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Abstract: Despite substantial evidence supporting the efficacy of prebiotics for promoting host health
and stress resilience, few experiments present evidence documenting the dynamic changes in micro-
bial ecology and fecal microbially modified metabolites over time. Furthermore, the literature reports
a lack of reproducible effects of prebiotics on specific bacteria and bacterial-modified metabolites. The
current experiments examined whether consumption of diets enriched in prebiotics (galactooligosac-
charides (GOS) and polydextrose (PDX)), compared to a control diet, would consistently impact the
gut microbiome and microbially modified bile acids over time and between two research sites. Male
Sprague Dawley rats were fed control or prebiotic diets for several weeks, and their gut microbiomes
and metabolomes were examined using 16S rRNA gene sequencing and untargeted LC–MS/MS
analysis. Dietary prebiotics altered the beta diversity, relative abundance of bacterial genera, and
microbially modified bile acids over time. PICRUSt2 analyses identified four inferred functional
metabolic pathways modified by the prebiotic diet. Correlational network analyses between inferred
metabolic pathways and microbially modified bile acids revealed deoxycholic acid as a potential
network hub. All these reported effects were consistent between the two research sites, supporting the
conclusion that dietary prebiotics robustly changed the gut microbial ecosystem. Consistent with our
previous work demonstrating that GOS/PDX reduces the negative impacts of stressor exposure, we
propose that ingesting a diet enriched in prebiotics facilitates the development of a health-promoting
gut microbial ecosystem.

Keywords: microbiome; metabolome; prebiotic; polydextrose; galactooligosaccharide; Parabacteroides;
Ruminiclostridium 5; bile acid; deoxycholic acid

1. Introduction

The gut microbiome is a diverse ecosystem that consists of bacteria, archaea, eukary-
otes, fungi, and viruses that live in the host’s digestive tract [1–3]. Microorganisms residing
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in the digestive tract comprise a micro-ecosystem displaying established principles of
ecosystem dynamics [4]. Like any ecosystem, gut microbes both compete and cooperate
for limited resources [5]. Dietary macronutrients [6,7] and micronutrients [8] can rapidly
change the gut’s microbial composition. Non-digestible complex carbohydrates and types
of fermentable fiber, for example, are dietary substrates selectively utilized by host mi-
croorganisms that can rapidly alter the gut microbiome and the fecal metabolome and
positively impact host health. In 2017, the International Scientific Association for Dietary
Probiotics and Prebiotics released a consensus report defining prebiotics as substrates
selectively utilized by host microorganisms conferring health benefits [9]. The complex
changing dynamics in the gut’s microbial composition after introducing dietary prebiotics
have seldom been examined, because doing so requires repeated sampling over time and
costly sequencing of large numbers of samples.

Despite substantial evidence supporting the efficacy of prebiotics for promoting host
health, there is a paucity of literature replicating prebiotic impacts on bacteria and bac-
terially modified metabolites over time [10–13]. The failure to reproduce findings could
be due, in part, to multiple bacterial taxonomy databases, ongoing taxonomic revisions,
as well as differences in sample storage, DNA extraction and sequencing, and analytic
pipelines [14]. In addition, commonly overlooked are the influences of environmental
factors on the gut microbiome, including geographic location and elevation [15–18], and
animal source [19,20].

GOS and PDX increase the relative abundance of the bacterial species Parabacteroides
distasonis and Clostridium leptum [21,22], decrease microbially modified secondary bile
acids like deoxycholic and lithocholic acid [23,24], and reduce the adverse effects of stress
exposure on host sleep physiology [25–27]. To make progress towards elucidating the
mechanisms for the stress-protective impact on host sleep physiology [27,28], the effects of
prebiotics on the gut microbiota and metabolome must be sufficiently robust to resist any
potential environmental and methodological influences.

Here, we present the results from two dietary prebiotic animal studies conducted
at Northwestern University (NW) in Evanston, Illinois, and the University of Colorado
Boulder (CU) in Boulder, Colorado. The two sites have several environmental differences,
including different research personnel, vivarium facilities, elevations (182 m vs. 1624 m),
and animal sources (Envigo vs. Harlan). To reduce the impact of other factors, NW and CU
adhered to standardized fecal sample collection and storage protocols, DNA extraction and
sequencing, as well as untargeted LC–MS/MS metabolomics protocols.

The first goal of this project was to determine whether consumption of the same
dietary prebiotic formulation tested at different universities, in different locations across
the country, and at different times of the year, would produce similar dynamic changes in
the gut microbial composition and microbially modified bile acids. The second goal of the
study was to explore the potential functional metabolic pathways and networks impacted
by the prebiotic diet. We hypothesize that the consumption of GOS/PDX by rats at NW and
CU produces robust changes over time in the gut microbiome, fecal metabolome, functional
metabolic pathways, and networks.

2. Materials and Methods
2.1. Animals

Male Sprague Dawley rats were tested. Female rats were not tested in these experi-
ments because this study was supported by funding from the Office of Naval Research
(ONR MURI N00014-15-1-2809), and ~80–90% of submariners are male, making males
a priority for the ONR’s limited funding. Some data presented here were included in
previously published work from the more extensive ONR study, which demonstrated that
diets enriched in prebiotics (GOS and PDX) facilitate host sleep/circadian recovery both
during and after stressor exposure [21,22].
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2.1.1. Northwestern (NW) Study

The animals (N = 64, Envigo Laboratories, Madison, WI, USA) were singly housed in
a controlled temperature (23 ± 2 ◦C) and humidity. All the protocols were approved by the
Northwestern Institutional Animal Care and Use Committee, as previously described [21].
The animals weighed 40–50 g upon arrival at postnatal day (PND) 23 and were maintained
in a 12:12 h light/dark cycle. On arrival, all the rats were housed in Nalgene Plexiglas cages
(Thermo Fisher Scientific, Waltham, MA, USA) and were placed on a control or prebiotic
diet (ad libitum).

2.1.2. University of Colorado Boulder (CU) Study

The animals (N = 82, Harlan Laboratories, Indianapolis, IN, USA) were singly housed
with a controlled temperature (23 ± 2 ◦C) and humidity. All procedures were approved
by the University of Colorado Boulder Institutional Animal Care and Use Committee, as
previously described [22]. Briefly, the animals weighed 40–50 g upon arrival at PND 23
and were maintained in a 12:12 h light/dark cycle. On arrival, all the rats were housed in
Nalgene Plexiglas cages (Thermo Fisher Scientific, Waltham, MA, USA) and were placed
on a control or prebiotic diet (ad libitum).

2.2. Experimental Design

The rats arrived at NW on PND 23 and were randomly placed on either the control
or prebiotic diet for the duration of the study (Figure 1). Animal numbers for the NW
microbiome data were control (n = 30) and prebiotic diet (n = 32), while the animal numbers
for the NW metabolome data were control (n = 31) and prebiotic diet (n = 32). The rats
arrived at CU on PND 23 and were immediately placed on either the control or prebiotic
diet for the duration of the study (Figure 1). Animal numbers for the CU microbiome data
were control (n = 37) and prebiotic diet (n = 37), while the animal numbers for the CU
metabolome data were control (n = 40) and prebiotic diet (n = 42). Only samples present
for all time points with viable data (i.e., useable fecal samples, high-quality sequencing,
quality feature detection, etc.) were included in the final analysis.
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Figure 1. Experimental timeline detailing methods and fecal sampling events. In both studies, animals
arrived on postnatal day 23 and were immediately placed on either the control diet or prebiotic diet.
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In the Northwestern study, fecal samples were taken on experimental (postnatal) days 0 (23), 28 (51),
42 (65), and 51 (74), while in the CU study, fecal samples were taken on experimental days 2 (25),
33 (58), 75 (100), and 94 (119).

