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Abstract 

Understanding speech in noisy environments requires more than good hearing. 

Everyday acoustic scenes are complex and dynamic – far more than most laboratory or 

clinical settings – thus they extract a heavy cognitive toll. For instance, when following a 

conversation, we must exert sustained effort while continually switching attention among 

different talkers. However, despite the tremendous importance of these mechanisms for 

developing hearing interventions, we know relatively little about them. The following 

research has three primary aims: to design, build, and test a new class of attentional 

prosthetic platform as a potential aid to those with hearing loss; to characterize brain 

signals (EEG) that predict and track the locus of selective spatial attention during 

conversational turn taking; and to demonstrate the functional relationships between 

selective attention and listening effort that robustly signal listener fatigue. 
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Chapter 1 

“Introduction” 
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Hearing and spoken language are of the utmost importance for communication, 

safety, and individual identity, yet there is much unknown as to how these aspects of 

human existence functionally work in the brain. Much in the same way hearing is a major 

part of the human experience, hearing loss is something that affects us all, either directly 

or indirectly. More than 500 million people worldwide are estimated to have hearing loss, 

with age related hearing loss being the largest percentage, affecting older adults across 

the globe (Li et al., 2018). While we have made great strides in treating many types of 

hearing loss, to continue advancing forward we must improve our understanding of how 

hearing, attentive listening, and speech processing functionally operate in the brain. Only 

then can we create assistive devices and technologies that truly treat the root elements of 

hearing loss without inflicting uncomfortable and even detrimental side effects in the 

process. 

Auditory prosthetic devices for treating hearing loss date back to the 17th century 

with the invention of the “ear trumpet”; however, the first modern auditory prosthetic, the 

hearing aid, was not invented until 1898 by Miller Reese Hutchison (Mills, 2011). Over 

the subsequent 60 years, hearing aids underwent many iterations. Moving from vacuum 

tubes and then onto transistors, a turning point happened in the 1960s when Bell 

Telephone Laboratories developed the first digital hearing aid (Levitt, 2018). Since that 

point, hearing aid technology has exponentially moved forward increasing in both 

processing power and amplification range, all while decreasing dramatically in size and 

cost. 
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While modern hearing prosthetic technology can dramatically improve a listener’s 

ability to hear the sound frequencies that they otherwise would not be able to, they also 

carry with them issues relating to comfortability and can readily decrease a listener’s 

ability to detect the locations of sound sources. This can be particularly detrimental in 

complex auditory scenes where the localization of sounds is critical for a person’s ability 

to separate and comprehend overlapping voices, also known as the “cocktail party 

problem” (Zion Golumbic et al., 2013; Kidd, 2017). 

Humans localize sound on the azimuth plane through two primary means, 

interaural level differences (ILDs) and interaural time delays (ITDs). Both techniques 

leverage the fact that, generally, humans are equipped with two independent ears, with 

each ear receiving a similar, albeit unique, representation of the external world. The 

differences between what each ear receives and processes are the source of the 

information used to determine sound locations (Tollin and Yin, 2009). ILDs form 

predominately due to the mass of the head impeding the direct path of the sound waves to 

the ear canal. A sound located more directly in the path of a given ear will appear louder 

to the brain, with the degrees of loudness differences “mapped” within the brain to an 

array of azimuth positions ranging from 0o center to 90o on either side of the head. ITDs 

form due to the spatial geometry of the head, and since the ears are separated in space, 

the distance from a source sound to either ear will be, by necessity, different for all angles 

other than 0o directly in front of or directly behind the head. Likewise, since the speed of 

sound is a constant in our normal Earth atmosphere, the time at which sound reaches each 
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ear will be slightly different depending on the travel distance. These two means are 

critical for sound source localization, and, unfortunately, traditional hearing aids can have 

detrimental effects on them both (Denk et al., 2019). 

Modern hearing aids function by recording the outside world with a small 

microphone (per ear), processing this recording to increase the sound level at the auditory 

frequencies for which the listener has hearing loss and playing this processed audio back 

to the listener with as little latency as possible while preserving the integrity of the 

binaural audio. While this may on the surface sound like a straightforward task, 

accomplishing these goals within the battery, power, and form factor limitations is 

incredibly complicated with very little margin for error. Likewise, failing these goals 

works against the acceptance of hearing prostheses in the hearing impaired community, 

with many finding them unsightly or embarrassing to wear, uncomfortable to listen to for 

long lengths of time, or outright detrimental to their day to day lives (Denk et al., 2019). 

Hearing aids first begin to distort the spatial cues of the auditory scene at the 

microphones themselves, where non-optimal positioning can have an effect on the 

integrity of the sound as it would have been heard though the listener’s own ears (Denk et 

al., 2018). Further, the hearing aid’s innate modifications to the sound level and the 

processing delays occurring at many stages of the processing pipeline greatly distort the 

binaural spatial cues necessary for azimuth sound localization, leading many wearers to 

find themselves unable to localize sounds nearly as precisely as their healthy hearing 

counterparts (Denk et al., 2019). In complex scenes, this can manifest in a “spatial 
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compression”, where voices from many different angles now appear to overlap one 

another, which, beyond the binaural cues being distorted, can also mask many of the 

monaural spectral cues necessary to attend onto specific voices and their contents 

(Marrone et al., 2008). 

A way to deal with the unfortunate deficits regarding the technology behind real-

time audio processing and amplification found in hearing prostheses is the use of a 

technology known as “auditory beamforming,” currently pioneered by Gerald Kidd, Jr. 

with his work on visually guided hearing aids (Kidd et al., 2013). Auditory beamforming 

is a technique whereby multiple microphones are precisely spatially arranged relative to 

one another, known as a microphone array, and through knowing these relative locations 

a device can amplify select angles of sound while suppressing all others. This creates a 

“spotlight” so-to-speak on the auditory scene that can be leveraged by hearing prosthetic 

technologies to better solve the “cocktail party problem”. With this implementation, 

much of the work in separating the spectral and spatial properties of competing talkers is 

placed on the prosthesis itself, making the task of auditory attention much easier on part 

of the listener. In a way, this auditory beamforming implementation is more of an 

“attentional prosthesis” than it is simply an auditory prosthesis. 

Our work seeks to advance that of Kidd et al. and the study of hearing loss and the 

“cocktail party problem” in three ways. First, we designed and implemented a prototype 

platform, written for Android and run-on mobile technology, that can do the processing 

necessary for complex auditory beamforming. We named this platform “Cochlearity” 
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(Anderson et al., 2018). Second, we aimed to better understand the attentional dynamics 

of the brain in multi-talker situations, and how the locus of attention can be decoded in 

the brain. We did this for both healthy hearing and hearing-impaired individuals by 

recording the neural signals using EEG, and by training predictive models based on 

where a listener is attending and where they are not attending. This research gives us a 

greater understanding of how these bio-signals can be leveraged for potentially even 

smarter attentional prostheses. And lastly, to explore the effects of prolonged, fatiguing 

auditory attentive situations on healthy hearing and hearing-impaired listeners, we 

designed and tested a novel paradigm requiring listeners to continuously switch their 

selective attention over an hour of stimulus presentation. The purpose is to fatigue a 

participant’s selective attentional faculties, which we can then track to better understand 

how this prolonged attention is affected over time. Likewise, while not a part of these 

studies, the last step in this research would have been to use the prolonged, fatiguing 

stimulus on participants while wearing the ‘Cochlearity’ attentional prosthetic platform to 

see how and if it is able to modulate the fatiguing effects on participants of the time span 

by offloading that task onto the device itself. 
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Chapter 2 

“Towards mobile gaze-directed beamforming: a novel  

neuro-technology for hearing loss” 
 

 

 

 

 

 

 

 

 

 

 

This work was performed in partnership with Markham Anderson and was 

originally published in the 2018 40th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC)  
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I. Abstract 

Contemporary hearing aids are markedly limited in their most important role: 

improving speech perception in dynamic “cocktail party” environments with multiple, 

competing talkers. Here we describe an open-source, mobile assistive hearing platform 

entitled “Cochlearity” which uses eye gaze to guide an acoustic beamformer, so a listener 

will hear best wherever they look. Cochlearity runs on Android and its eight-channel 

microphone array can be worn comfortably on the head, e.g., mounted on eyeglasses. In 

this preliminary report, we examine the efficacy of both a static (delay-and-sum) and an 

adaptive (MVDR) beamformer in the task of separating an “attended” voice from an 

“unattended” voice in a two-talker scenario. We show that the different beamformers can 

complement each other to improve target speech SNR (signal to noise ratio), across the 

range of speech power, with tolerably low latency. 

II. Introduction 

Everyday auditory environments are cluttered, noisy, and distracting. This presents 

a complex perceptual and computational challenge known as the “cocktail party”: how to 

extract relevant acoustic information while filtering out the background noise. Individuals 

with healthy hearing tend to perform well in typical multi-talker environments, as our 

brains are adept at discriminating sound source locations and identities . However, while 

hearing aids can significantly boost the detection and comprehension of sounds for those 

with hearing loss, particularly in quiet backgrounds, and can even improve “downstream” 
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effects on auditory cognitive function (Acar et al., 2011), they do not adequately address 

the issue of understanding speech in noise. 

