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Abstract

Modeling the preparation and reactivity of atomically dispersed catalysts on amorphous

supports: method development and applications

by

Salman Ahmad Khan

Several industrially important catalysts are single metals dispersed on amorphous

supports. For example, Cr dispersed on amorphous SiO2 is used to catalyze ethene

polymerization and W dispersed on amorphous Al2O3 and SiO2 is used to catalyze olefin

metathesis. Despite their extensive use in the industry, these catalysts have largely been

intractable to both, experimental and modeling investigations. In particular, they present

the following challenges: (i) an unknown quenched disordered structure of the amorphous

support, (ii) metal atoms attach to various surface grafting sites with different rates and

have different activation and catalytic reaction kinetics, and (iii) only a small fraction of

the sites are active. These challenges particularly render ab initio computational tools,

routinely applied to study homogeneous and ordered heterogeneous catalysts, inefficient

and impractical. The overarching goal of this thesis is developing computational tools

to efficiently model the synthesis and reactivity of atomically dispersed catalysts on

amorphous supports.

Atomically dispersed amorphous catalysts are synthesized by grafting organometallic

complexes onto amorphous supports. We develop a machine learning (ML) parametrized

population balance model to predict the evolving population of active sites during cat-

alyst synthesis. We apply the population balance modeling framework to model the

grafting of TiCl4 onto amorphous silica. Equilibrium predictions of the model agree with

experimentally determined populations of grafted Ti sites. Additionally, we develop an
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Importance Learning (IL) algorithm to efficiently calculate the site-averaged activation

barrier for amorphous catalysts. IL uses a combination of ML and importance sampling

to discover rare and active catalytic sites which dominate kinetics.

Different studies have generated atomistic models of amorphous silica using different

simulation protocols. Most studies have claimed that their models are representative of

real silicas. Using statistical hypothesis testing, we show that different protocols lead

to models with different structural features. We discuss the effects of these structural

variations on the grafted catalyst and outline experimental metrics that can be used to

validate models in future studies.

Finally, we present a site balance algebra to quantifying amounts of different species

generated in grafting experiments. We quantify the amounts of [≡SiOTiCl3] and

[(≡SiO)2TiCl2] sites obtained on grafting TiCl4 onto amorphous silica.
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Chapter 1

Introduction

1.1 Background

The North American Catalysis Society estimates that catalysis, directly or indirectly,

contributes to about 35% of the world’s GDP.1 Catalysts are critical in the production

of materials and chemicals important in several industries including food,2 automotive,3

energy,4,5 textile,6 etc. Understanding catalytic mechanisms and the effect of catalyst

structure and composition on properties (activity, selectivity, stability, etc.) is critical

in the development of efficient catalysts. One of the first systematic investigations of

catalysis, describing the conversion of alcohols to ethylene over silica, is from 1796.7

However, catalysis remained a mystery for much of the 18th and 19th centuries. It was only

by the early/mid-20th century that some rational theories of catalysis were proposed. For

example, Langmuir successfully described the mechanism of catalysis on metals through

adsorption of reactants on surfaces in the 1910s.8–10 H.S. Taylor postulated the role of

surface metal atoms in catalyzing reactions in 1925.11

Still, without much understanding of the atomic and electronic structure of materials,

most of the progress was based on trial-and-error.12 It was only after the advent of
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spectroscopic methods, like UV-Vis,13 Raman,14 Mössbauer,15 IR16 etc., that catalysis

could be investigated at an atomic scale. Spectroscopic methods enabled the investigation

of catalyst structure/composition effects on properties. Spectroscopic methods have been

successful in elucidating reaction mechanisms for several catalysts and in turn improving

their activity and selectivity.17

Catalysis involves multiple processes operating at different length and timescales,

like adsorption, diffusion, reactions, restructuring of the catalyst sites while in operation,

etc. Spectroscopic studies provide space and time averaged spectra and deconvoluting

the effects of different processes is not always straightforward. Computational models

can supplement experiments by providing tools to systematically investigate the effect

of different processes on catalyst properties and mechanisms.18 They can also be used to

calculate experimental observables, like activation barriers and turnover frequencies, and

thus provide a framework to test mechanistic hypotheses.18,19

The development of quantum mechanics (QM) in the early 20th century provided,20

for the first time, an ab initio framework to model reactions of molecules. However,

it was only towards the end of the 20th century that scalable and efficient methods

to solve the Schrödinger Equation for multi-electron systems were developed.21 These

developments made it possible to investigate system sizes relevant to catalysis. Density

functional theory (DFT) is a method to approximate the solution to the Schrödinger

equation and it offers reasonable accuracy with a modest computational cost.22,23 Hence,

it has become one of the most commonly used QM methods in catalysis.24 DFT can

be used to calculate the potential energy surface (PES) of a system (potential energy

as a function of atomic coordinates). In principle, it is possible to sample the PES

using molecular dynamics or Monte Carlo methods.25 The trajectories obtained from

these methods can be used to calculate abundances of different reaction intermediates

and rates of elementary reactions using statistical mechanics.26 However, in practice

2
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it is infeasible to sample the PES for many systems because of the prohibitive cost

of even the fastest QM methods. Instead, the PES is estimated by locating positions

of minima (corresponding to reactants, intermediates, and products) and saddle points

(corresponding to transition states connecting minima) on it.27 Following this, the PES

is approximated using a harmonic approximation (other approximations have also been

used) around these critical points. Free energies of different species and transition states

are calculated assuming a Boltzmann distribution of energies. A more detailed description

of methods to explore the PES and calculate free energies can be found elsewhere.27

Free energy differences can be used to estimate abundances of different intermediates

in a catalytic pathway. Free energy barriers can be used to calculate rate constants

of elementary reactions using transition state theory (TST).19 Rate constants can be

used as an input in a microkinetic model28 or a kinetic Monte Carlo simulation29 to

simulate long time dynamics of catalytic systems and calculate experimental observables

like turnover frequencies and activation barriers, thus providing a direct link between

structure and properties of catalysts. Computational studies have been instrumental in

not only supplementing experimental methods to understand catalytic mechanisms, but

also in discovering new catalytic materials. For example, high throughput computations

were used to discovery a BiPt alloy active for the hydrogen evolution reaction (HER) by

screening 700 binary alloys. The discovered material was later shown to be more active

than Pt (the most active metal for HER).30

However, most computational advancements have been limited to homogeneous cata-

lysts31–33 and ordered heterogeneous catalysts,31,32 like zeolites,34,35 metal oxide nanopar-

ticles,36,37 and metal nanoparticles.38,39 These catalysts have in common the advantage

of possessing only a limited variety of sites. On the other hand, amorphous catalysts

present a quenched distribution of sites and still remain elusive on several fronts.40,41

The presence of multiple active sites with different structural environments is challeng-
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ing to model using expensive ab initio methods. Moreover, they lack long-range order

and hence, their spectra do not have sharp features, unlike their ordered counterparts.42,43

This complicates their characterization and consequently, determining the exact structure

of amorphous catalysts is not straightforward.

Atomically dispersed metals on amorphous supports are a class of amorphous cat-

alysts with several applications in the industry. For example, Cr and Ti dispersed on

amorphous SiO2 are active for ethene polymerization44 and ethene epoxidation,45 re-

spectively and W dispersed on amorphous Al2O3 and SiO2 is active for metathesis.46 In

principle, these catalysts offer maximum site dispersion and the most efficient use of the

active material. However, many of these catalysts, despite being extensively used in the

industry, are still poorly understood. For example, the Phillips catalyst (Cr dispsered

on SiO2), discovered in 1953, is currently used to produce about 50% polyethylene in

the world.44 Still, questions about the structure of its active sites and its activation

mechanism have not been resolved.47–50

This thesis is a method development effort to model the synthesis and reactivity of

atomically dispersed catalysts. The following section describes the problem in more detail

and outlines the main computational challenges. It also presents current computational

methods applied to model these catalysts and highlights their shortcomings.

1.2 Atomically dispersed amorphous catalysts

A complete in silico model of atomically dispersed catalysts on amorphous supports

will require the following: 1) atomistic models representative of real amorphous supports,

2) modeling grafting of active metal sites to amorphous supports, and 3) modeling the

catalytic activity of the grafted catalyst. Each of these steps are discussed in detail below.

4
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1.2.1 Amorphous supports: silica

Silica,44 silica-alumina,51 and alumina52 are some examples of amorphous materials

used as supports for atomically dispersed catalysts. Here, we limit our discussion of

supports to amorphous silica. Challenges presented in developing atomistic models of

amorphous silica also apply to other amorphous supports.

Silica is one of the most commonly used supports for atomically dispersed catalysts.

Because of the absence of significant Lewis and Brønsted acidity silica does not take

part in side-reactions.43 Furthermore, it offers a large surface area and high mechanical

strength.43 The surface of amorphous silica is terminated by silanol groups (≡SiOH) and

siloxanes (≡Si-O-Si≡). Silanols are often classified based on their connectivity to other

silanols. For example, hydroxyl groups attached to the same Si atom are called geminal

silanols and two silanols connected via a Si-O-Si bridge are called vicinal silanols.43 Vicinal

silanol pairs can be H-bonded or not. Other distance-based classifications have also been

proposed: silanols separated by less than 4 Å are called nearly free silanols and silanols

separated by greater than 6 Å are called completely free silanols.53 Apart from these

classifications into discrete categories, the amorphous nature of the support leads to

different local structural environments, with different bond lengths and bond angles.

These local structural variations influence the reactivity of silanols with other molecules.

Amorphous silicas can be non-porous or mesoporous. Aerosil, an example of a non-

porous silica support, is synthesized via flame pyrolysis of SiCl4.54 SBA-1555 and MCM-

41,56,57 examples of mesoporous silica supports, are synthesized by creating an ordered

template with parallel cylindrical micelles via the self-assembly of surfactant molecules.

Following this, a silica precursor, for example tetraethoxysilane (TEOS), is added to

the ordered template. Finally, the material is calcined to remove the template and

obtain the mesoporous amorphous support. Silicas synthesized via these methods can be

5
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further calcined to remove adsorbed water and to condense neighboring silanol groups to

modulate the silanol density.43 These calcination and self-assembly processes are often

performed under non-equilibrium conditions.58

Molecular simulations to model these non-equilibrium synthesis processes with multi-

ple activated events are challenging.19 Some studies have attempted to model silica sup-

ports using alchemical procedures.59–62 These methods generally start by melting models

of crystalline silica at a high temperature (ca. 3000-7000K). The melt is then quenched

to obtain bulk amorphous silica. The surface of the amorphous bulk is cleaved, and un-

saturated O atoms are capped with H atoms and unsaturated Si atoms are capped with

OH groups. Nearby silanol pairs can be condensed to tune the surface silanol density of

these models. However, many ad hoc assumptions are made in generating these models.

Different studies use different force fields/ab initio methods, melting temperatures, and

quench rates. Furthermore, different cleaving, capping, and condensation protocols are

employed. These differences lead to different structural features of the produced silica

models, which can influence the subsequent grafting and catalytic steps.

Amorphous silica exhibits short-range and limited medium-range order.42,63 However,

as described in the introduction, the lack long-range order precludes its precise char-

acterization.43 Therefore, the structures obtained from molecular simulations cannot be

directly compared to experimentally synthesized silicas. Some studies have attempted

to qualitatively reproduce the experimental IR spectra of silicas and the experimentally

measured silanol density vs. calcination temperature curves.59–62 However, several ques-

tions still remain unanswered. For example, are models generated using these alchemical

melt-quench methods accurate? Is qualitatively reproducing the IR spectrum and silanol

density vs. calcination temperature curves enough to establish the validity of silica mod-

els? In addition, these models are small with tens of silanols. It is unlikely that such

small models can represent real silica materials with ca. 1018 silanols (silica samples used

6
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in typical catalyst experiments have ca. 1018 silanols).64

1.2.2 Grafting and catalysis

Atomically dispersed catalysts can be synthesized by grafting organometallic pre-

cursors onto amorphous silica. Precursors can graft as monopodal or bipodal species

via reaction with one or two silanol groups, respectively.44,65,66 Some studies have also

reported the formation of tripodal species.66–68 Some examples of organometallic precur-

sors used to graft metals onto amorphous supports are TiCl4,69 VOCl3,70, CrO2Cl2,71,72

and GaMe3.73 Eq. 1.1 shows an example grafting reaction. An organometallic precursor

ML4 (a metal M bonded to four ligands L) reacts with a pair of silanols and grafts as a

bipodal species following the elimination of 2 HL molecules.

2(≡ SiOH) + ML4 ⇄ (≡ SiO)2ML2 + 2HL. (1.1)

The nature of grafted species has been inferred using a variety of spectroscopic meth-

ods, including, EXAFS,74,75 XAS,76,77 IR,78,79 etc. But precise structural information

about the distribution of site environments is not possible because of the absence of

long-range order in these materials as described in the last section. Differences in the

local structure of the silanol sites can influence the kinetics and thermodynamics of

grafting.66,80 Investigating grafting kinetics can be important in scenarios where a fast-

forming species is the dominant product instead of a slow forming thermodynamically

stable species. It has been shown experimentally, in some cases, that the nature of the

grafted species can depend on the grafting reaction time.81 But experimental kinetic stud-

ies of grafting have been rare. The few studies which have investigated grafting kinetics

have used single-exponent models to fit kinetic data.82–84 This clearly does not take into

account the possibility of different sites grafting at different rates.
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Computational studies of grafting metal complexes onto amorphous supports have

also been scarce. A few studies have investigated grafting using single-site models.85–87

These models are selected based on ad hoc assumptions about the silica site and do

not account for the diversity of structural environments on amorphous silica surfaces.

Some studies have used amorphous support models with a limited number of sites to

model grafting.88–90 However, most such efforts have been limited to investigating the

thermodynamics of the grafting process without considering the kinetics.

The final step is to study the activtiy of the synthesized catalyst. The grafted

metal centers can turnover at different rates depending on their local structural environ-

ment.91–93 In some cases, reactions can even proceed via different catalytic mechanisms

on different sites.94 Furthermore, only a small fraction, ca. 1%-10%, of the sites are ac-

tive in such catalysts as estimated by active site counting experiments.95–97 This further

complicates their characterization as spectroscopic measurements represent features of

common but inactive sites. Similar to kinetic studies of grafting, experimental studies

investigating catalytic kinetics use single-exponent models to fit kinetic data, thus not

considering the distribution of sites on these catalysts.65,98,99

For these catalysts, most computational investigations of catalytic mechanisms have

used single-site models.49,100,101 Similar to grafting, ad hoc assumptions about the struc-

ture of these sites are made. And the diversity of sites is not considered. Modeling the

catalytic activity is further complicated because only a small fraction of sites are active.

Randomly sampling sites to calculate site-averaged kinetic properties will primarily se-

lect inactive sites for expensive ab initio calculations, making traditional computational

approaches impractical. Hence, we need new computational methods to efficiently model

the grafting and the catalytic steps for these catalysts.

8



Section 1.3 Outline

1.3 Outline

The challenges outlined in the previous section cannot be satisfactorily answered using

established computational methods. This thesis is a collection of method development

efforts towards modeling the synthesis and reactivity of atomically dispersed catalysts on

amorphous supports. Specifically, we develop tools to model the grafting of organometal-

lic precursors to amorphous supports and the catalytic activity of the grafted catalysts,

i.e., steps 2 and 3 described in section 1.2.

Chapter 2 develops a machine learning (ML) parametrized population balance model

to predict the evolving distribution of sites during grafting. In chapter 3, we present an

importance learning algorithm, to discover rare and active sites on atomically dispersed

catalysts. Importance learning uses a combination of importance sampling and machine

learning to efficiently calculate the site-averaged activation barrier of these catalysts.

Chapter 4 applies the population balance framework (developed in chapter 2) to model

the kinetics of TiCl4 grafting onto amorphous silica. The predicted equilibrium popula-

tions of the grafted sites are compared with the outcomes of TiCl4 grafting experiments.

The effect of reaction conditions on the distribution of grafted species is discussed.

Chapter 5 compares atomistic models of amorphous silica generated using different

simulations protocols. Similarities and differences between different models are discussed

and experimental metrics that future studies can use to validate their models are pre-

sented.

Chapter 6 describes the development of a site balance algebra to quantify the amounts

of monopodal [≡SiOTiCl3] and bipodal [(≡SiO)2TiCl2] sites produced in TiCl4 grafting

experiments. The use of such a site balance algebra as a consistency checking tool for

grafting experiments is discussed.

Chapter 7 summarizes the work presented in chapters 2 through 6 and provides some

9
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broad conclusions. Additionally, it outlines challenges that still remain to be solved and

describes a few directions that can immediately be pursued to extend the work presented

in this thesis.
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Chapter 2

Grafting metal complexes onto

amorphous supports: from elementary

steps to catalyst site populations via

kernel regression

Reproduced in part with permission from: Khan, S. A.; Vandervelden, C. A.; Scott, S.

L.; Peters, B. Grafting metal complexes onto amorphous supports: from elementary steps

to catalyst site populations via kernel regression. https://doi.org/10.1039/C9RE00357F

2.1 Introduction

Most ab initio computational catalysis studies focus on homogeneous catalysts,1–3

enzymes,4–6 or heterogeneous catalysts with ordered structures such as metals,7–11 zeo-

lites,12–14 and crystalline metal oxides.15–17 All of these materials have in common the

advantage that many features of the catalyst structure are known. Even for molecular

26



Section 2.1 Introduction

catalysts and enzymes, where the active site resides within a fluctuating environment,

there are systematic computational frameworks for averaging over the fluctuations.18–20 In

contrast, amorphous catalysts cannot be modelled with small, periodically repeating solid

structures, nor by sampling a well-defined ensemble for liquid phase disorder. Instead,

the quenched disorder in an amorphous heterogeneous catalyst21,22 is a permanent signa-

ture of its non-equilibrium preparation history. Examples within this family include the

Phillips catalyst (Cr/SiO2) for ethylene polymerization,23 molybdenum (Mo/SiO2) and

tungsten (W/SiO2) catalysts for olefin metathesis,24 and titanium catalysts (Ti/SiO2)

for alkene epoxidation.25

Because of these difficulties, amorphous catalysts have mostly been avoided in ab

initio computational studies. Those exceptions in which calculations on amorphous cat-

alysts were attempted were forced to rely on questionable assumptions.22,26–34 For exam-

ple, are the model sites representative of the real material? Do the models accurately

represent the most active sites? Can reliable conclusions about the reaction kinetics be

drawn from a single-site computational model? At present, none of these questions can

be satisfactorily answered with ab initio calculations.

These questions are addressed in two papers, this one and a companion. They pro-

vide a computational framework that combines machine learning, statistical importance

sampling, and population balance modeling techniques. To illustrate the concepts and

methods, we begin with a model for an atomically-dispersed catalyst on an amorphous

support. The essential features of the model are a quenched disordered support scaffold

(to represent an amorphous silica matrix), surface silanol sites where precursors can be

attached (to represent surface hydroxyl groups), and a microkinetic model for grafting

at each silanol site. These microkinetic models have rate parameters that depend on the

individual grafting site characteristics. The rate parameters at each grafting site will be

determined, much like in a real ab initio calculation, by structural optimization of the
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intermediates using a simple force field.

This first paper deals with how the active sites are generated during catalyst prepara-

tion. In particular, we show how the populations of both grafted sites and the unreacted

grafting sites evolve during an idealized grafting process. If the surface reactions are

irreversible, the final metal site distribution will be determined by those surface grafting

sites with the fastest grafting kinetics. However, if the surface reactions are reversible,

the final grafted site distribution will favor grafted sites that lead to the most stable

grafted species. To enable ab initio studies in the future, the algorithm must efficiently

predict the characteristics of the most reactive grafting sites and their abundances, with-

out performing exhaustive ab initio calculations for many thousands of grafting sites.

We demonstrate how kernel regression can learn to anticipate the outcomes of these opti-

mizations. Then, by applying the kernel regression model to thousands of grafting sites,

we can construct a population balance model for the grafting process. The simplicity

of our model system allows us to test the accelerated predictions against an exhaustive

parameterization from structure optimizations at thousands of grafting sites.

The companion paper uses a grafted site population that reflects both the disordered

support and the superimposed grafting kinetics to predict site-averaged kinetics. Because

turnover frequencies at individual grafting sites depend exponentially on their activation

energies, site-averaged kinetics are difficult to converge without rare events sampling

methods. The second paper deals with averaging over the non-uniform distribution of

grafted sites to predict the overall kinetics.

The remainder of this paper is as follows. First, we introduce simple models for

the amorphous support and grafting kinetics. Next, we use kernel regression tools to

predict the grafting thermodynamics and kinetics based on a concise list of grafting

site characteristics. Finally, we use the kernel regression results and kinetic models to

parameterize the population balance model for grafting.
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2.2 Amorphous silica

Amorphous silica is a commonly used catalyst support because of its thermal and

mechanical stability, large surface area, and its chemical inertness. The surface of silica

is terminated by silanol groups which may be categorized as isolated, geminal, vicinal

etc. Real amorphous silicas are created via sol-gel synthesis, spray drying, pyrolysis,

or precipitation methods. Silica can be calcined to increase its mechanical strength

and to remove adsorbed water.35–40 The calcination temperature also determines the

residual surface silanol density, which in turn influences the activity of the supported

catalyst.23,41,42

Many studies have used spectroscopic techniques like IR, NMR, and EPR to inves-

tigate the populations of different silanol types.43,44 However, in contrast to crystalline

materials, the absence of long-range order results in broad peaks that complicate the

precise characterization of silica.

Silicas of different types exhibit different ring size distributions,45–47 and silanols of

the same type can have different bond angles and different dihedral angles.35,44 These

subtle structural differences between silanols and their environments are likely to influ-

ence their reactivity. Many investigators have grafted metal atoms to silica via reac-

tions between silanols and molecular complexes like AlCl3,48 GaR3,49,50 TiCl4,51–53 and

VOCl3.54,55 These grafting reactions are useful both as probes of local structure and as

routes to supported organometallic catalysts.

In a typical grafting experiment, a fluid phase molecular precursor reacts with amor-

phous silica.49,55,56 A protonolysis reaction between the precursor and surface silanols

results in a metal atom grafted to the silica surface with one, two, or three M-O-Si

linkages, sometimes called monopodal, bipodal, or tripodal species, fig. 2.1.24,57–60
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Figure 2.1: Scheme showing the grafting of a molecular ML2 complex to a vicinal
silanol pair. The metal forms two bonds to the silanolate oxygens while two HL
molecules are eliminated. The metal may also coordinate to nearby siloxane oxygens.

Computational studies of atomically-dispersed metals on silica often use cluster mod-

els terminated by hydroxyl groups or hydrogen atoms. These models generally range in

sizes from a few to tens of silicon atoms.28,29,34,61–67 The cluster models are often carved

from crystalline materials like zeolites68 or β-cristobalite.66,69 In such clusters, the periph-

eral atoms are fixed at positions characteristic of the crystalline material. The de facto

assumption is that larger cluster models are more representative of the real amorphous

catalyst. Indeed large cluster models more accurately account for elasticity of the silica

matrix and for dispersion interactions between adsorbates and the support.33,70 However,

each layer of silica requires additional and unjustified assumptions about the environ-

ment. In this sense, large cluster models are overly specific, while small cluster models

are amenable to systematic investigation of the effects of local grafting site geometry.22

In the past decade, some computational studies generated amorphous silica surfaces

that attempt to reproduce experimental observables like surface silanol density and the IR

spectrum.71–74 Typically, such surfaces are prepared by molecular dynamics simulations,

in which crystalline models are heated to high temperatures followed by rapid quenching

to generate disordered structures. Then the bulk amorphous structure is cleaved to cre-

ate the surface. Unsaturated oxygens are capped with hydrogen atoms, and unsaturated
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silicons are capped with hydroxyl groups. Finally, pairs of proximal silanols are con-

densed to achieve the correct surface silanol density. These methods generate atomistic

amorphous models of silica with a non-uniform structural distribution of surface silanols.