At NW, fecal samples were collected on experimental days 0, 28, 42, and 51. At CU,
fecal samples were collected on experimental days 2, 33, 75, and 94 (Figure 1). The days
chosen for fecal collection differed between the sites due to the other goals of the larger
ONR project. The repeated sample collection over time allows one to capture any changes
in the microbiome and metabolome due to aging (i.e., adolescence to young adulthood).
The two experiments were conducted on Sprague Dawley rats eating identical diets and,
thus, give us unique insights into how the gut microbiome and gut metabolome change
from adolescence to young adulthood between study sites in response to a prebiotic diet
(Figure 1).

2.3. Diets

Rats at both facilities had ad libitum access to control or prebiotic diets immediately
upon arrival on PND 23. The control and prebiotic diets fed to rats at NW and CU were
the same formulation. The diets were initially formulated by Mead Johnson Nutrition
(MJN, Evansville, IN, USA) based on AIN-93G specifications, were custom made by Envigo
Teklad (TD.110889; now Inotiv, Lafayette, IN, USA), and were isocaloric, with similar
carbohydrate, protein, fat, vitamin, and mineral levels, the details of which have been
previously published [27,29]. The prebiotic diet contained the following prebiotic substrates,
which were absent from the control diet: galactooligosaccharides (GOS, 24.14 g/kg (7.0 g
active); FrieslandCampina, Zwolle, The Netherlands), and polydextrose (PDX, 7.69 g/kg
(7.0 g active); Danisco, Terre Haute, IN, USA).

2.4. Fecal Sample Collection Procedures

Fecal samples were collected and prepared as previously described [30] and were
collected after cage change. Sterile forceps (100% ethanol) were used to obtain each sample,
which were then placed in 1.5 mL sterile screw cap tubes (USA Scientific, Ocala, FL, USA)
and put in liquid nitrogen. The samples were then transferred and stored at −80 ◦C for
analyses later. Weekly fecal samples were collected during the light cycle (~900–1100 h)
shortly after cage changes. Investigators collected the rat fecal samples immediately after
the rats defecated in the new bedding, i.e., within ~10–30 min. At each collection time
point, duplicate samples of bedding, water, food, and blank tubes were also collected to
control for potential environmental influences on the microbiome and metabolome data.
For both study sites, the fecal samples were cut in half lengthwise to ensure each animal’s
microbiome and metabolomics data were generated from the same fecal pellet [31].

2.5. The 16S rRNA Gene Sequencing

For both study sites, DNA was extracted from fecal samples and the V4 region of
the 16S rRNA gene was amplified using the 515f/806r primer pair with the barcode on
the forward read [32], and sequenced as previously described [33]. The samples were
purified and precipitated to remove polymerase chain reaction (PCR) artifacts; the sam-
ples were sequenced in multiplex using an Illumina HiSeq 2000 (San Diego, CA, USA).
All the target gene sequence processing was conducted with Quantitative Insights Into
Microbial Ecology (QIIME2) [34] via Qiita. The raw sequencing data were trimmed and
demultiplexed at 150 bases. Amplicon sequence variants (ASVs) were generated using the
deblur algorithm. Phylogeny was created via SEPP within the QIIME2 fragment insertion
plugin, using default parameters. Taxonomy classification was conducted via the QIIME2
feature classifier plugin and based on SILVA [35]. The resulting ASV table was filtered to
remove mislabeled samples with a probability above 0.20 using the sample type field, as
described in the Human Microbiome Project [36]. The resulting table was then rarefied at
10,000 sequences/sample to correct for an uneven sequencing depth due to amplification
differences between the samples.
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Beta diversity was examined with principal coordinate analysis (PCoA) using un-
weighted UniFrac distances (sensitive to rarer taxa) and weighted UniFrac distances (sensi-
tive to abundances of taxa), which are the best ways to visualize the microbiome between
treatments as a whole [37]. For analysis, PERMANOVA was used on each time point in
QIIME2. Alpha diversity is a within-samples measure and was examined using even-
ness, observed OTUs, and Faith’s phylogenetic diversity [38]. Differential abundance was
assessed in regard to the ASVs, using analysis of the composition of microbiomes (AN-
COM) [39], as implemented in QIIME2 and matched with the SILVA database. Consistent
with current recommended best practices [40], we refer to the taxonomy assignments as
they are designated in the SILVA database since it is updated annually [35,41], and is based
on ASVs, not the construction of molecular operational taxonomic units (OTUs) [40].

PICRUSt2 (https://github.com/picrust/picrust2, accessed on 30 June 2022) was per-
formed in the conda environment for both studies, to identify functionally enriched signal-
ing pathways due to prebiotic diet consumption [42].

The 16S rRNA gene sequencing data were uploaded to Qiita, are publicly available,
and can be found at https://qiita.ucsd.edu/study/description/11697 (accessed on 18
November 2021) for the NW study and at https://qiita.ucsd.edu/study/description/11525
(accessed on 18 November 2021) for the CU study.

2.6. LC–MS/MS Metabolomics

Fecal and environmental samples were transferred overnight via dry ice to the Univer-
sity of California San Diego and processed for metabolomic analysis. The fecal samples
were stored in 1.5 mL centrifuge tubes at −80 ◦C prior to extraction. Sample IDs were
uploaded into an electronic spreadsheet and subsequently used to assign filenames during
LC–MS/MS data acquisition. All solvents used for the metabolomic analysis were of
LC–MS grade.

This method was adapted from a previously published protocol [43]. Fecal pellets were
weighed at 50.0 ± 2 mg wet weight and transferred to 2.0 mL round bottom microcentrifuge
tubes (Qiagen Catalog# 990381, Hilden, Germany) for metabolite extraction. A clean
stainless-steel bead (Qiagen Catalog# 69989) and 1.5 mL of chilled extraction solvent (50%
MeOH) were added to each sample. The samples were then homogenized for 5 min at
25 Hz using a TissueLyser II system (Qiagen Catalog# 85300) and incubated for 20 min at
−20 ◦C. The fecal homogenates were centrifuged at 14,000 rpm for 15 min at 4 ◦C. Then,
1.2 mL aliquots were transferred into a Nunc 2.0 mL DeepWell plate (Thermo Catalog#
278743) and frozen at −80 ◦C, before lyophilization using a FreeZone 4.5 L Benchtop
Freeze Dryer with Centrivap Concentrator (Labconco, Kansas City, MO, USA). The wells
were resuspended with 200 µL of resuspension solvent (50% MeOH spiked with 2.0 µM
sulfadimethoxine), vortexed for 30 s, and centrifuged at 2000 rpm for 15 min at 4 ◦C. Then,
150 µL of the supernatant was transferred into a 96-well plate and maintained at 4 ◦C,
before LC–MS analysis. A resuspension solvent QC and a six standard mix QC (50% MeOH
spiked with 1.0 µM sulfamethazine, 1.0 µM sulfamethizole, 1.0 µM sulfachloropyridazine,
1.0 µM amitriptyline, and 1.0 µM coumarin 314) was run every 12th sample to assess the
sample background, carry over, chromatography behavior, peak picking, and plate effects.

The fecal extracts were analyzed using an ultra-high performance liquid chromatogra-
phy system (Vanquish, Thermo Fisher Scientific, Waltham, MA, USA), coupled to a hybrid
quadrupole-Orbitrap mass spectrometer (Q-Exactive, Thermo), fitted with a HESI probe.
Reverse phase chromatographic separation was achieved using a Kinetex C18 1.7 µm, 100 Å,
50 × 2.1 mm column (Phenomenex, Torrance, CA, USA) held at 40 ◦C, with a 0.5 mL/min
flow rate. Moreover, 5.0 µL aliquots were injected per sample/QC. The mobile phase used
was: (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile. The elution
gradient was: 5% B for 1 min, increased to 100% B in the next 8 min, held at 100% B for
2 min, returned to 5.0% B in 0.5 min, and equilibrated at 5.0% B for 2 min. The positive
electrospray ionization parameters were: a sheath gas flow rate of 52 (arb. units), an aux
gas flow rate of 14 (arb. units), a sweep gas flow rate of 3 (arb. units), a spray voltage of
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3.5 kV, a capillary temperature of 270 ◦C, an S-Lens RF level of 50 (arb. units), and an aux
gas heater temperature of 435 ◦C. The negative electrospray ionization parameters were: a
sheath gas flow rate of 52 (arb. units), an aux gas flow rate of 14 (arb. units), a sweep gas
flow rate of 3 (arb. units), a spray voltage of 2.5 kV, a capillary temperature of 270 ◦C, an
S-Lens RF level of 50 (arb. units), and an aux gas heater temperature of 435 ◦C. MS data
were acquired using a data dependent acquisition method, with a resolution of 35,000 in
MS1 and 17,000 in MS2. An MS1 scan from 100–1500 m/z was followed by an MS2 scan,
produced by collision-induced disassociation, of the five most abundant ions from the prior
MS1 scan.