Modern digital hearing aids often use multiple features to improve perception in 

loud, crowded environments, such as on-board directional microphone systems and 

adaptive speech enhancement or noise reduction algorithms. But even with these 

sophisticated features, aids cannot effectively “listen” to what the user wants; they often 

fail in real situations, amplifying noise as much as the desired information. This 

shortcoming leads to listening confusion, poor real-world speech comprehension, and low 

rates of use for assistive devices (Blazer et al., 2016) . 

We sought to address this issue by creating a system that can be automatically 

guided by a user’s intentions — in this case their eye gaze direction — and thereby serve 

as the basis for an intelligent hearing aid (Favre-Felix et al., 2017). 

Our approach builds on the seminal work of Gerald Kidd et al., Hart, and Marzetta 

(Marzetta, 2008; Hart et al., 2009; Kidd et al., 2013). Like Kidd et al., we use gaze-

directed beamforming, a method of highly directional sound amplification and 

attenuation, to isolate sounds within a “beam” of auditory space. And like Kidd et al., the 

direction of the beam will be steered through real-time gaze tracking, as an analog to 

listening intention. The primary differing factors between Kidd’s system and our 

“Cochlearity” platform are three-fold. First, Cochlearity is implemented on widely 

available mobile device hardware using Android as opposed to on workstation-class 

desktop hardware. Second, this first version of Cochlearity will be entirely open-source 
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and available under a standard, permissive license to encourage broader adoption and 

further improvements. And finally, we make use of both passive and adaptive 

beamforming algorithms, as opposed to just passive. In this report, we evaluate whether 

combining passive and active beamforming algorithms in parallel might improve 

performance substantially with little computational cost. 

III. Design 

Unlike a more traditional PC-based implementation of acoustic beamforming, we 

power Cochlearity (the software application) with a Nexus 9 tablet running Android 

(6.x). We use an array of eight microphones, but Android OS has lacked support for input 

 

Figure 2.1. “Cochlearity”: a mobile, gaze-directed beamforming platform for assistive listening. 
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of more than two audio channels, and compatible tablets tend to furnish only a single 

(occasionally dual) microphone. Therefore, we implemented our own software for I/O 

and augmented our hardware with a Tascam US-16x08 audio recorder, which serves as 

our multi-channel Analog to Digital Converter (ADC), connected to the tablet via USB. 

Similarly, for gaze input we use a Tobii Rex eye tracker, connected to the tablet via USB 

and running the Tobii Gaze Android Software and driver (Figure 2.1). 

IV. Beamforming 

The premise of acoustic beamforming is to combine signals from an array of 

multiple (in our case eight) precisely spaced microphones to emphasize sound energy 

from a certain direction and suppress it from all others. A passive beamformer uses only 

the array geometry and speed of sound to combine the signals mathematically; as a result, 

it will tend to be simple with low latency. An adaptive beamformer additionally uses 

statistical learning about noise sources in the environment, which can improve 

performance but may be practically limited in real-time applications by the additional 

computational cost. In both cases, the beamformer outputs a single, spatially sensitive 

audio signal that contains proportionally more information from one region of space than 

from any others (Kidd et al., 2015). Cochlearity currently implements two distinct 

beamforming algorithms, ‘delay-and-sum’ and ‘Minimum Variance Distortionless 

Response’ (MVDR). 

Cochlearity first buffers the 8-channel USB audio inputs into 1024 sample (21 

millisecond) frames, which are then passed on to the filtering or beamforming operations. 
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Shorter frames would have enabled lower latency but would diminish granularity for the 

discrete Fourier transform used by our adaptive beamformer and would eventually have 

presented an I/O bottleneck. Thus, the samples being processed are always necessarily 

(at-least) -21 milliseconds relative to real-time, though with processing and I/O 

operations this latency is considerably longer, detailed later. 

A. Delay-and-sum Beamforming (D&S) 

Delay-and-sum beamforming is a passive algorithm that leverages the propagation 

time of sound, which manifests as signal delays from one microphone to the next. This 

delay varies with the angle of the target audio relative to the microphone array. By 

offsetting the signal in each channel by the delay for a given “steering” angle and then 

summing the resulting signals across channels, it delivers a signal that contains a 

constructively reinforced component coming from the desired angle, with all other angles 

destructively attenuated (Vu et al., 2010). 

B. Minimum Variance Distortionless Response (MVDR) Beamforming 

The MVDR beamformer is an adaptive algorithm, as opposed to the delay-and-

sum beamformer. In addition to compensating for the time delays due to steering angle, it 

uses an adaptive filter to null interference from other angles (Capon, 1969) . Time and 

frequency are divided into bins of fixed size, and for each time-frequency bin, an NxN 

noise correlation matrix is computed (N being the number of microphones). From the 

noise correlation matrices, a linear transformation is computed to minimize the noise 
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(anything other than the desired signal) on current and future inputs, with the constraint 

being that the signal originating on the target angle be preserved (Habets et al., 2010) . 

To reduce computational expense, our implementation of the MVDR beamformer 

used only the two end microphones, bringing the noise correlation matrices down to a 

2x2 dimension instead of 8x8. The delay-and-sum beamformer, however, used all eight 

microphones to improve the resolution of its constructive/destructive interference 

operation, with scarcely higher cost than a 2-microphone delay-and-sum beamformer. 

When used in isolation, each beamforming algorithm is given the full audio bandwidth as 

input. 

V. Methods 

All testing was conducted in a sound treated room with dimensions of 3.5x2.5 

meters. Eight Audio-Technica AT8537 phantom powered microphones with an 80Hz 

high-pass pre-amp filter were mounted linearly upon a set of eyeglasses with 1.86cm 

spacing and a total length of 13cm. The glasses were set upon on an anatomically 

accurate dummy head positioned facing forward (defined as 0 o) on a table, with two 

Tannoy Precision 6 speakers positioned 140cm away at -50o and +50o pointing directly at 

the array. Speaker outputs were balanced using a digital sound level meter to within 1 dB 

SPL using Gaussian white noise. 

During each performance test, the beamformer steering direction was manually set 

by the researcher. Two audio tracks were played simultaneously, each through one of the 
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speakers at a comfortably loud listening level. The speaker positioned at -50o played 

“20,000 Leagues Under the Sea” while the speaker at +50o played “Journey to the Center 

of the Earth”, both by author Jules Verne. Both stories were read by the same male reader 

at a constant pacing and were equalized for power, but the voice at -50o was pitch-shifted 

up by 7%, and the voice at +50o was pitch shifted-down by 7% using Adobe Audition. 

For all recordings, beamformer output was captured directly from the tablet 

through the headphone jack, which was then passed into a Sound Devices X-3 headphone 

amplifier, amplifying the audio before it was sent to the USB audio capture card, an 

Edirol (Roland) UA-25, and then onto the PC using Audacity. 

The recordings were made in sets of two for each beamforming paradigm: beam 

steered to -50° azimuth (left), and +50° azimuth (right). Lastly, two reference recordings 

were made with all beamformer processing turned off, and the speech was played 

separately out of the -50° speaker or the +50°. These references were necessary as a point 

of comparison for the recordings, as they captured the same signal filtering imposed by 

the room, speaker placement, and microphones, as well as the generic I/O overhead in 

Android. Thus, any differences between them and the beamformed recordings should be 

due entirely to the processing imposed by Cochlearity’s beamforming. 

To compare our two different beamformers, we use spectral coherence as a 

measure of the relatedness between our beamformed audio recordings and the reference 

recordings. Each recording was compared against the left or right talker reference for 

spectral coherence. Specifically, in each beamforming paradigm: 
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“Attended Voice” is the congruent coherence between the left speaker reference 

recording and the beamformed recording when steered to the left, and coherence for the 

right speaker reference recording with the beamformed recording when steered to the 

right, averaged together 

“Unattended Voice” is the incongruent coherence between the left speaker 

reference recording and the right-steered beamformed recording, and coherence for the 

right speaker reference recording to the left-steered, beamformed recording, averaged 

together. 

Likewise, whereas coherence shows beamformer performance as a function of 

frequency, overall performance can be summarized as SNR (dB) between attended and 

unattended voices. We calculated SNR as 10*log10 of the average ratio in coherence 

between the two conditions, weighted by the speech power across frequencies. 

A. Coherence Difference Index (CDI) and Latency 

To quantify the effectiveness of a beamformer, we computed a “Coherence 

Difference Index (CDI)” for each paradigm (Table 2.1). We calculated this by taking the 

difference between the “attended” and “unattended” coherence for a given beamformer, 

and then performed a weighted average between 0 and 5000Hz (which captures most of 

the speech power), weighted by the spectral density estimate of both voices combined 

(using MATLAB’s pwelch function). We then multiplied this number by a factor of 100. 

This provided a rough global approximation of how well each paradigm emphasized the 

voice from the steering direction and suppressed the interfering voice. 
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A “CDI Efficiency” was determined as the CDI per millisecond of latency (CDI ÷ 

Latency) (Table 2.1). 

Latency was computed using a series of clicks played through the speakers and 

recorded both in a reference microphone (not connected to Cochlearity) and through 

Cochlearity for each beamforming paradigm (Table 2.1). 

