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ABSTRACT 

This report describes a nonlinear truss modeling approach for reinforced concrete walls, or in 

general, for plane stress reinforced concrete elements subjected to cyclic reversals. Nonlinear 

vertical, horizontal, and diagonal truss elements are used to represent concrete and steel 

reinforcement. Here, the flexure-shear interaction is intrinsically modeled. The model captures 

the strain histories in the reinforcement and in the concrete and accounts for the dependency of 

the concrete stress-strain relationship in compression on the transverse strain, including stiffness 

and strength degradation. The model considers also mesh size effects. The capabilities of the 

model are demonstrated by comparing the measured and computed cyclic response of five test 

walls, which displayed significant flexure-shear interaction, including a six-story wall with 

openings. 

 

INTRODUCTION 

Computation of the nonlinear cyclic response of reinforced concrete (RC) walls to earthquake 

excitation is an area of significant interest to both practicing engineers and researchers. This task 

is especially challenging when the response of a RC wall is affected significantly by flexure-

shear interaction (FSI) and the wall is subjected to a load history involving multiple large 

amplitude cyclic reversals. Combination of axial, flexural, and shear load on a component results 

in a multi-axial stress state, which in turn leads to coupling of nonlinearities due to flexure 

(bending moment and axial load), and shear, referred as FSI. FSI strongly affects the cyclic 

behavior of RC walls in terms of strength, stiffness, deformation capacity, softening response, 

and strains developed in steel and concrete. For this reason, guidelines for the assessment of the 

force and deformation capacity of these members, see for example FEMA 2731 and FEMA 356,2 
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are given by backbone formulations that are load-history invariant. Testing of reinforced 

concrete columns3 and walls4 has shown that the shear strength and the onset of strength 

degradation depend on the load history. The model described in this report considers the effects 

of load history on structural response.  

 

This report describes a nonlinear truss modeling approach for reinforced concrete walls, or in 

general, for plane stress reinforced concrete elements subjected to cyclic reversals of increasing 

displacement amplitude. The main objective of the model is to compute the post cracking plane 

stress behavior, the lateral force, and deformation capacity of RC walls with significant flexure 

shear interaction including softening. The approach requires a computer to be implemented.  The 

model approximates well FSI and recognizes the effect of the transverse strain on the stress-

strain relationship of concrete in compression as reported by Vecchio and Collins in their 

development of the Modified Compression Field Theory,5 but makes the transverse strain 

reduction factor a function of the gage length as explained below. In relation with previous truss 

models, this model: i) uses a parallel angle truss model, ii) accounts for tension stiffening also in 

the horizontal direction and iii) accounts for mesh size effects to determine an appropriate stress-

strain relationship for concrete. The capabilities of the model are demonstrated by comparing the 

measured and computed response of five test units. The first, third, and fifth test units are 

characterized by significant flexure-shear interaction in the response while the second and fourth 

units have a shear critical response. The global response, in terms of lateral force-lateral 

displacement is presented for all cases as well as the strain response of some regions for the first 

test unit. The more localized response of diagonal concrete elements is also discussed in all 

cases.  



 3

Practicing engineers and researchers need computational tools that compute accurately the cyclic 

response of RC walls, and, in particular, force and deformation capacities and their materials 

strains.  Such assessment can be done either with simplified and empirical models or with refined 

finite element (FE) models. An engineering tool of intermediate complexity, in comparison with 

finite element models, is presented in this report. This tool requires less computational effort and 

time than FE methods, using nonlinear truss elements with the added advantage that by using 

truss elements the user gets a feeling of the internal force. This tool is able to compute 

satisfactorily the post-cracking cyclic response of RC walls, in terms of global force-

displacement as well as the displacement at which concrete softening initiates or concrete 

crushes. The model represents well the flexure-shear interaction typically observed in squatter 

walls. Moreover the model accounts for mesh size effects. The model is also able to compute 

satisfactorily the cyclic response of walls with openings coupled through beams that remain 

elastic.  

 

LITERATURE REVIEW 

Modeling approaches for RC walls may be divided in five main categories: i) lumped plasticity 

models; ii) truss or strut and tie models; iii) macro-models like the stringer and panel model; iv) 

fiber element models; and v) finite element (FE) models. The simplest of the modeling 

approaches lumps all plasticity in a single location.6-8 In lumped plasticity models flexure-shear 

interaction has been implemented by empirical calibration of nonlinear hysteretic rules. Truss 

models9-17 have been used to evaluate the linear and nonlinear behavior of RC structures and 

members subjected to monotonic or cyclic loading. Some of these models13,15,17 have been used 

to compute the nonlinear dynamic response of RC columns and walls. Design codes, such as 
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ACI18 and CEB-FIP19 have also adopted strut-and-tie models for the assessment18 and design18,19 

of RC members. Stringer and panel model20 uses nonlinear stringers that carry the shear flow and 

nonlinear panels to represent reinforced concrete panels. Fiber element models use multiple 

vertical elements to model concrete and reinforcing steel. Fiber element models for RC walls 

were first proposed in the 1970s.21-23 Variations of these models have been used repeatedly.24-33 

Some of these models represent flexure-shear interaction through the use of nonlinear shear 

springs or through kinematic assumptions and constitutive laws at the section level, which are 

calibrated with experimental work. Fiber models27,33 that model the transverse steel 

reinforcement and represent FSI using equilibrium, specific assumptions for the shear strain 

field, and bi-axial concrete material laws have also been developed.  Modeling of RC walls using 

FE techniques is often complex, requiring much computational effort. Nonlinear finite element 

methods that use smeared and/or discreet crack approaches as well as plasticity models are well 

known,34-47 but these methods have their own limitations and are used mainly by specialized 

consultants and in academia. 

 

NONLINEAR TRUSS MODELING APPROACH 

Truss Elements 

Figure 1(a) shows a cantilever wall of length Lw and story height h. Its geometry and 

reinforcement are depicted in Fig. 1(b). Figure 1(c) shows a truss model for the wall panel with 

parallel angle diagonal elements. The layout of diagonal truss elements resembles, but does not 

need to match, the principal compressive stress trajectories when approaching the ultimate load, 

see Fig 1(d). The diagonal truss elements represent concrete only. The cross-section area of a 

diagonal truss is the product of the effective width beff  and the width bw of the wall. The effective 
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width beff depends on the lengths a and b of the subpanel, see Fig. 1(d) and thus on the angle θd 

of the diagonals. When the wall width varies, the width of the truss element is that of the wall at 

the locations of the element. The model also has horizontal and vertical truss elements. These 

truss elements represent reinforcing bars and their surrounding concrete. Effective areas of 

concrete and reinforcing bars are used, in the horizontal and vertical direction, as shown in Fig. 

