeed after the first resonance a nearly quantized Vr/Vi ≈ −1/2 is again

observed.

As the QPC is opened further, additional conductance dips appear accompanied by

their own strong nonlinearities. For VNS ≳ −2.75V , these features show little curvature

in VN − VS, and seem to depend more strongly on VN than VS. This is consistent with

scattering mediated by extrinsic disorder centers that are fixed in space. Concomitant

with the onset of these features, the conductance at high bias tends toward G = e2/3h

(rather than e2/(2h)), and Vr becomes positive even at high bias.

The behavior we observe for the open junction is qualitatively consistent with theo-

retical models, such as those proposed in Ref. [111]. In the integer quantum Hall case

(Fig. C.2), a fully open QPC is equivalent to a uniformly doped macroscopic sample:

there is no communication between chiral edge states on opposite edges, and the conduc-

tance is quantized at G = e2

h
for arbitrary junction width. In contrast, in the fractional

case of Figs. C.3 and C.4, opening the QPC more widely simply leads to an “edge state”
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following a vertical trajectory through the center of the QPC. Equilibration between the

integer and fractional quantum Hall edge states is necessarily going to be sensitive to

the presence of localized scatterers along this boundary. In the wide junction limit, the

presence of multiple, possibly coherent scattering processes complicates analysis of the

tunneling process, restoring the ‘line junction’ limit first explored by Refs. [85, 37].

The high-bias behavior of the junction as more scattering centers are added, whether

intrinsic or disorder driven, is well captured by theoretical models proposed in Ref. [111].

In fact, the transition from a high bias saturation of G = e2

2h
to G = e2

3h
as the number of

scattering sites goes from one to many, is a physical demonstration of the physics which

causes disequilibrium between integer quantum Hall (IQH) edge modes and FQH edge

modes in high magnetic field graphene transport contacts. Typical boundaries between

dual graphite gated and single graphite gated regions within a device host only a few sites

where the incident IQH edge modes can strongly couple to the FQH edge modes. This

results in the typically poor Hall resistance quantization seen in many graphene edge

state transport experiments in the low temperature, high magnetic field limit. As can

be observed in Fig.C.4A, a countable number of resonant scatterers may be observed to

cause a transition between a saturation conductance of G = e2/2h and e2/3h. As such,

the effect of adding only a few additional disorder sites at the IQH and FQH interface in

the contact (as we do purposely by adding etched trenches in each contact, see Fig.3.18A)

can serve to significantly improve bulk Hall transport quantization in the FQH regime.
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C.5 DC Voltage Transformer from FQH Andreev

Scattering

A true DC voltage step-up transformer cannot be realized using the same approach

as standard AC voltage transformers, which rely on Faraday’s law of induction, without

relying on the use of AC/DC interconversion. As such more exotic effects must be

used to pursue a design of this type - one design proposed and realized in the 1960s by

Giaever utilized the drag between vortices in parallel type-II superconducting films [125].

Subsequent proposals suggest exploiting the Coulomb drag in parallel semiconducting

wells, either at zero magnetic field or in bilayer quantum Hall systems [124]. Here,

following a proposal by Halperin [121], a DC voltage transformer is realized using a

different approach which makes use of the dissipationless current-splitting action of the

FQH Andreev process.
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Figure C.5: Zero frequency voltage step-up transformer. (A) The differen-
tial gain dVo/dVi and resulting integrated DC gain β = Vo/Vi, measured in the con-
figuration shown in the inset, with B=9T, Tprobe=48mK, VE=-1.460V, VW=-1.775V,
VNS=-3.225V, VBG=2.0V. The FQH Andreev scattering process yields an enhance-
ment of the output voltage on the FQH side [121], with the DC gain predicted to reach
a value of 1.5 in the dissipationless limit. Experimentally, we find a gain β = 1.46,
despite the nonlinearity at low bias arising from the suppression of the Andreev scat-
tering at low energies. (B) The DC power dissipation ratio, calculated from β via
Pout/Pin = (2β/3)2 − (2β/3) + 1, is plotted versus V, and reaches a maximum value
of 97.6% [124].