B. Spatial Analysis 

To characterize the spatial effectiveness of our two beamformers, we performed an 

analysis in which we placed a speaker at 0 o and kept the beamformer steered to this 

angle. The story played by this speaker, “20,000 Leagues Under the Sea”, is referred to as 

the attended voice. Next, we moved a second speaker playing a masking voice, “Journey 

to the Center of the Earth”, in 10o increments from -50o to +50o, recording 1 minute of 

speech at each location. We then assessed the performance of the beamformer at each 

masking angle relative to the 0o fixation using the CDI as our metric, illustrating the 

effectiveness of the beamformer in extracting the attended voice from the masking voice. 

Lastly, while real-time gaze tracking and virtual 3-d audio rendering using head-

related transfer functions or HRTFs are integral and fully realized parts of Cochlearity, 

the data reported in this study are only meant to characterize the effectiveness of 

Cochlearity’s beamforming implementation, and as such there is no gaze tracking 

component to the tests. A future study will explore the effects of how Cochlearity 

performs with human subjects. 
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VI. Results 

The delay-and-sum beamformer did not perform well at frequencies <300Hz, with 

little difference between the attended voice and the unattended voice coherence. 

However, at frequencies above 300Hz, and most notably >1000Hz the beamformer was 

able to effectively separate the attended from the unattended voices. The low-frequency 

performance reflects, in part, the relatively small array size and confirms the literature 

that delay-and-sum beamforming works best at moderate to higher frequencies (Kidd et 

al., 2013) (Figure 2.2). 

The MVDR beamformer performed well, most notably at frequencies <2500Hz. 

Conversely, considering the performance of delay-and-sum, the MVDR beamformer 

performed the worst at middle to higher frequencies, leading to little or no improvement 

in signal coherence between the attended and unattended voices (Figure 2.2). Thus, the 

 

Figure 2.2. Delay-and-Sum and MVDR beamformer performance (red shaded frequencies indicate poor performance). 

Decibel (dB) labels indicate average SNR between attended and unattended voices. 
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two beamformers complement one another in performing across the crucial frequency 

range where speech has high power. 

Spatially, both beamformers performed well, showing a clear trend in increasing 

CDI values the farther away the masking voice was from 0o. This is expected given that 

maximal spatial overlap between attended and unattended voices occurs at 0o. Regarding 

the magnitude of the CDI, at 0o both beamformers were equivalent, each with a CDI of 

~0, but within +/-10-20o the MVDR beamformer outpaced the delay-and-sum, ending at -

50o and +50o with more than double the CDI of the delay-and-sum (Figure 2.3). This 

indicates that the MVDR has better performance at much smaller masking angles than 

that of the delay-and-sum. Nevertheless, Table 2.1 shows that at 100o of separation 

between the attended and masking voice there is near equal CDI. 

 D&S MVDR 

Latency (ms) 127.60ms 145.24ms 

Coherence Difference Index 
(CDI) 

13.71 13.64 

CDI Efficiency (CDI/ms) 0.11 0.09 

Table 2.1. Latency, CDI, and CDI Efficiency at 100o separation of attended voice and masking voice 
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The latency of our entire system (the time from sound production to playback) 

when running the two beamformers differed by approximately 17.6 milliseconds, with 

the delay-and-sum taking a total of 127.60 and the MVDR taking a total of 145.24 

milliseconds. We should note that part of this latency is due to the necessary framing or 

buffering of the real-time audio (presently 21ms frame size); however, part of it is due to 

basic device I/O (input and output) operations on Android. This is encouraging given that 

great strides have been made in the time since Android 6.x was released to decrease audio 

pass-through latency. Even in this preliminary form, the overall output latency of our 

system still falls into a range that would allow sound to be naturally combined with visual 

cues such as mouth movements as audiovisual integration supports a synchrony window 

up to ~200ms (van Wassenhove et al., 2007) . Since delay-and-sum had somewhat lower 

latency, as expected, but similar CDI performance as compared with MVDR (13.71 v 

13.64 respectively), delay-and-sum beamformer had a CDI Efficiency marginally better 

 

Figure 2.3. Spatial release from masking: how well each beamformer can reject interference. 
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than the MVDR. Therefore, by restricting the MVDR to two channels, performance is 

preserved – in a complementary frequency range – and latency is reduced, to be 

comparable to the simpler delay-and-sum algorithm. 

VII. Conclusion 

The results from this project show the potential for wearable, gaze-directed 

beamforming to improve speech perception in realistic environments. To our knowledge 

this is the first time multiple beamformers have been implemented successfully on a 

mobile, assistive listening platform, to capture the range of important speech frequencies 

with reasonable latency and computational cost. 

Given that the MVDR beamformer worked most effectively on lower frequencies 

and the Delay-and-sum worked best on high frequencies, our current work aims to filter 

the input to restrict each algorithm to its best range and combine them to yield improved 

results. Future work will also demonstrate how Cochlearity performs with its real-time 

eye tracking and virtual 3-D rendered audio, with both hearing impaired and healthy 

listeners in a laboratory setting as well as in real-life, social scenarios. 
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Chapter 3 

“Attentional modulation of neural speech-envelope tracking 

in hearing impaired listeners” 
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I. Introduction 

As far as we know, humans are unique among mammals in that we have the 

capacity for complex, language-based communication. The neurophysiological processes 

by which we internally generate speech output and process incoming speech has been a 

huge topic of intrigue for centuries, and, most recently, one question is how we cope and 

thrive in environments with many competing sound sources. This phenomenon is known 

colloquially as the “cocktail party problem” (Cherry, 1953). When presented with 

concurrent sound stimuli, humans possess the capacity to separate sound sources into 

discrete units, each of which can be processed independently (Ding and Simon, 2012). 

Practically, this means that humans can focus entirely on a single sound object, while 

virtually attenuating other sources of sound. Thus, a healthy hearing individual can block 

out distractor speech, while maximizing intelligibility on a desired speech stream 

(Cherry, 1953) 

The same cannot necessarily be said for hearing impaired individuals. Much of the 

information as to the causes and neural manifestations of hearing impairment have yet to 

be discovered due to the extreme difficulty in measuring low and middle level auditory 

structures. Nevertheless, behavioral evidence has shown a decrease in the capacity for 

hearing impaired individuals to parse the “cocktail party” problem, generally expressed 

alongside a global loss in speech and sound intelligibility (Shinn-Cunningham and Best, 

2008a), which leads to an interesting question: Is the higher-level “cocktail party” deficit 

in hearing due to low level sound transduction? - i.e. you cannot accurately parse sound 
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streams that you are unable to hear reliably to begin with – Or, is it due to higher level 

cognitive deficits that bar functionally solving the “cocktail party” problem in ways not 

explained through a basic loss in audibility? 

Exploring how humans process speech, multiple studies have shown that there is 

cortical entrainment to the envelope of incoming speech. Further, they show that it is 

possible to use a reverse direction mapping approach (i.e., recreating the incoming 

stimulus based on recorded neural data) to recover a proportion of the speech envelope 

(Ding and Simon, 2012; Mesgarani and Chang, 2012; O’Sullivan et al., 2015a). Further, 

in multi-talker environments, MEG, EEG, and ECoG studies have explored how cortical 

entrainment of the speech envelope is affected when there are multiple competing speech 

streams. They have found that while you can find components of multiple streams in the 

neural data, the attended speech stream is preferentially encoded when compared to the 

unattended speech stream, measured based upon the degree to which one can recreate 

each of the original stimulus envelopes (Ding and Simon, 2012; Mesgarani and Chang, 

2012; O’Sullivan et al., 2015a). Thus, the degree of stimulus envelope reconstruction is 

used as an indirect measure for the amount of neural processing dedicated to a specific 

stimulus. 

In 2014, O’Sullivan and Lalor were able to show that with the envelope re-

creation technique and with only a minute of EEG data it is possible to predict 

retroactively and reliably which of two competing talkers was the target of attention. 

With our study we explored how well we could recreate O’Sullivan’s work about healthy 
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hearing individuals, both in prediction accuracy and the magnitude of correlation values 

(O’Sullivan et al., 2015), using a similar paradigm but with distinctly different stimuli. 

Additionally, the novel aspect of this project was to see how translatable this technique is 

with hearing impaired individuals, and, if successful, quantifying which ways the 

hearing-impaired sample differs from our healthy hearing group. 

II. Methods 

Six healthy hearing subjects (2 males; 4 females; mean age = 49.5) and 4 hearing 

impaired subjects (1 male; 3 females; mean age = 64.25) were each asked to perform a 

dichotic listening task in which they were told to attend either to a speaker in their left ear 

or to a speaker in their right ear. Hearing impaired subjects each were each characterized 

as having bilateral mild sloping to profound hearing loss. The subjects were told to attend 

either fully left for the duration of the study or fully right (in equal proportions in the 

healthy and hearing-impaired groups) and were not required to switch their attention at 

all. Each subject was presented with two male voices simultaneously (one per ear), each 

being a local radio personality reading a series of published short stories (3 stores in 

total). Further, each participant’s trials only differed from the other’s trials in the order 

the stories were presented (pseudo-randomly shuffled) and to which speaker (left or right) 

they were asked to attend. Each subject heard the exact same set of spoken stories, and 

the spoken stories perceived volumes were all normalized between ears such that each 

speech stream was equal in volume to the other. Likewise, the stories had gain evenly 
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applied to set the audibility to a “loud but not uncomfortable” level, qualitatively reported 

by the subjects on a ten-point scale prior to the experiment. 