However, such in silico preparation routes for amorphous silica do not correspond to ex-

perimental synthesis procedures. In particular, the high surface area of a real silica does

not result from cleavage and subsequent functionalization. In addition, the system sizes

modelled are typically quite small (100-200 silanols). For comparison, a 10 mg sample of

silica with area 350 m2g-1 and 1.0 silanols/nm2 contains about 1018 silanols.

2.2.1 A simple model for amorphous silica

The mechanisms of grafting, activation, and catalytic reactions are still debated for

many amorphous catalysts.26,30,50,58,69,75–77 To resolve the outstanding questions, we need

methods that can predict the kinetics at each grafting site and estimate proper site-

averaged kinetic properties. Then a given support model (if large enough) and proposed

mechanism will yield well-defined, site-averaged predictions to be tested against experi-

ments. To develop such methods, we selected a simple example system for which bench-

mark calculations can be performed exhaustively, for the full ensemble of non-uniform

sites. In this section, we propose a simple abstract model of the amorphous support.

We model the amorphous support as a 2D lattice with quenched disorder, fig. 2.2.

Note the loose similarity to the qualitative model of Peri and Hensley.48 First, a uniform

lattice is created in which nearest neighbours are separated by a unit (dimensionless)

distance. Each site is randomly displaced (δ) from the uniform lattice by random dis-

placements along the x and y directions to create a disordered lattice. Displacements

are drawn from an isotropic 2-D Gaussian distribution (described in the SI). The lattice

is then “functionalized” with hydroxyl (-OH), siloxane (≡SiOSi≡), and empty sites with
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probabilities pOH, psiloxane, and pempty.

Figure 2.2: Steps to form a functionalized, quenched disorder lattice.

2.2.2 Grafting molecular metal complexes: a simple model

Grafting sites in our model are empty sites surrounded by a pair of vicinal hydroxyls

on one axis and a pair of siloxanes on the other axis. Fig. 2.3 shows a grafting site located

between vicinal silanols (≡SiOH)2 and two siloxanes (≡SiOSi≡). The precursor ML2, a

molecular complex, in our model has two displaceable ligands. A real catalyst precursor

may have additional ligands like chloride, oxo, or methyl groups that remain bonded to

the metal M after grafting. The metal is grafted as a bipodal species (≡SiOMOSi≡)

upon reaction of ML2 with the vicinal hydroxyls to eliminate two HL molecules. The

metal may also interact with neighbouring siloxanes to form M· · ·O(Si≡)2 bonds. The

strengths of the ≡SiO-M and M· · ·O(Si≡)2 bonds depend on the local geometry near

the grafting site.
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Figure 2.3: Grafting sites on the amorphous 2-D lattice model. One set of opposite
nearest neighbour sites are hydroxyl groups, while the other set is siloxanes. ML2
reacts with two hydroxyls and interacts with the siloxanes to create a grafted M atom
as shown.

2.2.3 Computing grafting rates on the amorphous silica model

To model grafting kinetics of vicinal silanol sites on the amorphous 2D lattice, we

consider the grafting mechanism outlined in Sec. 2.2.2. The grafting process at each

vicinal silanol site is assumed to be irreversible with the following rate law:

r(x) = k(x)[ML2]. (2.1)

Here [ML2] is the gas phase concentration of ML2, x represents the local environment

of the vicinal silanol site, and k(x) is a site-dependent rate constant.78 We use concen-

tration to construct rate laws in this work. One can instead use the precursor partial

pressure, but note that one must beware of the resulting complications in extracting ac-

tivation energies. For example, when precursor pressure is set by its T-dependent vapor

pressure, as in CrO2Cl2 grafting,58 the pressure and temperature cannot be separately

controlled. We use transition state theory (TST) to model the temperature and site-

geometry dependence of the grafting rate constant. TST rate constants are widely used
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to predict and interpret activation barriers and kinetics across a wide range of catalysis

applications.79–83 TST rate constants are now readily computed from electronic structure

calculations.84 The TST rate constant is:

k(x) =
kBT

h
V̂0exp[−β∆G‡(x)]. (2.2)

Here ∆G‡(x) is the grafting barrier as computed with [ML2] at the reference volume

(V̂0) per particle. Next, we use a Linear Free Energy Relationship (LFER) to model the

grafting free energy barrier. Specifically, we assume that the free energy of grafting is

linearly related to the activation barrier for grafting:78

∆G‡(x) = ∆G‡
ref + α∆Go(x). (2.3)

Here α (0 < α < 1) is the Brϕnsted coefficient and ∆G‡
ref is the grafting barrier for a

reference grafting site with a thermoneutral grafting free energy (∆Go(x) = 0). The value

of α indicates the position of the transition state between the reactant and product states.

Small values of α (near 0) indicate an early transition state that resembles the reactants.

Large values of α (near 1) indicate a transition state that resembles the products. In

practice, intermediate values of α are common, so we have chosen α = 1/2.85 The value

of ∆G‡
ref determines the time scale for grafting, but it will have no bearing on results

after non-dimensionalization. Thus, to complete the kinetic model, including the effects

of non-uniform grafting sites, we only need a model for ∆Go(x). The energy to graft the

precursor at an empty site is

∆E(x) = 2ϵHF + VM*(x)− V∗ − 2ϵML. (2.4)
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Here VM∗(x) is the energy of the grafted metal site, V∗ is the energy of the unreacted

silica site, ϵML is the energy of the M-L bond, and ϵHL is the energy of the H-L bond.

V∗ is twice the O-H bond energy,

V∗ = 2ϵOH (2.5)

Here ϵOH is the O-H bond energy. To compute VM∗(x), the M-OSi≡ bond energy and

M. . . O(Si≡)2 bond energy are modelled as Morse potentials:

ϵi(r) = Di(1− exp[−ai(r − ri,rq)])
2 −Di. (2.6)

Here i is the interaction type (M-OSi≡ or M· · ·O(Si≡)2), Di is the equilibrium energy

of the interaction, ai is related to the width of the potential well, ri,eq is the equilibrium

distance, and r is the metal-oxygen bond length. All constants defined in this section are

shown in Table 2.1. VM∗(x) is computed by optimizing the position of the metal with

surrounding hydroxyl and siloxane positions fixed:

VM∗(x) = min
xM

(ϵM−O(rM−O1) + ϵM−O(rM−O2) + ϵM−O(rM···O′
1) + ϵM−O(rM···O′

2)). (2.7)

Here, rM−Oi
is a metal-oxygen bond distance, and rM···O′

i
is a metal-siloxane coordination

distance, as shown in fig. 2.4a. The bond lengths are functions of the (variable) metal

atom position xM and the (quenched/fixed) peripheral siloxane and silanol locations in

x. The optimization indicated in eq. 2.7 therefore involves optimization of the metal

atom position within the fixed peripheral environment.

Finally, the free energy of grafting is computed using

∆Go(x) = ∆E(x) + ∆PV − T∆So. (2.8)
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Table 2.1: Constants used in computing grafting barriers and defining the quenched
disorder lattice (see A.1 of the appendix for further explanations)

Parameter Value
T 298.15K
rM−O,eq 1.0
rM···O,eq 1.16
σ2
lattice 0.00022
pOH 0.3
psiloxane 0.3
pempty 0.4
DM−O 524.4 kJ mol-1
aM−O 1.9
DM···O 120.0 kJ mol-1
aM···O 2.3
2ϵHL − (V∗ + 2ϵML) + ∆PV +∆So 1229.56 kJ mol-1
M 0.026
α 0.5
∆Go

unperturbed -30 kJ mol-1

∆G‡
ref 131.3 kJ mol-1

Here ∆So is the entropy of the grafting reaction and ∆E(x)+∆PV is the enthalpy. The

entropy changes are predominantly from site-independent contributions like translational

and rotational degrees of freedom of the ML2 and HL species. As noted for the parameter

∆G‡
ref , the site-independent terms in eq. 2.8 have no bearing on the results after non-

dimensionalization.

2.3 Kernel regression model for grafting barriers

Because ab initio calculations are costly, computational studies of catalyst grafting

have been based on single sites, or at most a few sites. Ultimately, one hopes to make

predictions about grafting across the entire distribution of non-uniform sites. In this

section, we propose a machine learning method (kernel regression) to learn structure-

property relations from a modest number of training calculations.86–88 Kernel regression
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was chosen because it is a non-parametric method; hence it does not need a predefined

form for the fitting function. Specifically, we will use calculations at a small collection of

grafting sites to predict barriers and kinetics for all grafting sites.

The training data includes a collection of computed barriers, ∆Ĝ‡(x1), ∆Ĝ‡(x2),

∆Ĝ‡(x3), etc. The estimated barrier for a new peripheral environment x is a kernel-

weighted average of the training data:

∆Ĝ‡ =

Ntrain∑
i=1

w(x,xi)∆G‡(xi). (2.9)

Here, ∆Ĝ‡(x) is the prediction for a grafting site with local geometry x, ∆Ĝ‡(xi) values

represent the barriers of grafting sites in the training set, Ntrain is the number of training

examples, and w(x,xi) are the weights. The weights are represented using a Gaussian

kernel:89

w(x,xi) =
exp[−d2(x,xi)]∑Ntrain

i=1 exp[−d2(x,xi)]
. (2.10)

Here d2(x,x′) is a squared non-Euclidean Mahalanobis distance between structures x and

x’

d2(x,x′) = (x − x′)TS(x − x′). (2.11)

S is a square, symmetric, and positive definite matrix. To ensure that S remains positive

definite while being optimized/learned, we write S as

S = AAT . (2.12)

Here A is a lower triangular matrix.90 Matrix A should be optimized so that eq. 2.9

accurately predicts ∆Ĝ‡(x) at new grafting sites. The training data from optimization
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of a small collection of grafting sites is used in a leave-one-out objective function

L =

Ntrain∑
i=1

(∆G‡(xi)−∆Ĝ‡(xi))2. (2.13)

to determine A. In L, ∆Ĝ‡(xi) is a weighted average of all data points in the training

set excluding itself:

∆Ĝ‡(xi) =
Ntrain∑
j=1
j ̸=i

∆G‡(xj)w(xi,xj). (2.14)

The Gaussian kernel in eq. 2.10 generates a continuous and differentiable model of

∆Ĝ‡(x), so the leave-one-out error function is easily minimized with conjugate gradient

methods or other superlinear minimization schemes.91 We use kernel regression as imple-

mented in the metric-learn Python library.92 The library minimizes L using the conjugate

gradient method with analytical derivatives of L.

2.4 Local coordinates

The Gaussian kernel function in eq. 2.9 can be constructed from the complete set

of internal coordinates for the local environment. However, a subset of the internal

coordinates will usually be sufficient to predict the activation barriers. We do not know

a priori which coordinates are most important, but these can be identified as illustrated

below.

The local environment of silanol and siloxane groups in our model is specified by five

coordinates (2 dimensions × 4 “atoms” - 1 rotation - 2 centre-of-mass translations). We

use three of the five coordinates to construct the kernel regression model: (1) distance be-

tween OH groups (d1), (2) distance between siloxane groups (d2), and (3) angle between

the OH-siloxane groups (θ), fig. 2.4.
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Figure 2.4: Bond lengths in the force field and in the optimization of the M-atom
position. (b) Coordinates for describing the local environment around the grafting
site. We have used three of the five (2 × 4 – 1 (rotation) – 2 (translations)) peripheral
environment coordinates in the initial kernel regression model.
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2.5 Sites with non-uniform grafting barriers: a popu-

lation balance perspective

As described in Sec. 2.2, an amorphous support will have a distribution of grafting

sites with different grafting rates. As time progresses, the most reactive grafting sites

will be consumed, while grafting sites with higher reaction barriers remain unreacted and

reduce the rate of further grafting. This situation can be modelled using the following

population balance scheme:

dρ(∆G‡, t)

dt
= −r(∆G‡,m)ρ(∆G‡, t). (2.15)

Here ρ(∆Ĝ‡, t) is the population of unreacted vicinal silanol sites at time t with a barrier

of ∆Ĝ‡, r(∆Ĝ‡,m) is the rate at which the sites react (eq. 2.1), and m = [ML2]/V̂
−1
0

is the ratio of the concentration of the precursor ML2 in the gas phase to the reference

concentration (V̂ −1
0 ) at which ∆Ĝ‡ is computed. The rate of change of m is

dm

dt
= −

∫
d∆G‡ρ(∆G‡, t)k(∆G‡,m) +mG. (2.16)

Here, the first term on the right-hand side is rate of consumption of ML2 due to the

grafting reaction, and mG is the rate at which ML2 is fed to the reactor. In some

grafting experiments, the molecular complex is constantly replenished by evaporation

from a reservoir, so that its gas phase concentration is always in equilibrium with its

liquid reservoir.50,58 In such cases, the ML2 concentration remains constant at its vapor

pressure as grafting proceeds. Assuming constant m, eq. 2.15 can be integrated to yield

ρ(∆G‡, t) = ρo(∆G
‡)exp[−kBT

h
e−β∆G

‡
mt]. (2.17)
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Here ρ0(∆Ĝ‡) is the initial population of vicinal silanol sites.

Defining non-dimensional time as:

τ =
kBT

h
exp[−β∆G‡

ref t]. (2.18)

leads to the population of unreacted vicinal silanol sites as a function of τ and grafting

free energy barrier:

ρ(∆G‡, τ) = ρ0(∆G
‡)exp[−e−βα∆Go

mτ ]. (2.19)

2.6 Results and discussion

2.6.1 Evolution of grafting site population

A 1500×1500 lattice was randomly perturbed using the procedure outlined in Sec.

2.2.1. A total of 19368 grafting sites were identified. A metal atom was placed in each

grafting site, and its position was optimized. The grafting free energy barrier was com-

puted for each grafting site. A histogram of the results was constructed to approximate

the initial distribution ρo(∆Ĝ
‡). Note that the horizontal axis depends on the choice of

∆Ĝ‡
ref and ∆So/kB, i.e., different values of these parameters will shift the distribution

left and right along the ∆Ĝ‡ axis. In a real system, ab initio calculations yield ∆Ĝ‡

and ∆So values for all grafting sites with no adjustable parameters, so there would be

no arbitrary shift. Following this, eq. 2.19 was used to compute the evolution of the

unreacted grafting site population, fig. 2.5a.
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Figure 2.5: (a) Evolution of the unreacted vicinal silanol site population as a function
of non-dimensional grafting time. (b) Fraction of unreacted vicinal silanol sites as a
function of logarithmic time. The inset shows the evolution as a function of real time
in the range 0 < τ < 0.3. It also includes an exponential decay model fit to this data.

The initial range of grafting barriers spans 23 kJ mol-1. Grafting sites with the lowest

barriers react first, so the distribution shifts to the right as grafting proceeds. The 23
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kJ mol-1 width of the distribution causes the grafting sites to react at markedly different

rates. The fastest grafting sites react in about 10−4τ . Grafting is complete in about 10τ .

During a grafting experiment, the total number of grafted sites at any time can be

measured, e.g., by monitoring the amount of HL released. The fraction of unreacted

vicinal silanol sites (relative to the total number of vicinal silanol sites) is:

Θ =

∫
ρ(∆G‡, τ)d∆G‡∫
ρ(∆G‡, 0)d∆G‡ . (2.20)

Fig. 2.5b shows the evolution of the fraction of unreacted vicinal silanols (note the

log scale). Grafting progress slows dramatically as the most reactive grafting sites vanish

from the distribution. In an experiment, the reaction might seem complete when all the

vicinal silanols with low barriers have reacted. The inset of fig. 2.5b shows how the

data would appear if the fraction of unreacted silanols were monitored only for time 0

< τ < 0.3. The inset also shows a fit to the common pseudo-first-order kinetic model

Θ = Θ∞(1 − Θ∞)exp(−kobsτ) fraction of unreacted vicinal silanol sites and kobs is an

“apparent” grafting rate constant. Over the range 0 < τ < 0.3, the data appears to be

approximately an exponential decay, thus one might infer that all silanols react with the

same rate constant (kobs), and that 19% (from = 0.19) of the vicinal silanol sites are

unreactive. However, all of the silanols (in this model) do react at exponentially longer

time intervals. The final silanol sites react last because they are different. Therefore,

they change the distribution of grafted sites, and may also change the catalytic activity.

Hence, it is important to analyse grafting kinetics on a logarithmic time scale.

Predictions about catalytic activity require information about the abundance of grafted

sites and their characteristics. Both the grafting kinetics and the catalytic turnover fre-

quency at a particular grafted site depend on the local grafted site environment. However,

the most readily grafted sites may not correspond to the most catalytically active sites.

43



Grafting metal complexes onto amorphous supports: from elementary steps to catalyst site
populations via kernel regression Chapter 2

Therefore, predictions of the overall catalyst activity require predictions about grafting

propensity and characteristics of the grafted sites. The companion paper develops tools

for computing site-averaged kinetics starting from the grafted distribution.93

2.6.2 Applying kernel regression to predict grafting barriers

The kernel regression model was trained on grafting barriers for 100 vicinal silanol

sites randomly sampled from the set of all 19368 grafting sites using local coordinates

described in Sec. 2.4. Justification for choosing a training set size of 100 is provided in

section A.2 of the appendix. A parity plot of the true ∆Ĝ‡ values and kernel regression

∆Ĝ‡ predictions is shown in fig. 2.6.

Figure 2.6: Parity plot showing predictions of grafting activation barriers by the kernel
regression model trained on 100 grafting sites.

The model trained with 100 ∆Ĝ‡ calculations was used to predict grafting barriers
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for all 19368 grafting sites. After training, the only input information for each grafting

site are its values of d1, d2, and θ. The residuals of the predictions are plotted as a

distribution in fig. 2.7. Nearly all residuals are within ±1 kJ mol-1, and the standard

deviation of the residual distribution is 0.48 kJ mol-1.

Figure 2.7: Distribution of residuals for a model trained on 100 grafting sites.

2.6.3 Identifying important local coordinates

The results in Sec. 2.6.2 used three of five coordinates to construct the kernel regres-

sion model. Three is already a relatively compact structural parameter set, but for this

model it can be reduced further. To evaluate the importance of different combinations of

local coordinates, the model was retrained by systematically excluding some coordinates.

Table 2.2 shows R2 values for fits with different coordinates. Fig. 2.8 shows parity plots

like the one in fig. 2.6, but for a model based only on d1, and for a model based on d1
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Table 2.2: R2 values of kernel regression models with different combinations of local
coordinates)

Coordinates R2

θ -0.02
d2 0.52
d1 0.60
d2, θ 0.52
d1, θ 0.60
d1, d2 0.99
d1, d2, θ 0.99

and d2 (i.e., without θ).
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Figure 2.8: (a) Parity plot of the model trained with d1 and d2. (b) Parity plot of the
model trained with d1 only.

The model trained using d1 and d2 (R2 = 0.99) is comparable in accuracy to the

model trained using all coordinates (R2 = 0.99) Clearly, d1 and d2 are both important

for describing barriers, but θ is inconsequential as its omission does not diminish the

accuracy of the kernel regression model. We can also see that the model cannot be further
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simplified from d1 and d2 dependence. The models trained on only d1 (R2 = 0.60) and

d2 (R2 = 0.52) have severely diminished accuracy.

Now, using just two coordinates, we can project the grafting free energy barriers

onto a 2D plot, fig. 2.9. The barrier decreases monotonically with increasing d1 or d2.

Therefore, grafting sites with large values of d1 and d2 react first, while grafting sites

with small values of d1 and d2 react more slowly. We emphasize that, even with this

simple model, it was not obvious a priori how structural characteristics would influence

the grafting kinetics. The procedures in this paper should help to identify features of the

most reactive silanol sites.

Figure 2.9: Model-predicted barriers as function of d1 and d2. Blue dots show training
set grafting sites. The figure also shows the structures of active and inactive grafting
sites. Grafting sites with smaller values of d1 and d2 have larger barriers, while grafting
sites with larger values of d1 and d2 have smaller barriers.
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Section 2.6 Results and discussion

2.6.4 Predicting the time evolving population of grafting sites

In this section, we recompute results from section 6.1, now using the kernel regression

model. We use the model based only on d1 and d2 and trained on just 100 randomly

sampled grafting sites to predict the evolving population of unreacted silanols. The

results are shown in fig. 2.10a.

The training set of 100 grafting sites does not include examples of grafting sites at the

extreme fast and slow grafting limits. Accordingly, the trained model does not accurately

predict grafting kinetics at the extreme fast and slow limits. Fortunately, the extreme

tails account for only a small portion of the total grafting sites, so important properties

like the overall grafting progress are still accurately predicted by the model, fig. 2.10b.
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Figure 2.10: (a) Evolving population of grafting sites predicted using a kernel re-
gression model trained on 100 grafting sites. (b) The predicted fraction of unreacted
grafting sites as a function of logarithmic time.
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Section 2.7 Conclusions

2.7 Conclusions

Several factors make ab initio rate calculations prohibitively difficult for single-atom

catalysts grafted to amorphous supports such as silica. First, the quenched disorder of

the support presents an unknown distribution of local environments. Second, grafted site

abundances depend on differences in grafting kinetics at different grafting sites. Third,

differences between the grafted sites can cause differences in their catalytic activity. Sev-

eral investigators are working to overcome the first challenge.71–74 This paper addresses

the second challenge by combining transition state theory, kernel regression, and popu-

lation balance models. A companion paper to this one addresses the third challenge.93

To illustrate and test the new methodology, we introduce a simple 2D disordered

lattice model of amorphous silica. The model allows us to compute the grafting rate at

nearly 20 thousand grafting sites to obtain essentially exact solutions for the evolving

grafting/grafted site population during grafting. Then, we trained a kernel regression

model to predict grafting rates from a training set of rate calculations at just 100 grafting

sites. The regression model predicted barriers with ca. ±0.5 kJ mol-1 accuracy on the

test set of about 20 thousand grafting sites. We also showed how the kernel regression

results can identify those grafting site characteristics that most strongly influence the

grafting kinetics. Finally, the trained kernel regression model was used to predict the

evolving population of unreacted silanols.