The microscopic picture of the FQH Andreev scattering process illustrated in the

main text applies when a current is incident on the junction from the FQH side. When a

voltage bias is applied on the IQH side of the junction, however, the equivalent scattering

process is described by one in which two electrons incident on the junction split, with one

transmitted to the FQH side and one reflected to the IQH side[112]. Importantly, this is a

correlated scattering process, which has the effect of evenly splitting the incoming current
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from a single quantum conduction mode without the introduction of any dissipation. This

is in stark contrast to, for example, the case of a conventional QPC junction tuned to

partial transmission of a single mode, where the transmission probability 0 < P < 1

of the incoming particles creates fluctuations in the transmitted current, resulting in a

nonzero amount of dissipation.

FQH Andreev process enforces an outgoing distribution of currents and voltages which

may be modeled by a Y-junction with resistances +RK and −RK (RK is the von Klitzing

constant, h/e2) on the outgoing legs of the junction, illustrated by the effective circuit

model in the inset of Fig. C.5A. Currents outside of the junction flow dissipationlessly in

the chiral edge channels. With one of the resistors being negative, the circuit operates

not as a voltage divider but as an amplifier, since the negative resistance causes the

current through the −RK leg to flow from low voltage to high voltage.

This is identical to the principle used in some standard AC voltage amplifiers, which

exploit the negative differential resistance of a tunnel-diode. In such circuits, a DC

voltage bias is applied to the tunnel-diode to achieve a small-signal negative resistance

(∂v/∂i < 0). When a voltage is applied across a standard resistor and the tunnel-diode

in series, the negative differential resistance of the tunnel-diode causes an amplification

of the voltage between the two elements—an extraordinary property of the FQH Andreev

Junction is that its effective circuit description contains a component of negative absolute

resistance, so it can act as an amplifier even in the DC limit. The effectively negative-

resistance component cannot, of course, exist in isolation, since Joule’s law would predict

that it acts as a source of power: P = I2R < 0! In the effective circuit, the resistance

−r must be paired with a resistance +r such that the same amount of power generated

by the negative resistor is fully dissipated by the positive resistor. It should be kept in

mind that this circuit is merely an effective model of the behavior resulting from the

local FQH Andreev scattering process—in reality, no part of the device is generating nor

126



Appendix C: Analysis and Supplementary Information for Chapter 3 Chapter C

dissipating power in this process.

C.6 Data Analysis

C.6.1 Effects of cryogenic electronic filters

The measurements presented in this paper were performed in a dilution refrigerator

setup with a base temperature of 56mK. To improve thermalization of the electron

system to the phonon bath, we heavily filter the measurement wires. However, these

filters give a finite contribution to the measured value of G that must be corrected for to

give quantitatively reliable results. In this section we describe how the true conducatance

is extracted from the measured voltages and currents at room temperature.

All measurements were performed using standard lock-in techniques with an excita-

tion frequency of f = 2.74Hz. In order to extract the differential tunneling conductance

we measure G ≡ I/VD, shown schematically in Fig. 1B. We source current via C3 on the

ν = 1/3 side of the junction and measure the output current at C7 through the Ithaco

1211 transimpedance amplifier. The diagonal voltage VD is extracted by measuring the

voltage drop between C4 and C8 with an SR560. The Ithaco is modeled as a perfect

ammeter, while the SR560 is treated as a perfect voltmeter. Furthermore, we assume –

due to the chiral nature of the edge states – that upstream contacts from the source do

not contribute to the cross-device conductance. The equivalent device circuit schematic

is given in Fig. C.6A. Each device contact is effectively connected to room temperature

instrumentation, or ground, via a two-stage low-pass RC filter; while there are RF low-

pass Pi filters, they have small component values and can be ignored in the low-frequency

limit. While only C3 and C4 contribute on the ν = 1/3 side of the junction (C2/C1 are

upstream), C5/C6 are downstream of the source and must be included as floating con-
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tacts on the ν = 1 side of the junction. Tunneling at the heterojunction is modeled as a

resistor labeled RDUT which should be considered as voltage bias dependent.
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Figure C.6: Measurement circuit including electronic filters. (a) Model of
the sample plus the electronic low-pass filters attached to each contact. Here R = 1kΩ
and C = 20nF. (b) Percentage deviation of the measured value of the conductance
G ≡ Re[e13]/(R·Re[e5−e6]) to the true value of the conductance Gtrue. (c) Percentage
deviation of the corrected bias voltage (VDUT) from the applied bias voltage (VDC)
versus VDC. The value of this deviation is plotted for each of the curves given in the
main text Fig. 3C.