The spoken recordings had their volumes balanced against one another previously 

through a series of qualitative assessments from many listeners, and any gap in sound 

longer than 0.5 seconds were reduced to 0.5 seconds to reduce any chance of the 

unattended stream capturing attention inadvertently. Each participant listened to a total of 

25 minutes of story, which consisted of 3 separate stories, with each being broken up into 

~1 min segments (25 total segments). Each segment was chosen in a logical stopping 

point in the context of the story, therefore no story segment ended in the middle of a word 

or phrase. Thus, each trial (n=25) had two stimuli speech tracks, one that will be referred 

to as the “attended stimuli”, and the other being the “unattended stimuli”. Likewise, after 

each ~1 min segment the subjects were asked to answer two semantic questions each 

being a two-choice question inquiring as to a fact in the story, i.e. “The woman’s dress 

was: A) red or B) purple?” Accuracy in answering the questions and the time it took to 

respond to the questions were both recorded and quantified. 

The voices were played to our participants in a sound treated and semi-electrically 

shielded chamber through Etymotic ER-3a scientific grade earphones. This choice of 

sound delivery was desirable due to its ability to reject electrical noise that might corrupt 

the EEG recording. It accomplishes this due to keeping the electrical and magnetic 

components comparatively farther away from the head than conventional magnetic 

headphone or earbuds, as it uses pneumatic tubes to deliver the sound pressure changes 
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rather than having the magnetic drivers immediately next to or in the ear canal. In this 

regard, we differed from the O’Sullivan study, as their data was collected using 

Sennheiser HD650 over-the-ear headphones. 

EEG was recorded from each subject across 64 channels at a sampling frequency 

of 10khz. CZ was used as the reference electrode and was then interpolated later during 

the analysis phase of the study. All recording was done on Brain Products hardware. 

Data analysis (detailed below) was performed with an end goal of recreating an 

“estimated” speech envelope that is correlated to the original envelope to some degree 

(generally with Pearson correlation values of 0.03-0.09). Using linear regression (detailed 

below), one can create two models for each trial, an attended model and unattended 

model, each of which can attempt to predict the attended envelope and the unattended 

envelope. The efficacy at which the models can create their corresponding envelopes, as 

opposed to the opposite envelope, is what is used as the metric for prediction of where 

the subject’s attention was for that trial (further detailed below). 

III. Data Analysis 

A. Preprocessing 

 The EEG data was band-pass filtered and down sampled to 0.5-40hz and 128hz 

respectively. The EEG data was analyzed using MNE, any qualitatively chosen “bad” 

channels (due to excessive noise or drift) were removed and interpolated; likewise, the 

CZ electrode needing interpolation, as it was used as the reference electrode for all other 
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channels and thus does not have its own native channel in the data. Further, using 

independent component analysis (ICA) eye blink components were isolated and removed. 

Lastly, the EEG data was broken into ~1min segments corresponding precisely to their 

~1min story segments, which was determined to <1ms worth of accuracy by inscribing 

the EEG data with start and stop triggers that were time locked to the stimulus. 

For generating the models, a linear regression toolbox written by Lalor and 

colleagues “mTRF” version 1.3 was used, and was the same toolbox used in the 

O’Sullivan study (https://sourceforge.net/projects/aespa/). The speech stimuli were 

Hilbert transformed and low pass filtered below 15hz after applying an antialiasing filter 

to compute the amplitude envelope; likewise, the EEG was low pass filtered below 15hz. 

This is slightly different that O’Sullivan did — they band pass filtered his EEG from 2-

8hz and low passed his envelope at 8hz, whereas we low passed both at 15hz. We did this 

because we found that our prediction accuracy was significantly lower when we did not 

include the 0.5-2hz range in our regression, and Di Liberto and Lalor found that there 

were significant contributions to the decoder accuracy for frequencies up to 15hz (Di 

Liberto et al., 2015). 

B. Linear Regression 

There are two types of models that can be trained in this type of paradigm, a 

“forward model”, i.e., recreating an estimate of neural data from a given stimulus, or a 

“backward model”, i.e., recreating an estimate stimulus from a given neural data. For this 

study, we used backward models to obtain the information necessary for our prediction. 

https://sourceforge.net/projects/aespa/
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We trained our system to recognize the relationship between neural data (recorded during 

dichotic listening) and the attended speech envelope component that evoked said 

response; we then repeated these steps for that same neural data, but this time understand 

the relationship with the unattended speech envelope component. We trained the linear 

regressor on both attended and unattended speech envelopes because, in theory, both 

representations ‘should’ be present in the neural data, though with differing efficacy. 

Once the system was trained, we then were able reconstruct a “best estimate” of each 

speech envelope (both the attended and unattended) with any new dichotic neural data 

presented (detailed extensively below). To assess the accuracy of these predictions, a 

Pearson correlation was used to compare the estimated envelop as calculated by our 

model to the real speech envelope (reported as a Pearson correlation (r) value). The 

higher the Pearson correlation (ranging between -1 (anti-correlated) to 1 (perfectly 

correlated)) the “better” our system is at reconstructing the original stimulus envelope. 

To maximize the amount of data over which we could regress, we used a “leave-

one-out” paradigm on our 25 data sets for specific ranges of “lags” (see Lag Analysis). 

Using this paradigm, given that we had recorded 25 trials for each of our subjects, one at 

a time we stepped through each of the 25 trials, choosing to leave that nth trial as our 

“test” data set as opposed to using it to train our model. Further, with each step we used 

each of the other 24 data sets to train two decoders, an “attended decoder” and an 

“unattended decoder”, the 24 attended decoders and 24 unattended decoders were then 

averaged to give two robust models that could well predict the left out “test” data set 
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(O’Sullivan et al., 2015). Thus, after 25 “leave-one-out” steps we had created 2x25 

models, each attended and unattended pair differing only regarding which trial was 

excluded. This allowed us to always test our models on neural data that was not used in 

the regression and gave us models that were trained on both the attended speech and the 

unattended speech. 

The mTRF toolbox was used to perform our linear regressions, over a specified 

window of time, to generate two backward models for each of our trials (an attended 

model and an unattended model), i.e., each subject has 2x25 models. For our backward 

models, each model consisted of a two-dimensional matrix, with rows corresponding to 

individual EEG channels, and columns corresponding to the number of “lags” (see Lag 

Analysis) used in the regression. Generally, the size of these matrices was 64x33 (for a 0-

250ms regression window) or 64x77 (for a -100-500ms regression window), aside from 

the single lag analysis that was performed where the dimensions were 64x1 (explained 

later).  

C. Prediction 

In general, the concept behind this prediction technique is predicated on the 

hypothesis that there should be more neural activity devoted to processing the attended 

speech stream than there is in processing the unattended speech stream. And by 

extension, as it has been shown in previous literature that neural activity measured 

through EEG has entrainment to the envelope of speech stimulus (Aiken and Picton, 

2008; Di Liberto et al., 2015, 2015), if this logic is valid, there should be a more 
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significant EEG component to the envelope of our attended speech than to that of the 

unattended speech, though components of both should be present in some quantity. 

The stimulus reconstruction technique is an indirect measure in how to determine 

the amount of stimulus-related neural activity. Further, determining the accuracy of 

stimulus reconstructions with Pearson (r) correlation values gives a convenient summary 

of the amount of stimulus-related activity in a complex, multi-dimensional neural data 

set. The mTRF toolbox was used again to apply the previously trained models to predict 

an estimate of both the attended speech envelope and the unattended speech envelope, 

keeping in mind to never use a model to predict the same data it was trained on. Each 

predicted envelope was then Pearson correlated with the ‘real’ counterpart envelope (i.e., 

estimated attended envelope to the attended envelope, and the estimated unattended 

envelope to the unattended envelope). Further, each estimated envelope was Pearson 

correlated against its mismatch (i.e., estimated attended envelope to the unattended 

envelope, and the estimated unattended envelope to the attended envelope) to see how 

much correlation could be attributed to the congruent model, an analysis that was 

necessary for our prediction.  

If the above reasoning that there is proportionally greater neural activity (and 

therefore speech envelope entrainment) in processing an attended speech stream is true, it 

leads to the simple logic in which the attended model should be able to predict a greater 

proportion of the attended envelope over the unattended envelope; a successful prediction 

being if rattended > runattended - while the unattended model should be able to predict a greater 
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proportion of the unattended envelope over the attended envelope; a successful prediction 

being if runattended > rattended. Comparing the Pearson correlations for the two stimuli gives a 

convenient way to compare the amount of stimulus-evoked neural activity due to each 

stimulus, and subsequently the focus of attention. Further, by doing this analysis twice 

with both attended models and unattended models we are given two measures towards 

the focus of attention - the attended model predicts where the subject was attending, and 

the unattended model predicts where the subject was not attending. 