1. The position of the outer vertical elements, with a distance D between them as shown in see 

Fig. 1(c), is determined based on the position of the longitudinal reinforcement close to the 

wall’s ends.   

 

For each panel like this shown in Fig. 1(b), a minimum number of 4 subpanels is proposed to 

have an acceptable distribution of the vertical, horizontal effective areas of steel and concrete. In 

this study the minimum number of subpanels used was nine, see case studies 2, and 4 below. The 

proposed model better represents walls which develop a parallel diagonal compressive stress 

field. This can be the case of squat walls with significant flexure-shear interaction.  A variable 

angle truss model15-17 may better represent the fanned concrete compression stress field seen in 

slender and flexurally dominated walls.  

 

In cases where walls and floor slabs frame, see Fig. 1, frame elements representing the 

mechanical properties of the slab over an effective width are used. For these elements, the area of 

reinforced concrete and reinforcing bars as well as the flexural rigidity of the effective slab width 

are used.  The vertical, the horizontal, and diagonal truss elements and the frame elements are 

interconnected at nodes, see Fig. 1.  Perfect bond between concrete and reinforcing steel is 

assumed. The model, as presented in this report, does not capture bond-slip and strain 
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penetration of anchored reinforcing bars, which can be an important flexibility source in flexural 

dominated members48 not investigated here.  If the constitutive stress-strain relationships of 

concrete and reinforcing steel are known, the truss’ axial force - axial displacement relationship 

can be readily computed.  

 

Truss Element Size Effect 

It is well known that the prediction of the nonlinear response of a softening (strength degrading) 

structural element is very dependent of the mesh size in finite element modeling.36,37,42 This 

computational mechanics problem is addressed by making the softening branch of the stress-

strain relationships of the materials a function of the size of the elements used in the model.  To 

account for the element size effect in this model, the notion of concrete fracture energy is 

employed.36,37,42  Figure 2(a) shows a concrete panel of length L subjected to pure tension. Figure 

2(b) depicts the assumed concrete axial stress fc - crack opening u diagram of this element. The 

area under the fc - u diagram is the fracture energy Gf. Figure 2(c) shows the fc – strain ε 

relationship of the concrete element where ε is the result of smearing the crack opening u over 

the element length L. The area under the fc - ε diagram is equal to Gf / L. Since Gf  is a material 

property independent of L the fc - ε relationship is adjusted according to the element length L. 

Increasing  L results in a fc - ε relationship with steeper degrading branch. The truss model 

described here considers the element size effect to determine the stress-strain behavior of 

concrete elements both in tension and compression as described below. In this study L is the 

length of a truss element in the model. As discussed below the element size effect also needs to 

be accounted for when determining the instantaneous compressive stress in a concrete truss 

element subjected to normal tensile strain.  
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Constitutive Stress-Strain Relationships 

a. Reinforcing Steel - Vertical and Horizontal Truss Elements 

The stress-strain relationship of steel is represented by the Dodd-Restrepo49 hysteretic rule, see 

Fig. 3(a), where Es is the initial modulus of elasticity, fy the yield strength, fsu the ultimate stress 

that occurs at strain εsu. The strain at initiation of strain hardening region is denoted as εsh. The 

model is described in detail by Dodd and Restrepo.49 This model represents the Bauschinger 

effect and the degradation in the unloading modulus observed experimentally.49  This model does 

not represent of the nonlinear geometrical response of a reinforcing bar (bar buckling). In 

addition to Es, fy, fsu, εsu, εsh, the model requires as an input the parameter Ω which controls the 

shape of the stress-strain relationship in terms of Bauschinger effect. 49   In this report Ω = 0.9 

was considered for all case studies described below. 

 

b. Concrete Type I – Vertical and Horizontal Truss Elements 

Concrete type I is used to model the vertical and horizontal concrete truss elements. These 

elements model the effective concrete area and account for tension stiffening.5 The hysteretic 

stress-strain behavior of Concrete Type I, both in tension and compression, is modeled using the 

Schoettler - Restrepo’s50 piecewise linear rule shown in Fig. 3(b). For concrete in tension, the 

modulus of elasticity is Ec  = '
c ο2f ε , where fc′ is the strength in MPa (1 ksi = 6.89 MPa), and εo = 

0.2% is the strain of the unconfined concrete at fc′. The direct tensile strength of concrete in MPa 

( 1 ksi = 6.89 MPa) is '
ct cf = 0.33 f , while the residual strength of concrete in tension is ft,res = 

0.2fct at a strain εres= 8εcr where εcr is the cracking strain of concrete. The values of ft,res and εres 

can be taken as a variable to account for the dependence of the average tension stiffening 

behavior to reinforcing steel ratio and bond conditions.51  



 8

The concrete stress-strain relationship used in this study unloads from tension with Ec until 

reaching a zero stress and then reloads to a compressive stress equal to fct at a compressive strain 

equal to εcr. The concrete compressive stress-strain relationship is assumed linear initially up to fc 

= 0.3βfc′ and characterized by a modulus of elasticity Ec. Factor β describes the dependency of 

the concrete compressive stress-strain relationship to the normal tensile strain as will be 

explained in the other concrete type model. In Concrete Type I, β = 1. Degradation occurs upon 

reaching βfc′ and the concrete looses all its compressive strength at a strain εu. In the modified 

compression field theory5 (MCFT), a recommended value is εu = 0.4%. In the MCFT strains 

were measured and averaged over a region of 0.6 m (23.6 in.) by 0.6 m. (23.6 in.).  Having as a 

reference the MCFT accounting for mesh size effects makes εu a function of element length L 

with εu = 0.6 x 0.4% = 0.24% / L, where L in meters (1 m = 23.6 in.). To avoid a very abrupt 

softening branch for panels larger than those reported in MCFT, εu = max (0.24% / L, 0.4%) is 

proposed in this study. The confined concrete in compression is assumed to yield but not to 

harden after reaching the confined compressive strength fcc at a strain εcc, see Fig. 3(b). Confined 

concrete starts to degrade at strain εcu. Confined concrete values of fcc, εcc and εcu are computed in 

this study based on the recommendations of Mander et al.52 The concrete stress-strain 

relationship used in this study unloads with a modulus Ecu, reduced in comparison with Ec, until 

reaching a zero stress, see Fig. 3(b). The stress continues to be zero until the strain becomes zero 

and reloading in tension initiates.   