Given the extra components surrounding RDUT , it is not guaranteed for every fre-

quency that an AC four-terminal measurement will provide an accurate measure of

the true differential conductance, Gtrue. Using the notation defined in Fig. C.6A,

VD ≡ Re[e6 − e5], and I ≡ Re[(e13 − e14)]/R ≈ Re[e13]/R. At our measurement fre-

quency of f = 2.74Hz, it can be shown by solving the set of Kirchoff’s laws – set by

the schematic in Fig. C.6A – that G ≡ I/VD = Re[e13]/(R · Re[e6 − e5]) is a good ap-

proximation to Gtrue. The percentage error, η ≡ 100Gtrue−G
Gtrue

, is plotted for a fixed value

of Gtrue = 10−3e2/h in Fig. C.6B versus frequency. While G ≈ Gtrue for sufficiently low

frequencies, η scales as f 2, and quickly grows to be large; additionally η decays mono-

tonically with increasing Gtrue so the value of η with Gtrue = 10−3e2/h represents a good
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upper-bound on the error given the resistance ranges in our measurement. For f > 75Hz,

η becomes greater than 1% even for values of Gtrue ≫ e2/h. Consequently, we chose to

measure at a frequency significantly lower than this threshold such that any reduction in

f resulted in an experimentally undetectable change in G, and so that we could safely

assume G ≈ Gtrue over a wide range of conductance values.

While at f = 2.74Hz, four-terminal measurements of G remain a good approximation

of Gtrue, the DC voltage bias across RDUT requires some additional analysis. In order to

investigate the DC bias directly across the sample it is necessary to take into account

the filter resistances since they inherently form a voltage divider between themselves and

RDUT. Determining the relationship between the applied DC voltage at the input of the

filters (a known value defined as VDC) and the voltage bias across the sample, defined as

VDUT, is straightforward. At low frequencies, the current drawn to the floating contacts

is negligible so the DC voltage across the sample is well approximated by

VDUT = VDC − (4R + 50Ω) · I (C.5)

where I is the DC current through RDUT. While the DC current is not known a priori,

differentiating with respect to VDUT the above equation gives:

1 =
dVDC

dVDUT

− (4R + 50Ω)
dI

dVDUT

(C.6)

This equation can be rearranged to isolate dVDUT and dVDC, given below.

dVDUT =
dVDC

1 + (4R + 50Ω) dI
dVDUT

(C.7)

The differential conductance, Gtrue = dI/dVDUT ≈ G, appears in the denominator. In-

tegrating this equation leaves the final correction formula, which can be expanded for
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4050Ω ·G≪ 1 to give:

VDUT =

∫ VDC

0

dV ′
DC

1 + (4R + 50Ω)Gtrue(V ′
DC)

≈ VDC − (4050Ω)

∫ VDC

0

dV ′
DCG(V

′
DC) (C.8)

While in general this correction remains small for low conductance values, indicating

the bias voltage in the range where universal power-law behavior is observed is unaffected,

for measurements where the conductance is large for the entire bias-dependence the

corrections can be significant. The effect of this correction is plotted in Fig. C.6C

corresponding to the tunneling data presented in Fig. 3C. For the largest values of T0,

i.e, T0 = 6.87K and T0 = 9.02K respectively, the corrected bias remains less than 1%

of the applied bias voltage. However, for lower values of T0 this correction becomes

significant.