 

Figure 3.1. Credits to J. O’Sullivan et al., 2014 for the methodology used in this study. 
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D. Lag Analysis 

Each regression was performed over a series of “lags”, a lag being a discrete unit 

of time from stimulus onset by which the EEG data is shifted to account for the 

transduction time of the signal through hierarchical processing centers in the brain. It 

takes time for cortex to receive and process input from the ear, thus at time T=0 it is 

causally improbable that any cortex activity was due in part to the stimulus. Now, if we 

were recording electrophysiology from a single level of cortex, you might find the 

correlation power as a function of lag distributed along a Gaussian curve, i.e., at some 

level of cortex there is an optimal “lag” that corresponds to the exact travel time of 

information from the ear to that level of cortex. However, as EEG records across many 

levels of cortex simultaneously, there will be a range of lag values that would need to 

feed into the regressor for maximal stimulus reconstruction power, as each level of cortex 

will have its own optimal lag. Thus, O’Sullivan determined his lag window to be from 

0ms-250ms, which we initially used as well, but later found cause to extend the window 

out further in the case of hearing-impaired individuals. 
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Further, as a follow-up, we did a “single lag” analysis that regressed over a single 

“lag” worth of data (at 128hz sample rate, 1 lag = 7.8125ms) to obtain a time course 

measurement of which lag values contributed the most towards the magnitude of our 

Pearson (r) values. For this we generated 77 models for each trial of data from -100ms-

500ms (600ms/7.8125ms=77 individual lags). As a note, we extended our lag window 

further back than t=0ms (to -100ms) to garner an assessment of how much correlation is 

due in part to the directly causal stimulus, and how much is due to generalized traits in 

the stimuli that could not be directly causally related. Thus, our total number of models 

generated from this analysis was 77 lag models * 25 trials * 6 subjects(healthy) or 4 

subjects (hearing impaired) * 2 (both attended and unattended models) = 23100 

individual models(healthy) and 15400 models (hearing impaired). Individual time lag 

correlations were averaged across trials and subjects. 

 

Figure 3.2. Example illustrating the lag offset between the auditory envelope and the resulting EEG signal. 
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E. Lag Window  

Regressions were processed twice, once with an overall lag window from 0-

250ms, which is what is commonly used in the literature, and then later with a lag 

window from -100-500ms. The reason for this larger lag window (which exponentially 

increases the processing time necessary to calculate backward models) was based in the 

results from the above “single lag” analysis. 

IV. Results 

A. Behavior 

Both healthy and hearing-impaired subjects did equally well in answering the 

questions from the task and had very similar times it took to answer the questions. The 

healthy hearing subjects answered on average 86% percent of the questions correctly, 

with hearing impaired subjects answering 83% correctly. Likewise, the healthy hearing 

subjects on average took 5.5s to answer a question, whereas hearing impaired took 6.5s 

(Figure 3.3). In general, the hearing impaired did slightly worse in performance, but it is 

within the margin of error, thus we are treating both groups as performing equally. 

Further, we discarded any questions in which the subject took longer or shorter than two 

standard deviations from their mean time to answer a question, as they either never chose 

and the questions timed out, or they accidentally pressed multiple key presses 

simultaneously and skipped over a question without first reading it. 
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B. Prediction Accuracy  

Prediction accuracies were looked at both 0-250ms lag windows and -100-500ms 

lag windows, the first range being what is commonly found in literature and the latter 

being a range we felt it necessary to explore based on the results in the single lag 

analysis.  

When regressing from 0-250ms, for the healthy subjects, the attended decoder had 

an average prediction accuracy of 77%, while the unattended decoder had an average 

prediction accuracy of 60% (Figure 3.4). For the hearing-impaired subjects, the attended 

decoder had a mean accuracy of 65% and the unattended decoder had a mean accuracy of 

64% (Figure 3.5).  

 

Figure 3.3. Illustration of the behavioral performance of both groups of subjects in the dichotic dual-speaker attention task. 

Healthy hearing (n=6) and hearing impaired (n=4) group performances in question answering correctness is illustrated in the 

top figure, and the time to keying in an answer to the question is illustrated in the bottom. Questions were asked after ~1min 

of dichotic listening to a single, pre-determined speaker, and they consisted of two, two-choice semantic questions. 
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Figure 3.4. Data from the healthy hearing subject group with a regression over a 0-250ms lag window. Top Left: A scatter 

plot depicting the Pearson correlation coefficients for the envelope generated by the attended decoder, and how that envelope 

correlates to the attended envelope (x axis) and the unattended envelope (y axis). Top Right: A scatter plot depicting the 

Pearson correlation coefficients for the envelope generated by the unattended decoder, and how that envelope correlates to 

the attended envelope (x axis) and the unattended envelope (y axis). All trials plotted across subjects (25x6). On both top 

graphs, the lines represent the decision boundary between a correct prediction and an incorrect prediction, and the star 

indicates the side of a successful prediction. Bottom: The attended (solid) and unattended (dashed) prediction accuracies 

across subjects(n=6). 
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Figure 3.5. Data from the hearing-impaired subject group with a regression over a 0-250ms lag window. Top Left: A scatter 

plot depicting the Pearson correlation coefficients for the envelope generated by the attended decoder, and how that envelope 

correlates to the attended envelope (x axis) and the unattended envelope (y axis). Top Right: A scatter plot depicting the 

Pearson correlation coefficients for the envelope generated by the unattended decoder, and how that envelope correlates to 

the attended envelope (x axis) and the unattended envelope (y axis). All trials plotted across subjects (25x4). On both top 

graphs, the lines represent the decision boundary between a correct prediction and an incorrect prediction, and the star 

indicates the side of a successful prediction. Bottom: The attended (solid) and unattended (dashed) prediction accuracies 

across subjects (n=4). 
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However, when regressing from -100-500ms, the healthy hearing attended decoder 

accuracy increased to 80% (+3%) and the unattended decoder drops to 57% (-3%) 

accuracy (Figures 3.6 & 3.9). Likewise, the hearing-impaired subjects attended decoder 

accuracy increased to 74% (+9%), while the unattended decoder accuracies dropped to 

48% (-16%) (Figures 3.7 & 3.9). 

Interestingly, the absolute magnitude of the Pearson correlations seemed to change 

similarly between both groups, with a gain of ~0.013 for the attended decoders for both 

groups, and with essentially no change in Pearson correlation for the unattended decoders 

for both groups. This contrasts with the huge change in prediction accuracy in the 

hearing-impaired group (Figure 3.9). 

C. Lag Analysis 

Looking at figure 3.8, testing individual lag shifts (~7.8125ms) from -100-500ms, 

what we found is a somewhat steady time course of correlation across the range of tested 

lags in our healthy and unhealthy groups, even at lags preceding causality (i.e., -100-

0ms). This is most likely since even at lag windows that could not have been correlated to 

our incoming stimuli there was still male speaker stimuli present (just not specific to the 

speech/sentence that was driving the cortical activity), and the r > 0 Pearson correlation is 

indicative of the generalizability of the model. 
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Figure 3.6. Data from the healthy hearing subject group with a regression over a -100-500ms lag window. Top Left: A scatter 

plot depicting the Pearson correlation coefficients for the envelope generated by the attended decoder, and how that envelope 

correlates to the attended envelope (x axis) and the unattended envelope (y axis). Top Right: A scatter plot depicting the 

Pearson correlation coefficients for the envelope generated by the unattended decoder, and how that envelope correlates to 

the attended envelope (x axis) and the unattended envelope (y axis). All trials plotted across subjects (25x6). On both top 

graphs, the lines represent the decision boundary between a correct prediction and an incorrect prediction, and the star 

indicates the side of a successful prediction. Bottom: The attended (solid) and unattended (dashed) prediction accuracies 

across subjects (n=6). 
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Figure 3.7. Data from the hearing-impaired subject group with a regression over a -100-500ms lag window. Top Left: A 

scatter plot depicting the Pearson correlation coefficients for the envelope generated by the attended decoder, and how that 

envelope correlates to the attended envelope (x axis) and the unattended envelope (y axis). Top Right: A scatter plot 

depicting the Pearson correlation coefficients for the envelope generated by the unattended decoder, and how that envelope 

correlates to the attended envelope (x axis) and the unattended envelope (y axis). All trials plotted across subjects (25x4). On 

both top graphs, the lines represent the decision boundary between a correct prediction and an incorrect prediction, and the 

star indicates the side of a successful prediction. Bottom: The attended (solid) and unattended (dashed) prediction accuracies 

across subjects (n=4). 
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Figure 3.8. Data from a “Single-Lag” analysis taken over a range of time lags from -100-500ms for healthy hearing (top) and 

hearing impaired (bottom) groups. Plotted is the average across trials (n=25) and subjects (n=6; n=4) for 77 sets of models, 

each trained solely at a single lag point separated by 7.8125ms. Between the healthy hearing and hearing impaired, the 

rAvsA (solid blue) correlation curves between the two separate populations was highly correlated (r=0.78; p<.0001), as well 

as for the rUAvsUA (solid orange) correlation curves (r=0.74; p<.0001). The “mismatch” rAvsUA (dashed blue) and 

rUAvsA (dashed blue) curves were not correlated between groups. 

rAvsA  = Attended Decoder predicting the Attended Envelope 

rUAvsUA = Unattended Decoder predicting the Unattended Envelope 

rAvsUA  = Attended Decoder predicting the Unattended Envelope 

rUAvsA  = Unattended Decoder predicting the Attended Envelope 
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Figure 3.9. Illustrating the change in performance from regressions run from 0-250ms and -100-500ms. Top figure represents 

the group average change in prediction success between both healthy hearing and hearing impaired as well as between the 

attended decoder and unattended decoder. Bottom figure represents the group average change in Pearson correlation between 

both healthy hearing and hearing impaired as well as between the attended decoder and unattended decoder. Error bars 

represent the standard error of the mean (SEM). 
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What is more interesting though is that there seems to be a relative peak in 

correlation for the attended decoder (regarding the attended stimuli) at ~360ms, which is 

consistent between both groups. Likewise, the unattended decoder seems to have a peak 

correlation at 60-100ms (regarding the unattended stimuli), which is consistent in both 

groups. Further, the shapes of the curves for the attended decoder (regarding the attended 

stimuli) were 78% correlated between the hearing impaired and healthy hearing groups, 

and the unattended decoder (regarding the unattended stimuli) was 74% correlated (figure 

3.8). This is true, even though there was large within group variance for the shapes of 

each of these individual lag curves. The group means between the groups seem to have 

settled on a high amount of correlation. 