Feature tables were generated for the control and prebiotic diet samples. To annotate
features with a level 1 metabolome standard initiative (MSI) level of confidence, the mass
and retention time were aligned and the MS/MS fragmentation pattern was compared be-
tween the features and 20 purified bile acid reference standards, as previously described in
detail [30,44]. Primary, secondary, conjugated, and unconjugated bile acids were purchased
(Cayman Chemical, Ann Arbor, MI, USA) and used to identify level 1 bile acid identification
in fecal metabolomics samples. The samples were solubilized to a final concentration of
10 µM in 50% MeOH, before LC–MS/MS injection.

All untargeted mass spectrometry data can be found in the online mass spectrome-
try repository, Massive (http://massive.ucsd.edu, accessed on 11 May 2022), using the
following accession numbers for NW, MSV000083073, and for CU, MSV000080628.

2.7. Statistical Analysis

The data were analyzed using R statistics version 4.2.2 GUI 1.79 Big Sur ARM build
(8160). The data depicted in the figures were made in Prism (version 9.3.1). For the gut
microbiome analysis of the UniFrac distance matrices, permutation multivariate analysis of
variance (PERMANOVA) was used at each time point [45,46]. Measures of alpha diversity
were analyzed separately using repeated measures ANOVA. To investigate differential
abundance of genera level taxa between the control and prebiotic diets, a first-level analysis
of the composition of the microbiome (ANCOM) was performed on the ASVs [39] to reveal
reliable changes. ANCOM analysis will correct for multiple comparisons of ASVs identified
in the sequencing data. The ASVs that were undefined/unclassified at the genera level were
excluded from the final analysis. Once the taxonomy was assigned, we performed a second
level of analysis on genus-level taxonomy assignments using the Nonparametric Tests for
Repeated Measures Data in Factorial Designs (nparLD) package version 2.2. Importantly,
only genera that were significantly changed by the prebiotic diet based on the ANCOM
analysis are presented in this manuscript. Lower relative abundance genera were non-
normally distributed; therefore, these data were analyzed using the nparLD package. The
bile acid data were log transformed, as previously described [22,44], and analyzed using
the nparLD package. Multiple significant p-values in the bile acid data were adjusted using
the Holm method. The pathways output from PICRUSt2 was analyzed via DESeq2 version
1.14.1, using the Bioconductor R package, as previously described [21], and volcano plot
analysis by the time point. The pathways affected by the prebiotic diet between the study
sites and over time were analyzed using nparLD. Tukey’s post hoc analysis was used when
appropriate using the nparcomp, the nonparametric relative contrast effects (nparcomp)
package version 3.0, for relative abundance of the genera, bile acids, and pathway data.
Network analyses examining the relationships between functionally significant pathways
and bile acids were performed using the corrr package version 0.4.4. The two-tailed alpha
level was set at p < 0.05.

3. Results
3.1. Microbiome

A prebiotic diet significantly changed the beta diversity of the gut microbiome at both
study sites (Figure 2). Table 1 denotes the significant effects of a prebiotic diet on weighted
and unweighted UniFrac distances. The prebiotic diet had no effect at 0 days on the diet on

http://massive.ucsd.edu
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the weighted or unweighted UniFrac distance (NW). There was a significant effect of the
prebiotic diet at 2 days on the diet on the weighted UniFrac distance (CU). The prebiotic
diet significantly impacted both the weighted and unweighted UniFrac distance on all the
remaining days on the diet at both study sites (Figure 2, Table 1).

Figure 2. Unweighted and weighted UniFrac distance examining β-diversity of the fecal microbiome
between studies. (A) In the NW study, unweighted UniFrac distance at experimental day 0 was not
different between the control and prebiotic diets, but was different on subsequent days 28, 42, and 51.
(B) In the CU study, unweighted UniFrac distance at experimental day 2 was not different between
the control and prebiotic diets, but was different on subsequent days 33, 75, and 94. (C) In the NW
study, weighted UniFrac distance was not different on day 0 between the control and prebiotic diets,
but was different on the remaining days examined. (D) In the CU study, weighted UniFrac distance
was significantly different on day 2 between the control and prebiotic diets, an effect that persisted
for days 33, 75, and 94.

Table 1. PERMANOVA table demonstrating significant effects of prebiotic diet by time point at both
study sites. Numbers represent days on the diet.

PERMANOVAs (Pseudo-F)

Northwestern

0 28 42 51
Unweighted F(2,68) = 1.24; p = 0.154 F(2,80) = 7.68; p = 0.001 F(2,66) = 5.60; p = 0.001 F(2,69) = 5.87; p = 0.001

Weighted F(2,68) = 2.19; p = 0.053 F(2,80) = 9.31; p = 0.001 F(2,66) = 4.26; p = 0.001 F(2,66) = 4.34; p = 0.001

University of Colorado Boulder

2 33 75 94
Unweighted F(2,48) = 1.31; p = 0.053 F(2,78) = 4.89; p = 0.001 F(2,83) = 3.84; p = 0.001 F(2,84) = 4.16; p = 0.001

Weighted F(2,48) = 3.97; p = 0.006 F(2,78) = 10.99; p = 0.001 F(2,83) = 7.39; p = 0.001 F(2,84) = 3.93; p = 0.001
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The prebiotic diet altered the two main phyla (Firmicutes and Bacteroidetes) in the rat
gut microbiome (Supplemental Figure S1). The main significant main effects of the prebiotic
diet were on the Firmicutes at NW (F(1,2.77) = 9.72; p = 0.002; Supplemental Figure S1A) and
CU (F(1,2.85) = 20.94; p = 0.0000078; Supplemental Figure S1A). The effect of the prebiotic
diet changed over time at NW (time-by-diet interaction, F(1,59.99) = 4.61; p = 0.004), but not
CU. The prebiotic diet also impacted the Bacteroidetes at both NW (F(1,2.73) = 6.01; p = 0.014;
Supplemental Figure S1B) and CU (F(1,2.83) = 20.94; p = 0.0000047; Supplemental Figure S1B).
Finally, there were time-by-diet interactions in regard to the Bacteroidetes that changed over
time at both NW (F(1,59.76) = 3.33; p = 0.022; Supplemental Figure S1B) and CU (F(1,71.01) = 3.39;
p = 0.019; Supplemental Figure S1B). While these phyla changes are important, it is of more
interest to examine the taxonomic changes in greater detail at the genera level.

The top nine most abundant genera increased by the prebiotic diet, when compared
to the control diet, are shown in Figure 3. The prebiotic diet increased the relative abun-
dance of the genera Bacteroides (Figure 3A), Parabacteroides (Figure 3B), Clostridia_UCG_014
(Figure 3C), Incertae_Sedis (formerly known as Ruminiclostridium V) (Figure 3E), Parasut-
terella (Figure 3F), Ruminococcus_gauvreauii_group (Figure 3G), and UCG-007 (Figure 3H),
at both study sites. See Table 2 and Figure 3 for complete statistical and post hoc analysis
results. There were differing effects between study sites in regard to Christensenellaceae_R-
7_group (Figure 3D) and Lachnospiraceae_UCG-006 (Figure 3I), such that the prebiotic diet
increased these genera in the CU study, but not in the NW study. However, there was a
diet-by-time interaction in regard to Lachnospiraceae_UCG-006 at NW (see Figure 3I for the
results of the post hoc analysis).