C.6.2 Determining the theoretically expected range of univer-

sal power-law scaling

For sufficiently low temperatures and bias voltages, the Lagrangian in Eq. (1) is ex-

pected to flow to the weakly coupled fixed point where G ∝ V 2, T 2. However, while

in this regime where the temperature and bias dependence is expected to be universal

and irreverent of microscopic details, the range over where this behavior persists does

care about the sample specifics. Even in the most ideal case, where Eq. (1) describes

the system for all bias voltages and temperatures, the range where the O(V 2, T 2) terms

in Eq. (2) dominate is determined by the bare value of Γ. As such, when extracting

the power-law exponents and assessing the quality of the scaling collapse it is important

to not over-extend the fitting range beyond where universality is expected, i.e, where

G ∝ V 2, T 2. In general, while the cross over from weak to strong coupling predicts de-
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viations from G ∝ V 2, T 2 behavior at sufficiently high energies, additional perturbations

in Eq. (1) will generally reduce the range where universal behavior may be expected.

Consequently, the bias voltages and temperatures given by the quantum impurity model

where significant deviations from G ∝ V 2, T 2 are predicted provides a self-consistent

range where power law behavior should be observed.

For our fridge base temperature of Tprobe = 56mK, we may evaluate the threshold bias

voltage VTh above which the conductivity predicted by Eq. (2) exceeds the conductivity

given by the full quantum impurity model (Eq. (3)) by more than 5%. For a simulated

temperature of T = 56mK, when T0 = 9K, VTh ≈ 170µV . Consequently, in order to

extract T0 for the data presented in Fig. 1C, T0 is initially guessed to be 9K. T0 is then

fit over a range of V = 15µV to V = 170µV. The fit results in a T0 = 9.020(7)K, which

does not effectively change the fitting range given a bias step of 5µV per data point.

This procedure leads to a self-consistent result where both T0 and the range over which

T0 is fit simultaneously converge.

We may also consider the scaling collapse in Fig. 1F, which in particular, is only

valid when T << T0/2π. The experimental scaling collapse data is repeated in Fig.C.7A

and may be directly compared to Fig.C.7B showing the theoretically predicted scaled

conductance for a T0 = 6.87K for the same temperature values used in the experimental

scaling collapse. The scaling collapse begins to fail under two conditions; eV >> kbT , and

T >> T0/2π. From Fig.C.7B it is clear that at low voltage bias, the curves are expected

theoretically to collapse on to each other well up to T = 550mK, then are predicted to

deviate from the low-energy prediction of Eq.(2) at higher temperatures. Additionally,

all the curves regardless of temperature deviate from Eq.(2) at sufficiently high bias.

In direct comparison to Fig.C.7B, the the onset of deviations from from Eq.(2) in both

temperature and voltage bias in the experimental data in Fig.C.7A are well capture by

the theoretical model to within experimental uncertainty.
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Figure C.7: Analysis of Deviations from Universal Luttinger Liquid Be-
havior. (a) The scaled conductance G̃ = 2h

e2
( T0
2πT )

2G versus the scaled voltage bias
eV/2πkbT as in the main text Fig. 1F (temperature values are listed in the caption
of Fig. 1). (b) Theoretically predicted scaled conductance G̃ versus eV/2πkbT . Here
G̃ is computed the same way as in panel (a), however, the unscaled conductance is
computed from the conductance in Eq. (3) from the full quantum impurity model.
Black dashed line is the theoretical curve for the low energy scaled conductance:
G̃ = 1/3 + x2. T0 = 6.87K and the values of T are kept the same as in panel (a).
(c) The threshold voltage VTh below which the Sommerfeld expansion of O(V 2, T 4)
of Eq. (3) (given in Eq.(C.9)) is expected to be valid for a fixed T = 91mK.

In general, as T0 ∼ T/2π for the lowest experimentally accessible temperatures,

Eq. (2) will no longer be an accurate model of the system for any range of voltage bias.

However, it may be observed that the data presented in Fig. 3C with T0 = 1.59K does

have a V 2 dependence for some substantial range of V despite T0/2π ≈ 250mK being

sufficiently close to the lowest available electron temperatures. This can be understood

by computing the Sommerfeld expansion of Eq. (3) to O(V 2, T 4), given in Eq. (C.9).