V. Discussion 

The results from this study seemed to indicate that hearing impaired and healthy 

hearing individuals have speech processing occurring on differing time scales. As figure 

3.9 illustrates, when expanding the lag window from 0-250ms out to 500ms, the healthy 

hearing individuals seemed not to have much of a change at all (only +-3%). On the other 

hand, with this expansion in the lag window, the hearing-impaired subject group had a 

tremendous change in performance, significantly increasing the performance in the 

attended decoder and decreasingly significantly the performance in the unattended 

decoder. 

Figure 3.8 seems to allude to these results, as one can see in the hearing-impaired 

group the attended decoder curve reaches a maximum value out at the > 300ms time lag, 
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whereas this is not seen to the same degree in the healthy hearing group. Thus, one would 

predict that keeping the later, and seemingly most significant, time lags in the analysis 

(instead of discarding them by only regressing from 0-250ms) would strongly boost the 

attended decoder’s performance, which was the case. 

Further, given that the purpose of this study was in large part to examine and 

replicate the findings by O’Sullivan and Lalor with regard to our experimental paradigm 

and machine learning toolkit, the results we found seemed to closely match their study 

(O’Sullivan et al., 2015a). Our study did differ in a few key components, however. First, 

O’Sullivan’s study delivered stimuli using over-the-ear headphones, whereas to avoid 

speaker artifacts showing up in the EEG signal, we used Etymotic ER-3a scientific grade 

earphones. Second, O’Sullivan’s study did not attempt to clean their EEG data of eye 

blink artifacts or bad channels from what we can tell, and from what Ed Lalor shared 

during a question-and-answer session, whereas we did remove eye blink artifacts and 

removed and interpolated bad channels. Further, they used 128 electrode channels, 

whereas we only used 64 electrode channels. 

A third difference between O’Sullivan’s study and our own was the way in which 

the data was preprocessed. O’Sullivan filtered the EEG data from 2-8Hz and found all his 

significance in that range; however, when we tried his analysis steps using that same 

filtering range our results were not significantly different from chance, i.e., guessing the 

attended talker. We found, however, if we broaden the filter to include very lower 

frequencies (0.5-8Hz, and later to 0.5-15Hz) (Di Liberto et al., 2015; O’Sullivan et al., 
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2015b), our prediction accuracy and the magnitude of our Pearson correlations increased 

tremendously, thus indicating the importance of such low frequencies in this analysis. 

Unfortunately, it leads to the question of how O’Sullivan attained the results he did 

without the use of these low frequencies. 

And the last major difference between the O’Sullivan study and our own is 

illustrated in figure 3.8. In what was one of the last and final conclusions of O’Sullivan’s 

paper, he made the claim that ~220ms was the most highly significant time lag regarding 

contribution to the overall correlation of the stimulus reconstruction. Our results in our 

healthy subjects seem to differ. While in his study he has a clear bell curve with strong 

peak right at ~220ms averaged across his subjects on his attended decoder, on our we see 

a flat curve with the only semblance of peak at ~360ms. Such data seems to loosely 

contradict with O’Sullivan’s results (“loosely” as he never extended his analysis out to 

>250ms), but seems to match new literature in the field as to the long latency 

contributions to speech perception (Akram et al., 2014, 2016). Further, we found huge 

variability in the single lag analysis from one individual to another, and no single one of 

our subjects showed a strong peak at the same time points that O’Sullivan had shown 

(O’Sullivan et al., 2015). Though, with our small sample size it is hard to say how our 

results would change if we were to expand this out to the n=40 that was used in the prior 

study. However, while O’Sullivan did not report error bars as to his subject variance 

towards his ~220ms claim, he later responded (personal communication) that his study 

did in fact have large variability. 
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Nonetheless, the questions and observations raised by our study are highly 

interesting in that for the first time we can show that with an above change efficacy 

hearing impaired individuals can have their attention decoded akin to that of healthy 

hearing, albeit with a few deviations in the process therein. And what is even more 

interesting, is that our results seem to show a strong effect at >300ms latencies for 

cortical activity in response to speech in selectively our hearing-impaired sample. 

Future directions could expand upon this work by increasing the hearing-impaired 

subject pool to see how these trends hold when taken to a statistically more powerful 

level. Likewise, while there has been work by Lalor et al. in combining the prediction 

information stored in both the attended and unattended decoders into a combined 

decoder, pursuing this line of work further might be beneficial for boosting the accuracy 

of our predictions even further. Lastly, using non-linear methods of reconstructing the 

speech stimuli could perhaps bring this performance up towards near 100% prediction 

accuracy across subjects. That, and optimizing the processing performance (perhaps by 

selectively choosing a small subset of crucial lag points) will be necessary to take this 

technology into the embedded, portable realm of application, where technology such as 

this could be a crucial element in the next generation of hearing prostheses. 
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Chapter 4 

“Tracking fatigue dynamics during prolonged auditory 

attentional switching with EEG and pupillometry” 
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I. Background 

Everyday acoustic scenes are complex and dynamic. When listening to others talk 

and when following a conversation in a realistic setting, we must exert sustained effort 

while rapidly switching our attention, which can lead to auditory attentional fatigue over 

prolonged periods. The neural mechanisms underlying auditory attentional switching are 

only beginning to be understood (Larson and Lee, 2013; Getzmann et al., 2015, 2016), 

particularly with regard to attentional fatigue, and the mechanisms have not been related 

systematically to the behavioral dynamics of realistic auditory scene. This knowledge gap 

raises a profound barrier to addressing real-world, daily communication challenges 

encountered by healthy listeners in noise, older adults, children with listening difficulties, 

and those with hearing loss. In this study we created a scenario to induce auditory 

attentional fatigue by forcing a prolonged, one hour session of near constant auditory 

attentional switching. Using this paradigm, we aim to look at the prolonged attentional 

switching and fatigue dynamics of older, healthy hearing adults (greater than age 50) 

compared to healthy hearing younger adults (less than age 30). 

A. Perceptual Objects 

When listening, our brain transforms complex time and frequency auditory 

information captured at the cochlea into meaningful perceptual objects (Griffiths and 

Warren, 2004) based on spatial and non-spatial cues, e.g. voice characteristics and 

patterns of stress and intonation, known as prosody. This perceptual object formation is 

crucial for auditory attention, and for auditory attentional switching. Perceptual “objects” 
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are a concept that much of our understanding of cognitive attention builds from, and one 

of their better definitions comes from Barbara Shinn-Cunningham, who states that 

“[perceptual objects are a] perceptual estimate of the sensory inputs that are coming from 

a distinct physical item in the external world” (Shinn-Cunningham and Best, 2008b). The 

brain tends to group many single point sources of energy, be it light, touch, or, in our 

case, sound, into clusters which it predicts emanate from a singular, physical unit. This is 

a tremendously complex task, especially in the case for audition where a sound field 

almost assuredly contains echoes, which will each exhibit their own independent spatial 

information unique the physical layout of the environment, and this is not addressing the 

inherent ambiguity that exists in the case of auditory sound localization. Nevertheless, a 

healthy brain can continuously disambiguate the dynamically changing time, frequency, 

and locational information into singular groupings that it estimates are a part of one 

object, which could be a human voice, noise coming from a fan, a musical instrument, 

etc. 

B. Selective Attention and Switching 

Once auditory object formation has occurred, only then can the brain choose a 

given object as the focus of its attention. It does this by selectively suppressing the 

higher-level cognitive processing, in the case of conversation this would be language 

processing, on all objects and noise other than the lone desired target (Rudner et al., 

2015). This process of sustained auditory selective attention and language processing in a 

noisy environment is referred to as the “cocktail party problem”, and it is a demanding 
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task for the brain to overcome. However, with the need for repeated attentional switches 

comes not only the burden of attention disengagement from the current auditory object 

and reengagement on the new object, but it also comes with the need for pre-attentional 

processing through which the brain must make on-line determinations about when to 

switch attention and to whom the target should go. Likewise, the performance of pre-

attentive processing has been shown to be affected by neurological fatigue states (Yang et 

al., 2013). 