The top six (out of nine) most abundant genera that were consistently lower in the
prebiotic diet group, when compared to the control diet group, are shown in Figure 4.
Lachnospiraceae_NK4A136_group (Figure 4A), Eubacterium_fissicatena_group (Figure 4E), Eu-
bacterium_ruminantium_group (Figure 4F), GCA-900066575 (Figure 4G), Rosburia (Figure 4H),
and Rikenellaceae_RC9_gut_group (Figure 4I) were consistently lower in the prebiotic diet
group, when compared to the control diet groups, at each study site (see Table 2 for
the statistical analysis; see Figure 4 for the results of the post hoc tests). Colidextribacter
(Figure 4D) and UCG-005 (Figure 4C) were lower in the prebiotic diet group in the NW
study, but not in the CU study (Table 2). The prebiotic diet had no significant effects on
Eubacterium_coprostanoligenes_group at either study site (Figure 4B).

Supplemental Figure S2 depicts the additional ultra-low abundance genera (less than
1% relative abundance). Supplemental Table S1 contains the corresponding statistics.
Overall, the impact of a prebiotic diet on ultra-low relative abundance (<1%) genera was
less consistent between the study sites, except for the genus Tuzzerella. Tuzzerella was lower
in the prebiotic diet groups at both study sites (Supplemental Figure S2, Supplemental
Table S1). Finally, the prebiotic diet impacted six genera with opposite effects between
study sites, although these were not statistically significant once corrected via Tukey’s post
hoc analysis (Supplemental Figure S3, Supplemental Table S2). One interesting finding was
the difference in the relative abundance in the genus Muribaculaceae between the study sites.
The relative abundance of this genus was higher in the NW versus the CU microbiome data.
This large inherent environmental difference present in the genus Muribaculaceae may have
played a role in the contrasting effects of the prebiotic diet in the alpha diversity results
between the study sites.

Dietary prebiotics inconsistently altered the alpha diversity at both study sites. In the
NW study, there was no effect of the prebiotic diet on evenness (Figure 5A); however, in
the CU study, the prebiotic diet increased the overall evenness (F(1,3) = 12.27; p = 0.00084;
Figure 5A). In the NW study, there was a significant decrease in Faith’s phylogenetic
diversity due to the prebiotic diet (F(1,3) = 5.82; p = 0.021), while no effects were found
due to the prebiotic diet in Faith’s phylogenetic diversity in the CU study (Figure 5B). The
observed features were lower due to the prebiotic diet at NW (F(1,3) = 6.25; p = 0.017), and
there was a significant diet-by-time interaction (F(1,3) = 2.95; p = 0.035), but the prebiotic
diet did not affect the observed features in the CU study (Figure 5C).
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Figure 3. Consumption of the prebiotic diet produced increases in 9 higher abundance genera between
studies. There were consistent increases over time due to the prebiotic diet in: (A) Bacteroides, (B) Parabac-
teroides, (E) Incertae_Sedis (Ruminiclostridium V), (G) Ruminococcus_gauvreauii_group, and (H) UCG-007.
While there were prebiotic diet-induced increases in (C) Clostridia_UCG-014, (D) Christensenellaceae_R-
7_group, (F) Parasutterella, and (I) Lachnospiraceae_UCG-006, these genera had less consistent increases
over time between studies. * p < 0.05 when compared to control diet.
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Table 2. Nonparametric longitudinal data (nparLD) table: ANOVA-type statistics (ATSs) showing the similar significant effects of a prebiotic diet over time on
genera identified through ANCOM, between study sites.

Nonparametric Longitudinal Data (nparLD) Table: ANOVA-Type Statistics (ATSs)

Genera (Relative Abundance)

Diet—F-Value; p-Value Time—F-Value; p-Value Diet × Time

Higher in Prebiotic Diet, color indicates consistent effect across study site

High Relative Abundance (2–20%)

Bacteroides (Figure 3A) NW F(1,2.74) = 12.62 p = 0.00038 F(2.74,59.91) = 41.26 p = 1.47 × 1024 F(2.74,59.91) = 2.78 p = 0.044
CU F(1,2.76) = 7.42 p = 0.0064 F(2.76,70.42) = 17.71 p = 9.39 × 1011 F(2.76,70.42) = 9.90 p = 3.63 × 106

Clostridia_UCG-014 (Figure 3C) NW F(1,2.65) = 4.72 p = 0.029 F(2.65,55.97) = 38.09 p = 4.85 × 1022 F(2.65,55.97) = 1.01 p = 0.379
CU F(1,2.71) = 35.93 p = 2.05 × 109 F(2.71,67.05) = 12.88 p = 8.44 × 108 F(2.71,67.05) = 2.18 p = 0.095

Christensenellaceae_R7_group (Figure 3D) NW F(1,2.82) = 3.70 p = 0.054 F(2.82,53.48) = 79.63 p = 1.30 × 1048 F(2.82,53.48) = 2.59 p = 0.055
CU F(1,2.81) = 48.65 p = 3.06 × 1012 F(2.81,69.23) = 197.98 p = 2.63 × 10120 F(2.81,69.23) = 9.16 p = 8.53 × 106

Incertae_Sedis (Ruminiclostridium V) (Figure 3E) NW F(1,2.81) = 76.70 p = 1.99 × 1018 F(2.81,56.25) = 46.03 p = 4.62 × 1028 F(2.81,56.25) = 16.85 p = 2.09 × 1010

CU F(1,2.51) = 210.79 p = 9.26 × 1048 F(2.51,71.88) = 85.26 p = 1.03 × 1046 F(2.51,71.88) = 19.26 p = 7.86 × 1011

Parabacteroides (Figure 3B) NW F(1,2.74) = 158.1 p = 2.96 × 1036 F(2.74,59.18) = 44.69 p = 1.32 × 1026 F(2.74,59.18) = 21.04 p = 1.19 × 1012

CU F(1,2.74) = 467.75 p = 9.91 × 10104 F(2.74,71.88) = 71.88 p = 6.98 × 1032 F(2.74,71.88) = 4.99 p = 0.00258

Low Relative Abundance (1–2%)

Parasutterella (Figure 3F) NW F(1,78) = 29.19 p =6.57 × 108 F(2.78,59.45) = 40.76 p = 1.46 × 1024 F(2.78,59.45) = 1.09 p = 0.127
CU F(1,2.78) = 9.15 p = 0.0025 F(2.78,71.92) = 63.79 p = 1.78 × 1038 F(2.78,71.92) = 2.25 p = 0.052

Ruminococcus_gauvreauii_group (Figure 3G) NW F(1,2.71) = 104.03 p = 1.99 × 1024 F(2.71,59.31) = 27.24 p = 3.73 × 1016 F(2.71,59.31) = 17.95 p = 9.61 × 1011

CU F(1,2.33) = 16.93 p = 0.000039 F(2.33,69.45) = 19.51 p = 2.48 × 1010 F(2.33,69.45) = 4.79 p = 0.00018

UCG-007 (Figure 3H) NW F(1,2.84) = 289.83 p = 5.42 × 1065 F(2.84,55.73) = 40.50 p = 7.18 × 1025 F(2.84,55.73) = 31.13 p = 3.74 × 1019

CU F(1,2.66) = 140.28 p = 2.31 × 1032 F(2.66,57.78) = 32.24 p = 9.19 × 1019 F(2.66,57.78) = 10.11 p = 3.89 × 106

Lachnospiraceae_UCG-006 (Figure 3I) NW F(1,2.77) = 1.76 p = 0.184 F(2.77,59.93) = 42.81 p = 9.83 × 1026 F(2.77,59.93) = 4.89 p = 0.0028
CU F(1,2.77) = 6.33 p = 0.0118 F(2.77,65.94) = 51.97 p = 3.48 × 1031 F(2.77,65.94) = 4.61 p = 0.00410
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Table 2. Cont.