G(V, T ) =

[
1

6
(
2πT

T0
)2 − 7

30
(
2πT

T0
)4
]
+

[
1

2
− (

2πT

T0
)2 +

7

2
(
2πT

T0
)4
]
(
eV

kbT0
)2 (C.9)

VTh, now calculated as the bias voltage above which the conductivity predicted by

Eq. (C.9) differs from that predicted by Eq. (3) by more than 5%, is given in Fig. C.7B

for a fixed simulated temperature of T = 91mK versus T0. It is clear that even for a

moderate temperature of 91mK, the range of V where a quadratic bias dependence is

expected is significant. While the conductivity in Eq. (C.9) is still entirely parameterized
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by a single value T0, the curvature of the bias depdence is weakly temperature depen-

dent. This becomes relevant when attempting to calculate T0 from the low-energy bias

dependence for the data presented in Fig. 3C with T0 ∼ 1.6K.

C.6.3 Extracting power-law exponent

It is clear from the inset of Fig. 1C that the bias dependence appears to be well fit

by parabola, with a curvature leading to a T0 ≈ 9K. However, one would like to asses

the power law exponent and its uncertainty while allowing T0 to vary. Given that we

can determine the approximate range over which G ∝ V 2 behavior would be expected,

given a rough value of T0, we can directly measure the power-law exponent and check for

self-consistency. Fig. C.8A shows the same data in Fig. 1C; the two gray circles mark

the range over which the scaling exponent is extracted. The upper bound of this range is

set by the curvature of the bias dependence, T0 ≈ 9K, which can be seen from Fig.C.7A,

at a temperature Tprobe = 55mK, is about 170µV. The lower bound, V = 15µV, is

set by signal to noise. To asses the quality of the power-law behavior over this range,

we take the finite-difference of log(G − Gmin) and divide it by the finite-difference of

log(V ). This is plotted in Fig. C.8B versus data point index; the data is passed through

a 10-point digital rolling average filter in order to reduce the noise generated by taking

a numerical derivative. If the system is well described by a power law, the value of

d log(G − Gmin)/d log(V ) should be a constant. It is clear that the data in Fig. C.8B

is well approximated by a constant and the extracted fit value, γ, over the bias range

highlighted in Fig. C.8A yields γ = 1.997 ± 0.055. This indicates that fitting the data

in Fig. C.8A to a quadratic defined as G(V )−Gmin = 1
2
( eV
kbT0

)2 to extract T0 precisely is

self-consistent.
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Figure C.8: Computing power law exponent from the voltage bias-depen-
dence (a) G−Gmin as in Fig 1C. Points marked by gray circles indicate upper and
lower bounds of included data (V ∈ [15µV, 167µV]) used to extract power-law expo-
nent. (b) Derivative of the log of G = G−Gmin divided by the derivative of the log
of V versus data point index. Data is fit to a constant which is plotted as the dashed
blue line. The exponent is found to be γ = 1.997± 0.055

C.6.4 Extracting the low-energy value of T0 for comparison to

the quantum impurity model

The four line cuts presented in Fig. 3C represent tunneling spectra each individually

associated with a T0 which varies by nearly two orders of magnitude between the data

sets. Based on general renormalization group arguments, the Lagrangian given in (1)

becomes a better approximation to the system at low voltage biases and temperatures,

relative to the energy scale set by T0 ∝ 1/Γ [31]. While a lower-bound on T is set by

cryogenic instrumentation, V can be made nearly arbitrarily small. So generally, the

low-bias regime of each data set in Fig. 3C is where Eq. (1) is likely to be an accurate

model of the system.