In future work, we will use this framework with ab initio calculations and more

realistic silica models to predict grafting rates and active site abundances during the

preparation of real single-site catalysts on amorphous silica. Given a model of amorphous

silica, the new algorithm should enable quantitative predictions about the grafting process

and the grafted site distribution without assuming the characteristics of the most active

or most abundant sites.
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Chapter 3

Site-averaged kinetics for catalysts on

amorphous supports: An importance

learning algorithm

Reproduced in part with permission from: Vandervelden, C. A.; Khan, S. A.; Scott, S. L.;

Peters, B. B. Siteaveraged kinetics for catalysts on amorphous supports: an importance

learning algorithm. https://doi.org/10.1039/C9RE00356H

3.1 Introduction

A recent surge of interest in atomically-dispersed “single atom” catalysts is driven by

their unique and potentially selective reactivity,1–3 and by sustainability efforts that seek

to minimize use of scarce elements and maximize atom economy.4–6 Among single atom

catalysts, those which are chemically bonded to a thermally robust oxide support like

silica are especially resistant to deactivation by sintering.7,8 Moreover, grafting strategies

that promote selective reaction of the catalyst precursor at specific surface sites may
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help to minimize differences between grafted metal sites. Well-studied catalysts that are

comprised of single metal atoms grafted onto amorphous silica include chromocenes or

chromates for olefin polymerization,9–11 titanium and tantalum complexes for olefin epox-

idation,12 molybdates for methanol dehydration,13 and vanadates for partial oxidation of

methanol.14

Investigators have occasionally drawn comparisons between the metal atoms present

in the active sites in enzymes, and metal atoms grafted onto silica surfaces.12 There

are similarities, but there are also important differences. Each enzyme molecule of a

given type is the same, while each metal atom on amorphous silica resides in a unique

ligand environment. These non-uniform environments can result in metal atoms with

non-uniform catalytic properties, including a range of activities, selectivities, adsorp-

tion constants, and even different spectroscopic features. When the sites have variable

activities, a minority of the sites may contribute most of the overall catalyst activity.

Indeed, active site counting experiments confirm that only a small fraction of sites in a

heterogeneous catalyst is typically active.15–18 This poses an extraordinary difficulty in

experimental as well as theoretical studies of these catalysts. Powerful characterization

tools (NMR, EXAFS, IR, Raman, etc.) generally provide the strongest signals for the

most common sites, and these are likely inactive.11

If we could understand the mechanisms of these catalysts, we might systematically

work to improve them.19 In some applications like olefin polymerization, where the cat-

alysts are not recovered from the polymer product, one might even use mechanistic un-

derstanding to design catalysts with a desired activity distribution capable of generating

polymer with a desired molecular weight distribution.

Our first paper introduced a method to predict the distribution of sites that emerges

from grafting a precursor onto an amorphous support.20 The simple model system con-

sisted of a quenched-disordered lattice (to represent the amorphous silica support), sur-
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face functional groups (representing pairs or nests of hydroxyl groups) to which a metal

complex can be grafted, and a microkinetic model for each grafted site with rate param-

eters that depend on the site characteristics. Much like in an ab initio study, computing

activation barriers for the model system requires geometry optimizations of intermedi-

ates. Our realistic but simple model allowed us to focus on developing the importance

sampling and machine learning tools, without being distracted by controversies about

the mechanisms about the mechanisms of these catalysts.

Starting from the simple model and the grafted site population described in our first

paper,20 this second paper aims to compute an average over sites to predict the overall

kinetics. Since the turnover frequencies at individual sites vary exponentially with the

activation energy, even a small variance in the activation energy leads to an enormous

variance in site-specific activities. Such exponential averages are notoriously difficult

to converge with standard sampling tools,21–23 but importance sampling methods can

dramatically accelerate convergence. The ideal importance sampling algorithm24 requires

activation energies for each site, but these activation energies are not known a priori. Each

activation energy must be obtained through costly ab initio calculations. Because of this

limitation, typical approaches calculate just one25,26 or a small handful of sites27–34 – far

too few to converge site-averaged predictions of kinetic properties.35 Kernel regression

tools can use a modest set of ab initio calculations to predict activation energies that

have not actually been computed. This paper shows how importance sampling and

machine learning can be combined to generate site-averaged predictions efficiently.

In the remainder of this paper, we discuss model elementary steps and a rate law for a

catalytic reaction with our simple model system. We briefly review the kernel regression

tools (from our first paper) that predict activation energies. We combine the importance

sampling and kernel regression tools into an “importance learning algorithm”. We then

use the new algorithm to identify characteristics of highly active sites and to estimate site-
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averaged activation energies. Finally, we compare the efficiency of importance sampling

estimates to straightforward sampling.

3.2 Model for amorphous support and grafted sites

Our previous paper described the creation of a disordered, functionalized lattice model

to approximate the non-uniform silanol sites and siloxane environments on the surface of

amorphous SiO2. That paper also considered a kinetic model for grafting of metal atoms

onto the silanol sites. All sites with two silanol neighbors and two siloxane neighbors on

opposite sides were eligible grafting sites in the model. A schematic of the simple model

is shown in fig. 3.1.

Figure 3.1: Quenched disorder lattice model. Sites with a grafted metal center are
shown in gold.

This paper uses the distribution of non-uniform grafted sites, like those shown in fig.

3.1, as its starting point. We assume that grafting has occurred at all eligible sites, but
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one could modify the starting distribution (using methods in the previous paper20) to

investigate lower catalyst loadings.

The discussion below invokes bonds between metal atoms and adsorbates, as well

as the oxygen atoms of the silanol and siloxane sites. However, the local environment

of each site (before grafting and during catalysis) is described entirely by the positions

of atoms in the silica support surrounding the metal center. The coordinates used to

describe the local environment are shown in fig. 3.2 They are: (i) the distance between

siloxane groups, d1, (ii) the distance between silanolate groups, d2, and (iii) the angle

between the silanolate and siloxane groups, θ.

Figure 3.2: Coordinates used to describe the local environment of a grafting site.

The selected coordinates are nearly orthogonal in the sense that their gradients have

little or no overlap. Note, however, that the coordinates are incomplete. For a grafting

site on our two dimensional surface model, the four nearest neighbors are fully described

by five internal coordinates (8 – 2 × (center of mass) – 1 × (rotation)). We use only three
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coordinates in the kernel regression model, and the results below will show that just two

of these coordinates are sufficient to predict site-averaged kinetics. We also emphasize

that some calculations below involve other coordinates at intermediate stages, but that

the overall kinetics and the kinetics of individual sites ultimately depends only on the

coordinates in fig. 3.2.

3.3 Model for catalysis at grafted sites

We consider a simple model of a catalyst site, M∗, comprised of a metal center M and

its surrounding support environment, *. We will consider the case in which the catalytic

reaction at each site has the same rate-limiting step and the same most abundant surface

intermediate (MASI). We further assume that the site does not deactivate. The model

reaction has a simple Langmuir-Hinshelwood mechanism:

A+ M∗ ⇌ AM∗ K(x)

AM∗ → B+ M∗ k2

We further assume that

1. the equilibrium constant K for adsorption of reactant A depends on the local envi-

ronment of site i, xi,

2. the adsorbed molecule A (AM∗) is irreversibly converted into the gas phase product

B and a bare site M∗,

3. K(x)cA ≪ 1 for all sites, so that the bare site is the MASI.

The bond strengths chosen in this work, described below, ensure that these three
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assumptions are true for all sites. Fig. 3.3 depicts the Langmuir-Hinshelwood mechanism

and the three simplifying assumptions for the simple model system in this work.

Figure 3.3: The equilibrated adsorption step and irreversible chemical reaction steps
for the model reaction A → B, and the M∗ sites described in this work.

The Langmuir-Hinshelwood mechanism leads to a rate law of form

r =
k2K(x)cA

1 +K(x)cA
(3.1)

Because of assumption 3., the rate law simplifies to a power law rate expression of the

form

r = k(x)cA (3.2)

where the pseudo-first-order rate constant is:

k(x) = k2K(x) (3.3)

Note that we have also assumed that the rate constant k2 for the second step in the

Langmuir-Hinshelwood mechanism is the same for all sites. In principal, k2 could also
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depend on x, but a model for k2(x) would require additional parameters to create a

model for the saddle region on the potential energy surface. The more elaborate model

system with x-dependence in k2 would still lead to an apparent rate constant k2K that

is one function of x.

The apparent rate constant k(x) depends on the local site geometry through K(x).

The adsorption constant is

K(x) = exp

[
−∆H(x)− T∆S

kBT

]
(3.4)

where ∆H(x) is a site-dependent adsorption enthalpy. T∆S is assumed to be constant

because its main contributions are the loss of translational and rotational freedom upon

adsorption. The rate constant, according to transition state theory, will be of the form

k2 =
kBT

h
exp

[
∆S‡

kB

]
exp

[
−∆H‡

kBT

]
(3.5)

Here, the entropy and enthalpy of activation for the reaction step are assumed to be the

same for all sites.

The site-dependent enthalpy of adsorption, ∆H(x), is modeled by

∆H(x) = VAM∗(x)− (VM∗ (x) + εA + kBT ) (3.6)

where x is the position of M, VAM∗(x) is the energy with A chemisorbed to the metal

site, VM∗(x) is the energy of the bare metal site, εA is the gas phase energy of A, and

kBT is the PV contribution to the gas phase enthalpy of A. The same Morse potentials

that we used to model grafting20 are now used to describe the M−OSi ≡ bond energies
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and M(OSi ≡)2 bond energies. Specifically, the individual interaction energies are

εi(r) = Di

(
1− exp

[
−ai(r − ri,eq)

2])−Di (3.7)

where i is the bond type, Di is the bond dissociation energy, ai is inversely related to

the vibrational well width, r is the bond length, and req,i is its equilibrium bond length.

The energy of the bare metal site is

VM∗(x) = εM−O(r1) + εM−O(r2) + εM···O(r
′
1) + εM···O(r

′
2) (3.8)

where εM−O(ri) is the energy of the M − OSi ≡ bonds, ri is the metal-oxygen bond

distance, εM···O(r
′
i) is the energy of the M · · · (OSi ≡)2 metal-siloxane bond, and r′i is the

metal-siloxane bond distance.

We model adsorption of A onto the grafted metal center as an M-A bond with

energy εM−A. The length of the M-A bond is not explicitly optimized. Instead, we

assume that the M- A bond displaces the longest and most weakly-coordinated siloxane

(M · · · (OSi ≡)2) from M. The displaced siloxane can still exert a repulsive interaction

on M. We model the close-range repulsion with a Weeks-Chandler-Andersen potential:36

εWCA
AM···O(r) = DAM···O

(
1− exp

[
−aAM···O(r − rAM···O,eq)

2]) (3.9)

for r ≤ rAM···O,eq and εWCA
AM···O(r) = 0 otherwise. Thus, the energy of state AM∗ is

VAM∗(x) = εM−A + εM−O(r1) + εM−O(r2) + εM···O(r
′
1) + εWCA

M···O(r
∗) (3.10)

where r∗ is the longest M · · ·O bond prior to the adsorption of A.

With these definitions, eq. 3.6 presents a geometry optimization problem much like
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that encountered in ab initio calculations. The interior atoms must be optimized subject

to constraints on peripheral atoms around the metal center. The equilibrium configura-

tions of M∗ and AM∗ are found by changing the M atom position with fixed silanolate

and siloxane group positions to minimize 3.8 and 3.10, respectively. This procedure

creates a collection of model sites with quenched disorder and limited local flexibility,

somewhat like a real amorphous catalyst.
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3.3.1 Parameter selection

The quenched disordered lattice was created by starting with a square lattice with

spacing 1. Random displacements of the lattice sites were drawn from an isotropic 2D

Gaussian distribution with σ2
lattice = 0.00022 in the x and y directions. We used the

same fractions of silanol, siloxane, and empty sites (fsilanol = 0.3, fsiloxane = 0.3, and

fempty = 0.4) as our previous paper.20 All rate calculations in this work were performed

for a temperature of 300 K and a reactant pressure of 1 atm. The metal-adsorbate

bond dissociation energy was modeled as the Cr-C bond dissociation energy for a (≡

SiO)2Cr(III) alkyl site – the widely accepted active site for Cr/SiO2 olefin polymerization

catalysts.11,37 Based on DFT calculations (Section S1) and reported values for the Cr-

C bond,38 we set εM−A = 160 kJ/mol. A list of the parameters and their values are

summarized in Table 3.1.

Table 3.1: Parameter values for the quenched disorder lattice, Langmuir-Hinshelwood
mechanism, and model chemistry

Parameter Value

T 300K
PA 1 atm
∆H‡ 65 kJ/mol
σ2
lattice 0.00022
fSilanol 0.3
fSiloxane 0.3
fEmpty 0.4
DM···O 120 kJ/mol
aM···O 1.3
r̂M···O,eq 1.16
DM−O 500 kJ/mol
aM−O 1.7
r̂M−O,eq 1.0
εA 0 kJ/mol
εM−A 160 kJ/mol
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3.3.2 Site-averaged kinetics

Each metal site has a unique environment, and the different environments lead to

a distribution of kinetic properties. For example, the sites will exhibit a distribution

of turnover frequencies and activation energies. In contrast, a conventional experiment

measures just one site-averaged value for each kinetic property. In this paper, we focus

on the site-averaged activation energy. From eqs. 3.2 - 3.5, the activation energy for site

i is

Ea(xi) = −d ln r i
dβ

= ∆H(xi) + ∆H‡ + 2kBT (3.11)

where β = 1/kBT . A derivation of eq. 3.11 can be found in section B.2 of appendix

B. In this calculation, we assume that Ea, ∆S, ∆S‡, and ∆H‡ are not functions of

temperature.39 For ∆H, the temperature dependence from kBT (eq. 3.6) is considered,

but other temperature-dependent terms such as partition functions are ignored. (In

practice, all of these properties will probably exhibit some temperature dependence.)

Naively, one might estimate Ea(x) for a large sample of sites and then average them

to obtain the site-averaged activation energy. This straightforward average does not

give the correct value, even in the limit of large sample sizes. The correct site-averaged

activation energy,40 ⟨Ea⟩k is obtained from a derivative of the site-averaged rate:

⟨Ea⟩k ≡ − ∂ ln ⟨r ⟩ /∂β

= − ∂

∂β
ln

∫
dxρ(x)k(x)

∏
i
cαi
i

= −
∫
dxρ(x)∂k(x)/∂β∫
dxρ(x)k(x)

(3.12)

=

∫
dxρ(x)k(x){Ea(x) + βEa(x)∂ lnEa(x)/∂β}∫

dxρ(x)k(x)

= ⟨Ea{1 + β · ∂ lnEa/∂β}⟩ρ(x)k(x)
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In this work, we ignore the temperature dependence of Ea. In practice, the rates at

individual sites cannot be probed, nor are the temperature intervals in which the rates

are measured wide enough to see definitive curvature in the Arrhenius plot. We also

expect the correction to be small. Using Ea from eq. 3.11, Eaβ∂ lnEa/∂β = 2β−1,

which will be relatively small compared to a typical Ea(x). Moreover, we anticipate

that Eaβ∂ lnEa/∂β term will be similar across different sites, so that conclusions about

characteristics of highly active and abundant sites will be unaffected. Using eqs. 3.2 -

3.5, the derivatives and integrations yield:

⟨Ea⟩k =
〈
∆H(x) + ∆H‡ + 2kBT

〉
k
. (3.13)

The subscript k indicates that the average is computed with probability weights ρ(x)k(x),

instead of ρ(x). In practice, this average can be computed in two different ways.

The first strategy is to randomly choose sites from ρ(x) and reweight each of them

by k(x) when computing the average:

Ẽa =
∑n

i=1
k(xi)Ea(xi)

/∑
i
k(xi) (3.14)

The numerator and denominator are both exponential averages. As shown in previous

work,35 this strategy usually requires an enormous sample size to converge.

The second strategy is to directly sample sites according to probability weight ρ(x)k(x).

This is difficult, because we do not know k(x) precisely prior to performing ab initio cal-

culations at x. However, if such a sampling algorithm could be devised (see below), the

site-averaged activation energy would become a simple arithmetic average:

Ēa =
1

n

∑n

i=1
Ea(xi). (3.15)
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This second strategy enables fast convergence to the site-averaged activation energy ac-

cording to the central limit theorem. Confidence intervals on the precision of Ea follow

from the usual statistical formulae

⟨Ea⟩k = Ēa ±
1√
n
ŜEatX,n (3.16)

where tX,n is the student-t statistic for an X% confidence interval with sample size n,

and where the standard error is:

Ŝ2
Ea

=
n

n− 1

{
E2
a,i − Ea,i

2
}
. (3.17)

Of course, these estimates and error formulas do not account for systematic errors in

the ab initio predictions. Moreover, to sample the distribution ρ(x)k(x), we use a kernel

regression model to predict k(x) at sites that have not yet been investigated. The error

formulas above also do not account for errors in the kernel regression estimates. In our

calculations, the kernel regression errors are much smaller than the intrinsic width of the

Ea-distribution, so they can probably be ignored. However, section B.3 of appendix B

shows how the typical kernel regression errors could be included in cases where they are

large enough to be important.

3.4 Kernel regression

To sample the distribution ρ(x)k(x) starting from a large collection of sites, i.e., from

ρ(x), we require preliminary estimates for k(x) at each site. Given accurate calculations

as training data at a modest collection of sites, kernel regression can estimate Ea(x) at

all the remaining sites.41,42 The estimated activation energy at site with environment xi
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is a weighted average of the training data, eq. 3.18:

Êa(xi) =

∑
j Ea(xj)wij (d(xi,xj))∑

j wij (d(xi,xj))
(3.18)

Here Êa(xi) is the predicted activation energy, and the Ea(xj) are computed activation

energies. The wij are Gaussian kernels

wij = exp[−d2(xi,xj)] (3.19)

that depend on a Mahalanobis distance,43 d:

d2(xi,xj) = (xi − xj)
TS(xi − xj). (3.20)

Here, S is a dim(x) × dim(x) dimensional, positive definite, and symmetric matrix. The

kernel regression model is trained by finding the elements of S which minimizes the leave-

one-out loss to best fit the training data. We use Python library tools to implement the

kernel regression.44 Further details about the kernel regression procedures can be found

in section 2.3 of chapter 2.

3.5 Importance learning algorithm

The sections above described rate calculations at individual sites, an importance

sampling procedure, and a kernel regression (machine learning) procedure. This section

integrates all of these components into one “importance learning” algorithm. Importance

learning simultaneously accumulates training data, builds the kernel regression model,

and focuses computational effort on kinetically important sites with low activation bar-

riers. The algorithm is shown in fig. 3.4.
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Figure 3.4: The combination of efficient sampling techniques and a machine learning
model leads to the “importance learning” algorithm. A set of sites trains a model to
learn characteristics of highly active (i.e., important) sites. Efficient sampling tech-
niques select active sites to improve the model and to efficiently predict average kinetic
properties. A test for convergence terminates the algorithm when the confidence in-
terval on the site-averaged activation energy shrinks to a prescribed narrow size. In
our calculations, the threshold confidence interval was set to 0.75 kJ/mol.

Note that the importance sampling and kernel regression procedures mutually depend

on each other. The kernel regression model guides the importance sampling to kinetically

important sites. Meanwhile, the accumulated sample of sites and rate calculations teach

kernel regression to make accurate preliminary rate predictions.

To compute kinetic properties, precise rate calculations for less active sites are not

important, but we need their populations to predict kinetic properties like the overall

rate and the fraction of active sites. Therefore, the kernel regression model should also

learn to make approximate predictions for inactive sites. For this reason, the importance
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learning algorithm begins with rate calculations at a collection of randomly sampled sites.

We verified that an initial training set of 20-50 randomly chosen sites is adequate (see

section B.4 of appendix B).

3.6 Results

Because the model system is extremely simple, an accurate site-averaged activation

energy can be directly calculated without importance learning. Using results for ca.

20,000 sites, we computed the activation energy distribution:

ρ̃(Ea) =

∫
dxρ(x)δ[Ea(x)− Ea]. (3.21)

and the k(x)-weighted activation energy distribution:

ρ̃k(Ea) =

∫
dxρ(x)k(x)δ[Ea(x)− Ea]∫

dxρ(x)k(x)
. (3.22)

Fig. 3.5 shows the essentially exact distributions ρ̃(Ea) and ρ̃k(Ea). The activation

energy distribution has support45 over a range of about 40 kJ/mol. The site-averaged

activation energy is 40.4 kJ/mol, about 13 kJ/mol below the (incorrect) average without

k-weighting. These results serve as benchmarks for testing the importance learning al-

gorithm. To start the importance learning algorithm, we began with an initial training

set of fifty randomly chosen sites. The initial kernel regression model was optimized to

minimize the leave-one-out errors. Within this initial training set, the kernel regression

model predicts activation energies with a standard error σ ≈ 0.8 kJ/mol. Fig. 3.6 shows

how the predicted activation energies compare to the true (precisely computed via eq.

3.11) activation energies for individual sites.
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Figure 3.5: Distribution of activation energies (blue) and the rate-weighted activation
energy distribution (orange). The solid line shows the site-averaged activation energy.

Figure 3.6: Parity plot of predicted activation barriers vs true activation barriers at
individual sites. Predictions are from leave-one-out optimization of kernel regression
models based on the initial training set of 50 sites. The residuals for all ca. 20,000 sites
are approximately Gaussian distributed, with a standard deviation of approximately
0.7 kJ/mol (Figure B.1).

82



Section 3.6 Results

At each iteration of the importance learning algorithm, the activation energy distri-

butions ρ̃(Ea) and ρ̃k(Ea) can be predicted using the kernel regression model. After each

iteration, the new calculations are appended to the training set. As more training data is

accumulated (primarily at low activation energies), the estimated Ea distributions should

become more like the true distribution in the kinetically important range of activation

energies. As a corollary, the site-averaged activation energy should also converge to the

correct value. Fig. 3.7 shows the predicted distributions at the 0th and 28th iterations of

importance learning (the latter being the iteration at which the standard error decreases

below 0.75 kJ/mol). A rug shows that the activation energies of the importance sampled

sites are indeed centered over the main support of ρ̃k(Êa).
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Figure 3.7: Model-predicted activation energy distribution for the unweighted (top)
and k-weighted (bottom) distributions at iteration 0 (grey, hatched) and 28 (red) of the
importance learning algorithm. Apparent activation energies of importance sampled
sites are shown as a rug at the top of each plot. The ▼ symbol shows the correct site
averaged Ea.

Prior to importance learning, the initial training set contained only one site with an

activation energy under 40 kJ/mol. Importance learning discovers sites with activation

energies below 40 kJ/mol, which dominate the overall kinetics. After 28 iterations of im-
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portance learning, the low activation energy tail of the predicted ρ̃(Êa) closely resembles

that of the exact ρ̃(Ea). More importantly, the main support of the predicted ρ̃k(Êa)

closely resembles that of the exact ρ̃k(Ea). Both distributions are inaccurately predicted

at high activation energies, but these sites make vanishingly small contributions to the

observed kinetics. They only need to be counted in the normalization of ρ̃(Ea) to predict

the kinetic properties.

Fig. 3.8 shows the convergence of ⟨Ea⟩k estimates from importance sampling using

standard errors. A higher degree of confidence could also be computed using eq. 3.16.

Figure 3.8: The importance learning algorithm converges to within 0.75 kJ/mol of
the correct site-averaged Ea in 28 iterations. By comparison, a reweighted random
sample requires about 200,000 samples to compute Ẽa with the same level of confidence
(Section B.5).
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3.7 Identifying characteristics of active sites

In real applications, optimizing the Mahalanobis matrix is inexpensive compared to

generating training data from ab initio calculations. Therefore, an importance learning

calculation can include all potentially important coordinates. However, a central goal

of these calculations is to discover those few key characteristics that distinguish active

from inactive sites. Intuition would suggest that the most important coordinates can be

identified from the largest diagonal elements in the Mahalanobis matrix. The optimized

matrix obtained in this work, using d1, d2, and θ, is:

(3.23)

Coordinates d1 and d2 have the largest diagonal elements, and they indeed have the

strongest influence on site activity. The coordinates d1 and d2 correspond to silanolate

– silanolate distances and siloxane – siloxane distances, respectively. In hindsight, these

coordinates should have primary importance because the potential energies are defined

in terms of these coordinates.