 

c. Concrete Type II - Diagonal Truss Elements 

Concrete Type II is used to model the diagonal concrete truss elements. More complex in 

response than the Concrete Type I, this model couples the element’s compressive stress-strain 
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behavior to the tensile strain normal to the element’s axis, εt1. This tensile strain is computed at 

the element’s mid-length, see Fig. 4(a). For the truss element extending from nodes A to B, the 

instantaneous compressive stress is multiplied by factor β determined from the instantaneous 

tensile strain normal to the axis of the truss element. The tensile strain normal to the axis of the 

element is defined as the average strain computed with the zero stiffness “strain gage” elements 

OC and OD, see Fig. 4(a).  The gage elements OC and OD are not necessary to coincide with 

truss elements used in the model. In this study the gage elements were coinciding with the truss 

elements of each subpanel.  The angle formed between the elements AO and OD is denoted as 

θg, see Fig. 4(a). In this study 84o < θg < 106o was used for the critical elements. Values of θg 

close to 90o are recommended. Factor β is defined by the tri-linear relationship shown in Fig. 

4(b). The tri-linear relationship proposed for factor β is based on that proposed by Vecchio and 

Collins,5 but is capped at a value of βres = 0.3 at a strain εtres = 1.0%. As it will be discussed later 

in the discussion, factor β needs to be also a function of the gage length Lg to ensure mesh 

objectivity. Mesh objectivity describes the independence of the computational results on the size 

of the elements comprising the computational model. The hysteretic stress-strain behavior of 

Concrete Type II is represented by the piecewise linear rule shown in Fig. 3(b). Concrete Type II 

in tension has zero tensile strength ftres at the tensile strain εres. Accounting for the element length 

effect εres is a function of L with εres = max (1.2εcr / L, 2εcr ). A minimum value of εres = 2εcr is 

considered to avoid very abrupt softening branches in case of elements of large length. 

 

MODEL VALIDATION 

The model proposed was coded into the nonlinear structural analysis computer program 

Ruaumoko.50 Existing rules available from the library in this program were used to represent 
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Concrete Type I, II and reinforcing steel.  The model is validated by comparing the computed 

and experimentally measured response of five RC walls that were tested under reversed cyclic 

loading conditions. The cyclic response was computed using a displacement control algorithm. 

The following sections describe in detail the five walls considered and present the comparison 

between the experimentally measured and the computed responses. The walls had a ratio 

w

M
VL  varied between 0.45 and 2.9, where M is the bending moment in the wall and V is the 

applied lateral force at the top. Case studies one, two, four, and five  were tested under controlled 

lateral displacements while the wall of case study three under controlled lateral force using a 

prescribed load protocol.  The response of all the walls was characterized by crushing of the 

concrete carrying the diagonal compression stress field. For all case studies presented below, 

except case study 2, the experimentally measured response was plotted by digitizing the original 

plots. The loops obtained should only be regarded as a good approximation.  

 

Case Study 1 - Sittipunt et al.53 - Wall W2 

Case study 1 is a squat wall with an aspect ratio 
w

M
VL = 1.4, see Fig. 5(a).  The longitudinal 

reinforcement ratio in the boundary elements ρlb and the web ρlw was equal to 2.3 and 0.5%, 

respectively. In the transverse direction, this wall had a reinforcement ratio ρt = 0.8%. Values of 

fc
′, as well as of fy, fsu, εsh and εsu of the  the 16 mm (0.63 in.), 12 mm (0.47 in.), and 10 mm (0.39 

in.), and 6mm (0.24 in.) diameter bars are listed in Fig. 5. Lateral forces were applied at the top 

beam.  This beam remained free to rotate throughout the test.  No axial load was applied to the 

wall in this test. After reaching the theoretical flexural strength, the wall failed by web crushing 

at a lateral displacement of 30 mm (1.18 in.) corresponding to a drift ratio Θr  = 1.4%.53  
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Figure 5(b) shows two truss models for Wall W2: M1-1 and M1-2. The two outer vertical 

elements on each side of the model represent the areas of reinforcing steel and concrete of the 

boundary elements, while the vertical lines of elements in between represent the tributary area of 

reinforcing steel and concrete in the web. Model M1-1 uses two vertical lines of elements in the 

web while, M1-2 uses three lines. Figure 5 lists the areas of the concrete and steel truss elements 

Ac, As, respectively. The subscripts v, and h refer to the vertical and horizontal elements, 

respectively, while the subscripts w, and b, refer to the web and the boundary elements, 

respectively. 

 

 Figure 6(a) compares the lateral force–lateral displacement response measured during the test 

with the responses predicted monotonically and cyclically using the M1-1 model. The response 

computed with model M1-2 is discussed in a following section. Model M1-1 computes well the 

cyclic response in terms of strength, loading and unloading stiffness. The displacement 

amplitudes at which softening initiation and crushing of the concrete diagonals is computed for 

first time are also indicated in this figure. The computed strength is 5% less than the 

experimentally measured for positive displacement response. In good agreement with the test 

response model M1-1 computes initiation of compression softening and crushing of concrete 

diagonals at Θr = 1.3%, and 2.5%, respectively. 

 

Figure 7 compare the experimentally measured, using strain gauges, and computed longitudinal 

and transverse strains, respectively, versus lateral force. The points where strains are measured 

and computed are shown in Figure 5. The model satisfactory computes both the longitudinal and 
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transverse strains. The computed strains are smeared over the length of the element, while the 

experimentally measured strains, using strain gauges, are affected by bond slip, crack opening 

and strain localization. 

 

Case Study 2 – Massone54 – Wall WP1105-8 

Case study 2 is a very squat wall with an aspect ratio 
w

M
VL = 0.45, see Fig. 8(a). The wall was 

lightly reinforced in the longitudinal and transverse directions. The wall longitudinal and 

transverse reinforcement ratios were ρlw = 0.43% and ρt = 0.27%, respectively. As in previous 

units, lateral force was applied to the wall via a top beam.  In this test, the top beam was 

constrained from rotating, resulting in a point of inflection at the wall mid-height. The 

compressive axial load ratio was N / '
cf Ag = 0.05 and remained constant during the test. 

Diagonal crushing of the concrete and loss of gravity load resistance was observed at Θr = 

0.8%,54 before the wall reaching its flexural strength.  