Successful auditory attention and switching the target of auditory attention are 

crucial to understanding the semantic meaning in conversational environments, as 

“cocktail party” environments are rarely static and devoid background auditory 

distractions. Importantly, dynamic attentional switches significantly impair speech 

comprehension (Rudner et al., 2015), as much of the information during the period of 

time during and immediately following the attention switch in attention is lost, and it 

never reaches the higher level stages of speech processing. Thus, to successfully 

understand the content in an ongoing conversational speech stream, not only do the 

associated mental processes of engaging and disengaging attention from auditory objects 

need to continuously be taking place, but the brain must also be making repeat 

predictions about the information content being missed during the periods between 

switching. Unfortunately, the neural mechanisms of attentional switching to speech 

remain unclear, although several recent studies show that noninvasive neural measures 

such as electroencephalography (EEG) or magnetoencephalography (MEG)) can track 
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sustained auditory attention and indicate to which talker a listener attends (Larson and 

Lee, 2013; O’Sullivan et al., 2015a). These signals therefore reflect either attentional 

control – the “top-down”, volitional directing of attention, especially to the talker’s 

location in space – or attentional modulation of the speech representation itself. Further, 

one well established measure of attentional control is EEG power in the alpha (~8-13Hz) 

band over occipito-parietal cortex. When a listener directs attention to a talker on the left, 

alpha power increases over the left scalp and decreases over the right (and vice versa) 

(Kerlin et al., 2010), similar to visuospatial attention (Worden et al., 2000).  

C. Cognitive Fatigue 

Over prolonged time, repeat attentional switches take a high demand on an 

individual’s cognitive faculties, which is referred to as “mental fatigue” or “cognitive 

fatigue.” Cognitive fatigue usually manifests in the form of deteriorated task 

performance, reduced motivation to continue on a task, and an increased difficulty in 

keeping attention focused with an increasing chance for distraction (Faber et al., 2012). 

Like auditory attention, the mechanisms underlying cognitive fatigue are yet to be fully 

understood. Many studies have tried to define cognitive fatigue in terms of progressive 

deterioration of cognitive resources, akin to muscular fatigue, while others have defined it 

in terms of terms of motivational state and effort/reward imbalance, i.e. cognitive fatigue 

is a consequence of the perceived effort in a task being proportionally larger than its 

associated benefit (Gergelyfi et al., 2015). However, neither of these paths to explanation 

have been fully explored or they do not match much of the evidence that exists. For 
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example, in the case of cognitive fatigue being a product of motivational state, monetary 

incentives being introduced after fatigue had been induced failed to recover pre-fatigue 

task performance (Boksem et al., 2005; Gergelyfi et al., 2015). Nonetheless, despite not 

fully understanding ‘what’ drives cognitive fatigue, there are established and reliable 

measurements of cognitive fatigue that can be used to track fatigue onset over time. First, 

performance on mentally challenging tasks has been shown to decrease proportionally 

with the degree of fatigue (Gergelyfi et al., 2015). Secondly, cognitive fatigue has been 

shown to be tightly correlated with increased global frontal theta band (θ, 4-7Hz) 

rhythmic activity, as well as an increase in global parietal alpha (α, 8-12Hz) rhythms 

(Gergelyfi et al., 2015; Trejo et al., 2015). 

Additionally, another key measure that has yet to be explored while studying 

cognitive fatigue is pupillometry, e.g., pupil size as a function of fatigue. Multiple studies 

have used changes in pupil size as a powerful measure for task difficulty (Piquado et al., 

2010; Zekveld et al., 2014; Demberg and Sayeed, 2016); however, there have been little 

to no published studies that directly equate changes in pupil size to the level of cognitive 

fatigue. It has been found that pupil size increases as a function of task difficulty, to 

which people have associated the increase in pupil area as being proportional to cognitive 

load. Though, in the case of fatigue, is it not conceptually plausible that cognitive load 

could also increase in the case of an unchanging task difficulty but with the add-in of 

increasing cognitive fatigue? In which sense, pupil size would increase in-kind as a 

function of fatigue, just as it did with an increase in task difficulty. Disambiguating these 
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two concepts, or whether a task done in a fatigued state has the same cognitive load as a 

harder task done in an unfatigued state, has yet to be shown in the literature. 

D. Hypothesis 

We hypothesize that over the course of the study, the onset of fatigue will be 

measured with a decrease in behavioral task performance, a decrease in pupil diameter as 

measured with pupillometry, and increases in parietal alpha (8-12 Hz), frontal alpha (8-12 

Hz), and frontal theta (4-7 Hz) band activity as measured with EEG.  

II. Methods 

A. Stimulus Preparation and Delivery 

The paradigm consists of two one-hour long audio/video recordings of a voice 

actor reading Jules Verne’s “Journey to the Center of the Earth” and “20,000 Leagues 

Under the Sea”, delivered concurrently side-by-side against one other. The voice on the 

left was pitch-shifted up six percent while the voice on the right was pitch shifted down 

three percent to aid in spectral separation of the two voices, since the same voice actor 

voiced both stories (Figure 4.1). To execute our attention switching dynamics, 

approximately every six seconds the story contents would switch from the left speaker to 

the right speaker, or vice versa, for which the participant was cued and would therefore 

switch their attention from one talker to the other. If the participant was properly 

executing the task they should experience one single fluid story, shared between the left 

and the right talker. If the participant did not execute the task and were to listen to solely 
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a single talker, they would experience the voice switching between two separate stories 

continuously. 

As a measure of attentional switching delay over the course of the study, we 

embedded 200 cue words into the “Journey to the Center of the Earth” story that the 

participants were instructed to listen to and to press the <space> bar on the keyboard 

when heard. These 200 cue words were simple, monosyllabic color words, i.e., red, blue, 

green, pink, white, etc. To accommodate these words into the semantic content of the 

story, the section of story was first scrubbed of any color references, and 200 new color 

words were inserted spaced approximately evenly, 100 in the first half of the story and 

100 in the second half. Because the cue words were worked into the semantic flow of the 

 

Figure 4.1. Example illustrating switching dynamics of the attentional paradigm. The red track is the story the participant is 

tasked to attend onto. Switches happen approximately every six seconds. 
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story it was impossible to evenly distribute the cue words, but we felt this deficit was 

worth the benefits of having semantically appropriate sounding attentional cues worked 

into the story itself. 

The stimuli were recorded in a sound-controlled booth using a Sony camcorder 

and RØDE microphone powered by a Fireface 800 sound interface at 30fps and 48kHz, 

respectively. The stimuli were edited, removing mistakes and extraneous silent gaps, in 

Adobe Premiere. Each video and corresponding audio track needed to be interlaced with 

the other at precise time points, one switch every ~6 seconds, and this was executed using 

custom scripts written in MATLAB. Likewise, each video switch was accompanied with 

five frames of blending, and each audio switch was accompanied with 0.166 seconds of 

audio crossover, the length of 5 video frames, to remove any hard transition effects 

and/or audio clipping. Lastly, the two ‘new’ tracks, i.e., the newly interlaced left and right 

voice/video tracks, were pitch shifted using Audacity. 

Importantly, 200 of the 600 story switches corresponded to the 200 color words 

that were inserted into the story, and the switch times occur at precise intervals relative to 

the time of the color word. The switches happened at either 0.25s, 0.5s, 1.0s, 1.5s, or 2.0s 

before the cues, with these switch time intervals being pseudo-randomly distributed 

amongst the first half and the second half of the study in equal proportion. 

The stimulus delivery paradigm was coded in MATLAB using Psychtoolbox for 

the audio and video delivery as well as for capturing keyboard inputs from the 

participants. The voice and video tracks were presented separately from one another, the 
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audio making use of Psychportaudio for precision audio with <4ms of latency and the 

video making use of Screen (part of the Psychtoolbox package) for precise frame timings. 

The visual stimuli were presented on two Dell monitors, one face per monitor, centered. 

The audio stimuli were presented through two Tannoy Precision 6 studio monitors 

powered by a Stewart stereo power amplifier placed just to the outsides of the Dell 

monitors. The left voice was played through the left studio monitor and the right voice 

was played through the right studio monitor, giving the effect of the voice emanating 

from the face on the screen for each screen. 

B. Experiment Design 

The study consisted of six blocks, each approximately 10 minutes in length, and 

within each block there were 100 auditory/visual attentional switches. The participants 

were instructed to pay attention solely to the story “Journey to the Center of the Earth”, to 

which an arrow on the screen cued them as to which speaker they should be attending to. 

Upon each attentional switch, an arrow would appear on top of the newly distracting 

speakers face, signaling for the participant to switch their attention to the other talker 

(Figure 4.1). 

Alongside the attention switching, the participants were asked to listen for 

monosyllabic color words in the story, i.e., red, blue, green, pink, white, etc. When a 

color word was detected, the participants were told to press the space bar on the keyboard 

in front of them. The purpose of this was three-fold: 1) it allowed us to detect the time 

until attention-reengagement, with our hypothesis being that as fatigue sets in participants 
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would be more likely to miss the cue words with shorter switch latencies, 2) it allowed us 

to detect their response time latency, and 3) it kept the participant engaged throughout the 

duration of the study. 