In general, the diagonal matrix elements are not reliable indicators of the most im-

portant structural characteristics. For example, the diagonal matrix elements change

magnitude depending on the units used to represent the coordinates. In addition, di-

agonal matrix elements indicate sensitivity to local structural changes. They do not

account for differences in the extent to which sites vary along different structural coor-

dinates within the global ensemble of sites. Off-diagonal matrix elements may also be

important. Large off-diagonal matrix elements may indicate that special combinations of

the coordinates are important. Alternatively, off-diagonal elements may compensate for
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non-orthogonality or redundancy in the set of trial coordinates. The latter complications

can be avoided by choosing coordinates that are orthogonal, in the sense:

∂qi
∂x

· ∂qj
∂x

≈ 0 (3.24)

More general guidelines are that

1. Good coordinates should suffice to predict differences in activity over the region

with support in distribution ρ(x)k(x).

2. The kernel regression model should predict activation energies with errors that are

much smaller than the range of activation energies in ρ̃k(Ea).

These two guidelines suggest ranking models according to the fraction of the actual

Ea variance that is explained by the model. In linear regression, this is the familiar

R2 statistic. Models that include more input coordinates will generally give larger R2

values, but small models are preferred, as long as they give accurate site-averaged rate

predictions. The fit quality of the kernel regression models trained on different sets of

coordinates are shown in Fig 3.9.
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Figure 3.9: Parity plot of model trained with d1, d2 (top) and d1, θ (bottom) at
iteration 30 of the importance learning algorithm. As shown in Table 2, d1 and d2 are
sufficient (without the extra variable θ) to allow kernel regression to predict activation
energies across the range of values.
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Table 3.2: R2 values of trained model with different combination of local coordinates
at iteration 30 of the importance learning algorithm.

Coordinates R2

d1 0.80
d2 0.16
θ -0.03

d1, d2 0.99
d1, θ 0.82
d2, θ 0.34

d1, d2, θ 0.99

The R2 values identify θ as a kinetically unimportant structural characteristic. The

kernel regression model trained only on θ completely fails to make predictions based on

the local environment. Models based only on d1 or d2 begin to predict coarse trends in

the activation energies. The model trained using d1 and d2 together makes extremely

accurate predictions across the whole range of activation energies. Note that d1 and d2 are

just two of the five total coordinates that define the local site environment. The model-

predicted Ea is plotted as a function of d1 and d2 in fig. 3.10. This plot reveals that d1

and d2 compensate for each other in active sites. Among sites with the same activation

energy, one length increases while the other decreases. Fig. 3.10 also illustrates that

the most active sites have shorter d1 (silanolate-silanolate) distances and longer d2 (O-O

distance of the siloxane ligands) distances relative to the unperturbed distance of 2.00.
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Figure 3.10: Activity of sites as function of the local environment. The upper plot
shows the true barriers and the bottom plot shows the model-predicted barriers at
iteration 30 of the importance learning loop. Blue points correspond to the initial
pool and white points are importance sampled sites.

3.8 Conclusions

Several industrially important or promising catalysts are single metal atoms grafted

onto an amorphous support such as silica. These catalysts tend to be poorly understood

because the amorphous support gives each site a unique local environment. Moreover, the

distribution of disordered environments around each site is quenched, history dependent,

and thus largely unpredictable. Each site has a different activation energy, and the

variance in activation energies is exponentially magnified in the distribution of activities.

Accordingly, active sites tend to be rare, with less than 20% of sites accounting for most

of the catalytic activity. The small fraction of active sites hampers both experimental

characterization and theoretical modeling efforts.

This paper presented an importance learning algorithm to overcome the theoreti-

cal challenges of modeling the activity of such catalysts. It combines machine learning
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techniques (kernel regression) and importance sampling techniques (to focus effort on

the most active and abundant sites). To illustrate the algorithm, we developed a sim-

ple model of a Langmuir-Hinshelwood reaction at sites on a quenched and disordered

support. We used the algorithm to compute the site-averaged activation energy.

The algorithm rapidly converged estimates of the site-averaged Ea with uncertainties

less than 0.75 kJ/mol, even though the individual sites in the model have activation

energies that span a range of nearly 40 kJ/mol. Estimating the site-averaged Ea with

the same level of confidence as importance learning requires through standard sampling

methods requires 200,000 samples (compared to 75 samples in the importance learning

algorithm) for this system. Furthermore, the kernel regression model generated by the

algorithm can accurately predict the activation energies using just two structural charac-

teristics of the local environment. The new importance learning algorithm, if combined

with ab initio calculations and realistic models of amorphous silica, should enable the

first rigorous site-averaged computational studies and quantitative predictions for this

important family of catalysts.
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Chapter 4

Grafting TiCl4 onto amorphous silica:

modeling effects of silanol heterogeneity

4.1 Introduction

Amorphous silicas are preferred supports for many industrially relevant atomically-

dispersed catalysts.1 For example, Cr/SiO2 catalysts are used in the polymerization of

ethylene,2 Ti/SiO2 is active for the epoxidation of alkenes,3 and Mo/SiO2 and W/SiO2

catalysts are active in olefin metathesis.4 Silica supports offer high mechanical and ther-

mal stability and the absence of strong Lewis or Brønsted acidity which can lead to un-

desired side-reactions.1 Furthermore, compared to crystalline silicas, amorphous silicas

provide a larger surface area.1 These properties also make amorphous silica important in

fields beyond catalysis including microelectronics,5 communication,6 and the pharmaceu-

tical industry.7 Amorphous silica surfaces are terminated by siloxane bridges (≡SiOSi≡)

and terminal silanols (≡SiOH). The silanols can be classified by their proximity to other

silanols: isolated or hydrogen-bonded. They can also be classified according to their

connectivity to Si atoms: isolated (one OH on a Si atom with no OH groups on adja-
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cent Si atoms), geminal pairs (two OH groups on the same Si atom), and vicinal pairs

(two OH groups on adjacent Si atoms, directly linked by one siloxane bridge).1 Vicinal

silanol pairs may or may not be H-bonded,1 and each member of the vicinal pair may

also be part of a geminal pair. A distance-based classification has also been proposed.

For example, silanols separated by 4-6 Å have been referred to as nearly free silanols

and silanols separated by greater than 6 Å have been referred to as fully free silanols.8

Amorphous silicas exhibit short range order and limited medium range order,9,10 but

the lack of long range order prevents a precise structural characterization.1 Nevertheless,

some structural insight can be obtained from spectroscopic analyses. For example, the

≡(SiO-H) bands in IR spectra can distinguish non-H-bonded from H-bonded silanols,1

and 29Si chemical shifts in MAS-NMR spectra differ for Si atoms bearing one or two

OH groups.11 Vicinal silanols are particularly difficult to characterize, but their abun-

dance has been inferred from the correlated grafting locations of molecular precursors.

For example, the reaction stoichiometry for the grafting of GaMe3 onto amorphous silica

coupled with EXAFS analysis of the resulting Ga dimers suggest that most silanols on

fumed and precipitated silicas occur in vicinal pairs that persist even when the silica is

highly dehydroxylated, due to the very high strain that their removal requires.12,13 Be-

yond these clues about the relative abundance of isolated, geminal, and vicinal sites, we

have little information about local structural differences. For example, the Si-OH bonds

present in a vicinal pair may be oriented parallel to each other or adopt a large dihedral

angle. Such differences are likely to influence adsorption and reactivity at vicinal sites.

Metal complexes have also been grafted onto amorphous silica to synthesize atomically

dispersed catalysts.4,14–16 The TiClx sites generated via the grafting of TiCl4 on fumed

silica are examined in a companion publication.17 In that study, a non-porous, fumed

silica (Aerosil-380) with a surface area of 340 m2/g was fully dehydrated and partially

dehydroxylated in vacuo at either 100 or 500 ◦C. Henceforth, we will refer to these sil-
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icas as A380-100 and A380-500. Their silanol densities are 1.4 and 2.0 silanols/nm2,

respectively. When excess TiCl4 vapor in a storage vessel, in equilibrium with its liquid,

was transferred to a 300 mL reaction flask containing A380-100 or A380-500, (ca. 15

mg), all silanols were consumed (according to IR). The nature of the grafted species was

inferred to be monopodally-grafted [≡SiOTiCl3], by IR, elemental analysis, and EXAFS.

In principle, grafting on isolated and vicinal silanols may proceed via eqs. 4.1 to 4.3.

≡ SiOH + TiCl4 ⇄≡ SiOTiCl3 + HCl. (4.1)

≡ SiOH+ ≡ SiOTiCl3 ⇄ (≡ SiO)2TiCl2 + HCl. (4.2)

2 ≡ SiOTiCl3 ⇄ (≡ SiO)2TiCl2 + TiCl4. (4.3)

However, experimental measurements cannot shed light on the contributions of eqs.

4.2 and 4.3, since bipodally grafted (≡SiO)2TiCl2 was not observed. Computational

studies on the mechanism and kinetics of grafting can, in principle, provide information

beyond that available from experiments, but these studies have primarily used single-

site models18–21 and model compounds like silsesquioxanes.22 Of course, single-site mod-

els cannot account for the structural diversity of site environments on silica. The few

studies that go beyond single-site models only examined a small sample of sites and fo-

cused on thermodynamic stability of different grafted species.23–25 None of the previous

studies examine grafting kinetics at an ensemble of disordered sites and at realistic ex-

perimental conditions. Recent studies have developed large scale atomistic models for

amorphous silica that match key properties like silanol density and IR spectra with ex-

perimentally synthesized silicas.25–28 Others developed ab initio methods for modeling
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single-atom catalysts supported on amorphous silica.29–31 We developed a framework to

model the grafting of metal complexes onto amorphous supports using machine learning

and population balance modeling.32–34 In this work, we use ab initio calculations and the

population balance modeling framework to understand the mechanism of TiCl4 grafting

onto amorphous silica. The intermediates and transition states are computed using DFT

for TiCl4 interacting with vicinal silanol pairs possessing a range of dihedral angles. Free

energy profiles are used to construct continuously varying rate constants and equilibrium

constants as functions of the dihedral angle. Then a population balance model for the

intermediates and grafted species is constructed as a function of dihedral angle and time,

and solved for an ensemble of silica sites. Finally, the population of sites predicted by

the population balance model is compared to the results of TiCl4 grafting experiments.

4.2 Model chemistry

Computations were performed using DFT with the ωB97X-D functional.35 The def2-

TZVP basis set36 was used for Ti, and the TZVP basis set37,38 was used for all other

atoms, unless otherwise specified. Energy minima and transition states were obtained

using the Berny algorithm, as implemented in Gaussian 09.39 The RMS and maximum

forces were required to be less than 3.0 × 10−4 and 4.5 × 10−4 Hartrees/Bohr, respec-

tively, unless otherwise specified. The RMS and maximum displacements were required

to be less than 1.2 × 10−3 and 1.8 × 10−3 Bohr, respectively. All minima are vibra-

tionally stable, while transition states have a single imaginary frequency. Free energies

of gas phase species include rotations, translations, and vibrations (within the harmonic

approximation), while free energies of surface species include only vibrations. Cluster

models with fixed peripheral atoms were used to model the grafted Ti sites. Vibrational

modes for the cluster models do not include any motions of the fixed peripheral atoms.
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Free energies were computed at standard temperature (298.15 K) and 760 Torr partial

pressures for both HCl and TiCl4. The silicas used in the companion experimental study

(see Introduction) described in the introduction have surface silanol densities of 1.4 and

2.0 silanols/nm2. If all of these silanols were converted to monopodal [≡SiOTiCl3] sites,

the HCl pressure for a 15 mg silica sample in a 300 mL reactor would be 0.75 and 1.07

Torr, respectively. At 298.15 K, the vapor pressure of TiCl2 is 10 Torr.40 To obtain free

energies at conditions close to those in the experiments, values were computed at 10 Torr

TiCl4 and 1 Torr HCl.

4.3 Generation of silanol clusters

We modeled the grafting of TiCl4 to a cluster model for a vicinal silanol pair. Our

preliminary investigations revealed that the grafting free energy depends on the relative

orientation of the vicinal silanols. Therefore, we developed a procedure to generate

vicinal silanol clusters with a range of O-Si-Si-O dihedral angles. First, each vicinal

silanol cluster was optimized with capping fluorine atoms (instead of hydroxyl groups)

at the periphery, fig. 4.1a. The fluorines allow us to optimize interior Si, O, and H

atom positions without interference from spurious H-bonds among the peripheral atoms.

A series of 47 vicinal silanol clusters was generated with fixed dihedral angles ranging

from 0 to 92◦ in increments of 2◦. In these energy minimizations, the 6-31G basis37,38

(smaller than TZVP) was used for the F atoms, to better mimic the electronegativity of

a hydroxyl group.41
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Figure 4.1: Optimized structure of the F-terminated vicinal silanol cluster. Constrain-
ing the marked dihedral angle at a series of values from 0 to 92◦ in increments of 2◦,
while optimizing all other degrees of freedom, generated 47 distinct clusters. Color
scheme: O (red), H (white), Si (purple), F (blue).

Next, the F atoms of each optimized cluster were replaced by peripheral O atoms.

The relevant Si-O bond distances were set at 1.648 Å (corresponding to the Si-O bond

distance in an optimized Si(OH)4 cluster, described in the SI). An H atom was placed

0.956 Å from each peripheral O atom (corresponding to the O-H bond distance in the

optimized Si(OH)4 cluster). In addition, the peripheral O-H bonds were directed along

the cross-product of vectors ν1 and ν2, as illustrated in fig. 4.1b. This orientation ensures

that the peripheral O-H bonds point away from the “active” vicinal hydroxyls, again to

avoid spurious H-bonding interactions during analysis of grafting reactions. Finally,

each vicinal silanol cluster was reoptimized while keeping the positions of the peripheral

hydroxyl groups fixed. The peripheral hydroxyl groups were also fixed in all subsequent
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computations.

Fig. 4.2 shows representative vicinal silanol clusters with O-Si-Si-O dihedral angles

ϕ of 0◦ and 66◦. In vicinal silanol pairs with O-Si-Si-O dihedral angles less than 60◦, one

silanol forms a hydrogen bond to the other. This hydrogen bond is potentially important

in grafting reactions, because it may weaken/activate the two O-H bonds. For example,

the O-H bond for the H-bond donor is slightly elongated (from 0.956 with no H-bond to

0.960 Å with the H-bond). Vicinal silanols with dihedral angles larger than 60◦ do not

engage in mutual hydrogen bonding.

Figure 4.2: Optimized vicinal silanol clusters with different O-Si-Si-O dihedral angles:
0◦ (top) and 66◦ (bottom). Newman projections are shown on the right. Color scheme:
O (red), H (white), Si (purple). Fixed peripheral atoms are indicated as transparent.

4.4 Generation of amorphous silica models

Slab models for amorphous silica were generated using classical molecular dynam-

ics simulations within the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) software.42 The silica interactions were described by the van Beest, Kramer,
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van Santen (BKS) empirical force field,43 which consists of pairwise Buckingham and

electrostatic potentials. Each slab was generated by a melt-cleave-quench-functionalize

procedure that is described in detail elsewhere.44 Briefly, a β-cristobalite crystal consist-

ing of 192 Si and 384 O atoms was heated to 8000 K at 1 atm in the NPT ensemble. The

resulting molten silica was cleaved and the simulation box size was increased along one

dimension to form a liquid slab sitting within a vacuum and equilibrated in the NPzAT

ensemble. The molten slab was quenched to form the amorphous solid by cooling at a

rate too rapid to allow for crystallization; the models in the present work were formed

using a cooling rate of 1 K/ps. The two surfaces (top and bottom) of the slab were

functionalized by aprocedure designed to produce only vicinal silanol pairs as described

below. A 1 fs timestep was used for all MD simulations. Constant temperature was

maintained with a Berendsen thermostat using a 1 ps damping constant.46 The NPT

and NPzAT simulations used a Berendsen barostat with a 1 ps time constant and a

modulus of 360,000 atm.45 The final simulation cell has dimensions of 21.0155× 21.0155

along its cross-section and 90.83 Å in the direction nominally normal to the slab sur-

faces; the precise dimension varies between slabs due to the NPzAT quenching step. A

three-dimensional Ewald summation47 with a tolerance of 1.0 × 10−4 was used to treat

the long-range electrostatics. Silanols were formed by the addition of a water molecule

across an Si-O-Si bond, creating two Si-OH groups. A vicinal pair results when the two

Si atoms involved are part of a two-membered (2M) Si2O2 ring (here “two” indicates the

number of Si atoms in the ring). Thus, an ensemble of vicinal silanols was created by

functionalizing every 2M ring at the surface in 100 amorphous silica slabs, each gener-

ated with the procedure described above. For each slab, the atoms at the surface and

those involved in 2M rings were identified. For each 2M ring with both Si atoms at the

surface, the O atom closer to the vacuum phase was chosen for functionalization. It was

replaced by two OH groups, one attached to each Si atom; the net reaction is thus the
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addition of a water molecule, ensuring charge neutrality is maintained. The location of

the O atom in each OH group was determined using a Monte Carlo procedure to find an

orientation that does not overlap with other atoms in the slab. Then, the corresponding

H atom in the OH moiety was placed along the nominal surface normal. The resulting

OH-functionalized surface was equilibrated by a 1 ns NVT trajectory; the silanol inter-

actions are based on a modified BKS force field that maintains charge neutrality and

adds Si-O and O-H harmonic stretching potentials as well as harmonic Si-O-H bending

potentials.44 An example of this functionalization is shown in fig. 4.3.

Figure 4.3: Amorphous silica surface model (wireframe) with unfunctionalized 2M
rings at the surfaces (left; ball-and-stick) and the vicinal silanol pairs (right; ball-and–
stick) resulting from their hydrolysis. Color scheme: O (red), H (white), Si (purple).

For the 100 different amorphous silica slabs created in this work, 388 vicinal silanol

pairs were generated in total and used to describe the dihedral angle distribution. The

number of vicinal pairs per slab (including both the top and bottom surfaces) ranges

from one to seven, with an average of ∼4 pairs. The average surface silanol density over

all the slabs generated is 0.88 OH/nm2. Note that our approach generates only vicinal

silanols in one specific way, and that the silanol densities are lower than those obtained

using other methods to generate different silanol types.44 Further studies are needed to
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determine which procedures and models most accurately replicate the properties and

structure of real silicas.

4.5 Results

4.5.1 Computational assessment of TiCl4 grafting onto vicinal

silanols

Given the previously established prevalence of paired silanols on partially dehydrox-

ylated amorphous silica surfaces,12,13 we investigated the grafting of TiCl4 onto vicinal

disilanol sites. First, we investigated TiCl4 grafting at a vicinal site with aligned silanols,

i.e., an O-Si-Si-O dihedral angle ϕ of 0◦ and a hydrogen-bond between them (fig. 4.2).

This site is one of a training set of vicinal disilanol clusters, with varying dihedral angles.

We use it to obtain initial, detailed information about TiCl4 grafting kinetics and ther-

modynamics at vicinal sites. Intermediates and transition states are shown in fig. 4.4,

with free energies computed for both standard and low-pressure conditions. Intermedi-

ates involving physisorbed TiCl4 are not shown, but all have higher free energies than

the corresponding precursor states with no bound TiCl4 molecule.
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Figure 4.4: Grafting of TiCl4 onto a vicinal silanol pair with parallel silanols (dihedral
angle 0◦). Free energies (kJ/mol) are shown below each structure for 298.15 K and
standard pressure (760 Torr each TiCl4 and HCl, left, in red), and for low pressure
(10 Torr TiCl4 and 1 Torr HCl, right, in blue). The gray boxes indicate stable or
metastable surface intermediates. Other species are transition states.
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In the first step, TiCl4 and one of the two silanols react to eliminate HCl and form

a monopodal Ti grafted site [≡SiOTiCl3] (IIb) adjacent to a silanol site. When the

reacting silanol is the H-bond donor in the vicinal pair, the barrier is 92.8 kJ/mol (not

shown). The barrier for reaction with the hydrogen-bond acceptor silanol is slightly

lower, 88.3 kJ/mol. In both transition states, the hydrogen bond between the silanols

is disrupted. In the final structure IIb, a new hydrogen-bond is formed between the

remaining silanol and a chloride ligand. The ratio of Ib and IIb is obtained from the

equilibrium expression expressed in eq. 4.4:

K2 = exp[−β∆G0
2] = [θIIb(PHCl/P

0)]/[θIb(Psat/P
0)] (4.4)

where ∆G2 is the free energy for the reaction Ib → IIb, calculated at the reference

pressures of HCl and TiCl4 (P0 = 760 Torr), Psat = 10 Torr and PHCl = 1 Torr (low

pressure conditions as defined in section 4.2). At equilibrium, θIIb/θIb ≈ 1.4 × 103,

i.e., IIb is strongly favored. Since the barrier for the reverse reaction (IIb → Ib) is

106.2 kJ/mol, the first step is essentially irreversible at room temperature under the low

pressure conditions.

The remaining silanol can react with a second TiCl4 molecule, via elimination of

HCl, to form a vicinal pair of monopodally-grafted Ti species, 2[≡SiOTiCl3] (IIIb).

We searched for a potential IIIb structure with a Ti-Ti dimer. Multiple optimizations

were performed with different starting points, where the Ti atoms were placed at a close

distance. However, all initial positions optimized to the structure with the non-interacting

Ti atoms, as shown in fig. 4.4. Alternatively, IIb can undergo intramolecular elimination

of HCl, converting to the “bipodal” site [(≡SiO)2TiCl2] (IVb). Bipodal IVb can also

revert to IIIb via reaction with free TiCl4. Even at low TiCl4 pressure (relevant to the

experimental grafting conditions), the order of stability is IIIb > IVb. However, the
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barrier for intramolecular conversion of IIb to IVb is much smaller (79.5 kJ/mol) than

for the intermolecular reaction of IIb with TiCl4 to give IIIb (98.4 kJ/mol). Therefore,

most IIb is initially converted to the kinetic product, IVb. Eventually, most IVb reacts

with TiCl4 to give the thermodynamic product, IIIb, with a barrier of 99.2 kJ/mol. Since

Ib and IIb are much less stable than IIIb and IVb, their equilibrium surface coverages

are expected to be negligible under reaction conditions. Accordingly, we can model the

outcome of grafting as an equilibrated mixture of IIIb and IVb using eqs. 4.5 and 4.6:

θeqIIIb =
Psat/P

0

Psat/P 0 +K3

(4.5)

θeqIVb =
K3

Psat/P 0 +K3

(4.6)

Here, K3 = exp[−β∆G3] is the equilibrium constant for the reaction IIIb → IVb +

TiCl4, and ∆G3 is the free energy of reaction calculated at reference pressure of TiCl4

(P0=760 Torr). The predicted surface coverages are 0.92 and 0.08 for IIIb and IVb,

respectively. Based on a recent study benchmarking DFT methods using the ωB97X-D

functional against CCSD(T) for several types of reactions (oxidation, hydration, metathe-

sis, and epoxidation) catalyzed by Mo and W,46 the estimated uncertainty in free energy

differences is ca. ±8 kJ/mol. Note that additional errors may result from our use of rigid

peripheral atom constraints to represent connections to a silica matrix that is neverthe-

less slightly flexible.47 Since the uncertainty is larger than the free energy difference (6

kJ/mol), we cannot definitively predict which of the two sites will be more abundant for

parallel vicinal silanol pairs.
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4.5.2 Effect of dihedral angle on the population of grafted species

The previous section showed that a vicinal site with a dihedral angle of 0◦ should

react with TiCl4 to give IIIb and IVb as the predominant species upon completion of

grafting. However, amorphous silica has a distribution of vicinal site geometries. Silanol

pairs with non-zero dihedral angles may react differently. Therefore, we analyzed the

effect of dihedral angle in vicinal silanol sites on the stability of the two grafted sites.