 

Figure 8(b) shows two models: M2-1 and M2-2. Model M2-2 has elements with half the length 

of model’s M2-1 elements. Figure 8 lists the areas of As and Ac used for the two models. The 

subscripts 1 and 2 refer to the outer and inner vertical elements, respectively. Figure 6(b) 

compares the measured and the computed response with the M2-1 model. The computed 

response with model M2-2 is discussed in a following section. Model M2-1 computes larger 

precracked stiffness. This is expected especially for this case where the wall is lightly reinforced 

in both directions and the effect of concrete in tension is important in both of them.  Very 

satisfactory is the computed the point where the sudden drop in the force was observed at Θr = 

0.84%. The model computes that the first diagonal reached εo in compression at Θr = 0.72% 
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while all of its compressive strength was lost at Θr = 0.86%. The computed lateral force 

exceeded the experimentally measured by by 10%.  

 

Case Study 3 – Shiu et al.55 – Perforated Wall PW1 

Case study 3 is a moderately slender wall with an aspect ratio 
w

M
VL = 2.9. This is a six-story 

RC wall with openings built at 1:3 scale, see Fig 9(a). Lateral force was applied at the top of the 

wall.  The test set up for this wall allowed its top end to rotate freely. The longitudinal portion of 

the wall was heavily reinforced with reinforcement ratios in the boundary elements and web 

equal to ρlb = 5.6 % and ρlw = 0.3%, respectively. The transverse reinforcement ratio was ρt  = 

0.4%. The longitudinal and transverse steel ratio of the coupling beams were ρll =  0.7%, and   ρtb 

= 0.9%, respectively. These beams were designed to and remained elastic during the test.55 

Figure 9(b) lists the fy, fsu, εsh, εsu, of the #3, #4 and 6 mm (0.24 in.) bars, respectively, employed 

in this test. Diagonal compression failure of the web, extending also in the boundary element, 

was observed at the first floor in the last cycle for negative displacement corresponding to Θr  = 

2.4%. 

 

To model this structure, the longitudinal portion of the perforated wall was discretized in 

individual panels having an aspect ratio of h / Lw = 1.2, see Figs. 9(a) and 9(c), representing the 

part of the wall on the sides of the openings; additional wall panels between the openings of the 

two subsequent floors have an aspect ratio of h2 / Lw2 = 1.4. The panels are modeled as shown in 

Fig. 9(c). Figure 6(c) compares the measured and the computed response, M3, for the perforated 

wall.  The model computes satisfactorily the overall cyclic response of the wall. The diagonal 
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concrete reaches εo at Θr = 1.4%, while it crushes at Θr = 1.7%. The computed peak lateral force 

is 6% smaller than the experimentally measured. 

 

Case Study 4 – Massone54 – Wall WP1111-9 

This wall has identical dimensions, reinforcement details, and reinforcing steel properties with 

the wall of case study 2. The differences, in comparison with the wall of case study 2, are the 

axial load ratio which is equal to 10% and the fc
’ = 28 MPa (4.1 ksi). For this specimen a wide 

diagonal crack, from corner to corner of the specimen, sliding along the crack, and onset of 

strength degradation was observed54 at Θr = 0.6%. 

 

Figure 10 compares the measured and computed response with the M2-1 model. The model, 

similar to case study 2, computes larger pre-cracked stiffness in comparison with the 

experimentally measured.  Very satisfactory is the computation at the onset of strength 

degradation  at Θr = 0.6%. The model computes that the first diagonal reached εo in compression 

at Θr = 0.53% while it crushed at Θr = 0.76%. The peak computed lateral force exceeded the 

experimentally measured by 9%.  

 

Case Study 5 - Oesterle et al.56 – Wall B9 

Case study 5 is a moderately slender wall with an aspect ratio 
w

M
VL = 2.4, see Fig. 11(a).  The 

wall had heavily reinforced boundary elements, with a longitudinal reinforcement ratio of ρlb = 

3.7%. The wall web had longitudinal and transverse reinforcement ratios equal to ρlw = 0.3%, and 

ρt = 0.55%, respectively. The concrete compressive strength, fc
′, the reinforcement yield 

strengths, fylb, fylw, fyt, and fyc of the longitudinal reinforcement in the boundary elements and the 
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web, of the transverse reinforcement and the confining reinforcement in the boundary elements, 

respectively, are listed in Fig.11. The test set up allowed this beam to rotate freely during the 

test. The compressive axial load ratio was N / fc
′Ag = 0.09. First indication of crushing of the 

diagonals was noted for peak negative load,56 after the wall had developed its theoretical flexural 

strength. Crushing of the concrete carrying the diagonal compression stress field in the wall 

occurred the first time the peak negative displacement, corresponding to Θr = 3.0%,4 was 

reached. 

 

Figure 11(b) shows the truss model, M5, for Wall B9. The outer vertical elements represent the 

areas of reinforcing steel and concrete of the boundary elements, while the three vertical lines of 

elements in between represent the area of reinforcing steel and concrete in the web.  

 

Figure 12(a) compares the measured and computed lateral force-lateral displacement hysteretic 

response. The model computes satisfactory the cyclic response and the displacement at which 

crushing of the concrete in the diagonals occurred is observed. The computed response 

demonstrates more pinching. The computed peak lateral force exceeded the experimentally 

measured by 3%.  

 

DISCUSSION  

The previous section showed that the truss model described in this report can compute with a 

reasonable level of accuracy the cyclic response of RC walls, of different geometries whose 

response is largely affected by flexure-shear interaction. As expected, the model computes larger 

uncracked stiffness because of the overlapping of the cross-section areas in the horizontal, 
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vertical and diagonal concrete truss elements. This should be considered if the model is used to 

compute the dynamic response of RC wall buildings under low- or moderate-intensity 

earthquake excitations and especially when the wall is lightly reinforced. Nevertheless, upon 

cracking, the theoretical and experimental stiffness compares well.  Table 1 lists the ratio of 

computed to measured secant stiffness rK,s,0.7,Fu,m at lateral force equal to 0.7 of the peak 

measured lateral force Fu,m. In all cases the computed secant stiffness doesn’t exceed the 

measured by more than 19% with the average overestimation of the secant stiffness to be 16%.  