In principle, at low voltage bias, a perturbative expansion like that in Eq. (2) or

Eq. (C.9) should produce the same behavior as the full quantum impurity model in this

regime within some accuracy threshold. As a result, the T0 which parameterizes the
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low-energy behavior also parameterizes the entire bias-dependence if Eq. (1) holds up to

the strong coupling limit. The converse of this, is that while Eq. (1) may be accurate at

low voltage bias, the effect of additional operators (like electron co-tunneling) may cause

deviations from the full quantum impurity model at high-bias. This way we may assess

how well the data in Fig. 3C agrees with the full quantum impurity model. We extract T0

from the low-energy (voltage bias) region of the curve, and the same T0 can then be used

to interpolate between the weak and strong coupling regimes via Eq. (3). While these

curves are all taken at a fixed electronic temperature Te = 91mK, the large variance in

T0 implies that even the low-bias regime of each curve requires careful treatment in order

to be an accurate low-energy expansion of Eq. (3).

For all curve fits, a systematic zero-bias shift of 2.5µV is accounted for. For the data

sets with the largest values of T0 in Fig. 3C, i.e, T0 = 9.02K and T0 = 6.87K respectively

at a base temperature of T = 56mK, there is a significant bias range where Eq. (2) is

accurate. In this regime at low bias, T0 is directly related to the curvature of the bias-

dependence and is temperature independent; consequently T0 can be fit agnostic of the

electronic temperature for these two data sets by subtracting the residual conductance

and fitting the resulting parabola (as shown in Fig. 1C). As is mentioned in the main text,

for these values of T0, all of the temperature dependence falls in the residual conductance

when V = 0 and we utilize this to realize a sensitive primary thermometer, using the

T0 = 9.02K, to accurately extract the electron temperature, Te = 91mK. This measured

electronic temperature then becomes an input parameter to the remaining data sets

in Fig. 3C. The success of this procedure can be seen in Fig. 3C where the zero-bias

conductance value is well predicted for the T0 = 6.87K data (where T0 is extracted from

the curvature of G agnostic of Te) given the measured value of Te.

However, for the curve with T0 ≈ 1.6K Eq. (2) will not be accurate even when

V = 0 when T = 91mK. However, Fig. C.7C shows that the Sommerfeld expansion in

135



Appendix C: Analysis and Supplementary Information for Chapter 3 Chapter C

Eq. (C.9), for a temperature of 91mK, even with T0 ≈ 1.6K will be within 5% of the

full quantum impurity model for V < 45µV. To extract T0, we fit this data set to the

Sommerfeld expansion (in a range between −45µV and 45µV) given in Eq. (C.9), where

T = Te = 91mK resulting in a fit value T0 = 1.59(1)K. For the final data set in Fig. 3C,

with T0 ≈ 130mK, it is clear from Fig. C.7C that even the Sommerfeld expansion will

not be accurate even for V = 0 in this regime. The only way to systematically extract

T0 from this data set is to directly fit the data to Eq. (3) where T = Te = 91mK.

Following this procedure, T0 = 132(2)mK, and the low bias regime is well fit by this

value while some deviation is observed at high-bias, further emphasizing that for low

biases and temperatures, even for extremely low values of T0, the system is governed by

the Lagrangian in Eq. (1) to a high degree of accuracy.

C.7 Additional Data at a different magnetic field

We present here additional tunneling data at B = 9T between the ν = 1/3 and

ν = 1 edges. All of the features presented in the main text are reproduced at a different

magnetic field and set of gate voltages; this includes both the weak coupling universal

scaling behavior, the strong coupling Andreev reflection of fractionalized quasiparticles,

and near agreement with the full quantum impurity model. Notably, in this data set

at B = 9T and the data presented in the main text at B = 10T, the west side of the

junction sits at different locations within the ν = 1/3 plateau. Figure C.11 shows the

two terminal conductance as a function of VW , with VBG = −2V , for both the 9T data

set presented here, and the 10T data presented in the main text. Point I corresponds to

the gate voltages at which the tunneling data were measured at B = 10T in the main

text, and point II corresponds to the regime of the data in Figure C.9. The agreement

between the measured exponents demonstrates the repeatability of the tunneling behavior
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for varying configurations of the junction parameters including voltage bias, temperature,