Nonparametric Longitudinal Data (nparLD) Table: ANOVA-Type Statistics (ATSs)

Genera (Relative Abundance)

Diet—F-Value; p-Value Time—F-Value; p-Value Diet × Time

Higher in Control Diet, color indicates consistent effect across study site

High Relative Abundance (2–20%)

Lachnospiraceae_NK4A136_group (Figure 4A) NW F(1,2.81) = 36.70 p = 1.38 × 109 F(2.81,59.99) = 20.53 p = 1.34 × 1012 F(2.81,59.99) = 2.81 p = 0.020
CU F(1,2.83) = 13.13 p = 0.0003 F(2.83,71.45) = 2.30 p = 0.079 F(2.83,71.45) = 3.99 p = 0.0087

Eubacterium_coprostanoligenes_group (Figure 4B) NW F(1,2.48) = 1.34 p = 0.247 F(2.48,57.50) = 30.14 p = 1.56 × 1016 F(2.48,57.50) = 1.66 p = 0.183
CU F(1,2.87) = 3.64 p = 0.056 F(2.87,71.52) = 56.35 p = 5.72 × 1035 F(2.87,71.52) = 0.55 p = 0.638

UCG-005 (Figure 4C) NW F(1,2.82) = 8.07 p = 0.0451 F(2.82,59.10) = 21.62 p = 2.59 × 1013 F(2.82,59.10) = 1.62 p = 0.184
CU F(1,2.37) = 0.841 p = 0.359 F(2.37,71.81) = 18.66 p = 4.57 × 1010 F(2.37,71.81) = 1.73 p = 0.171

Low Relative Abundance (1–2%)

Colidextribacter (Figure 4D) NW F(1,2.73) = 13.95 p = 0.00019 F(2.73,59.62) = 18.55 p = 3.78 × 1011 F(2.73,59.62) = 0.816 p = 0.475
CU F(1,2.78) = 0.013 p = 0.911 F(2.78,71.96) = 32.26 p = 1.64 × 108 F(2.78,71.96) = 0.328 p = 0.790

Eubacterium_fissicatena_group (Figure 4E) NW F(1,2.41) = 9.51 p = 0.002 F(2.41,54.79) = 25.73 p = 7.31 × 1014 F(2.41,54.79) = 7.08 p = 0.00034
CU F(1,2.26) = 4.64 p = 0.031 F(2.26,68.41) = 18.53 p = 1.32 × 109 F(2.26,68.41) = 3.09 p = 0.039

Eubacterium_ruminantium_group (Figure 4F) NW F(1,2.62) = 17.80 p = 0.00002 F(2.62,38.97) = 7.97 p = 0.00006 F(2.62,38.97) = 11.57 p = 6.82 × 107

CU F(1,2.44) = 6.22 p = 0.013 F(2.44,63.83) = 8.63 p = 0.00005 F(2.44,63.83) = 6.31 p = 0.0008

GCA-900066575 (Figure 4G) NW F(1,2.92) = 20.93 p = 0.000005 F(2.92,58.16) = 24.09 p = 3.24 × 1015 F(2.92,58.16) = 5.18 p = 0.0016
CU F(1,2.91) = 9.67 p = 0.0019 F(2.91,71.91) = 29.78 p = 49.98 × 1019 F(2.91,71.91) = 0.937 p = 0.420

Roseburia (Figure 4H) NW F(1,2.80) = 6.48 p = 0.0109 F(2.80,59.66) = 2.90 p = 0.037 F(2.80,59.66) = 1.73 p = 0.161
CU F(1,2.74) = 4.79 p = 0.029 F(2.74,72.00) = 8.71 p = 0.000019 F(2.74,72.00) = 0.776 p = 0.50

Rikenellaceae_RC9_gut_group (Figure 4I) NW F(1,2.74) = 25.70 p = 3.99 × 107 F(2.74,59.55) = 9.20 p = 0.00006 F(2.74,59.55) = 5.55 p = 0.0012
CU F(1,2.72) = 10.90 p = 0.00096 F(2.72,70.925) = 2.88 p = 0.040 F(2.72,70.925) = 1.42 p = 0.236
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Figure 4. Consumption of prebiotic diet led to decreases in 6 higher abundance genera be-
tween studies. There were consistent decreases over time due to prebiotic diet consumption
in: (A) Lachnospiraceae_NK4A136_group, (C) UCG-005, (E) Eubacterium_fissicatena_group, (F) Eubac-
terium_ruminantium_group, (G) GCA-900066575, and (I) Rikenellaceae_R9-gut_group. There were less
consistent effects due to diet between studies in: (B) Eubacterium_ coprostanoligenes_group, (D) Colidex-
tribacter, and (H) Roseburia. * p < 0.05 when compared to prebiotic diet.
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Figure 5. There was a significant main effect of the prebiotic diet, increasing (A) the evenness of
the alpha diversity in the CU study. In contrast, the main significant effects of the prebiotic diet
involved decreases in both (B) Faith’s phylogenetic diversity and (C) the observed features of the
alpha diversity in the NW study. There were no significant time-by-diet interactions in regard to the
measures of alpha diversity, except at NW in observed features. * p < 0.05 effect of diet.

3.2. Metabolome—Bile Acids

Overall, the relative abundance of several bile acids was lower in the prebiotic diet
groups compared to the control diet groups and these results were directionally consistent
across the study sites (Figure 6; see Table 3 with statistics for all bile acids identified).
Specifically, the primary bile acid muricholic beta was lower in the prebiotic diet groups in
both studies (Figure 6A; significant main effect at CU, significant interaction at NW). The
secondary bile acids, deoxycholic acid (Figure 6B; significant main effects) and lithocholic
acid (Figure 6C; significant main effect at CU, significant interaction at NW), were lower
in the prebiotic diet groups between the study sites. In the CU study, ursodeoxycholic
acid was also lower in the prebiotic diet group (significant main effect) but was unaffected
in the NW study (Figure 6D; see Table 3). Finally, the secondary conjugated bile acid,
glycodeoxycholic acid, was impacted by the prebiotic diet in the NW study and unaffected
in the CU study (see Figure 6E for the results of the post hoc analyses). Table 3 lists the bile
acids not affected by the prebiotic diet when corrected for multiple comparisons.
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Figure 6. Consumption of dietary prebiotics affected fecal bile acids between studies, including:
(A) muricholic acid beta, (B) deoxycholic acid, and (C) lithocholic acid. Moreover, (D) ursodeoxycholic
acid was decreased in the CU study, and (E) glycodeoxycholic acid was decreased in the NW study.

3.3. PICRUSt2—Pathways

In both studies, the prebiotic diet consistently affected the inferred functional metabolic
pathways PWY-7332, PWY-7090, PWY-6572, and PWY-6545 over time (Figure 7). The su-
perpathway UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis or
PWY-7332 was significantly higher in the prebiotic diet in the NW study (F(2.71,59.49) = 60.04;
p < 0.0001; Figure 7A) and in the CU study (F(1,2.62) = 182.60; p < 0.0001; Figure 7A). The
UDP-2,3-diaetamido-2,3-dideoxy-α-D-mannuronate biosynthesis or PWY-7090 was signifi-
cantly higher in the prebiotic diet in the NW study (F(1,2.81) = 71.76; p < 0.0001; Figure 7B)
and in the CU study (F(1,2.47) = 132.21; p < 0.0001; Figure 7B). The chondroitin sulfate
degradation I (bacterial) or PWY-6572 was also significantly higher in the prebiotic diet in
the NW study (F(1,2.79) = 56.76; p < 0.0001; Figure 7C) and in the CU study (F(1,2.80) = 43.33;
p < 0.0001; Figure 7C). Finally, the prebiotic diet increased the pyrimidine deoxyribonu-
cleotides de novo biosynthesis III or PWY-6545 in the NW study (F(1,2.87) = 17.29; p < 0.0001;
Figure 7D) and in the CU study (F(1,2.74) = 30.10; p < 0.0001; Figure 7D). There was also
significant diet-by-time interactions for PWY-7332 in the NW study (F(2.71,59.49) = 11.90;
p < 0.0001; see Figure 7A for the results of the post hoc comparisons) and the CU study
(F(2.62,69.98) = 16.90; p < 0.0001; see Figure 7A for the results of the post hoc comparisons); for
PWY-7090 in the NW study (F(2.81,57.58) = 9.13; p < 0.0001; see Figure 7B for the results of the
post hoc comparisons) and the CU study (F(2.47,62.56) = 15.61; p < 0.0001; see Figure 7B for
the results of the post hoc comparisons); for PWY-6572 in the NW study (F(2.79,58.32) = 4.05;
p = 0.008; see Figure 7C for the results of the post hoc comparisons) and the CU study
(F(2.80,67.23) = 12.36; p < 0.0001; see Figure 7C for the results of the post hoc comparisons);
and for PWY-6545 in the NW study (F(2.87,57.55) = 3.47; p = 0.017; see Figure 7D for the results
of the post hoc comparisons) and the CU study (F(2.74,69.77) = 16.90; p < 0.0001; see Figure 7D
for the results of the post hoc comparisons).