Based on the findings in section 4.5.1, we assume that all silanols react even under low

pressure conditions, and that only IIIb and IVb are eventually present. The free energy

difference between IIIb and IVb was computed for sites with dihedral angles between

0 and 92◦, fig. 6. To obtain a smooth curve, we were obliged to impose much tighter

convergence criteria for these calculations. The RMS and maximum forces were required

to be less than 1.00× 10−5 and 1.50× 10−5 Hartrees/Bohr, respectively, while the RMS

and maximum displacements were required to be less than 4.00 × 10−5 and 6.0 × 10−5

Bohr, respectively. Fig. 6 is approximately, but not perfectly, monotonic.

Figure 4.5: Free energy differences between the bipodal site (IVb) and a vicinal pair
of monopodal sites (IIIb), as a function of the initial silanol dihedral angle in state
Ib. Free energies are computed at 298.15 K and 10 Torr TiCl4.
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In general, the free energy difference increases with the dihedral angle ϕ, consistent

with an increase in ring strain in IVb which increasingly de-stabilizes this site relative

to IIIb. However, the free energy difference is small (5-10 kJ/mol) and nearly constant

for dihedral angles below ca. 20◦. Thereafter, it increases rapidly. This is because, on

increasing the dihedral angle, the titanasiloxane ring slowly distorts up to 40◦ and starts

to deform rapidly after that. When the dihedral angle reaches 60◦, the hydrogen bond

in the vicinal silanol Ib disappears. At this point, IIIb is favored by 42 kJ/mol. The

difference continues to increase up to 143 kJ/mol for the maximum dihedral angle studied

here (92◦). The free energy difference was used in conjunction with eqs. 4.5 and 4.6 to

calculate the surface coverage as a function of dihedral angle, fig. 4.6.

Figure 4.6: Surface coverages of the vicinal pair of monopodal Ti sites (IIIb) and the
bipodal Ti site (IVb) as a function of the dihedral angle in the vicinal silanol site
(low pressure conditions). The shaded regions show calculated uncertainties in the
predicted coverages, based on errors of ±2 kJ/mol, ±4 kJ/mol, ±6 kJ/mol, and ±8
kJ/mol in the DFT-computed free energies. Ref. 48 reported maximum differences
of 8 kJ/mol between calculated barriers from DFT (using the ωB97X-D functional)
and CCSD(T). Their analysis was based on a suite of reactions (oxidation, hydration,
metathesis, and epoxidation) catalyzed by Mo and W.
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For all dihedral angles, the vicinal pair of monopodal Ti sites (IIIb) is the domi-

nant surface species. The surface coverage of bipodal IVb is small (<0.15) for dihedral

angles up to 20◦, and negligible for angles greater than 20◦. Fig. 4.6 also shows the

estimated uncertainty in the calculated coverages, based on an estimated uncertainty of

±8 kJ/mol in the DFT-computed free energy differences.48 For dihedral angles 30◦, the

large uncertainty allows for both species to be present in significant amounts at equilib-

rium. For dihedral angles larger than 30◦, we can conclude with confidence that IIIb is

more abundant. The computed dependence of the grafting free energy on the dihedral

angle ϕ can be used to make predictions about experimental outcomes, provided we know

the distribution of dihedral angles for the silica. An approximate distribution of vicinal

dihedrals, ρ(ϕ), was obtained from the atomistic silica slab models described in section

4.4. Fig. 4.7 shows the distribution of vicinal dihedral angles (ϕ).

Figure 4.7: Distribution of vicinal dihedral angles (ϕ) extracted from the atomistic
silica slab models. The histogram bin-width is 10◦.

The average coverages of IIIb and IVb (averaged over the distribution of the dihedral

angles) are given in eq. 4.7:
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θIIIb =

∫
ρ(ϕ)θIIIb(ϕ)dϕ

θIVb =

∫
ρ(ϕ)θIVb(ϕ)dϕ

(4.7)

where θIIIb(ϕ) and θIVb(ϕ) are the ϕ-dependent surface coverages of IIIb and IVb,

respectively (see fig. 4.6), and θIIIb and θIVb are the average coverages of IIIb and

IVb, respectively. The predicted average coverages (θIIIb and θIVb) can be compared

with experimental observations about the relative abundances of IIIb and IVb. The

resulting fractional coverages of IIIb and IVb are 0.97 and 0.03, respectively. With an

uncertainty of ±8 kJ/mol in the calculated free energy differences, the range of fractional

coverages are 0.65 < θIIIb < 1.00 and 0.00 < θIIIb < 0.35. The ranges are large because

the uncertainty in the predicted coverages is large for sites with small dihedral angles, and

the silica model has a large fraction of such sites. In agreement with these predictions, the

experimental coverages are θIIIb ≈ 1 and θIVb ≈ 0 for both silica materials (A380-100 and

A380-500). Although our model predicts a predominance of IIIb states at equilibrium,

in agreement with our experiments,17 other studies have reported the formation of a

mixture of IIIb and IVb sites.48–50 To understand how a mixture might result in kinetic

IVb states, we develop a population balance model of the complete grafting process at

realistic conditions in the next section.

4.5.3 Ab initio population balance model of grafting

In the grafting experiment, precursor molecules (TiCl4) react with a distribution of

silanol sites. As shown in section 4.5.2, the vicinal dihedral angle has a significant effect

on the relative free energies of IIIb and IVb. Hence, we anticipate that the vicinal

dihedral will also influence the free energies of other intermediates and transition states
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in the grafting pathway. By extension, the grafting kinetics will be a function of the

dihedral angle. Nearly all the vicinal pairs are too far from other silanols to influence

each other. However, HCl liberated upon grafting can influence the driving force and

kinetics of grafting at other sites. In this section we develop a population balance model

coupled to a species balance for HCl to simulate TiCl4 grafting kinetics in a batch reactor.

The following population balance equations describe the evolution of the different species

(Ib, IIb, IIIb, and IVb) as functions of time and vicinal dihedral angle (ϕ). Note that

PHCl is also a function of time.

dθIIb(ϕ, t)

dt
= k1(ϕ)(1− θIIb(ϕ, t)− θIIIb(ϕ, t)− θIVb)(ϕ, t))

Psat
kBT

− k−1(ϕ)θIIb(ϕ, t)
PHCl
kBT

− k2(ϕ)θIIb(ϕ, t)
Psat
kBT

+ k−2(ϕ)θIIIb(ϕ, t)
PHCl
kBT

− k4(ϕ)θIIb(ϕ, t) + k−4(ϕ)θIVb(ϕ, t)
PHCl
kBT

(4.8)

dθIIIb(ϕ, t)

dt
= k2(ϕ)θIIb(ϕ, t)

Psat
kBT

− k−2(ϕ)θIIb(ϕ, t)
PHCl
kBT

− k3(ϕ)θIIIb(ϕ, t)

+ k−3(ϕ)θIVb(ϕ, t)
Psat
kBT

(4.9)

dθIVb(ϕ, t)

dt
= k4(ϕ)θIIb(ϕ, t)− k−4(ϕ)θIVb(ϕ, t)

PHCl
kBT

+ k3(ϕ)θIIIb(ϕ, t)

− k−3(ϕ)θIVb(ϕ, t)
Psat
kBT

(4.10)

Here, σ is the number density of surface silanols, a is the area per unit mass of silica,

m is the mass of silica (σ is multiplied by a factor of 1/2 because each vicinal site

contributes two silanols), V is the headspace volume of the reactor, ϕ is the vicinal

site dihedral angle, t is time, and θIIb, θIIIb, and θIVb are the fractions of IIb, IIIb,
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and IVb, respectively. The population of Ib, θIb, can be determined using species

balance (θIb1− θIIb− θIIIb− θIVb). ki are rate constants of different steps in the grafting

pathway (see section C.1 of the appendix). The rate constants are calculated using

harmonic transition state theory with quantized vibrations. Some of the rate constants

are a function of the vicinal dihedral (ϕ), as discussed later. Psat is constant and equal

to the saturation pressure of TiCl4 at 298.15 K. We calculate PHCl(t) by summing over

reacted silanols as

PHCl(t) =
σ

2

amkBT

V

∫
ρ(ϕ){θIIb(ϕ, t) + 2(θIIb(ϕ, t) + θIVb(ϕ, t))}dϕ (4.11)

In the numerical simulation, eq. 11 should be carefully discretized because the ϕ-

dependences in ρ(ϕ) and θi(ϕ, t) are discretized differently. See section C.4 of the ap-

pendix for details. Now, to solve the population balance model we need a model for

ki(ϕ) and a distribution of vicinal silanol sites ρ(ϕ). To obtain the dependence of ki on

ϕ, we compute the full free energy pathway for 5 vicinal sites (ϕ = 0◦, 20◦, 40◦, 56◦,

and 60◦). We find that the free energies of I_II TSb, II_IV TSb, III_IV TSb,

and IVb relative to the bare silica site (Ib), are a strong function of ϕ. Whereas, the

free energies of IIb, IIIb, and II_IV TSb relative to Ib are almost constant and do

not strongly depend on ϕ. We parametrize polynomial functions to fit free energies of

species with a strong dependence on ϕ. And we set the free energies of species with a

weak dependence on ϕ constant (equal to their average free energy). We express ki as

a function of free energy barriers using harmonic TST to obtain parametrized models

for the rate constants (ki(ϕ)). The free energies and the polynomial fits are shown in

section C.3 of the appendix. We use the atomistic silica model described in section 4.4

to estimate ρ(ϕ). Finally, we use the following physical parameters from the grafting
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experiment setup: a 300 mL headspace volume, a 15 mg sample of silica, and 340 m2/g

surface area of silica. All the sites are initialized in the unreacted state (Ib), and we

use the ode15s solver in MATLAB to solve the ODEs.51 Fig. 4.8 shows the evolution of

θIb, θIIb, θIIIb, and θIVb as functions of ϕ and t for a silanol density of 1.4 silanols/nm2

(A380-500). Fig. 4.9 shows the evolution of PHCl, θIIb, θIIIb, and θIVb.
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Figure 4.8: Evolving population of Ib, IIb, IIIb, and IVb as predicted by the
population balance model. The population balance model has been solved at 298.15 K
for 300 mL headspace volume, a 15 mg silica sample, 340 m2/g surface area of silica,
and 1.4 silanols/nm2 silanol number density.
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Figure 4.9: Predicted evolution of HCl pressure, θIIb, θIIIb, and θIVb as a function of
time. The population balance model has been solved at 298.15 K for 300 mL headspace
volume, a 15 mg silica sample, 340 m2/g surface area of silica, and 1.4 silanols/nm2

silanol number density.

Small dihedral sites (ϕ<40◦) react first, over times of approximately 103 seconds

giving intermediate IIb. This is followed by rapid conversion to IVb. This is further

followed by slow conversion to IIIb over times of approximately 104 – 105 seconds. The

IVb→IIIb rate constant (k−3(ϕ)) monotonically decreases on increasing ϕ from 0◦ to

40◦. Hence, the time spent by sites in state IVb before converting to IIIb monotonically

increases from 0◦ to 40◦. For 0◦ < ϕ < 20◦, sites convert from IVb to IIIb quickly,

while for 20◦ < ϕ < 40◦, sites remain in state IVb for a long time. As shown in section

4.5.2, the calculations predict that nearly all IVb sites, even those with 20◦ < ϕ < 40◦

will eventually convert to structure IIIb at equilibrium. Large dihedral sites (ϕ > 40◦)

take longer to convert to the intermediate IIb sites (approximately 104 seconds), but

these IIb sites directly convert to IIIb. The IIb→IVb pathway is unfavorable for

large dihedral sites because of increasing ring strain. On reaching equilibrium all such

sites (ϕ > 40◦) convert to IIIb. Sites near the ϕ = 40◦ boundary can react via both
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mechanisms. Some of them react as Ib→IIb→IVb⇌IIIb, while some of them react as

Ib→IIb→IIIb. Our results show that the dihedral angle ϕ at a vicinal site affects the

kinetics of grafting and the grafting mechanism. Small dihedral sites (ϕ < 20◦) react

as Ib→IIb→IVb⇌IIIb, with rapid conversion from IVb to IIIb. Sites with medium

dihedral angles (20◦ < ϕ < 40◦) react as Ib→IIb→IVb⇌IIIb, with slow conversion from

IVb to IIIb. Large dihedral sites (ϕ > 40◦) react via the mechanism Ib→IIb→IIIb.

A complete conversion of IIIb (at long times) agrees with experimental measurements

on both silica samples (A380-100 and A380-500). For the atomistic silica model used in

this study, about 62% sites react via the first mechanism (Ib→IIb→IVb⇌IIIb), 26%

sites react via the second mechanism (Ib→IIb→IVb⇌IIIb), and the rest (12%) react

via the third mechanism (Ib→IIb→IIIb). Grafting completes in about 105 seconds and

the final HCl pressure is ca. 0.75 Torr. The total fraction of reacted silanols can be

calculated as (PHClV )/(σamkBT ). We get (PHClV )/(σamkBT ) = 0.99 on completion,

hence almost all silanols react. Although we cannot ensure accurate predictions because

of the inexact silica models and DFT calculations, our calculations show how catalysts

and insights derived from grafting experiments can depend on the time provided for the

grafting kinetics. Fig. 4.9 shows that the Ti:silanol ratio is a function of grafting time.

Ca. 87% of the sites react by 2× 103 seconds. If grafting is stopped at 2× 103 seconds

most of the sites will end up in state IVb with a Ti:silanol ratio of ca. 1:2. Most of

the sites convert to IIIb if the reaction is allowed to go to completion and the Ti:silanol

ratio will be 1:1. Stopping the reaction between 2 × 103 and 105 seconds will lead to

intermediate Ti:silanol ratios. These results can be used to explain the variability in

the Ti:silanol ratios observed in different Ti grafting experiments in the literature.17,48–50

The simple thermodynamic description in section 4.5.1 makes a number of predictions

that haven’t yet been tested. For example, if TiCl4 is completely evacuated, IVb should

become the dominant species. The model presented here can predict the distribution of
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times required for the conversion back to state IVb.

This demonstrates the importance of considering a distribution of sites in computa-

tional studies of atomically dispersed catalysts on amorphous supports. Interpretations

drawn from calculations on single sites can lead to incorrect conclusions about grafting

kinetics, grafting mechanisms, and subsequent catalytic activities.

4.6 Conclusions

Characterization of metals grafted to amorphous silica using spectroscopic techniques

has been challenging because of the absence of long-range structural order. Computa-

tional studies have also been rare, with most of these relying on single site models even

though these disordered materials clearly have a distribution of sites.52 In this work we

used DFT calculations, a computational model of silica, and a population balance model

to develop an ab initio model of the TiCl4 grafting kinetics on the ensemble of vicinal

silanols. We provide an efficient and theoretically rigorous computational framework that

predicts kinetics for the entire ensemble of sites from a modest set of DFT calculations.

Our results predict the silanol population density as a function of a key dihedral an-

gle, how the kinetics and thermodynamics of key grafting intermediates depend on the

dihedral angle, and how the populations of different grafting intermediates evolves in

time. The model predicts, in agreement with experimental results, that almost all sites

ultimately yield a vicinal pair of monopodally-grafted Ti sites. However, in contrast to

commonly assumed single-exponential models of the grafting kinetics,53–56 the grafting

reaction proceeds via different mechanisms at different rates, resulting in non-exponential

kinetics for the ensemble of sites. Specifically, the model predicts that ca. 87% of the sites

initially react to form a bipodal Cl2Ti(OSi≡)2 site giving a Ti:Silanol ratio of 1:2. How-

ever, if the grafting reaction continues for 10-100 times longer under TiCl4 vapor, nearly
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all sites convert to vicinal pairs of monopodal Cl3TiOSi≡ sites giving a Ti:Silanol ratio of

1:1. These predictions may explain why some grafting experiments report Ti:silanol ra-

tios near 1:1 while others report ratios near 1:2.17,48–50 The model also makes predictions

that haven’t yet been tested, e.g. it should be possible to drive equilibrium toward the

bipodal Cl2Ti(OSi≡)2 sites by evacuation of TiCl4 after grafting. In future work, these

computational techniques should help to predict the structures and populations catalyst

sites that result from grafting of precursors on amorphous silica, ultimately providing a

route to predictions about their catalyst activity.
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Chapter 5

On the various computational models

of silica: a statistical analysis of

structural differences

5.1 Introduction

Developments in computational catalysis have advanced our understanding of homo-

geneous and ordered heterogenous catalysts tremendously.1–14 In contrast, amorphous

catalysts pose many challenges and remain elusive on several fronts. These challenges

primarily arise because of a quenched distribution of active site structures which is a

function of the non-equilibrium preparation history of these materials.15,16 Atomically

dispersed catalysts on amorphous supports are one such class of catalysts. Where the

active sites, often transition metals, are dispersed on amorphous supports like silica

(SiO2).17–21 Silica is one of the most commonly used support because of its inert nature,

mechanical strength, and thermal stability.22–24 Amorphous silica surfaces are terminated

by siloxanes (≡SiOSi≡) and silanols (≡SiOH). Silanols are generally classified as isolated,
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geminal, or vicinal, depending on their connectivity to other silanols.25 These classifica-

tions are described in more detail in section 5.2.2. Active metal sites are grafted onto

amorphous silica via the reaction of surface silanols with fluid phase organometallic pre-

cursors.20,21,26–28 Industrially important examples of these catalysts include, WO3/SiO2

for olefin metathesis,29 Cr/SiO2 for the polymerization of ethene,17 etc. A complete in

silico model of atomically dispersed amorphous catalysts will require the following: 1) an

accurate atomistic model of the amorphous support, 2) methods to model the grafting of

metal complexes onto amorphous supports, and 3) methods to efficiently calculate site-

averaged kinetic properties (activation barriers and turnover frequencies) of the grafted

catalyst. Recently, methods have been developed to efficiently model the grafting of

metal ions to amorphous supports and calculate site-averaged kinetic properties of the

grafted catalyst.30–32 These methods start from an atomistic model of amorphous silica

and model the subsequent grafting and catalysis steps. Given a model of the amorphous

support, the evolving population of catalytic sites during grafting is predicted using ma-

chine learning (ML) parametrized population balance models.30 The site-averaged kinetic

properties of the grafted catalyst are calculated using importance learning (importance

sampling + ML).31,32

A few atomistic models of amorphous silica have been developed.33–37 These models

are typically prepared by melting bulk silica at a high temperature (∼ 3000 − 7000 K)

followed by rapidly quenching the melt. Following this, surfaces are cleaved and func-

tionalized by hydroxyl groups. Models with different silanol densities are generated by

incrementally condensing pairs of silanols. Different studies have used different protocols

and parameter choices and make many ad hoc assumptions. And many questions remain

unanswered. For example, what should be the ideal melting temperature and quench

rate? What is the best procedure to functionalize the surface of the quenched melt and

condense silanols? Which force-field or ab initio method should be used? Moreover, real
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silicas are not synthesized via this process.

Commercial silica supports used for atomically dispersed catalysts can be non-porous

or mesoporous. Aerosil is an example of a non-porous silica support.38 It is synthesized via

flame pyrolysis of SiCl4.39 SBA-1540 and MCM-4141,42 are examples of mesoporous silica

supports. These supports are synthesized by creating an ordered template with parallel

cylindrical micelles using surfactants. The template is infused with a silica precursor, like

tetraethoxysilane (TEOS), which covers the micelles. Finally, the material is calcined and

oxidized to remove the micelles to obtain mesoporous silica. Silicas synthesized via all of

these methods can be calcined at different temperatures to condense neighboring silanol

groups to achieve the desired surface silanol density.22

The alchemical computational protocols attempt to replicate the structure of these

experimentally synthesized silicas. Some studies have validated their computational mod-

els by comparing computed IR spectra to experimentally obtained spectra.33,35–37 Some

studies have compared the silanol density vs. calcination temperature curves to exper-

iments.33,34 However, validating the structure of computationally generated atomistic

models of amorphous materials is challenging. The absence of long-range order results in

broad peaks compared to sharp features found in the spectra of crystalline materials.43

Hence, unlike crystalline materials, the exact structure of amorphous materials cannot

be obtained. Obtaining information about the surface structure of amorphous materials

is even more challenging.44

Computational studies with different protocols have claimed that their silica mod-

els are representative of real silicas. Different protocols can lead to different structural

features. Differences in the structural features of the silica support, particularly at the

surface, can lead to different grafting kinetics/thermodynamics and different catalytic

kinetics and mechanisms.30,31,45–48 Some studies have also claimed that larger models are

more accurate.49 Development of accurate atomistic models of amorphous silicas is crit-

135



On the various computational models of silica: a statistical analysis of structural differences
Chapter 5

ical in modeling atomically dispersed amorphous catalysts. While it is not possible to

conclusively determine the structure of amorphous silicas, we can compare models gener-

ated using different protocols and comment on their similarities and differences. Here, we

investigate if different protocols lead to atomistic silica models with different structural

features. Finally, we outline a list of metrics based on experimental measurements which

future models should be validated against.

5.2 Methods

5.2.1 Silica models

We use silica models from the following studies: Ugliengo et al.,35 Comas-Vives,33

and Tielens et al.37. The models of Comas-Vives and Ugliengo are non-porous, while

Tielen’s models are mesoporous. Each study has developed silica models with a range of

silanol densities. Schematics summarizing the different preparation protocols are shown

in sections D.1,D.2, and D.3 of the appendix.

We reference the silica models using an abbreviation of the author’s name followed

by their silanol density, separated by an ‘_’. For example, the 5.8 silanols/nm2 model

from Tielens is called TI_5.8.

5.2.2 Metrics on which models are compared

Amorphous silicas can be characterized by their population of different silanol types

(isolated, geminal, vicinal, etc. described in more detail below) and the distribution of

local structural features of silanol sites (bond lengths, bond angles etc.). The categoriza-

tion of silanols into different types corresponds to a discrete distribution. Distributions

corresponding to structural features are continuous (continuous distributions of bond
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lengths, bond angles, etc.). Differences in the population of different silanol types can

influence the nature of the dispersed metal sites and their subsequent catalytic kinetics

and mechanisms.15 Differences in the local structure of silanol sites can also influence

grafting and catalysis.45,46,50

A reproducible protocol to generate an atomistic model of amorphous silica will cor-

respond to unique distributions of silanol types and local structural features of silanol

sites. Models generated using protocols corresponding to different distributions will lead

to different grafting kinetics/thermodynamics and different catalytic kinetics and mech-

anisms. Here, we compare silica models generated using different protocols to investigate

if different protocols lead to different distributions.