 

Furthermore, the model reasonably computes the lateral force and displacement at which the 

concrete carrying the compression stress field crushes in a wall. This is because the model: i) 

appropriately computes the cyclic strain history of the elements, ii) updates the stress-strain 

relationship of concrete (Concrete Type II) according to the instantaneous normal tensile strain 

in each of the diagonal truss elements carrying compression.  However, such computations are 

sensitive on the element size chosen in the model.  Suitable modifications to the softening part of 

the stress-strain relationships for concrete are needed to account for the element size effect to 

address the strain localization problem.  In subsection Truss Element Size Effect, the authors 

described a standard method used in computational mechanics to address this problem.  In the 

following sections the authors discuss additional issues that need to be considered to address the 

strain localization phenomena and ensure mesh objectivity.  

 

Mesh Objectivity 

Figures 13(a) to 13(c) compare the lateral force-displacement responses computed for wall 

WP1105-8, examined previously in case study 2, using the model M2-1 and three variants of 
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model M2-2, see Fig. 8(b). Each variant of model M2-2 has a different stress-strain relationship 

for concrete. The first variant of model M2-2, M2-2-1 the stress-strain relationship for concrete 

is made a function of the element length, as discussed in section Concrete Type II - Diagonal 

Truss Elements. This model uses the same relationship for β as in model PA-43. Figure 13(a) 

shows that model M2-2-1 results in a significantly different overall force-displacement response, 

in comparison with M2-1, with 20% smaller peak lateral force. Model M2-2-1 displays much 

earlier softening of the concrete diagonals than model M2-1.  

 

 Fig. 14 shows the computed normal tensile strain histories for elements e1 and e2, which are the 

upper left diagonal truss elements of models M2-1 and M2-2-1, respectively, see Fig. 8. In these 

elements first the concrete crushes. Figure 14 shows that the normal tensile strain computed for 

element e2 in model M2-2-1 is on average twice the normal tensile strain obtained for element e1 

in model M2-1. The increased tensile strain in element e2 is due to strain localization in tension 

in this element. The larger normal tensile strain of this element results in earlier reduction of 

factor β in model M2-2-1 when compared to model M2-1, see Figure 14 (b). This explains why 

the response computed by model M2-2-1 softens at a smaller drift than that computed by model 

M2-1.  This comparison demonstrates that the modification of the stress-strain relationship of 

concrete alone, as examined in Section Concrete Type II - Diagonal Trusses is not sufficient to 

solve the element size conundrum in these models.  

 

 A key in the solution of the element size problem is the recognition that the strain localization 

phenomena also exists in the diagonal strain gauge elements, which monitor the normal tensile 

strain in a diagonal truss element in compression via factor β.   For example, compare the 
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response predicted by model M2-2-2, the second variant of model M2-2, with the response 

computed by model M2-1.  Model M2-2-2 makes the stress-strain relationship for concrete a 

function of the element length and also makes the tensile strain εtres, a linear function of the 

element length. Since the length of the elements in model M2-2 are half those of M2-1, we 

intuitively make εtres = 2.0% in model M2-2-2, which is 2 times the value used in M2-1. Figure 

13(b) shows that model M2-2-2 significantly improves the computed response for drift ratio up 

to 0.7%. When εtres = 3.5%, as is incorporated into the third variant of model M2-2, model M2-2-

3, the responses predicted by this model and the coarser mesh model M2-1 practically overlap, 

see Fig. 13(c).  

 

Relationship between Factor β and Transverse Element Gage Length 

The comparisons made in previous section showed the significant effect that the element size has 

on the computed response, when this involves softening. Models M2-2-1 and M2-2-2 showed 

that the softening branch of the stress-strain relationship for concrete and that the relationship 

defining factor β for concrete should be made a function of the element length.  However, there 

are few cases where mesh objectivity cannot be attained fully.  One such case is when strain 

localization occurs in a diagonal truss element in compression and in a strain gauge element that 

it is not connected to the compressive element that experienced localization. 

The element length invariant relationship for factor β shown in Fig. 4 with εtres = 1.0% is a 

simple representation of the nonlinear relationship proposed by Vecchio and Collins.5 Such 

relationship was based on results of shear panels that had a reference gauge length LgR = 0.6 m 

(23.6 in.) equal to the length over which smeared strains were measured, for which the residual 

strain was set εtres = 1.0%.  Hence, an element length dependent residual strain can be defined as: 
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gR
tres

g g g g

L 0.6%ε = 1.0%×
L sinθ L sinθ

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
                                                                                       (1) 

 

where Lg in meters. This relation of β and Lg implies that localization in tension and compression 

will occur in the same subpanel. The ratio of ( )gR g gL L sinθ  of the diagonal elements of the 

web parts of the models of case studies one to five is equal to 1.3, 1.1, 2.1, 1.1, and 1.3, 

respectively. Assuming a relation of β which depends on the gage length Lg the response of case 

study three is recomputed. Figures 15(a) shows the comparison of the computed response for 

case study three using the newly defined relationship for β. The computed responses, with (M3g) 

and without (M3) considering the effect of gage length on β, are compared in this plot. As 

expected model M3g computes at a later stage strain εo in compression and crushing in the 

concrete diagonals. For both sides of displacement response model M3g results in larger peak 

lateral force. The computed response using model M3g is closer to the measured, compare 

Figures 6(c) and 15(a).  Similarly for case study 5 accounting for mesh size effects in the biaxial 

behavior of concrete (model M5g) results in computation of first softening and crushing of the 

diagonals at a later stage, compare Figures 12(a) and 12(b). In this case accounting for the mesh 

size effects in the biaxial behavior of concrete results in better agreement between measured and 

computed response. 

 

Angle of Inclination of Diagonal Truss Elements 

Figure 15(b) compares the response of models M1-1g and M1-2g of case study one. For both 

models factor β is a function of the gage length. Model M1-2g with steeper angles computes 

softening and crushing of the concrete diagonals for a smaller drift ratio, in comparison with M1-
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1g. Model M1-2g results in more strength degradation for both sides of the response, and 

especially for negative displacement corresponding to drift ratio larger than 1.0%. The sensitivity 

of the computed response on the angle of the diagonal struts has been also indicated by Mazars et 

al.13. 

 

CONCLUSIONS 

This report described a nonlinear truss modeling approach for reinforced concrete walls. 