Nutrients 2024, 16, 1790 15 of 24

Table 3. Nonparametric longitudinal data (nparLD) table: ANOVA-type statistics (ATSs) showing significant effects of a prebiotic diet over time on all identified bile
acids, between study sites.

Nonparametric Longitudinal Data (naprLD) Table: ANOVA-Type Statistics (ATSs)

Bile Acids

Diet—F-Value; p-Value p-adj. (Holm) Time—F-Value; p-Value p-adj. (Holm) Diet × Time p-adj. (Holm)

Color indicates consistent effect across study site

Primary Bile Acids

Cholic Acid
NW F(1,2.846) = 0.190 p = 0.663 n/a F(2.846,58.12) = 9.534 p = 4.493 × 106 p = 8.98 × 106 F(2.846,58.12) = 0.921 p = 0.426 ns
CU F(1,2.605) = 4.0759 p = 0.0435 p = 0.136 F(2.605,36.68) = 4.934 p = 0.0033 p = 0.0066 F(2.605,36.68) = 0.2756 p = 0.815 n/a

Muricholic_alpha NW F(1,2.72) = 0.188 p = 0.665 n/a F(2.72,58.508) = 35.817 p = 3.20 × 1021 p = 1.92 × 1020 F(2.72,58.508) = 0.755 p = 0.507 ns
CU F(1,2.81) = 2.24 p = 0.135 ns F(2.81,77.408) = 57.30 p = 7.157 × 1035 p = 1.0024 × 1033 F(2.81,77.408) = 0.397 p = 0.742 n/a

Muricholic_beta
(Figure 6A)

NW F(1,2.911) = 2.623 p = 0.105 n/a F(2.911,54.878,) = 36.129 p = 1.011 × 1022 p = 8.08 × 1022 F(2.911,54.878,) = 2.706 p = 0.0453 p = 0.0453
CU F(1,2.68) = 9.452 p = 0.0021 p = 0.019 F(2.68,78.32) = 81.99 p = 1.00 × 1047 p = 1.9 × 1046 F(2.68,78.32) = 0.272 p = 0.823 n/a

Conjugated Bile Acids

Glycochenodeoxycholic
Acid

NW F(1,2.819) = 0.578 p = 0.447 n/a F(2.819,60.355) = 59.90 p = 1.503 × 1036 p = 1.95 × 1035 F(2.819,60.355) = 1.784 p = 0.151 ns
CU F(1,2.917) = 2.459 p = 0.116 ns F(2.917,78.25) = 17.47 p = 4.35 × 1011 p = 3.48 × 1010 F(2.917,78.25) = 0.508 p = 0.671 n/a

Glycocholic Acid NW F(1,2.627) = 0.146 p = 0.701 n/a F(2.627,60.03) = 108.142 p = 1.084 × 1061 p = 1.728 × 1060 F(2.627,60.03) = 0.257 p = 0.831 ns
CU F(1,2.744) = 4.479 p = 0.0343 p = 0.136 F(2.744,75.63) = 41.22 p = 1.38 × 1024 p = 1.794 × 1023 F(2.744,75.63) = 0.109 p = 0.274 n/a

Glycohyocholic Acid NW F(1,2.913) = 0.092 p = 0.762 n/a F(2.913,60.943) = 28.238 p = 8.523 × 1018 p = 4.26 × 1017 F(2.913,60.943) = 0.514 p = 0.667 ns
CU F(1,2.706) = 0.543 p = 0.4611 ns F(2.706,79.81) = 29.44 p = 2.083 × 1017 p = 1.872 × 1016 F(2.706,79.81) = 0.146 p = 0.917 n/a

Taurochenodeoxycholic
Acid

NW F(1,2.57) = 0.453 p = 0.501 n/a F(2.57,58.52) = 43.784 p = 1.290 × 1024 p = 1.161 × 1023 F(2.57,58.52) = 1.378 p = 0.250 ns
CU F(1,2.82) = 3.133 p = 0.0688 ns F(2.82,76.881) = 34.930 p = 2.46 × 1021 p = 2.706 × 1020 F(2.82,76.881) = 0.567 p = 0.625 n/a

Taurocholic Acid
NW F(1,2.83) = 0.417 p = 0.518 n/a F(2.83,60.603) = 15.834 p = 7.724 × 1010 p = 2.316 × 109 F(2.83,60.603) = 0.743 p = 0.519 ns
CU F(1,2.773) = 6.388 p = 0.0115 p = 0.069 F(2.773,36.7228) = 1.232 p = 0.296 ns F(2.773,36.7228) = 0.644 p = 0.575 n/a

Taurohyocholic Acid NW F(1,2.581) = 2.896 p = 0.0878 n/a F(2.581,58.664) = 57.948 p = 1.301 × 1032 p = 1.56 × 1031 F(2.581,58.664) = 1.256 p = 0.288 ns
CU F(1,2.381) = 4.492 p = 0.0341 ns F(2.381,79.613) = 42.977 p = 1.39 × 1022 p = 1.668 × 1021 F(2.381,79.613) = 1.348 p = 0.259 n/a

Secondary Bile Acids

Deoxycholic Acid
(Figure 6B)

NW F(1,2.2670) = 5.557 p = 0.0184 n/a F(2.2.267,28.994) = 84.80 p = 3.18 × 1042 p = 4.77 × 1041 F(2.267,28.994) = 2.19 p = 0.104 ns
CU F(1,2.79) = 12.219 p = 0.00047 p = 0.005 F(2.79,79.83) = 62.44 p = 8.56 × 1038 p = 1.3696 × 1036 F(2.79,79.83) = 2.188 p = 0.0918 n/a

Lithocholic Acid
(Figure 6C)

NW F(1,2.832) = 0.240 p = 0.624 n/a F(2.832,60.296) = 123.84 p = 6.77 × 1076 p = 1.2186 × 1074 F(2.832,60.296) = 3.374 p = 0.0196 p = 0.0392
CU F(1,2.90) = 10.84 p = 0.0009 p = 0.010 F(2.90,79.89) = 12.19 p = 8.72 × 108 p = 3.49 × 107 F(2.90,79.89) = 1.476 p = 0.220 n/a

Ursodeoxycholic Acid
(Figure 6D)

NW F(1,2.539) = 2.465 p = 0.164 n/a F(2.539,60.446) = 115.64 p = 7.468 × 1064 p = 1.2699 × 1062 F(2.539,60.446) = 2.228 p = 0.0935 ns
CU F(1,2.532) = 9.188 p = 0.00243 p = 0.019 F(2.532,78.672) = 4.966 p = 0.00349 p = 0.0066 F(2.532,78.672) = 1.098 p = 0.343 n/a
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Table 3. Cont.