We compare silica models based on the distribution of silanol types and three struc-

tural features of vicinal silanol sites, which have been shown to influence grafting ki-

netics/thermodynamics and catalysis kinetics and mechanisms.46,50 Fig. 5.1a shows the

classification of silanol types and fig. 5.1b shows the structural features of the vicinal

silanol sites considered here. The three categories of silanols considered in this study are

described as follows: i) isolated silanol groups, where the Si atom of the silanol (≡SiOH)

is bonded to three other O atoms, which in turn are not bonded to any other silanol

group, ii) geminal silanol groups, where two OH groups are bonded to a single Si atom,

and iii) vicinal silanol groups, where two silanols (≡SiOH) are connected by a Si-O-Si

bridge. We count geminal groups by counting the total number of silanols that are part

of a geminal group and divide the total by two. Similarly, we count vicinal groups by

counting the total number of silanols that are part of a vicinal group and divide the total

by two. A silanol can be part of a geminal and vicinal group or two vicinal groups at the

same time. All silanols which are not part of either group are categorized as isolated. The

three structural features of vicinal sites are described as follow: i) ϕ is the dihedral angle

formed by the O-Si-Si-O atoms, ii) d is the distance between the two silanol oxygens, and
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iii) θ is the angle formed by the triangle shown in fig. 5.1b. The triangle is formed by

rotating the two silanol groups to the same plane while keeping other degrees of freedom

fixed.

Figure 5.1: a) The three categories of silanols considered in this study are shown:
i) isolated silanols, ii) geminal silanol groups, and iii) vicinal silanol groups. Black
circles represent the extended silica matrix. b) The three structural features of vicinal
silanol sites (ϕ, d, and θ) which are used to compare silica models are shown. Color
scheme: H(blue), O(red), Si(purple), and the extended silica matrix is shown in the
stick format colored in green and blue.

The population of isolated, geminal, and vicinal sites is a discrete distribution with

3 categories. And the distributions of the three structural features of the vicinal site (ϕ,

d, and θ) are continuous distributions. These distributions can be considered converged

for large models of amorphous silica with thousands of silanol sites. However, model

sizes published in the literature are small, with tens of sites. Hence, these distributions
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cannot be considered converged, thus precluding a direct comparison between models.

Sites extracted from small models of amorphous silica are samples drawn from the distri-

bution characteristic of the model preparation protocol. Each silica model corresponds

to samples of the four distributions described above. To compare two models, we inves-

tigate if the samples are drawn from the same distributions. We test the null hypothesis

(H0) defined as follows: the two samples being compared have been drawn from the

same distribution. H0 is rejected or not based on a statistical hypothesis test. Rejection

of H0 implies that the two samples are not from the same distribution. This further

implies that the models from which the samples are extracted are different. Not being

able to reject H0 implies that we cannot conclude that the two models being compared

are different. We use two statistical hypothesis testing methods in this study described

in the following sections.

5.2.3 Kolmogorov Smirnov test

We use the two-sample Kolmogorov-Smirnov (KS) test to compare samples drawn

from continuous probability distributions (ϕ, d, and θ).51 The two-sample KS test uses

the maximum difference between cumulative distribution functions (CDF) as the test

statistic given by sup|CDF1(x) - CDF2(x)|. Where, CDF1 and CDF2 are the CDFs of

the samples being compared and x is the random variable (ϕ, d, and θ). The magnitude

of sup|CDF1(x) - CDF2(x)| determines the probability that the two samples are from

the same distribution. The probability is expressed as a p-value. It is defined as the

probability of observing events at least as extreme as sup|CDF1(x) - CDF2(x)| if H0 is

true. H0 is rejected if p < α (a pre-determined significance level, usually 5%-10%). We

use the two-sample KS test as implemented in MATLAB.52
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5.2.4 Chi-sq test

The distribution of the types of silanols (isolated, geminal, and vicinal) is discrete.

The chi-square test can be used to test H0 for discrete probability distributions using the

chi-square statistic calculated as53

χ2 =
m∑
i=1

n∑
j=1

(Oij − Eij)
2

Eij
. (5.1)

Where, m is the total number of samples being compared (we compare 2 samples at

a time), n is the total number of categories (3 categories in our case: isolated, geminal,

and vicinal), Oij is the observed value for the jth category in the ith sample, and Eij is

the expected value for the jth category in the ith sample. The expected values, Eij, are

calculated by pooling all the samples together as follows:

Eij =

∑m
k=1Okj∑m

k=1

∑n
l=1Okl

n∑
l=1

Oil. (5.2)

For our case (comparing 2 samples with 3 categories), χ2 is distributed according to

the chi-square distribution with 2 degrees of freedom (χ2(2)) given H0 is true.53 Similar

to the description in section 5.2.3, a p-value can be calculated. It is the probability of

observing a value at least as extreme as χ2 if H0 is true. H0 is rejected if p < α (a

pre-determined confidence, usually 5%-10%).

5.3 Results

In this section, we compare the different silica models using the KS and the chi-square

tests. It should be noted that, in all studies, models with the largest silanol densities

have the largest number of silanols. Smaller models are derived from the larger models by
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incrementally condensing silanol pairs to achieve the desired silanol density. We compare

models with similar silanol densities. Results of applying the KS test to test H0 for

samples of continuous distributions (ϕ, d, and θ) are shown in Table 5.1.

Table 5.1: p-values on testing H0: ρ1(x) = ρ2(x) using the 2-sample KS test for
continuous distributions (ϕ, d, and θ) are shown. Where, x are the continuous random
variables (ϕ, d, and θ). The quantities in brackets following silanol densities are sample
sizes.

Tielens
silanols/nm2

Comas-Vives
silanols/nm2

p-value
H0:

ρ1(ϕ) = ρ2(ϕ)
H0:

ρ1(d) = ρ2(d)
H0:

ρ1(θ) = ρ2(θ)
5.8(47) 5.9(17) 0.10 7.66× 10−5 5.94× 10−4

4.8(35) 4.6(13) 0.07 3.55× 10−5 8.57× 10−4

3.6(18) 3.3(5) 0.02 0.05 0.03
2.3(8) 2.4(3) 0.03 0.01 0.03
1.7(2) 1.5(1) 0.20 0.20 0.20

Tielens
silanols/nm2

Ugliengo
silanols/nm2

0:
H0:

ρ1(ϕ) = ρ2(ϕ)
H0:

ρ1(d) = ρ2(d)
H0:

ρ1(θ) = ρ2(θ)
5.8(47) 5.4(9) 0.30 0.47 0.67
4.8(35) 4.5(6) 0.39 0.44 0.20
2.3(8) 2.4(2) 0.65 0.07 0.03

Comas-Vives
silanols/nm2

Ugliengo
silanols/nm2

H0:
ρ1(ϕ) = ρ2(ϕ)

H0:
ρ1(d) = ρ2(d)

H0:
ρ1(θ) = ρ2(θ)

7.2(23) 7.2(17) 0.15 6.23× 10−6 1.68× 10−5

5.9(17) 5.4(9) 0.31 0.01 0.03
4.6(13) 4.5(6)) 0.32 0.18 0.18
2.4(3) 2.4(2)) 0.06 0.78 0.78

We obtain five pairs with similar silanol densities from Tielens and Comas-Vives

models. p-values are in the 10−5−10−3 range for d and θ sample comparisons for TI_5.8

vs. CO_5.9 and TI_4.8 vs. CO_4.6. Hence, it is extremely unlikely that these samples

were drawn from the same distribution. p-values are in the 10−2 − 5× 10−2 range for d

and θ sample comparisons for TI_3.6 vs. CO_3.3 and TI_2.3 vs. CO_2.4. For these

cases, H0 can be rejected at a 5% significance level. p-values are equal to 0.10 and 0.07

for ϕ sample comparisons for TI_5.8 vs. CO_5.9 and TI_4.8 vs. CO_4.6, respectively.

For these cases, H0 can be rejected at a 10% significance level. p-values are equal to 0.02
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and 0.03 for ϕ sample comparisons for TI_3.6 vs. CO_3.3 and TI_2.3 vs. CO_2.4,

respectively. For these cases, H0 can be rejected at a 5% significance level. p-values are

equal to 0.20 for all sample comparisons (ϕ, d, and θ) between TI_1.5 and CO_1.7. For

these cases, we cannot reject H0 at any reasonable significance level.

We obtain three pairs with similar silanol densities from Tielens and Ugliengo models.

The p-values are greater than 0.10 for all cases, except for d and θ comparisons for TI_2.3

vs. UG_2.4. Where, the p-values are equal to 0.07 and 0.03 for d and θ comparisons,

respectively. H0 can be rejected at 10% and 5% significance levels, respectively. We

obtain four pairs with similar silanol densities from Comas-Vives and Ugliengo models.

p-values are equal to 6.23 × 10−6 and 1.68 × 10−5 for CO_7.2 vs. UG_7.2 for d and θ

comparisons, respectively. Hence, it is extremely unlikely that these samples were drawn

from the same distribution. The p-values are equal to 0.01 and 0.03 for CO_5.9 vs.

UG_5.4 for d and θ comparisons, respectively. H0 can be rejected at a 5% significance

level for these cases. p-values are greater than 0.10 for d and θ comparisons for CO_4.6

vs. UG_4.5 and CO_2.4 vs. UG_2.4. For these cases, we cannot reject H0 at any

reasonable significance level. p-values are greater than 0.10 for all ϕ comparisons, except

for CO_2.4 vs. UG_2.4. Where, the p-value is equal to 0.06 and H0 can be rejected at

a 10% significance level.

It should be noted that hypothesis testing methods are not reliable for small sample

sizes. The KS test is not reliable for cases where either model has less than 5 samples.

In summary, Comas-Vives models are different from Tielens models on all three metrics

(ϕ, d, and θ). Comas-Vives models are different from Ugliengo models based on d, and

θ distributions. However, we are not able to reject H0 for most sample comparisons

between Ugliengo and Tielens models. To further compare the models, we test H0 for

the discrete distribution of silanol types (isolated, geminal, and vicinal) using the chi-

square test. Table 5.2 shows the comparison between models of similar silanol densities
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from different studies. The χ2statistics and p-values are tabulated.

Table 5.2: Testing H0 between samples of silanol types (isolated, geminal, and vicinal)
from different models of similar silanol densities using the chi-square test. The χ2

statistic and p-value are shown.

Tielens
silanols/nm2

Comas-Vives
silanols/nm2 χ2

p-value
H0:ρ1(silanol types)
ρ2(silanol types)

5.8 5.9 5.97 0.05
4.8 4.6 4.89 0.09
3.6 3.3 3.50 0.17
2.3 2.4 -* -*
1.7 1.5 -* -*

Tielens
silanols/nm2

Ugliengo
silanols/nm2 χ2

p-value
H0:ρ1(silanol types)
ρ2(silanol types)

5.8 5.4 6.85 0.03
4.8 4.5 4.97 0.08
2.3 2.4 2.91 0.23

Comas-Vives
silanols/nm2

Ugliengo
silanols/nm2 χ2

p-value
H0:ρ1(silanol types)
ρ2(silanol types)

7.2 7.2 2.63 0.27
5.9 5.4 3.40 0.18
4.6 4.5 4.90 0.09
2.4 2.4 1.24 0.54

* χ2 diverges if both samples have zero observations in the same category. TI_2.3, TI_1.7, CO_2.4,

and CO_1.5 have zero geminal silanol groups.

p-values are equal to 0.05 and 0.09 for TI_5.8 vs. CO_5.9 and TI_4.8 vs. CO_4.6,

respectively. For these cases, H0 can be rejected at a 10% significance level. The p-value

is equal to 0.17 for TI_3.6 vs. CO_3.3 and we cannot reject H0 at any reasonable

significance level. We cannot perform the chi-square test for TI_2.3 vs. CO_2.4 and

TI_1.7 vs. CO_1.5. This is because χ2 diverges if both samples have zero observations

in the same category. TI_2.3, TI_1.7, CO_2.4, and CO_1.5 have zero geminal silanol
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groups. The p-values are 0.03 and 0.08 for TI_5.8 vs. UG_5.4 and TI_4.8 vs. UG_4.5,

respectively. For these cases, H0 can be rejected at 5% and 10% significance levels,

respectively. The p-value is equal to 0.23 for TI_2.3 vs. UG_2.4 and H0 cannot be

rejected at any reasonable significance level. The p-values are greater than 0.1 for all

comparisons between Comas-Vives and Ugliengo models, except for CO_4.6 vs. UG_4.5.

For this case, the p-value is equal to 0.09 and H0 can be rejected at a 10% significance

level.

Similar to the KS test case, it should be noted that the chi-square test is not reliable

for small samples. In summary, based on the distribution of silanol types, Tielens models

are different from Comas-Vives and Ugliengo models. However, we are not able to reject

H0 for most sample comparisons between Comas-Vives and Ugliengo models. Fig. 5.2

shows the comparison between the three models based on all 4 distributions (3 continuous:

ϕ, d, and θ and 1 discrete: types of silanols).

Figure 5.2: Differences between models are shown. Tielens and Comas-Vives models
differ on all four metrics. Tielens and Ugliengo models differ on the distribution of
silanol types. Comas-Vives and Ugliengo models have different d and θ distributions.

All the models differ on at least one metrics. Hence, different protocols to generate

atomistic models of amorphous silica lead to different structural features. Grafting kinet-

ics/thermodynamics and catalytic kinetics/mechanisms computed using different models

will be different.
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Another point to note are the similarities and differences between mesoporous and

non-porous models. Tielen’s models, representative of MCM-15, are different from non-

porous Comas-Vives models on all four metrics. While they only differ from the Ugliengo

models on the distribution of silanol types. The differences between mesoporous and non-

porous models can be attributed to meso-scale structural differences between them or the

inherent differences in their generation protocols. At present, we do not know the extent

to which these reasons affect the final structure. Further systematic investigations are

required to elucidate differences between mesoporous and non-porous models.

We have shown that models of silica published in the literature are different. But we

cannot conclusively determine if any of them represent real silicas because of reasons out-

lined in the introduction. However, some information about the distribution of silanols

can be obtained by grafting organometallic precursors onto amorphous silicas.27,54 There

is some evidence about the occurrence of majority of the silanols in vicinal pairs on amor-

phous silicas (both nonporous and mesoporous). This evidence was obtained from the

EXAFS spectra of Ga modified non-porous and mesoporous amorphous silicas.27,54 Ga

was grafted onto amorphous silicas calcined at different temperatures (silicas with differ-

ent silanol densities) via their reaction with vapor phase GaR3. On all silicas, each silanol

(≡SiOH) reacted with a single GaR3 molecule via the elimination of a CH4 molecule. A

prominent Ga-Ga path was observed in the EXAFS spectra of all Ga modified silicas.

The paired nature of all the grafted Ga species implies the pairwise occurrence of silanols

on all silicas. If all silanols are paired, then on calcination, vicinal pairs should be the

last to condense. This is because of the formation of highly strained four membered

Si-O-Si-O rings on condensation of vicinal silanols. Therefore, most silanols on silicas

calcined at high temperatures are part of vicinal pairs. Furthermore, the EXAFS spectra

were uniform for silicas with different silanol densities. This implies that the nature of

silanols is similar on all silicas. Hence, most silanols occur as vicinal pairs on all silicas.
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For all simulation protocols considered here, larger models have a large fraction of vicinal

sites while smaller models have a small fraction of vicinal sites. In this respect, larger

models are more representative of real silicas, while smaller models are not consistent

with the occurrence of majority of the silanols in vicinal pairs.

In order to validate models, several computable properties should be compared with

experimental measurements including, the IR spectrum, the silanol density vs. calci-

nation temperature curves, and the nature of silanol groups (isolated, geminal, vicinal

etc.). Further validation tools are provided by the recently developed methods to model

grafting and catalysis of atomically dispersed catalysts. As described in the introduction,

the evolution of the active sites during grafting can be modeled using ML parametrized

population balance models.30 The predictions of the grafting model can be compared to

some experimental observables. For example, the nature of the final grafted sites can

be inferred from a combination of spectroscopic measurements and elemental balance

experiments.21,54 Grafting kinetics can be inferred by measuring the rate of evolution of

gas phase species eliminated in grafting reactions. For example, HCl is eliminated on

grafting of TiCl4 and CH4 is eliminated on grafting GaMe3.27,55 The site-averaged ki-

netic properties (site-averaged activation barrier and turnover frequency) of the grafted

catalyst can be calculated using the importance learning algorithm and compared with

experimental measurements of these quantities.31,32 These comparisons can be made for

different grafting and catalytic reactions. Validity of a model can only be established

after several such successful comparisons.

5.4 Conclusions

The development of surface models of amorphous silica is critical for modeling atom-

ically dispersed catalysts on amorphous silica supports. A few studies have developed
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atomistic models of amorphous silica using different simulation protocols. And all studies

have claimed that their models are representative of real silica materials. A few impor-

tant questions need to be addressed. For example, which of these models, if any, are

representative of real silicas? Is comparing their IR spectra and silanol density vs. calci-

nation temperature curves with experiments enough to validate the models? Are bigger

models necessarily more accurate?

In this work we have shown that models of amorphous silica generated using different

simulation protocols lead to different structures. The reactivity of surface sites is a

function of the local silica environment. And hence, different models will lead to different

distributions of grafting/catalytic kinetics and thermodynamics. Additionally, the model

sizes are small, with tens of silanols. And it is yet not clear if such models can be used

to represent silica samples used in experiments which typically contain ca. 1018 silanols.

Future studies should systematically investigate the effect of different simulation pa-

rameters on the structure of these atomistic models. Models should be validated against

several experimental metrics, some of which have been outlined here. Models which agree

with the most metrics should be identified. This can potentially elucidate the structural

features of real amorphous silica materials and consequently lead to the development of

accurate in silico models of atomically dispersed catalysts.
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Chapter 6

Quantifying abundances of grafted

[(≡SiO)4-xTiClx] sites on amorphous

silica

The experiments described in this chapter were performed by students of the Scott group

at UCSB: Erica Deguns, Rosemary White, and Ziyad Taha.

6.1 Introduction

Silica-supported titanium catalysts are used for a wide variety of reactions, including

olefin epoxidation,1,2 esterification3 and transesterification,4 hydroxylation of phenol,5

oxyfunctionalization of alkanes,6 and Baeyer-Villiger oxidation.7 Titanium complexes can

achieve a variety of coordination numbers and bonding with a variety of ligands including

alkoxide, siloxide, or halides.8 One of many important examples is the Ziegler-Natta

catalyst (Ti/SiO2) for the polymerization of olefins.9 While framework titanium sites

may be desired for epoxidation catalysts,10,11 polymerization activity requires titanium
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sites with more accessible coordination spheres.9 TiCl4 has been widely employed as a

precursor for such catalysts due to its availability and its ability to be readily dispersed

onto the surface by, for example, atomic layer epitaxy,12 or vapor phase grafting.13–15

Preparation of materials by these methods leads to more active materials by preventing

the formation of inactive TiO2 domains.15,16 Surface silanols react readily with TiCl4 to

form chemisorbed Ti species, liberating HCl. Two reactions of TiCl4 with silanols on

silica have been proposed, eq. 6.1-6.2,.9,14,17,18 A third proposed reaction invokes the

reaction between TiCl4 and strained siloxane bonds, eq. 6.3.18

≡ SiOH + TiCl4 ⇄≡ SiOTiCl3 + HCl. (6.1)

≡ SiOH+ ≡ SiOTiCl3 ⇄ (≡ SiO)2TiCl2 + HCl. (6.2)

≡ SiOSi ≡ +TiCl4 ⇄≡ SiOTiCl3+ ≡ SiCl. (6.3)

Many literature reports suggest that eq. 6.1-6.3 occur simultaneously, resulting in un-

avoidable mixtures of titanium sites.13,19,20 Although these grafting reactions have been

extensively studied by IR,18,19 Raman, NMR,19 XAS,21 XPS,15 DFT,22 SEM/TEM15

and mass balance techniques, the literature is inconclusive as to the structure of the

titanium species generated. Furthermore, most grafting studies only attempt to qualita-

tively determine the nature of grafted species. To the best of our knowledge, no study

has attempted to quantify the abundances of different grafted species. In this work, we

characterize the structure and stability of the grafted sites created by the vapor phase

reaction of TiCtextsubscript4 with a silica that is partially dehydroxylated at two differ-

ent temperatures: 100 and 500 ◦C. In addition to reactions described by eq. 6.1-6.3, we
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also consider the following route to the bipodal [(≡SiO)2TiCl2] site:

2 ≡ SiOTiCl3 ⇄ (≡ SiO)2TiCl2 + TiCl4. (6.4)

We study these reactions and the resulting ensemble of grafted sites using IR and mass

balance experiments. We also introduce a site balance algebra to quantify the amount of

different grafted species. Our results demonstrate how such a model can help to interpret

experimental data, check for internal consistency, and help to place confidence intervals

on populations of different site types.

6.2 Experimental methods

6.2.1 Sample preparation

The silica used in this study is Aerosil-380 (hereafter referred to as A380), an amor-

phous, fumed silica from Degussa. It has a surface area of 340 m2/g, a primary particle

size of 7 nm and no significant microporosity. The thermal pretreatment of the silica in

each experiment is indicated by an appended number. For example, A380-100 denotes

a sample of Aerosil-380 treated at 100◦C. To ensure reproducibility, each sample was

heated under dynamic vacuum (<10-4 Torr) at the designated temperature for a mini-

mum of four hours. TiCl4 (99.99+%, Aldrich) was stored under vacuum in a glass bulb

equipped with a Teflon stopcock. Excess TiCl4 was transferred onto powdered silica as

the vapor, via an all-glass high vacuum line equipped with ground-glass stopcocks. TiCl4

reacts slowly with hydrocarbon-based vacuum greases. Although this does not appear to

affect the preparation of titanium-modified silicas, the grease was replaced frequently to

maintain the integrity of the vacuum system. After desorption of unreacted TiCl4 to a

liquid N2 trap, the titanium-modified silica was recovered as a white powder. Titanium
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analysis was performed in air at the end of each experiment. Each sample was weighed

and stirred in 1.0 M H2SO4 to which 3.5% aqueous H2O2 (0.03 mL/mL sample solution)

was added to extract the titanium as its peroxo complex. The solution was filtered before

recording its UV-vis spectrum in a 1 cm quartz cuvette, referenced to a H2SO4/H2O2 so-

lution containing approximately the same concentration of H2O2. Spectra were recorded

on a Shimadzu UV2401PC spectrophotometer. The yellow peroxotitanium complex has

a distinct peak in the visible at λmax = 408 nm. A calibration curve was prepared using

a standard solution of titanium atomic absorption standard (1004 ppm, Aldrich).