Longitudinal, transverse, and diagonal truss elements were used to represent concrete and 

reinforcing steel. The model represents well flexure-shear interaction by appropriately 

computing the strains in the reinforcement and in the concrete and by updating the concrete 

compressive stress-strain relationship with the instantaneous tensile strain normal to the diagonal 

elements carrying the compression stress field.  The model accounts for the element length 

effects to determine the concrete stress-strain relationship. The model was verified by comparing 

the computed and experimentally measured response of five RC walls with response 

characterized by significant flexure-shear interaction including a wall with openings. Parallel 

angle truss model with diagonals, in the web part of the walls, of length between 0.3m and 0.5m 

and angles between 43o and 53o were used to model panels with 
w

M
VL ratios between 0.45 and 

2.9. The main conclusions drawn are: 

1. The nonlinear cyclic truss model computes reasonably well the post-cracking cyclic force-

displacement response of RC walls, with significant flexure-shear interaction in their 

response, in terms of strength and stiffness, with moderate computational effort. The model 

computes larger, than the experimentally measured, pre-cracked stiffness due to the 

overlapping areas of vertical, horizontal and diagonal concrete elements. The computed 
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secant stiffness at 0.7 of the peak measured force was found to be 16% larger, on average, 

than the experimentally measured one. 

2. Accounting for the element length effects is important for the computation of the overall 

force-displacement response and especially for the computation of the local element response 

involving softening. 

3. In the case study where mesh objectivity was investigated, this required consideration of the 

effects of element length not only in the determination of the uniaxial stress-strain behavior 

of concrete but also to determine the relation between the concrete compressive stress-strain 

behavior and normal tensile strain.  

4. For the one case where the effect of angle of the diagonals investigated, steeper angles 

resulted in earlier crushing of the diagonals and more strength degradation.  

5. Using a panel discretization approach, a truss model can be effectively used to predict the 

cyclic response of walls with openings coupled through beams that remain elastic. 

 

ACKNOWLEDGEMENTS 

We would like to thank the Portland Cement Association (PCA) which partially supported the 

first author for this work, and Professor Athol Carr for his insightful comments.  

 

 REFERENCES 

1. FEMA. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA 273, and 

NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, FEMA 

274. Federal Emergency Management Agency, Washington, D.C., 1997, 435 pp.  



 22

2. FEMA. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 

356. Federal Emergency Management Agency, Washington, D.C., 2000, 519 pp. 

3. Pujol, S., Sozen M. and Ramirez, J, “Transverse Reinforcement for Columns of RC Frames 

to Resist Earthquakes,” J. Struct. Eng., V. 126, 2000, pp. 461-466. 

4. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, L. S., Russell, H. G., and Corley, W. 

G., “Earthquake-Resistant Structural Walls - Tests of Isolated Walls,” Report to the National 

Science Foundation , Construction Technology Laboratories, Portland Cement Association, 

Skokie, Illinois, 1976, 315 pp. 

5. Vecchio, F. J., Collins, M., P., “The Modified Compression Field Theory for Reinforced 

Concrete Elements Subjected to Shear,” Journal of the American Concrete Institute, V. 83, 

No. 2, 1986, pp. 219-231. 

6. Giberson MF. Two Nonlinear Beams with Definitions of Ductility. Journal of the Structural 

Division ASCE, 1969, pp. 137-157. 

7. Saiidi M., Sozen M. A, “Simple and Complex Models for Nonlinear Seismic Response of 

Reinforced Concrete Structures,” Structural Research Series No. 465. University of Illinois, 

Urbana (Illinois), USA, 1979, 204 pp. 

8. Hidalgo, P. A., Jordan, R. M., and Martinez, M. P., “An Analytical Model to Predict the 

Inelastic Seismic Behavior of Shear-Wall, Reinforced Concrete Structures,” Engineering 

Structures, V. 24, No. 1, 2002, pp. 85-98. 

9. Hrennikoff, A. “Solution of Problems of Elasticity by the Framework Method,” Journal of 

Applied Mechanics, (Trans ASME), 1941, pp. 169-175. 

10. Absi, E., Prager, W., “A Comparison of Equivalence and Finite Element Methods,” 

Computer Methods in Applied Mechanics and Engineering, V. 6, No. 1, 1975, pp. 59-64. 

11. Schlaich, J., Schaefer, K. and Mattias, M., “Toward a Consistent Design of Structural 

Concrete,” Special Report of PCI Journal, V. 32, No. 3, 1987, pp. 75-150. 



 23

12. Tjhin, T. N., and Kuchma, D. A. “Computer-Based Tools for Design by Strut-and-Tie 

Method: Advances and Challenges,” ACI Structural Journal, V. 99, No. 5, 2002, pp. 586-

594. 

13. Mazars, J., Kotronis P., and Davenne,  L. “A new Modelling Strategy for the Behavior of 

Shear Walls Under Dynamic Loading,” Earthquake Engineering and Structural Dynamics, 

V. 31, No. 4, 2002, pp. 937-954. 

14. To, N. H. T., Ingham, J. M., Davidson, B. J.,  and Sritharan S., “Cyclic Strut-and-tie 

Modeling of Reinforced Concrete Structures,” Pacific Conf. on Earthquake Engineering, 

Paper No. 102, Christchurch, New Zealand, 2003, 9 pp. 

15. Miki, T., “Nonlinear Analysis of Reinforced Concrete Structures Subjected to Seismic Loads 

by Using Three-dimensional Lattice Model,” Ph.D. thesis, Department of Civil Engineering, 

Tokyo Institute of Technology, 2004, 210 pp.  

16. Park, H., and Eom, T, “Truss Model for Nonlinear Analysis of RC Members Subject to 

Cyclic Loading,” J. Struct. Eng., V. 133, No. 10, 2007, pp. 1351-1363. 

17. Panagiotou, M., “Seismic Design, Testing and Analysis of Reinforced Concrete Wall 

Buildings,” Ph.D. Thesis, Department of Structural Engineering, University of California, 

San Diego, 2008, 288 pp. 

18. American Concrete Institute (ACI), “Building Code Requirements for Structural Concrete,” 

ACI 318-08, Farmington Hills, Mich, 2008, 467 pp. 

19. Comité Euro-International du Béton/Fédération Internationale de la Précontrainte. CEB-FIP 

model code 1990: Design code, Thomas Telford, London, 1993, 437 pp. 

20. Blaauwendraad, J., and Hoogenboom P.  C. J. “Stringer Panel Model for Structural Concrete 

Design,” ACI Structural Journal, V. 93, No. 3, 1996, pp. 1-11. 



 24

21. Taylor, R.G. “The Nonlinear Seismic Response of Tall Shear Wall Structures”. Ph.D. Thesis, 

Department of Civil Engineering, University of Canterbury, 1977, 207 pp. 