T0, and electron density within the ν = 1/3 plateau.
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Figure C.9: Bias dependence of tunneling data between 1/3 and 1 QH edges
at B = 9T. (a) G plotted as a function of voltage bias V and North/South gate
voltage VNS. The other gates are held at fixed voltages: VBG = 2V , VE = −1.46V ,
VW = −1.775. (B-E) Line cuts of panel A at different values of VNS plotted on a log-log
scale. Data points are averaged together in windows of 160 points and a systematic
zero-bias shift of 5µV is removed. Black dashed lines are fits to G = 1

2(
eV
kbT0

)2; the fit
value of T0 inset within each plot. The power-law behavior extracted from the line
cuts of panel A were not taken with enough averaging to distinguish G(V = 0) from
0. Consequently, panels B-E were fit over a half-decade of bias where the lower bound
was set by where the V 2 term is expected to dominate over the constant offset in
Eq. (2). (F-G) Additional line cuts of panel A at two distinct values of VNS plotted
on a semi-log scale. Black dashed line is a fit to the conductivity predicted by the full
quantum impurity model given in Eq. (3). The fitted values of T0 are inset in each
plot.
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Figure C.10: Scaling collapse of tunneling data between 1/3 and 1 QH edges
at B = 9T. (a) G−Gmin plotted versus V for VNS = −3.366V . The black dashed line
represents the fit to the function 1

2(
eV
kbT0

)2, yielding a fit T0 = 4.09K. (b) G plotted
versus V for the probe temperatures: 132mK, 161mK, 192mK, 244mK, 298mK,
352mK, 407mK. (c) Same curves as in panel B, but the conductance is scaled such
that G̃ = 2G( T0

2πTprobe
)2( h

e2
), and is plotted against eV/(2πkbTprobe) where T0 = 4.09K

is extracted from the bias dependence shown in panel A. Inset is G(V = 0) ≡ Gmin

plotted against the probe temperature on a log-log scale. A rough T 2 dependence
is observed between T = 132mK and 407mK. The red dashed line corresponds to
G(V = 0) = 1

2(
eV
kbT0

)2, with T0 = 4.09K. Error bars are computed assuming a current
uncertainty of ±500 fA and a voltage uncertainty of ±100 nV, as well as a tempera-
ture uncertainty of ±5mK. While the curves collapse onto each other well, a small
systematic deviation between the collapsed data set and the prediction of Eq. (2) is
observed. This may be attributed to a systematic scaling in the zero-bias conductance
as a result of insufficient averaging times near zero-bias for a fixed gate-sweep rate.

C.8 Excess Conductance Observed in IQH-FQHHet-

erojunctions with νFQH < 1/2

The main text describes a systematic investigation of the overshoot in conductance

across the heterojunction to GD = 1/2e2/h when the filling factors are set to νE = 1 and

νW = 1/3. We also find that the overshoot to GD = 1/2e2/h persists for several other

FQH filling factors below ν = 1/2, which is expected if the outermost edge mode in these
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Figure C.11: Comparison of location within the ν = 1/3 plateau for 9T and
10T data. (a) Two terminal conductance on the W side at B=10T and B=9T,
VBG = −2V , with point I and II indicating the locations within the plateau at which
tunneling data were taken for the main text (I) and Figs. C.9 and C.10 (II). (b) Same
as in panel a, but with 10T data shifted to the left by 18mV to make the different
locations within the 1/3 plateau between the two data sets more apparent.

states remains a chiral Luttinger liquid with the same characteristics of the ν = 1/3 edge.

In particular, Figure C.12A shows the maximum GD across the junction while varying