6.2.2 Infrared spectroscopy

IR experiments were performed in a Pyrex gas cell equipped with KCl windows af-

fixed with TorrSeal® (Varian). Its high-vacuum ground-glass stopcock and joints were

lubricated with Apiezon® H grease (Varian). A self-supporting pellet of silica was pre-

pared in air by pressing ca. 15 mg of the solid at 40 kg/cm2 in a 16 mm stainless steel

die. It was then mounted in a Pyrex pellet holder. TiCl2 vapor was introduced via a vac-

uum manifold directly onto the silica pellet, and the excess was desorbed under dynamic

vacuum to a liquid N2 trap. IR spectra of the self-supporting pellet were recorded in

transmission mode on a Shimadzu PrestigeIR spectrophotometer equipped with a DTGS

detector, and purged with CO2-free dry air from a Balston 75-52 Purge Gas Generator.

Background and sample IR spectra were recorded by co-adding 64 scans at a resolution

of 4 cm-1.
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6.3 Results

6.3.1 Experimental Observation of TiCl4 Grafting onto Silica

Modification of the surface of silica with TiCl4 vapor results in a slight change in

the appearance of the solid, from dull to brilliant white. The extent of reaction between

TiCl4 and the surface silanols is observed readily using IR spectroscopy. Fig. 6.1a-b show

the IR spectrum of a self-supporting disk of a nonporous silica (Aerosil 380) pretreated

at 500 ◦C (designated A380-500), before and after its exposure to excess TiCl4 vapor

at room temperature for several minutes. The sharp band at 3747 cm-1, attributed to

the ≡(SiO-H) mode of the non-hydrogen-bonded surface silanols, disappears rapidly and

almost completely upon contact with excess TiCl4. Simultaneously, the characteristic

rovibrational spectrum of HCl(g), centered at 2884-1, was detected (not shown). Virtually

all of the hydroxyl groups of the silica surface are therefore consumed in the reaction with

TiCl4(g) at room temperature. Only a weak, broad absorption band remains at 3665

cm-1 in the ≡(SiO-H) region. This band, assigned to internal silanols perturbed by the

silica matrix,23 represents hydroxyl groups that are unreactive towards TiCl417 as well as

even the most aggressive inorganic hydrogen-sequestering agents, including AlMe3
17 and

VOCl3.24 They are therefore considered to be inaccessible silanols.
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Figure 6.1: IR spectra of self-supporting pellets of A380 silica: (a) pretreated at 500
◦C; (b) previous sample, after reaction with excess TiCl4 followed by evacuation of
volatiles; (c) pretreated at 100 ◦C; (d) previous sample, after reaction with excess
TiCl4 followed by evacuation of volatiles; and (e) previous sample, after heating at
120 ◦C for 4 hours under dynamic vacuum.

The nature of the grafted TiClx sites can be inferred, in part, from the stoichiometry

of the surface reaction: the amount of Ti irreversibly adsorbed, the amount of HCl

liberated, and the Ti/Cl ratio present in the modified silica.25 The titanium content of

TiCl4-modified A380-500, measured after desorption of physisorbed TiCl4 by evacuation

of the reactor to a liquid N2 trap, was (0.78 ± 0.05) mmol Ti/g silica (average of 5

independent experiments). Since the number of accessible hydroxyls on this silica was

previously measured to be (0.81 ± 0.03) mmol/g silica,26 the Ti analysis suggests that

each accessible silanol reacts with one TiCl4 molecule. The stoichiometry of the grafting

reaction on A380-500 is therefore described completely by eq. 6.1. Furthermore, the

titanium loading of TiCl4-modified A380-500 remained stable at 0.78 mmol Ti/g silica

even after 3 days of continuous evacuation at room temperature, or after heating the

material to 120 ◦C under dynamic vacuum for 4 h. The ratio of grafted Ti to accessible

161



Quantifying abundances of grafted [(≡SiO)4-xTiClx] sites on amorphous silica Chapter 6

silanols is almost 1:1. One possible interpretation is that all silanol sites are isolated. IR

and mass balance do not determine the absolute populations of isolated and paired silanol

sites. However, experiments grafting GaMe3 to amorphous SiO2 samples of different

silanol densities suggest that majority of the silanols are present as vicinal pairs (silanols

on adjacent Si atoms connected by a siloxane bridge).27,28 mass balance suggests that

GaMe3 reacts with surface silanols (on all silicas) in a 1:1 ratio via the following reaction:

2 ≡ SiOHGaMe3 ⇄≡ SiOGaMe2 + MeH. (6.5)

A prominent Ga-Ga path was observed in the EXAFS spectra of Ga/SiO2, imply-

ing the existence of dimeric Ga sites. This further implies that silanols occur in pairs.

Furthermore, the Ga-Ga (∼ 2.99 Å) and Ga-O (∼ 1.94 Å) distances were invariant with

the silanol density and similar to the Ga-Ga and Ga-O distances in molecular Ga2O2,

respectively. Since the structure of grafted Ga dimers is similar across silanol densities,

the silanol types on all silicas should also be similar. And, since vicinal sites are the last

to condense, most silanols on low density silicas are vicinal. Therefore, majority of the

silanols on all silicas should occur in vicinal pairs.

The predicted reaction of vicinal silanols with TiCl4 to produce predominantly

[≡SiOTiCl3] is also consistent with the experimental observations provided the vicinal

Ti sites do not associate to give a dinuclear structure (unlike grafted GaMex).

The IR spectrum of silica pretreated at a lower temperature (A380-100) is more

complex than that of A380-500 in the region of the O-H stretching vibrations, fig. 6.1c.

More of the silanols are perturbed by hydrogen-bonding, although there is no molecular

water present (as judged by the absence of the HOH bending mode, at 1640 cm-1).

The fraction of inaccessible silanols is also larger on A380-100 compared to A380-500.28

This is evident upon comparing their IR spectra after reaction with excess TiCl2, Figs.
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6.1b and 6.1d. However, the signal at 3747 cm-1 due to the non-interacting silanols of

A380-100 disappears completely upon exposure to excess TiCl4. Initially, the reaction

of A380-100 with excess TiCl2 resulted in a titanium loading of (1.25 ± 0.02) mmol/g

silica (average of 2 experiments). Since A380-100 contains (1.15± 0.01) mmol accessible

≡SiOH/g, these values correspond to an almost 1:1 reaction between the silanol groups

and TiCl2. However, after four hours of thermal treatment under dynamic vacuum, the

Ti loading slightly decreased to (1.11± 0.03) mmol /g silica (average of 3 experiments).

This ∼ 10 % reduction in the loading could be attributed to the conversion of ∼ 15 %

adjacent monopodal [≡SiOTiCl3] sites to bipodal [(≡SiO)2TiCl2] sites via eq. 6.4.

6.3.2 Site balance algebra

In this section we develop a site balance algebra to describe the calcination, grafting,

and evacuation processes on silica. We do not obtain information about exact structural

features of sites using this method. However, site balance algebra can become an addi-

tional tool to interpret experimental data. And in combination with mass balance and

spectroscopic methods it can be used to characterize the nature of sites more precisely on

atomically dispersed catalysts. The model is used to classify sites into discrete categories

like monopodal [≡SiOTiCl2] and bipodal [(≡SiO)2TiCl2]. We demonstrate how mea-

surements of total Ti loading after grafting and post evacuation can be used to quantify

the amounts of monpodal [≡SiOTiCl3] and bipodal [(≡SiO)2TiCl2] sites. We model the

surface of A380-100 as a distribution of isolated and paired silanol sites. Upon heating

at 100 ◦C under vacuum, the surface of silica loses physisorbed water. Further heating

at 500 ◦C causes some adjacent silanols to condense, with elimination of water according

to the following reaction:
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2 ≡ SiOH ⇄≡ SiOSi ≡ +H2O. (6.6)

To model the effect of thermal treatment, the silanols are further classified into silanol

pairs that condense upon calcination at 500 ◦C and those which do not. According to IR

and mass balance, almost all silanols react with TiCl4 to form monopodal [≡SiOTiCl3]

species regardless of the thermal pretreatment of the silica (Section 4.1). However, the

pre-evacuation Ti:silanol ratio is slightly different than 1:1 on both the samples. A slightly

larger amount of Ti (1.24 mmol/g) vs. accessible silanols (1.15 mmol/g) was grafted on

A380-100. And a slightly smaller amount of Ti (0.78 mmol/g) vs. accessible silanols

(0.81 mmol/g) was grafted on A380-500. We assume that the amount of grafted Ti is the

average of the two values on both silicas. And that the Ti:silanol ratio is 1:1 after grafting

on both silicas. Accordingly, the amount of Ti is assumed to be (1.24 + 1.15)/2 = 1.20

mmol/g on A380-100 and (0.78 + 0.81)/2 = 0.80 mmol/g on A380-500.

On A380-100, prolonged evacuation causes a few of the vicinal [≡SiOTiCl3] sites

to be converted to bipodal [(≡SiO)2TiCl2] by elimination of TiCl4. Hence, we further

subdivide the vicinal sites into those which eliminate TiCl4 upon evacuation, and those

which do not. The various grafting and condensation reactions are summarized in fig.

6.2.
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Figure 6.2: Effect of thermal treatment on the populations of various silanol sites
and their reaction with TiCl4, followed by prolonged evacuation. The surface silanol
populations (α, β, γ) are in mmol/g; x and y are fractions.

Here, α is the population (mmol /g silica) of isolated silanols, 2β is the population

(mmol /g silica) of paired silanols which do not condense on thermal treatment at 500

◦C, and 2γ is the population (mmol /g silica) of paired silanols that condense on thermal

treatment. We define x as the ratio of β sites and y as the ratio of γ sites, respec-

tively, which do not convert to bipodal [(≡SiO)2TiCl2] on evacuation. The pre- and

post-evacuation Ti loadings can be expressed in terms of α, β, γ, x, and y. And we

can setup a system of equations by equating these expressions to their experimentally

measured values from section 4.1.

165



Quantifying abundances of grafted [(≡SiO)4-xTiClx] sites on amorphous silica Chapter 6

The equations are as follows:

A380-100 pre-evacuation

α + 2β + 2γ = n1 ± σ1 = 1.20± 0.02 (6.7)

A380-100 post-evacuation

α + 2xβ + (1− x)β + 2yγ + (1− y)γ = n3 ± σ3 = 1.11± 0.03 (6.8)

A380-500 pre-evacuation

α + 2γ = n2 ± σ2 = 0.80± 0.05 (6.9)

A380-500 post-evacuation

α + 2yγ + (1− y)γ = n4 ± σ1 = 0.80± 0.05 (6.10)

Here, n1 and n2 are the pre-evacuation Ti loadings on A380-100 and A380-500, re-

spectively. n3 and n4 are the post-evacuation Ti loadings on A380-100 and A380-500,

respectively. And σi are uncertainties in the experimentally measured values of ni. The

system of equations is underdetermined with 4 eqns. and 5 variables (α, β, γ, x, and y).

As described in section 3.1, by grafting GaMe3 to amorphous silicas it was established

that amorphous silicas have a negligible population of isolated silanols.27,28 Given this

evidence we assume α = 0. Setting α = 0 gives us a solvable system of equations. And

we get

β̂ =
n1 − n2

2
, (6.11)
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γ̂ =
n2

2
, (6.12)

x̂ = 2
n3 − n4

n2 − n1

− 1, (6.13)

x̂ =
2n4

n2

− 1. (6.14)

Here, β̂, γ̂, x̂, and ŷ are the mean values of β, γ, x, and y respectively. We can

also calculate errors in the values by expanding the solutions to first order using Taylor’s

expression. For example, for β we have

dβ = Σ
∂β

∂ni
dni. (6.15)

Here, dni = σi are the standard deviations (uncertainty) in ni. We can express β in

terms of β̂ and the uncertainty as

β = β̂ ±
√
Σ(

∂β

∂ni
)2σi

2. (6.16)

Plugging the expression of β from eqn. (11) into eqn. (16) we get

β = β̂ ±
√
σ12 + σ22

2
. (6.17)

We can derive similar expressions for other variables:

γ = γ̂ ± σ2
2
1 (6.18)
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x = x̂± 2

√
(σ12 + σ22)(n3 − n4)2 + (σ32 + σ42)(n1 − n2)2

(n2 − n1)2
(6.19)

y = ŷ ± 2

n2
2

√
σ22n4

2 + σ42n2
2. (6.20)

Table 6.1 shows the calculated values of the variables with uncertainties.

Table 6.1: Calculated values and uncertainties of β, γ, x, and y
Variable Value
β 0.20± 0.03 mmol/g
γ 0.40± 0.02 mmol/g
x 43± 36%
y 0± 18%

We can quantify the abundances of different species in fig. 6.2 using the site balance

algebra. 0.40± 0.06 mmol/g silanols condense on calcination at 500 ◦C. Approximately

43±36% (7-79%) of the sites which condense on calcination at 500 ◦C form bipodal species

on evacuation. And 0±18% (0-18%) of the sites which condense on calcination at 500 ◦C

form bipodal species on evacuation. This implies that sites which are harder to condense

on calcination are also less likely to convert to bipodal [(≡SiO)2TiCl2] on evacuation.

β (±0.03) and γ (±0.02) have small uncertainties. But the uncertainties in y (±18%),

and x (±36%) are large. Uncertainties can be reduced using more precise experimental

measurements. We can also check the consistency of experiments using the site balance

algebra. The initial set of grafting experiments incorrectly measured the post-evacuation

Ti loading on A380-100 to be ca. 0.4 mmol/g silica (n2 = 0.4). This would have implied

that almost all monopodal [≡SiOTiCl3] convert to bipodal [(≡SiO)2TiCl2] on evacuation

on A380-100. Solving the site balance algebra with n2 = 0.4 gives x = 2.8. However,

x = 2.8 is inconsistent with 0 < x < 1 (x is a fraction). This led us to repeat the grafting

experiments multiple times to achieve a reproduceable post-evacuation Ti loading on
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A380-100 (n4 = 1.11 mmol/g).

6.4 Conclusions

Metals dispersed on amorphous supports are used to catalyze several industrially

important reactions. Active sites reside in different local environments because of the

amorphous nature of the support. And the lack of long-range order in these amor-

phous materials makes it difficult to characterize the structure and distribution of sites

on these catalysts. Furthermore, the structure of grafted sites dictates the activity of

these catalysts. And hence, determining the structural distribution of sites is critical in

understanding the mechanism and activity of such catalysts. In this work, we identify

the structure and distribution of sites on Ti modified silicas using a combination of IR

and mass balance. We also introduce a site balance algebra to quantify the populations

of grafted Ti species. TiCl4 reacts with amorphous silica to yield monopodally grafted

[≡SiOTiCl3] species. The nature of grafted species immediately after grafting is invariant

with silica calcination temperature (100 ◦C and 500 ◦C). Furthermore, 15% monopodal

[≡SiOTiCl3] convert to bipodal [(≡SiO)2TiCl2] via elimination of TiCl4 under vacuum

on A380-100 (silica calcined at 100 ◦C). However, A380-500 (silica calcined at 500 ◦C) is

stable under vacuum. We introduce a site balance algebra to determine the abundances

of monopodal and bipodal sites. The model was also used to identify an incorrectly

measured post-evacuation Ti loading on A380-100. And this guided us to reperform the

grafting to obtain a reproducible result consistent with the solution of the site balance

algebra. We believe that such a site balance algebra can be useful in interpreting the

results of and guiding grafting experiments. A complete characterization of atomically

dispersed catalysts will require a combination of spectroscopic methods, mass balance,

site balance algebra, and recently developed computational population balance modeling
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tools.29 In future work, we will demonstrate a synergistic application of these methods

to determine the structure and distribution of sites on atomically dispersed amorphous

catalysts like Cr/SiO2, V/SiO2, Ga/SiO2 etc.
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with grease.
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Chapter 7

Conclusions

7.1 Summary

In summary, this thesis describes the development of new computational methods

to model the synthesis and reactivity of atomically dispersed catalysts on amorphous

supports. Shortcomings of current modeling methodologies are discussed and efficient

machine learning aided computational methods to overcome these shortcomings are pre-

sented. The efficacy of the developed methods is demonstrated on toy systems. Fur-

thermore, the developed methods are applied to real examples and their predictions are

validated against experimental outcomes. Our work establishes a systematic procedure

to computationally probe amorphous catalysts and paves the way to understand the

structure and mechanism of these elusive catalytic materials.

In chapter 2, we develop a ML parametrized population balance modeling framework

to model grafting of metal complexes onto amorphous supports. A ML model is trained

to learn grafting barriers as a function of local site environment on amorphous silica.

The trained ML model parameterizes a population balance model to predict the evolving

distribution of grafting sites. We also develop a 2D model of amorphous silica for which
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benchmark calculations can be performed for thousands of sites. For this 2D model,

the parameterized population balance model is demonstrated to predict the evolving

population of ca. 20,000 sites with a ML model trained on 100 sites. Chapter 3 presents

an importance learning (IL) algorithm to efficiently calculate the site-averaged activation

barrier of the grafted catalyst. The population of grafted sites, as predicted by the

population balance model in chapter 2, is used as an input for IL. Our method iteratively

trains a ML model on the most important (active) sites. IL requires three orders of

magnitude fewer samples than random sampling to converge the site-averaged activation

barrier with the same uncertainty. Given an atomistic model of amorphous silica these

methods provide, for the first time, a framework to model the synthesis and reactivity

of atomically dispersed amorphous catalysts. Furthermore, the 2D model of amorphous

silica developed here provides a method development platform for disordered catalysts.

This model was used in another study (not described here) to develop an IL method to

efficiently calculate the site-averaged turnover frequency for disordered catalysts.1

Chapter 4 describes the application of the population balance modeling framework,

developed in chapter 2, to a real system. We model the grafting of TiCl4 onto amor-

phous silica and show how local structure can not only affect grafting kinetics but also

the grafting mechanism. The final distribution of grafted Ti sites is shown to be in

agreement with experimental observations. Furthermore, our calculations show that the

nature of the dominant surface species is kinetically controlled. This demonstrates how

kinetic modeling at realistic conditions is important for interpreting the results of graft-

ing experiments. It further demonstrates the importance of considering a distribution of

structural environments obtained from realistic silica models instead of single-site models

routinely used in the literature.

The computational methods developed in this work use atomistic models of amor-

phous silica generated by other groups. Different groups have used different protocols
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to generate these atomistic models. And all of them have claimed that their models

are representative of real amorphous silicas. Chapter 5 compares atomistic models of

amorphous silica from different studies. We demonstrate that models generated using

different protocols have different structural features. And we discuss how differences in

the structure of these models can influence the grafting thermodynamics/kinetics and

the catalytic activity of the grafted catalyst. We outline some ideas to validate atomistic

models against experimental observables relevant to catalysis. This work motivates future

studies to systematically investigate the effect of generation protocols on the structure

of the generated models and identify parameters which lead to models consistent with

several experimental observables.

Most grafting experiments attempt to qualitatively estimate the nature of the grafted

species using information from spectroscopic measurements (IR, EXAFS, NMR, etc.)

and mass balance techniques. Chapter 6 presents a site balance algebra to quantify the

amounts of different grafted species (monopodal, bipodal, tripodal, etc.) on amorphous

supports. We apply this framework to quantify the amounts of monopodal and bipodal

species in experiments grafting TiCl4 onto amorphous silica. We further demonstrate

how this framework can be used to inspect the consistency of grafting experiments.

7.2 Outlook

Several challenges remain to be solved before we can develop a complete in silico model

of amorphous catalysts. Some of these challenges have been outlined throughout this

thesis. In this section we present a few extensions of this work which can be immediately

implemented to develop more accurate models.

The ML model to learn grafting barriers in chapter 2 was trained on a randomly

sampled set of sites. Majority of the sites sampled by this brute-force strategy are near
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the peak of the distribution and fewer sites are sampled towards the tails. This causes

the ML model to be poorly trained in these sparsely populated regions. Hence, the

ML parameterized population balance model makes errors in predicting the population

of sites in the tails of the distribution as shown in fig. 2.10. Accurately predicting the

population of sites in the tails can be important in cases where sites in sparsely populated

regions, once grafted, are responsible for most of the activity. Such cases may require the

implementation of biased sampling strategies to learn grafting kinetics of sites in sparsely

populated regions of the distribution. One possible solution can be to use an importance

learning algorithm which importance samples sites weighted by the inverse density.2 This

strategy will sample sites from a flat histogram, thus making it more probable to sample

sites from low density tails of the distribution.

The model of grafting TiCl4 onto amorphous silica, presented in chapter 3, only con-

sidered the effect of the dihedral angle on the free energy pathway. Other coordinates

might also influence grafting kinetics/thermodynamics. The procedure to identify im-

portant features of sites, described in section 2.6.3, can be used to identify coordinates

important for describing TiCl4 grafting. Furthermore, we used a minimal model to rep-

resent the vicinal site without considering the extended silica matrix. Future studies

should use larger models of silica to account for the extended silica matrix.

Population balance modeling and importance learning can be put together to develop

a complete in silico model of atomically dispersed catalysts. The population balance

modeling framework can be used to predict the kinetics/thermodynamics of grafting

organometallic precursors onto amorphous silica models. Importance learning can then

be used to calculate site-averaged kinetics (site-averaged activation barrier and turnover

frequency) of the grafted catalyst. These calculations can be validated by different exper-

iments. The predicted distribution of sites can be validated by the estimated populations

of sites obtained using mass balance experiments and various spectroscopic measurements
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(EXFS, IR, XAS, etc.). Grafting kinetics can be validated by measuring the evolution

kinetics of the gas phase species eliminated in grafting reactions. The calculated site-

averaged kinetic properties can be validated by measuring the kinetics of the catalytic

reaction. Some of these experimental measurements are already available for various

catalysts in the literature. In particular, many experimental studies have estimated the

population of grafted sites3–6 and measured the reactivity of the grafted catalyst.7–9 Some

examples to consider are: Cr/SiO2 catalysts for ethylene polymerization,7 Mo/SiO2 cat-

alysts for olefin metathesis,10 and Ti/SiO2 catalysts for olefin epoxidation.4 Modeling

Ti/SiO2 catalysts will be the most natural extension of this work as we already have a

model of the grafting step (Chapter 4). Such a demonstration will be the first complete

in silico model of such catalysts. It will also serve as a tool to validate silica models.
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Appendix A

Supporting information for Grafting

catalysts onto amorphous supports:

from elementary steps to site

populations via kernel regression

A.1 Parameters in model of grafting barriers and lat-

tice displacements

A.1.1 Grafting temperature and dimensionless precursor concen-

tration (m)

The grafting temperature was chosen to be 298.15 K (room temperature). The ratio

of the ML2 concentration in the gas phase to the reference concentration (V̂ −1
0 ), m =

[ML2]/V̂
−1
0 , was set to the ratio of CrO2Cl2 vapor pressure at 298.15 K (20 Torr) to
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atmospheric pressure (760 Torr), giving m = 0.026.

A.1.2 DFT computational details

DM−O, DM···O, aM−O, aM···O, and ∆G‡
ref were set using density functional theory

(DFT) calculations. All DFT calculations were performed with the ωB97X-D functional.1

The def-2TZVP basis set2 was used for chromium and the TZVP basis set3,4 was used

for all other atoms. The Berny algorithm, as implemented in Gaussian 16, was used to

find minima and transition states.5 The RMS and maximum forces were required to be

less than 3.00× 10−4 Hartrees/Bohr and 4.50× 10−4 Hartrees/Bohr, respectively, while

the RMS and maximum displacements were required to be less than 1.20 × 10−3 Bohr

and 1.80×10−3 Bohr respectively. Transition states were required to have one imaginary

frequency.