22. Otani, S. Kabeyasawa, T., Shiohara, H., and Aoyama, H., "Analysis of the Full Scale Seven 

Story Reinforced Concrete Test Structure," ACI SP-84, American Concrete Institute, 1985, 

pp. 203-239. 

23. Vulcano, A., Bertero, V. V., “Analytical Models for Predicting the Lateral Response of RC 

Shear Walls: Evaluation of their Reliability,” Earthquake Engineering Research Center, 

University of California, Berkeley, 1987, 93 pp. 

24. Fischinger, M., Vidic, T., and Fajfar, P., “Nonlinear Seismic Analysis of Structural Walls 

using the Multiple-vertical-line-element Model,” Nonlinear Seismic Analysis and Design of 

Reinforced Concrete Buildings. Fajfar, P., Krawinkler, H., editors. Elsevier Applied Science, 

1992, 307 pp. 

25. Linde, P., Bachmann, H., “Dynamic Modeling and Design of Earthquake-resistant Walls,” 

Earthquake Eng. Struct. Dynamics, V. 23, No. 12, 1994, pp. 1331-1350. 

26. Ranzo, G., and Petrangeli, M., “A Fibre Finite Beam Element with Section Shear Modelling 

for Seismic Analysis of RC Structures”. Journal of Earthquake Engineering, V. 3, No. 2, 

1998, pp. 443-471. 

27. Petrangeli, M., Pinto, P. E., Campi, V., “Fiber Element for Cyclic Bending and Shear of RC 

Structures. I: Theory,” Journal of Engineering Mechanics, V. 125, No. 9, 1999, pp. 994-

1001. 

28. Petrangeli, M., “Fiber Element for Cyclic Bending and Shear of RC Structures. II: 

Verification,” Journal of Engineering Mechanics, V. 125, No. 9, 1999, pp. 1002-1009. 



 25

29. Ghobarah, A., Youssef, M. “Modelling of Reinforced Concrete Structural Walls,” 

Engineering Structures, V. 21, No. 10, 1999, pp. 912-923. 

30. Orakcal, K., Wallace, J. W., and Conte, J. P., “Nonlinear Modeling and Analysis of Slender 

Reinforced Concrete Walls,” ACI Structural Journal, V. 101, No. 5, 2004, pp. 455-465. 

31. Martinelli L. “Modeling Shear-Flexure Interaction in Reinforced Concrete Elements 

Subjected to Cyclic Lateral Loading,” ACI Structural Journal, V. 105, No. 6, 2008, pp. 675-

684. 

32. Massone, L.M., Orakcal, K., Wallace, J. W., “Modeling of Squat Structural Walls Controlled 

by Shear,” ACI Structural Journal, V. 106, No. 5, 2009, pp. 646-655. 

33. Massone, L.M., Orakcal, K., and Wallace, J. W. (2006). “Shear - Flexure Interaction for 

Structural Walls,” SP-236, ACI Special Publication – Deformation Capacity and Shear 

Strength of Reinforced Concrete Members Under  Cyclic Loading, editors: Adolfo 

Matamoros & Kenneth Elwood, 127-150, 2006 

34. Cervenka, V., and Gerstle, K. H., “Inelastic Analysis of Reinforced Concrete Panels: 

Theory,” Publ. IABSE, V. 31, No. 11, 1971, pp. 31-45.  

35. Vallenas, J. M., Bertero, V., and Popov, E. P., “Hysteresis Behavior of Reinforced Concrete 

Structural Walls,” Report No. UCB/EERC-79/20, Earthquake Engineering Research Center, 

University of California, Berkeley, 1979, 267 pp. 

36. Bazant Z.P., Ceolin L., 'Blunt Crack Propagation in Finite Element Analysis', J. Eng. Mech. 

Div., ASCE, V. 105, No. 2, 1979, pp. 297-315. 

37. Pietruszczak, S. and Mroz, Z. “Finite Element analysis of deformation of strain softening 

materials,” International Journal for Numerical Methods and in Engineering, V. 17, No. 3, 

1981, pp. 327-334. 



 26

38. Balakrishnan, S., and Murray, D. W., “Prediction of R/C Panel and Deep Beam Behavior by 

NLFEA,” J. Struct. Engrg., V. 114, No. 10, 1988, pp. 2323-2342. 

39.  Crisfield, M. A., Wills J., “Analysis Of R/C Panels Using Different Concrete Models,” J. 

Engrg. Mech. V. 115, No. 3, 1989, pp. 578-597. 

40. Feenstra, P. H., de Borst, R., “Aspects of Robust Computational Modeling for Plain and 

Reinforced Concrete,” Heron, V. 38, No. 4, 1993, 76 pp. 

41. Park, H., Klingner, R.E., “Nonlinear Analysis of RC Members Using Plasticity with Multiple 

Failure Criteria,” J. Struct. Eng., V. 123, No. 5, 1997, pp. 643-651. 

42. Bazant, Z. P., Planas, J., “Fracture and Size Effect in Concrete and Other Quasibrittle 

Materials”. CRC Press, 1998, 616 pp. 

43. Ayoub, A., Filippou F. C., “Nonlinear Finite-Element Analysis of RC Shear Panels and 

Walls,” J. Struct. Engrg. 124, No. 3, 1998, pp. 298-308. 

44. Palermo, D., Vecchio, F. J., “Behavior of Three-Dimensional Reinforced Concrete Shear 

Walls,” ACI Structural Journal, V. 99, No. 1, 2002, pp. 81-89. 

45. Mosalam, K. M., Mahin, S. A., and Rojansky, M., “Evaluation of Seismic Performance and 

Retrofit of Lightweight Reinforced Concrete Shear Walls,” ACI Structural Journal, V. 100, 

No. 6, 2003, pp. 693-703. 

46. Maekawa, K., Pimanmas, A., and Okamura H. “Nonlinear Mechanics of Reinforced 

Concrete,” Spon Press. London, 2003, 721 pp. 

47. Fédération internationale du béton (FIB). “Practitioners' Guide to Finite Element Modeling 

of Reinforced Concrete Structures.” State-of-art report, Lausanne, Switzerland, June 2008, 

344 pp. 



 27

48. Bertero, V. V., Popov, E. P., Viwathanatepa, S. “Bond of reinforcing steel: experiments and a 

mechanical model v. 2, Nonlinear behavior of reinforced concrete spatial structures,” 

Contributions to the IASS Symposium, 1978, pp. 3-17.  

49.  Restrepo-Posada, J. I., Dodd, L. L., Park, R., and Cooke N. “Variables Affecting Cyclic 

Behavior of Reinforcing Steel”, J. Struct. Engrg., V. 120, No. 11, 1994, pp. 3178-3196.  