VNS to tune the QPC from completely pinched off to completely open. This is repeated

while varying VW across the range shown in Figure C.12B to tune the filling factor νW

from 1/3 to 2/3. The full conductance data are plotted in Figure C.12C, from which the

maximum values were extracted to plot in Figure C.12A.
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Figure C.12: The maximum conductance across the junction from νE = 1
to variable νW < 1. (A) On the x axis is plotted the two terminal conductance
on the W side of the device, as a proxy for the filling factor. On the y axis is the
maximum value obtained of the conductance across the QPC while varying the QPC
from totally pinched off to totally open using the NS gates. The dotted lines show
max(GD) = West G2T and max(GD) = 0.5e2/h. The max conductance saturates to
G = 1/2e2/h for FQH fillings between 1/3 and 1/2 (i.e. 1/3, 2/5, 3/7, ...), then tracks
linearly with the filling factor for ν > 1/2. (B) The two terminal conductance G2T

measured on the W side of the device, as a function of VW + αVBG, used as a proxy
for the filling factor in panel A. (C) The raw data from which A is taken - plotted
points in A correspond to the maximum conductance of each vertical slice of C. This
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the maximum conductance even when the QPC is fully open exceeds ν, suggesting
poor equilibration of the leads to the hole-conjugate FQH states 2/3, 3/5, etc.
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D
Appendix D: Nanofabrication Procesess and

Recipes

D.1 AFM Cutting Recipes

Here is a list of the parameters we use to perform the local anodic oxidation lithog-

raphy:

1. Graphite is exfoliated onto a doped, conducting, Si wafer with a 90nm dry-chlorinated
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oxide grown on top.

2. A graphite flake, typical thickness < 5nm, is brought into our Bruker Dimension

Icon AFM.

3. The relative humidity is set between 45-50%

4. Anodic oxidation is performed with the Arrow NcPt tips purchased from Nanoand-

more, with a spring constant of 42N/m, and a typical resonant frequency of about

285kHz.

5. The deflection set point is set to 0.4V

6. The excitation frequency is set to 200kHz

7. The amplitude of the voltage excitation is 9.5V

8. The tip is rastered at a rate of 2-3 µm/s

D.2 Lithography and Lift-off of Metal Finger Gates

for Quantum Dots

In order to perform high resolution liftoff of metal finger gates, it is necessary to

employ a thin bilayer resist which can avoid dog-ear effects but also be sufficiently thick

to put down 20nm of metal. The resist features an MMA-copolymer / PMMA bilayer;

the copolymer is more dose sensitive than the thin PMMA capping layer so it naturally

forms a strong undercut. The details of the resist stack is given in Table D.2. It is

recommended to wait 60 seconds after baking the first resist layer to allow the first layer

to cool and prevent resist mixing. This recipe can be used to achieve finger gates with
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an isolated minimum width of 30nm, and when written as high density lines, can be used

to write 40nm finger gates at an 80nm pitch.

Layer Number Resist Spin Speed Bake Temperature Bake Time

1 COPOL:Ethyl Lactate 1:2 5000rpm 180C 5min
2 PMMA 950k:Anisole 1:7 3000rpm 180C 5min

Table D.1: Resist stack for high-resolution liftoff of quantum dot finger gates

To write the finger gates, use the JEOL 6300FS EBL system at an accelerating voltage

of 100kV. The beam current should be set to 50pA using the 4th lens. In principle better

resolution can be achieved using the 100pA setting with the 5th lens, however the aperture

for the 5th lens is only 60µm, which makes aligned writes challenging. Exposure depends

on the job, but for dense lines I used 600 µC
cm2 , and for isolated lines I used 800 µC

cm2 .

Development is done for 60 seconds in a mixed solution of MIBK:IPA 1:1 which is

stored in a fridge at 10C. Development is stopped in pure IPA for 20 seconds and then

the sample is blown dry with N2.

Layer Number Metal Deposition Rate Thickness Deposition Pressure

1 Chrome 0.3A/s 3nm 1E-6 Torr
2 Gold 0.5A/s 12nm 1E-6 Torr

Table D.2: Metal stack for high-resolution liftoff of quantum dot finger gates

Metalization is done with a CHA Industries SEC-600-RAP multi-wafer evaporator,

and the exact metal stack used is given in Table D.2. The tooling in the evaporator

is designed for continuous rotation and angled such that the evaporated metal jet is

perpendicular to all substrates in the tooling. Deposition is performed manually, i.e.,

without an automatic deposition controller, in order to avoid extra metal deposition due

to poor initial feedback immediately after the shutter opens.
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