Nonparametric Longitudinal Data (naprLD) Table: ANOVA-Type Statistics (ATSs)

Bile Acids

Diet—F-Value; p-Value p-adj. (Holm) Time—F-Value; p-Value p-adj. (Holm) Diet × Time p-adj. (Holm)

Secondary Conjugated Bile Acids

Glycodeoxycholic Acid
(Figure 6E)

NW F(1,2.818) = 0.485 p = 0.486 n/a F(2.818,60.903) = 48.193 p = 2.045 × 1029 p = 2.255 × 1028 F(2.818,60.903) = 5.310 p = 0.0015 p = 0.0045
CU F(1,2.916) = 5.013 p = 0.0252 p = 0.126 F(2.916,79.05) = 31.25 p = 1.064 × 1019 p = 1.06 × 1018 F(2.916,79.05) = 0.972 p = 0.403 n/a

Glycolithocholic Acid NW F(1,2.513) = 1.268 p = 0.260 n/a F(2.513,59.330) = 72.0 p = 1.784 × 1039 p = 2.492 × 1038 F(2.513,59.330) = 0.534 p = 0.627 ns
CU F(1,2.513) = 0.009 p = 0.923 ns F(2.513,78.64) = 76.44 p = 6.81 × 1042 p = 1.1577 × 1040 F(2.513,78.64) = 0.150 p = 0.903 n/a

Glycoursodeoxycholic
Acid

NW F(1,2.488) = 0.898 p = 0.343 n/a F(2.488,56.613) = 48.827 p = 1.26 × 1026 p = 1.26 × 1025 F(2.488,56.613) = 0.194 p = 0.920 ns
CU F(1,2.911) = 1.24 p = 0.265 ns F(2.911,79.71) = 74.60 p = 6.64 × 1047 p = 1.1952 × 1045 F(2.911,79.71) = 0.214 p = 0.881 n/a

Taurodeoxycholic Acid NW F(1,2.501) = 0.262 p = 0.609 n/a F(2.501,59.216) = 40.489 p = 3.021 × 1022 p = 2.114 × 1021 F(2.501,59.216) = 0.835 p = 0.456 ns
CU F(1,2.768) = 4.484 p = 0.0342 ns F(2.768,78.280) = 16.797 p = 3.07 × 1010 p = 1.84 × 109 F(2.768,78.280) = 0.511 p = 0.659 n/a

Taurohyodeoxycholic Acid NW F(1,2.817) = 1.459 p = 0.227 n/a F(2.817,60.123) = 150.64 p = 7.138 × 1092 p = 1.4994 × 1090 F(2.817,60.123) = 1.111 p = 0.341 ns
CU F(1,2.785) = 7.212 p = 0.00724 p = 0.050 F(2.785,79.746) = 13.787 p = 1.68 × 108 p = 8.40 × 108 F(2.785,79.746) = 0.473 p = 0.687 n/a

Taurolithocholic Acid
NW F(1,2.895) = 0.001 p = 0.974 n/a F(2.895,60.534) = 18.164 p = 1.887 × 1011 p = 7.56 × 1011 F(2.895,60.534) = 2.139 p = 0.095 ns
CU F(1,2.85) = 0.006 p = 0.937 ns F(2.85,78.972) = 17.603 p = 5.79 × 1011 p = 4.05 × 1010 F(2.85,78.972) = 0.784 p = 0.497 n/a
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Figure 7. Functional metabolic pathways affected by prebiotic diet, annotated with the MetaCyc
metabolic pathway database. Consumption of dietary prebiotics altered the: (A) superpathway UDP-
N-acetylglucosamin-derived O-antigen building blocks biosynthesis (PWY-7332) or the UDP-sugar su-
perpathway, the (B) UDP-2,3-diaetamido-2,3-dideoxy-α-D-mannuronate biosynthesis (PWY-7090) or
UDP mannuronate pathway, the (C) chondroitin sulfate degradation I (bacterial) pathway (PWY-6572),
and the (D) pyrimidine deoxyribonucleotides de novo biosynthesis III pathway (PWY-6545), when
compared to the control diet. These effects were consistent between the study sites and over time.
* p < 0.05 when compared to control diet.

3.4. Correlation Network Analysis

Correlation network analysis was performed to examine the similarities in the prebiotic
diet effects between the study sites with output from the network analyses, as shown in
Figure 8. The input into the networks were bile acids (Figure 6) and inferred pathways
(Figure 7), which were significantly affected by the prebiotic diets between the study
sites. There were no consistent correlations between the pathways and bile acids in the
control diets across the studies (Figure 8A,B). In contrast, there were consistent correlation
networks between the inferred pathways and the bile acid data in the prebiotic diet groups
(Figure 8C,D). The prebiotic diet groups had consistent negative correlations between
deoxycholic acid and the four inferred pathways (Figure 8). There was also a consistent
positive correlation between lithocholic acid and beta muricholic acid beta between the
study sites in the prebiotic diet groups. One difference, however, was a negative correlation
between deoxycholic acid and lithocholic acid at NW (Figure 8C), but a positive correlation
between these two bile acids at the CU study site (Figure 8D).



Nutrients 2024, 16, 1790 18 of 24

Figure 8. Network correlations from both study sites, demonstrating consistent networks between
inferred functional metabolic pathways and bile acids in prebiotic diet groups. There were no
consistent correlation networks present in the control diet groups between the study sites (A,B). The
consistent correlation networks in the prebiotic diet groups (C) at NW and (D) at CU imply that
the microbially modified secondary bile acid, deoxycholic acid, could be an important component
underlying the beneficial effects of dietary prebiotics.

4. Discussion

The ingestion of a diet enriched in GOS/PDX produces dynamic and robust changes in
the gut microbial composition and microbially dependent bile acids. Despite differences in
research personnel, animal facilities, geographic locations, elevations, and animal sources,
the temporal pattern of changes in the microbial community structure, microbially depen-
dent metabolites, and functional metabolic pathways, was replicated between the study
sites. The prebiotic diet also modulated the relative abundance of several genera, reduced
microbially modified bile acids, and altered the networks between inferred functional mi-
crobial pathways and microbially modified gut bile acids. Importantly, these changes were
sufficiently robust to overcome potential environmental differences between the studies.

Based on measures of β-diversity (UniFrac distance), which take into account phylo-
genetic relationships [47], dietary prebiotics changed both the weighted and unweighted
UniFrac distance at both study sites. In the CU study, the weighted UniFrac distance was
altered after 2 days on a prebiotic diet, suggesting the rapid growth of higher abundance
genera. Dietary prebiotics produced significant compositional changes in the α-diversity
metrics (evenness, Faith’s phylogenetic diversity, observed features) at both study sites;
however, the metrics of the induced changes were different. In the NW study, prebiotics
reduced Faith’s phylogenetic diversity and observed species, whereas in the CU study,
prebiotics increased the evenness. These variable impacts of a prebiotic diet on α-diversity
between the study sites could reflect inherent differences in the starting microbiomes
between the study sites.

The consumption of a diet enriched in GOS/PDX at NW and CU increased the relative
abundance of the Bacteroides genus. Based on the ASV and prior shotgun sequencing data
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from a subset of these samples, Bacteroides uniformis, a member of the Bacteroides genus,
was also significantly increased (p = 0.0003) by GOS/PDX [22]. The ingestion of Bacteroides
uniformis produces metabolic, immune, and exercise endurance benefits [48,49]. These
studies support the idea that an increased relative abundance of specific taxa within the
Bacteroides genus may be health promoting.

The consumption of a diet enriched in GOS/PDX also increased the relative abundance
of the Parabacteroides genus. The Parabacteroides genus has been shown to be decreased with
a high-fat diet and increased with exercise [50]. Parabacteroides distasonis is a species within
the Parabacteroides genus. GOS/PDX supplementation increases Parabacteroides distasonis
and restores disturbed sleep and circadian rhythm [21,22]. Based on these studies, increases
in the relative abundance of specific taxa within the Parabacteroides genus may be health
promoting. Importantly, however, Parabacteroides growth left unchecked or not kept in
balance could be detrimental to the gut microbial ecosystem [51].