50. Carr, A. J., “Ruaumoko – A Program for Inelastic Time-History Analysis,” Department of 

Civil Engineering, University of Canterbury, New Zealand. 2008, 844 pp. 

51. Bentz E. C., “Explaining the Riddle of Tension Stiffening Models for Shear Panel 

Experiments.” J. Struct. Eng., V. 114, No 9, 2005, pp. 1422-1425. 

52. Mander, J. B., Priestley, M. J. N., Park, R., “Theoretical Stress-Strain Model for Confined 

Concrete,” J. Struct. Eng., V. 114, No. 8, 1988, pp. 1804-1826. 

53. Sittipunt, C., Wood, S. L., Lukkunaprasit, P., Pattararattanakul, P. “Cyclic Behavior of 

Reinforced Concrete Structural Walls with Diagonal Web Reinforcement,” ACI Structural 

Journal, V. 98, No. 4, 2001, pp. 554-562. 

54. Massone Sanchez L. M. “RC Wall Shear – Flexure Interaction: Analytical and Experimental 

Responses,” Ph.D. thesis, University of California, Los Angeles, 2006, 398 pp. 

55. Shiu, K. N., Daniel, J. I., Aristizabal-Ochoa, J. D., Fiorato, A. E., and Corley, W. G., 

“Earthquake-Resistant Structural Walls—Tests of Walls With and Without Openings,” 

Report to the National Science Foundation, Construction Technology Laboratories, Portland 

Cement Association,Skokie, Illinois, 1981, 120 pp. 

56. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, L. S., Russell, H. G., and Corley, W. 

G., “Earthquake-Resistant Structural Walls - Tests of Isolated Walls – Phase II,” Report to 



 28

the National Science Foundation , Construction Technology Laboratories, Portland Cement 

Association, Skokie, Illinois, 1979. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29

Table 1. Ratio of computed to measured secant stiffness at 70% of peak measured lateral force. 

Case Study 1 2 3 4 5 

rK,s,0.7Fu,m 1.19 1.18 1.18 1.11 1.16 
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Figure 1. Reinforced concrete wall and wall panel truss model. 
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Figure 2. Tension softening behavior of a concrete element, (b) definition of fracture energy, 

and (c) relationship between stress-strain curve, fracture energy and element size effect.  
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Figure 3. Stress-strain relationships of reinforcing steel and concrete. 
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Figure 4. Coupled compression-tension model for diagonal truss elements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 31

369

265

42° 50°

353

first computed
crushingsg1

sg2

59°

477

59°

415

190
190

369

Area in  mm
2

Asvb =716

Asvw = 183
Ashw = 300

Ashb = 516

630 595  662622

Φ6 Φ10 Φ12 Φ16
fy
f u

0.8ε  sh (%)
ε  su (%)

0.8 0.8 0.8
10 10 10 10 Acvb = 31250

Acvw = 33333
Achw = 31667

Achb = 79167

Acvb = 31250

Acvw = 50000
Achw = 31667

Achb = 79167

250 1000 250

1900

500

1000
1500

100

7Φ10

Φ10@100

f c' = 35.8

450

ρ  lb = 2.3% ρ  lw = 0.5% ρ  t = 0.8%

6Φ16 & 2Φ12

Lateral force

 425  473444

Φ6@100

N = 0

M1-1

Rigid beam

Rigid beam M1-2

Dimensions in mm

(a) Geometry and reinforcing details (b) Truss models

Asvb =716

Asvw = 275
Ashw = 300

Ashb = 516

Stress in MPa

 
 

Figure 5. Study case 1 - Sittipunt et al.53 - Wall W2.    (25.4 mm = 1 in., 4.44 

kN = 1 kip, 1MPa = 6.89 ksi). 
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Figure 6. Comparison of experimentally measured and computed responses. Drift ratio 

computed at 2150 mm (84.6 in.) , 1219 mm (48 in.), and 5486 mm (216 in.) from base of 

wall specimens for case studies, 1, 2, and 3, respectively. (25.4 mm = 1 in., 4.44 kN = 1 kip, 

1MPa = 6.89 ksi). 
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Figure 7. Case study 1 - Comparison of experimentally measured and computed strain 

versus lateral force: (Left) Longitudinal strain based on strain gauge 1 [sg1], (Right) 

Transverse strain using strain gauge 2 [sg2]. The location of sg1, and sg2 is shown in Figure 

5 (25.4 mm = 1 in., 4.44 kN = 1 kip). 
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Figure 8. Case study 2 - Massone - Wall WP1105-8. (25.4 mm = 1 in., 4.44 kN = 1 kip, 1MPa 

= 6.89 ksi). 
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Figure 9. Case study 3 - Shiu et al. - Wall PW1. (25.4 mm = 1 in., 4.44 kN = 1 kip, 1MPa = 

6.89 ksi). 
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Figure 10. Comparison of experimentally measured and computed responses of case study 

4 - Massone - Wall WP1111-9. (25.4 mm = 1 in., 4.44 kN = 1 kip, 1MPa = 6.89 ksi). 
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Figure 11. Case study 5 - Oesterle et al.56 - Wall B9. ( 25.4 mm = 1 in., 4.44 kN = 1 kip, 

1MPa = 6.89 ksi). 
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Figure 12. Comparison of experimentally measured and computed responses of case study 

5 - Oesterle et al. - Wall B9. ( 25.4 mm = 1 in., 4.44 kN = 1 kip, 1MPa = 6.89 ksi). 
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Figure 13. Mesh size effect for case study 2. Drift ratio computed at 1219 mm (48 in.)  from 

base of wall specimen. (25.4 mm = 1 in., 4.44 kN = 1 kip, 1MPa = 6.89 ksi). 
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Figure 14. (a) Computed normal tensile strains and (b) Computed β factor of elements e1 

and e2 of models M2-1 and M2-2, respectively. (25.4 mm = 1 in., 4.44 kN = 1 kip). 
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Figure 15. (a) Effect of gage length on the computed response of case study 3. (d) Effect of 

angle of diagonal truss elements for case study 1.  Drift ratio computed at 2150 mm (84.6 

in.), 5486 mm (216 in.) from base of wall specimens for Case Studies 1 and 3, respectively. 

(25.4 mm = 1 in., 4.44 kN = 1 kip, 1MPa = 6.89 ksi). 

 
 
 
 
 
 

 
 
 

 
 