To make a reference site for DFT calculations, the bis(silanolato)chromium(II) clus-

ter was optimized and its peripheral atom positions were held fixed for all subsequent

computations to mimic a rigid support, Fig. A.1.6

Figure A.1: The optimized bis(silanolato)chromium(II) cluster. Color scheme: oxygen
(red), hydrogen (white), silicon (blue), and chromium (purple). Peripheral atoms
(fixed) are transparent.

184



Section A.1 Parameters in model of grafting barriers and lattice displacements

A.1.3 Morse potential parameters

The M-O bond strength (DM−O) was calculated by removing the Cr atom from the

bis(silanolato) chromium(II) and performing a single-point energy calculation, Fig. A.2.

DM−O was calculated using

DM−O = EII + ECr − EI . (A.1)

Here EII is the electronic energy of structure II, ECr is the electronic energy of a Cr atom,

and EI is the electronic energy of the bis(silanolato)chromium(II) cluster (structure I).

We get DM−O=524.4 kJ/mol.

Figure A.2: Calculation of the M-O bond strength. Electronic energies of the optimized
Cr(II) cluster (left) and cluster with dissociated Cr (right). Peripheral atoms (fixed)
are red. d1 is used as the displacement variable in a Morse potential model (below).

The Morse potential width (a) can be related to the force constant by a second-order

Taylor expansion of V (r) around the equilibrium bond length (req):

V (r) ≈ d2V

dr2
(r − req)

2

2!
= k

(r − req)
2

2!
= Da2(r − req)

2 (A.2)

Here, k is the force consant. The zeroth-order term of the taylor expansion evaluates to

0 by construction, while the first derivative evaluates to 0 because req corresponds to the

minimum of the potential energy surface. Thus, a = [k/2D]0.5. The force constant was

computed using DFT by calculating the second derivative of the potential energy with

185



Supporting information for Grafting catalysts onto amorphous supports: from elementary steps to
site populations via kernel regression Chapter A

respect to the Cr-O bond length (d1). We obtain kM−O = 0.2063 Ha/Bohr and aM−O = 1.

Here aM−O was non-dimensionalized by d1. The non-dimensionalized equilibrium bond

distance for the M-O bond (rM−O,eq) was set to 1.

To calculate the M · · ·O bond strength (DM···O), a water molecule was adsorbed

on the bare Cr cluster, and the cluster was reoptimized while keeping the positions of

the peripheral atoms fixed, Fig. A.3. The bond strength of the Cr· · ·OH2 bond was

calculated using

DM···O = EI + EH2O − EIII (A.3)

Here EI is the electronic energy of structure I, EH2O is the electronic energy of the

optimized water molecule, and EIII is the electronic energy of structure III. We get

DM···O = 117 kJ/mol.

Figure A.3: Calculation of the M· · ·O bond strength. Electronic energies of the Cr
cluster with H2O adsorbed (left) and the bare Cr cluster and H2O in the gas phase
(right). Peripheral atoms (fixed) are red. d2/d3 was used to compute rM ···O,eq and d3
was used as a displacement variable in the Morse potential model for M· · ·O.

kM···O was computed as the second derivative of the energy of structure III with respect

to the M · · ·O bond length (d3). We get kM···O = 0.054 Ha/Bohr and aM···O = 2.3 (eq.

(A.2)). Here aM···O was non-dimensionalized by d3 (Fig. A.3).

The non-dimensionalized equilibrium kM···O bond length (rM···O,eq) was set to d3/d2.

This yields rM···O,eq = 1.16.
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A.1.4 Lattice displacements

The lattice points were displaced by drawing dispalcements according to a bivariate

Gaussian distribution using the numpy.random.multivariate_normal function in python:7

p(x,µ,Σ) =
1

2π|Σ| 12
exp(

1

2
(x− µ)TΣ−1(x− µ)) (A.4)

Here Σ is a 2 × 2 dimensional covariance matrix, µ ∈ R2 is the mean, and x ∈ R2 is a

2D random variable representing displacement of lattice points. The covariance matrix

was set equal to a scalar diagonal matrix

Σ = σ2
latticeI. (A.5)

Here I is the 2× 2 identity matrix. σ2
lattice was set to 0.00022 and the value of µ was set

to (0,0).

A.1.5 ϵHL, V∗, ∆PV , and ∆So to compute grafting free energy

From eq. A.4, it follows that the grafting energy for a site on the unperturbed lattice

is given by

∆Eunperturbed = 2ϵHL − (V∗ + 2ϵML) + VM∗(xunperturbed). (A.6)

Here VM∗ is obtained by optimizing the metal position in a site on an unpertubed lattice.

Similarly, from eq. 2.8 it follows that the grafting free energy on an unperturbed site is

given by

∆Go
unperturbed = 2ϵHL − (V∗ + 2ϵML) + VM∗(xunperturbed) + ∆PV − T∆So. (A.7)
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Rearranging eq. A.7, we get

2ϵHL − (V∗ + 2ϵML) + ∆PV − T∆So = ∆Go
unperturbed − VM∗(xunperturbed) (A.8)

Using Morse potential parameters from Section A.1.3, we obtain VM∗(xunperturbed) =

−1259.57 kJ/mol. To make grafting favorable for a reference site, ∆Go
unperturbed was set

equal to -30 kJ/mol. This yields 2ϵHL− (V∗ +2ϵML+∆PV − T∆So) = 1229.56 kJ/mol.

ϵHL, V∗, ϵML, ∆PV , and ∆So always occur together in the combination on the LHS of

eq. A.8, therefore they do not need to be determined separately.

A.1.6 Reference free energy barrier and linear free energy rela-

tion (∆G‡
ref)

The LFER for an unperturbed site is given by

∆G‡
unperturbed(r) = ∆G‡

ref + α∆Go
unperturbed(r). (A.9)

∆G‡
unperturbed(r) was set equal to the DFT-computed activation barrier for CrO2Cl2 graft-

ing to a vicinal disilanol model site at 1 atm pressure of CrO2Cl2 (Fig. A.4).

Figure A.4: Calculation of the reference free energy barrier. Free energies of CrO2Cl2
in the gas phase with the vicinal silanol site (left) and the transition state for CrO2Cl2
grafting to the vicinal silanol site (right). Free energies are at 1 atm CrO2Cl2 and
298.15 K. Peripheral atoms (fixed) are red.
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Using ∆Go
unperturbed = −30 kJ/mol (Section A.1.5) and solving for ∆G‡

ref we get

∆G‡
ref = 131.3kJ/mol. (A.10)

A.2 Effect of training set size on test set error

Figure A.5: Residual distributions for predicted grafting barriers as a function of train-
ing set size for all ≈ 20, 000 sites. As expected, the width of the residual distribution
decreases on increasing the training set size.
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Appendix B

Supporting information for

Site-averaged kinetics for catalysts on

amorphous supports: An importance

learning algorithm

B.1 Strength of M-A bond

The M-A bond strength in the quenched-disordered lattice model was chosen to

approximately match the Cr-C bond strength for an alkylchromium(III) site on SiO2.

We started from a bis(silanolato)chromium(II) cluster model, which has been used in

previous studies of Cr/SiO2 catalysts.1,2 Labile siloxane coordination was modeled by

binding a water molecule. The M-A bond strength was calculated according to Scheme

S1 and density functional theory calculations, and was computed as εM-A = 160 kJ/mol.

We chose a one-electron redox pathway (as opposed to a two-electron redox pathway) to

ensure a strong bond energy for the chemisorption step. We stress that the bond strength
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was chosen only to ensure a realistic model. The model is not intended make accurate

predictions for Cr/SiO2 olefin polymerization catalysts.

DFT calculations were carried out using Gaussian16.3 All energies were calculated

with the range-separated density functional, ωB97X-D.4 The def2-TZVP basis set was

used for Cr5 and TZVP was used for C, H, O, and Si atoms.6 All minima have zero

imaginary frequencies. The peripheral OH atoms of the cluster model were also held

constrained to model the geometric constraints of an extended silica network. The pe-

ripheral atom constraints were found by optimizing the bare Cr(II) cluster. The same

peripheral atom constraints were applied to structures I and II. Cartesian coordinates of

the optimized clusters are tabulated below Table S.

Table B.1: Spin contamination before (S2) and after annihilation (S2A) of highest spin
contaminant; energies in Hartrees

Species Energy S2 S2A

I -2229.395021 6.0107 6.0000
II -2308.613831 3.8158 3.7506
C3H7 -157.7869992 0.7544 0.7500
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B.2 Derivation of apparent activation energy

In this section, a formula for the apparent activation energy of a site, Ea(xi), is

derived. The apparent activation energy for site i is given by

Ea(xi) = −d ln r i
dβ

(B.1)

From eqs. 3.2 - 3.5, the turnover frequency (TOF) of a site, r i, can be expressed as

r i = k2K(xi)cA =
kBT

h
exp

[
−∆H‡ − T∆S‡

kBT

]
exp

[
−∆H(xi)− T∆S

kBT

]
cA (B.2)

Taking the natural logarithm of the eq. B.2, grouping temperature dependent terms, and

simplifying yields

ln r i = ln cA − lnh+
∆S +∆S‡

kB
− β∆H(xi, β)− β∆H‡ − ln β (B.3)

where β = 1/kBT . From eq. 3.6, ∆H(xi) is temperature dependent through kBT. Taking

the derivative of eq. B.3 gives

Ea(xi) =
d

dβ
β∆H(xi, β) + ∆H‡ + kBT (B.4)

Inserting eq. 3.6 into ∆H(xi) to evaluate the derivative gives

d

dβ
β∆H(xi, β) =

d

dβ
[βVAM∗(xi)− βVM∗ (xi) + 1]

= VAM∗(xi)− VM∗ (xi)

= ∆H(xi) + kBT

(B.5)
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Thus, Ea(xi) can be written as

Ea(xi) = ∆H(xi) + ∆H‡ + 2kBT (B.6)
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B.3 Propagation of kernel regression model uncertainty

in estimating ⟨Ea⟩k

Site-averaged kinetics are estimated by importance sampling the activation energy

distribution with Ea values obtained from the trained kernel regression model. Since

errors in the kernel regression model propagate through the ⟨Ea⟩k calculation (beyond

sampling error and error from ab initio calculations), the kernel regression model con-

tributes additional errors. Here, we show that the regression errors, even when unbiased,

will systematically bias the ⟨Ea⟩k estimate toward lower activation energy. We also show

how this bias can be quantified and corrected to obtain ⟨Ea⟩k estimates with only sam-

pling and ab initio calculation errors. Let the distribution of kernel regression activation

energies be ρ̂(Êa). rhoEaHat can be related to the Ea distribution, ρ(Ea), by

ρ̃(Êa) =

∫
dEaρ̃(Ea)P (Êa|Ea) (B.7)

Here, P (Êa|Ea) is the distribution of the model-predicted activation barriers around the

true activation barriers, and the integral is over the all possible Ea values. The site

averaged activation energy from ρ̂(Êa) is

⟨Êa⟩k =
∫
dÊaÊae

−βÊa ρ̃(Êa)∫
dÊae−βÊa ρ̃(Êa)

(B.8)

where β = 1/kBT , and T is the operating temperature of the catalyst. Combining eqs.

B.7 and B.8 yields

⟨Êa⟩k =
∫ ∫

dÊadEaÊae
−βÊaP (Êa|Ea)∫ ∫

dÊadEae−βÊaP (Êa|Ea)
(B.9)
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Section B.3 Propagation of kernel regression model uncertainty in estimating ⟨Ea⟩k

Assuming ρ̂(Êa) is normally distributed around ρ(Ea) with a standard deviation of σg

gives:

ρ̃(Êa) =

∫ +∞

−∞
dEaρ̃(Ea)

1√
2πσg

exp
(Êa − Ea)

2

2σ2
g

. (B.10)

Combining eqs. B.7 and B.10 and simplifying yields:

⟨Êa⟩k =

∫
dEaρ̃(Ea)

∫ +∞
−∞ dÊaÊa exp

[
(Êa−Ea)

2

2σ2
g

− βÊa

]
∫
dEaρ̃(Ea)

∫ +∞
−∞ dÊa exp

[
(Êa−Ea)

2

2σ2
g

− βÊa

] . (B.11)

The two integrals in eq. B.11 have closed-form solutions:

∫ +∞

−∞
dÊaÊa exp

[
(Êa − Ea)

2

2σ2
g

− βÊa

]
=

√
2πσg(Ea − βσg

2) exp

[
β2σg

2

2
− βEa

]
(B.12)

and

∫ +∞

−∞
dÊa exp

[
(Êa − Ea)

2

2σ2
g

− βÊa

]
=

√
2πσg exp

[
β2σg

2

2
− βEa

]
(B.13)

Introducing eqs. B.12 and B.13 into eq. B.11 and simplifying gives

⟨Êa⟩k =
∫
dEaρ̃(Ea)(Ea − βσg

2)e−βEa∫
dEaρ̃(Ea)e−βEa

(B.14)

From eq. B.8, it can be seen that

〈
Êa

〉
k
= ⟨Ea⟩k − βσg

2 (B.15)

Kernel regression errors (σg) can be used to estimate the error in the kernel regression

model predicted k-weighted activation barrier (⟨Ea⟩k) using eq. B.15. We can estimate

typical size of kernel regression errors using the training set error.
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B.4 Test set and training set statistics

The set of randomly sampled sites used to train the kernel regression model should

sufficiently sample the main support of ρ(Ea) to properly normalize ρ̂(Êa) for predicting

kinetic properties. Once the main support of ρ(Ea) is sufficiently sampled, additional

sites do not improve the normalization of ρ̂(Êa) and require additional, costly structure

optimizations. Figure B.1 shows the leave-one-out parity plot of the kernel regression

plot trained on 25, 50, 75, and 100 randomly sampled sites.

Figure B.1: Parity plot of kernel regression model trained on different initial pool sizes.
An initial pool of 50 randomly selected sites samples the main support of ρ(Ea).
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Section B.4 Test set and training set statistics

Errors in the kernel regression model should be smaller than the width of ρ(Ea) to

accurately importance sample ρ̂(Êa). Therefore, the initial pool should contain a set

of sites with diverse local environments and activation energies to effectively train the

kernel regression model. Residual distributions of all ca. 20,000 sites are shown for the

kernel regression model trained on 25, 50, 75, and 100 randomly sampled sites in Figure

B.2.

Figure B.2: Kernel regression model residual distribution for all ca. 20,000 sites with
different initial pool sizes. For all initial pool sizes, the standard error is within 1.0
kJ/mol which is ca. 40 times smaller than the range of ρ̂(Êa). The standard error
does not decrease for initial pool sizes greater than 50.
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Figure B.3: Distribution of residuals for iterations 0 (left) and 30 (right) of the impor-
tance learning algorithm.

B.5 Number of samples required to estimate Ẽa with

the same precision Ea

The Ea estimator from the importance learning algorithm (eq. 3.15) quickly converges

to the correct site averaged activation energy because sites are sampled with weights

ρ(x) exp[−βEa(x)]. Alternatively, the Ẽa estimator randomly samples sites with weights

ρ(x) and computes a ratio of exponential averages (eq. 3.14). The reweighted estimator

will require many more samples to converge to a precise estimate. In this section, the

relative variance for the Ẽa estimator is derived and the number of samples required to

estimate Ẽa with the same level of confidence as Ea is computed.

From eq. 3.14, Ẽa is computed by

Ẽa =
∑n

i=1
k(xi)Ea(xi)

/∑
i
k(xi)

=
k̃Ea

k̃

(B.16)
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Section B.5 Number of samples required to estimate Ẽa with the same precision Ea

Both k̃Ea and k̃ are random variables for a given sample size, so their ratio is also a

random variable. Assuming k̃ and k̃Ea are independent and uncorrelated, the sample

variance of Ẽa can be approximated by:

σ2
Ẽa

≈

(
∂Ẽa

∂k̃Ea

)2

σ2

k̃Ea
+

(
∂Ẽa

∂k̃

)2

σ2
k̃

(B.17)

Evaluating the derivatives and dividing by Ẽa yields the relative sample variance

σ2
Ẽa

Ẽ2
a

=
σ2

k̃Ea

(k̃Ea)
2 +

σ2
k̃

k̃2
(B.18)

The relative sample variance can be related to the relative variance by the central limit

theorem:7
σ2

k̃Ea

(k̃Ea)
2 +

σ2
k̃

k̃2
=

1

N

[
σ2
kEa

⟨kEa⟩2
+

σ2
k

⟨k⟩2

]
ρ(x)

≡
σ2
⟨Ea⟩k

⟨Ea⟩k
2

∣∣∣∣∣
ρ(x)

(B.19)

where N is the number of samples. The right most equality with subscript ρ(x) indicates

that B.19 estimates the relative variance in the Ea estimate as computed with a sample

from ρ(x). The number of random samples required to match the uncertainty of the

Ea estimator from the importance learning algorithm is found by equating the relative

uncertainties of the two estimators:

σ2
⟨Ea⟩k

⟨Ea⟩k
2

∣∣∣∣∣
k(x)ρ(x)

=
σ2
⟨Ea⟩k

⟨Ea⟩k
2

∣∣∣∣∣∣
ρ(x)

(B.20)

Inserting eq. B.19 in the right hand side of B.20 and solving for N yields

N =

[
σ2
⟨Ea⟩k

⟨Ea⟩k
2

]−1

k(x)ρ(x)

[
σ2
kEa

⟨kEa⟩2
+

σ2
k

⟨k⟩2

]
ρ(x)

(B.21)

The relative uncertainty in the Ea estimator is (0.75 kJ/mol) / (40.5 kJ/mol) = 1.85 %.
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Since ρ(Ea) can be precisely calculated for our simple model, σ2
kEa

/⟨kEa⟩2 and σ2
k/⟨k⟩2

can be computed exactly. Evaluating eq. B.21 gives

N = (0.0185)−2 × (28.1 + 41.2) ≈ 200, 000 (B.22)

Therefore, the reweighting estimator Ẽa requires about 200,000 sites for the same level of

confidence that the importance learning estimator Ea achieved with less than 100 sites.
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Appendix C

Supporting information for Grafting

TiCl4 onto amorphous silica: modeling

effects of silanol heterogeneity

C.1 Rate constants used in the population balance model

Figure C.1 shows the rate constants in the grafting pathway used in the population

balance model.
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Figure C.1: Rate constants in the grafting pathway.

All rate constants were computed using transition state theory (TST) as

ki(ϕ) =
kBT

h
(
kBT

P ◦ )v
−1exp[

∆G‡
i (ϕ)

kBT
] (C.1)

Here, kB is Boltzmann’s constant, h is Planck’s constant, ∆G‡
i is the free energy

barrier of the reaction, ϕ is the vicinal site dihedral angle, P ◦ is the pressure at which

∆G‡
i is computed, v is the order of reaction, and T is the temperature. k3 and k4 are

first order rate constants, while all the other rate constants are second order.

C.2 Free energies as a function of ϕ

Table C.1 shows the free energies of different species calculated on 5 different vicinal

sites.
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Section C.3 Polynomial fits for free energies as a function of the ϕ

Table C.1: Free energies of species relative to the bare site (I) for that dihedral angle.
Species/Dihedral (ϕ) 0◦ 20◦ 40◦ 56◦ 60◦

I_II TS 77.5 78.4 80.6 80.6 83.6
II -12.2 -14.9 -14.0 -12.9 -12.1
II_IV TS 67.3 68.3 77.0 96.1 111.0
III -21.8 -22.0 -22.9 -23.5 -21.4
III_IV TS* 83.6 87.1 - - -
IV -4.9 -2.4 7.9 27.5 41.4
II_III TS 75.5 76.6 77.9 77.1 74.6

*We were not able to find saddle points for III_IVTS for ϕ > 20◦. We expect the III_IVTS

barrier to monotonically increase with ϕ because of increased ring strain. And we anticipate that the

IV→III pathway will become unfavourable at large ϕ and the exact form of the fit function will not be

relevant. Hence, we use only two data points to fit a parabolic function.

C.3 Polynomial fits for free energies as a function of

the ϕ

Figure C.2 shows polynomial fits for free energies of the different species as a function

of ϕ. We only parametrize polynomial models for species whose free energies relative

to Ib are a strong function of ϕ. We fit a parabolic equation for III_IVTSb and a

polynomial with a free exponent for all other species (I_IITSb, II_IVTSb, and IVb).

207



Supporting information for Grafting TiCl4 onto amorphous silica: modeling effects of silanol
heterogeneity Chapter C

Figure C.2: Polynomial fits of species free energies relative to the bare site (I) as a
function of ϕ: a) I_IITSb b) II_IVTSb c) III_IVTSb d) IVb. The figure also
shows the fit polynomial equations and R2 values of the fit.

C.4 Discretized equation to calculate PHCl at each time

step in the simulation

PHCl =
σ

2

amkBT

V

∑
ψ ρtot(ψ)[

∫ ψ+w/2
ψ−w/2 θIIb(ψ, t) dψ]

w
∑

ψ ρtot(ψ)

+
σ

2

amkBT

V

∑
ψ ρtot(ψ)[2

∫ ψ+w/2
ψ−w/2 θIIIb(ψ, t) dψ + 2

∫ ψ+w/2
ψ−w/2 θIVb(ψ, t)]

w
∑

ψ ρtot(ψ)
.

(C.2)

Here, ϕ is the vicinal site dihedral angle, t is time, σ is the number density of surface
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Section C.4 Discretized equation to calculate PHCl at each time step in the simulation

silanols, a is the area per unit mass of silica, m is the mass of silica, and V is the

headspace volume of the reactor. θIIb, θIIIb, and θIVb are the fractions of IIb, IIIb, and

IVb, respectively. ρ(ψ) is the discrete density (non-normalized) of vicinal dihedrals and

w is the bin-width used to discretize ρ(ψ).
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Appendix D

Supporting information for Are

atomistic models of amorphous silica

reaslistic?

D.1 Ugliengo slabs

Figure D.1: Schematic outlining generation protocol of Ugliengo slabs.
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Section D.2 Comas-Vives slabs

Table D.1: Types of silanols in models with different silanol densities by Ugliengo
Slab(#silanols/nm2) Total Isolated Geminal Vicinal

A(7.2) 28 4 8 17
B(5.4) 20 6 3 9
C(4.5) 16 6 1 6
D(2.4) 8 5 1 2
E(1.5) 4 2 1 0

D.2 Comas-Vives slabs

Figure D.2: Schematic outlining generation protocol of Comas-Vives slabs.

Table D.2: Types of silanols in models with different silanol densities by Comas-Vives
Slab(#silanols/nm2) Total Isolated Geminal Vicinal

A(7.2) 33 1 11 23
B(5.9) 27 3 7 17
C(4.6) 21 2 3 13
D(3.3) 15 4 1 5
E(2.8) 13 4 0 5
F(2.4) 11 6 0 3
G(2.0) 9 5 0 2
H(1.5) 7 5 0 1
I(1.1) 5 5 0 0
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D.3 Tielens slabs

Figure D.3: Schematic outlining generation protocol of Tielens slabs.

Table D.3: Types of silanols in models with different silanol densities by Tielens
Slab(#silanols/nm2) Total Isolated Geminal Vicinal

A(5.8) 70 7 4 47
C(4.8) 58 9 1 35
D(3.6) 44 16 0 18
E(2.3) 28 13 0 8
F(1.7) 20 16 0 2
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