Additional changes to the gut microbial ecosystem include prebiotic-induced increases
in the specific taxa within the genera Incertae_Sedis (formerly known as Ruminiclostridium
V based on ASV) and the Ruminococcus gauvreauii group. Increases in the levels of Ru-
miniclostridium V subsequent to the administration of PDX are associated with improved
cognitive performance [52]. And, in contrast, low levels of Ruminiclostridium V have been
reported for people with kidney stones [53] and rats with acute necrotizing pancreatitis [54].
Consistent with our data, the genera Ruminococcus gauvreauii group is increased by fruc-
tooligosaccharides [24], and this genus is lower in individuals with obesity [55], coronary
artery disease [56] and Parkinson’s disease [57]. These findings taken together, therefore,
suggest that the genera Incertae_Sedis (formerly known as Ruminiclostridium V based on
ASV) and Ruminococcus gauvreauii group may be health promoting.

The genus UCG-007 was also increased over time similarly between studies, but little
is known about it other than that it varies seasonally [58]. The genera Clostridia_UCG-
014, Christensenellaceae_R-7_group, Parasutterella, and Lachnospiraceae_UCG-006 were also
all elevated due to the prebiotic diet, but the temporal effects on these genera were less
consistent between the study sites.

In addition to increases in the relative abundance of health-promoting genera, several
genera were reduced by the prebiotic diet. Most notably, the genus Lachnospiraceae_NK4A136_
group was consistently lower in the prebiotic diet groups at both study sites and has recently
been implicated in gut mucous membrane function [59]. The genus UCG-005, within the Os-
cillospiraceae family, was lower in the prebiotic diet groups. This lower relative abundance
of UCG-005 may be health promoting given that UCG-005 is elevated in diabetes patients
and is associated with elevated uric acid [60]. The genus Eubacterium_fissicatena_group was
lower in the prebiotic diet groups and is potentially harmful to bone mineral density [61]
and correlates with obesity in a high-fat diet model [62]. The prebiotic diet also lowered
Eubacterium_ruminantium_group, GCA-900066575, and Rikenellaceae_RC9_gut_group. Less is
known about how and if these genera are related to host health.

Not only did prebiotics change the microbial composition of the gut microbiome,
but they also impacted specific features of the gut metabolome. The sequencing data
were analyzed using PICRUSt2 and annotated with the MetaCyc metabolic pathway
database. These analyses identified four inferred functional metabolic pathways that were
changed by the prebiotic diet. Importantly, the prebiotic diet impacted the same pathways
between the study sites, with remarkably similar time courses. The first pathway, the UDP-
sugar superpathway (PWY-7332), is involved in building the O-antigen polysaccharide
for gram-negative bacteria, including Parabacteroides distasonis, which is a component of
lipopolysaccharide. The second pathway, the UDP mannuronate biosynthesis pathway
(PWY-7090), was identified for both study sites and is involved in UDP-sugar metabolism.
Clearly, the consumption of dietary prebiotics affected the UDP-sugar pathway. The third
pathway affected by prebiotics, chondroitin sulfate degradation I (PWY-6572), is involved
in the degradation of chondroitin sulfate, which is a sulfated glycosaminoglycan that can
affect the gut microbiome composition [63] and increase fecal butyrate levels in stressed
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mice [64]. The fourth pathway was pyrimidine DNA biosynthesis III (PWY-6545), which is
involved in the biosynthesis of the activated precursors of DNA/RNA.

While the significance of how the gut metabolome and host physiology are affected by
changes in these inferred pathways cannot be deduced from the PICRUSt2 analysis, there
is evidence that consumption of GOS/PDX facilitated host sleep/circadian recovery after
stressor exposure [21,22]. Clearly, the consumption of GOS/PDX consistently affected these
four functional metabolic pathways between the study sites similarly over time. These
findings support the idea that dietary prebiotics consistently and similarly altered the
micro-ecosystem of the gut microbiome.

A prebiotic diet changes specific gut metabolites with bioactive potential, including
microbially modified secondary bile acids [21,22]. Prebiotic diet consumption produced
similar decreases in fecal deoxycholic acid and lithocholic acid between the study sites. It
has been demonstrated that the consumption of a diet enriched in isomaltulose [23] and
fructooligosaccharide [24] prebiotics also reduces fecal lithocholic and deoxycholic acid.
In contrast, a high-fat diet increases both fecal deoxycholic acid and intestinal inflamma-
tion [65]. Here, we report that GOS/PDX reduces fecal deoxycholic acid and lithocholic
acid, and this finding was consistent at both study sites. The current data and prior studies
support the conclusion that the consumption of a prebiotic diet reduces fecal bile acids and
changes the micro-ecosystem of the gut, similarly.

Our findings indicate that the consumption of a prebiotic diet consistently affects
functional metabolic pathways and fecal bile acid profiles. We conducted network corre-
lation analyses between functional metabolic pathways and fecal bile acids to determine
whether these changes are related. Correlational networks between pathways and bile
acids were not observed in the control diet groups. However, network correlations were
found in the prebiotic groups. Specifically, bile acids were significantly correlated with the
functional metabolic pathways. The network correlations in both the prebiotic diet groups
were remarkably similar between the study sites, with what appears to be a network hub
related to deoxycholic acid. Based on these findings and previous work, we hypothesize
that decreases in deoxycholic acid may be a key metabolic feature underlying the potential
health-promoting effects of GOS/PDX. Deoxycholic acid can bind to the Takeda G protein-
coupled receptor 5 (TGR5), which is specific to bile acids and is known to activate several
intracellular signaling pathways [66,67].

5. Conclusions

We demonstrate that dietary GOS/PDX produces robust and reproducible changes in
the microbial composition of the gut micro-ecosystem, sufficient to overcome unforeseen
environmental impacts, addressing a gap in the literature [10–13]. Although some varia-
tions between the NW study and the CU study exist, the consistent pattern of taxonomic
changes over time and impacts on functional metabolic pathways are similar. We identified
consistent correlational networks associating the changes in bile acids and functional path-
ways, which supports the robust nature of the effects. Notably, the networks were found in
the prebiotic groups and not the control diet groups, supporting the conclusion that the
changes are driven by prebiotics. Finally, these key findings were reproduced at both study
sites. Overall, a prebiotic diet increases and decreases the relative abundance of several
genera, which may support a health-promoting gut micro-ecosystem.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16111790/s1, Figure S1: Phylum-level relative abundance data
demonstrating consistent effects of prebiotic diet on the two main phyla: Firmicutes and Bacteroidetes.
(A) There was a significant main effect of prebiotic diet on Firmicutes at NW (F(1,2.77) = 9.72; p = 0.002)
and a significant time-by-diet interaction (F(1,59.99) = 4.61; p = 0.004). There was also a significant
main effect of prebiotic diet on Firmicutes at CU (F(1,2.85) = 20.94; p = 0.0000078) but there was
not a significant time-by-diet interaction. (B) There was also a significant main effect of prebiotic
diet at on Bacteroidetes at NW (F(1,2.73) = 6.01; p = 0.014) and a significant time-by-diet interaction
(F(1,59.76) = 3.33; p = 0.022). At CU, there was also a significant main effect of prebiotic diet on

https://www.mdpi.com/article/10.3390/nu16111790/s1
https://www.mdpi.com/article/10.3390/nu16111790/s1
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Bacteroidetes (F(1,2.83) = 20.94; p = 0.0000047) and there was a significant time-by-diet interaction
(F(1,71.01) = 3.39; p = 0.019). Notably, in both studies, the relative abundance of Firmicutes increased
and Bacteroidetes decreased across time regardless of diet. * p < 0.05 when compared to control diet;
Figure S2: Data demonstrating the effects of dietary prebiotics on lower abundance genera between
study sites across time. * p < 0.05 when compared to control diet; Figure S3: Data demonstrating
inconsistent effects on six different genera between study sites across time. * p < 0.05 when compared
to control diet; Table S1: PERMANOVA table demonstrating significant effects of prebiotic diet by
time point at both study sites. Numbers represent days on diet; Table S2: Nonparametric longitudinal
data (nparLD) Table: ANOVA-type statistic (ATS) showing the similar significant effects of a prebiotic
diet across time on genera identified through ANCOM between study sites.
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