Furthermore, between blocks participants were asked to perform a simple visual 

reflex task that consisted of five trials in quick succession where they would stare at a 

crosshair on the screen and push the space bar on the keyboard once a white circle 

flashed around the crosshair. 

Lastly, participants were given instructions both verbally and visually on the 

screen and were provided a small one-minute practice round of attention switching before 

the blocks began to clarify their task. Between blocks, participants were provided a short 

rest period before continuing with the study. During this time the experimenter verbally 

spoke with the participants and received consent to continue. 

C. Data Collection and Processing 

Both multichannel EEG and pupillometry data was collected of the course of the 

study alongside the behavioral response data mentioned earlier.  

EEG data was collected using a Biosemi Active 2 with the ActiView data 

acquisition software. Recording consisted of 32 channels at 2048Hz, re-referenced to the 

left and right average mastoid. The EEG data was imported into EEG Lab running on top 

of MATLAB 2020a. The data was first re-referenced to the mastoids from the original 

CMS/DRL as provided by Biosemi. Visibly bad channels were removed and interpolated, 
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albeit in this limited series of data we had remarkably no bad channels to remove. ICA 

was performed to isolate and remove eye blink components from the data set. The data 

was band-pass filtered between 0.5 and 40Hz to remove high frequency noise and low 

frequency drift. And lastly, the channel location data was updated from the simple 

Biosemi naming convention A1->A32, to the international 10-20 system. 

Likewise, for the purposes of this study “frontal” and “parietal” electrodes consist 

of left and right hemispheric clusters of three electrodes, whose activity was averaged for 

analysis purposes. The clusters were as follows: 

Frontal Left: F7, F3, AF3 

Frontal Right: F8, F4, AF4 

Parietal Left: P7, P3, CP5 

Parietal Right: P8, P4, CP6 

Pupillometry was recorded using Pupil Labs’ Pupil Core headset and making use 

of the Pupil Capture software. We used a binocular setup with a front, world-view 

camera. Each camera recorded at a resolution of 1920x1080 at a sampling rate of 30Hz. 

Calibration was achieved using the “physical marker” calibration process (as opposed to 

the “screen marker” approach), and a target was placed in between the two monitors the 

participants were facing with fixation points appearing on each of the two screens. To 

sync the pupil data with the EEG data, participants were asked to blink 10 times at the 

beginning of the study, to which we could compare to the EOG channels in the EEG and 



59 

 

then time-align both data sets. Blinks were detected using the Pupil Player software using 

the Blink Detection plugin with a confidence interval set to 0.8. 

D. Participants 

Two participants were used in this pilot study, henceforth known as P01 and P02. 

P01 was a 29-year-old female with healthy hearing and no vision correction. P02 was a 

53-year-old male with healthy hearing and glasses, which were removed for the duration 

of the study. Both subjects reported moderate tiredness at the beginning of the study, but 

both completed the full study without issue. 

III. Results 

A. Behavioral Response 

When comparing the percentage of cue words detected over time for subject P01 

and P02, we find no noticeable trend either downwards or upwards for subject P01, but 

subject P02 trended consistently upwards (Figure 4.2). This seems to indicate that subject 

P02 did consistently better from block to block, which would seem to run counter to our 

hypothesis that fatigue leads to worse task performance. 

When looking at the latency of response to the cue words, we see no noticeable 

trend in either subject, with them both hovering around 2 seconds across all blocks 

(Figure 4.3). The same is true when looking at the reflex response latency to a flash of 

light. No noticeable trend shows across blocks with both subjects responding between 

0.25 and 0.3 seconds on average (Figure 4.4). 
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B. Pupillometry 

Regarding the diameter of the pupil across blocks, we hypothesized that a 

subject’s pupil would decrease in size as a function of fatigue. Unfortunately, there was 

an issue with the recording of subject P01’s pupil data, so we do not have that dataset to 

compare against. However, the data collected from P02 does seem to show a downward 

trend in pupil size, plateauing starting at block 4 (Figure 4.5). 

C. Parietal Alpha 

When looking at the alpha (8-12 Hz) activity of the parietal cortex of our subjects, 

subject P01 showed no trend downwards or upwards across blocks (Figure 4.6). 

Contrary, subject P02 showed a very strong and consistent increase in the parietal alpha 

power, which is consistent with our hypothesis. 

When looking at the average time course difference for the parietal alpha activity, 

time locked to the onset of the switch cues, we find that subject A01 had very strong 

downward inflections upon leftward switches and very strong upward inflections upon 

rightward switches (Figure 4.7). Subject P02 does not show the same consistency 

between blocks and no conclusion can be drawn from their data (Figure 4.8). This 

measure likely needs many more participants before trends begin to appear. 

D. Frontal Alpha 

When looking at the alpha (8-12 Hz) activity of the frontal cortex of our subjects, 

subject P01 showed no trend downwards or upwards across blocks (Figure 4.9). 
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However, subject P02 showed a very strong and consistent increase in the parietal alpha 

power, which, again, is consistent with our hypothesis. 

When looking at the average time course difference for the frontal alpha activity, 

time locked to the onset of the stimulus, we find that both participants have positive 

upward inflections for both leftward switches and rightward switches (Figures 4.10 and 

4.11). This is interesting in two ways: 1) this activity pattern is entirely inconsistent with 

our parietal alpha results, in that regardless of the direction of the attention switch the 

inflection direction is the same, and 2) this response is very strong and very consistent for 

both participants, whereas our parietal alpha results had no noticeable trend for subject 

P02. 

E. Frontal Theta 

Unlike the previous two measures, neither participant showed any noticeable trend 

when looking at the theta (4-7 Hz) activity of the frontal cortex (Figure 4.12). 

When looking at the average time course difference for the frontal theta activity, 

time locked to the onset of the stimulus, we find that both participants have positive 

upward inflections for both leftward switches and rightward switches (Figures 4.13 and 

4.14). This pattern looks very much like our frontal alpha results; however, the size of the 

peaks is twice more than twice that of our alpha results. This may be insignificant, but it 

is interesting, nonetheless. 
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IV. Discussion 

With only two subjects we cannot draw any significant conclusions from this data. 

That said, the data and the results presented are encouraging in that for at least one of our 

subjects our results matched our hypotheses on multiple occasions. It is also interesting 

that our younger participant’s data was more consistent to itself and less like our 

predicted hypothesis when compared to the older participant. An immediate explanation 

could be that perhaps the younger subject did not become fatigued during our paradigm 

to the same degree as the older participant. Given that our hypothesis is under the 

assumption that that the participant is in fact becoming fatigued, a subject resisting 

fatigue over the hour time course could explain the null results. Only with more 

participants will be able to determine if this is in fact the case, and whether the paradigm 

is fatiguing enough for younger participants. 
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Figure 4.2. Comparison between subjects P01 (top) and P02 (bottom) as to their percentage of cue word detections over the 

course of six experimental blocks. 
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Figure 4.3. Comparison between subjects P01 (top) and P02 (bottom) as to their latency (seconds) of the cue word detection 

over the course of six experimental blocks. 
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Figure 4.4. Comparison between subjects P01 (top) and P02 (bottom) as to the latency (seconds) of their reflex responses to a 

flash of light over the course of six experimental blocks. 
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Figure 4.5. Subject P02’s pupil diameter (millimeters) over the course of six experimental blocks. 

*Note, there was an issue in the collection of subject P01. Their data was redacted accordingly. 
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Figure 4.6. Comparison between subjects P01 (top) and P02 (bottom) as to their average parietal alpha band (8-12 Hz) 

activity (microvolts) over the course of six experimental blocks. Alpha band power was averaged across three left 

hemisphere and three right hemisphere parietal electrodes. Parietal Left: P7, P3, CP5; Parietal Right: P8, P4, CP6 
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Figure 4.7. For subject P01, plotted is the average difference in parietal alpha band (8-12 Hz) activity (microvolts) between 

the left and right hemispheres over the time course of the trials. The upper graph represents the activity of the left hemisphere 

subtracted from the right hemisphere, while the bottom graph represents the activity of the right hemisphere subtracted from 

the left hemisphere. Time 0 (seconds) represents the onset of the switch cue. Blocks 1 through 6 are represented in different 

colors as referenced by the key. Alpha band power was averaged across three left hemisphere and three right hemisphere 

parietal electrodes. Parietal Left: P7, P3, CP5; Parietal Right: P8, P4, CP6 
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Figure 4.8. For subject P02, plotted is the average difference in parietal alpha band (8-12 Hz) activity (microvolts) between 

the left and right hemispheres over the time course of the trials. The upper graph represents the activity of the left hemisphere 

subtracted from the right hemisphere, while the bottom graph represents the activity of the right hemisphere subtracted from 

the left hemisphere. Time 0 (seconds) represents the onset of the switch cue. Blocks 1 through 6 are represented in different 

colors as referenced by the key. Alpha band power was averaged across three left hemisphere and three right hemisphere 

parietal electrodes. Parietal Left: P7, P3, CP5; Parietal Right: P8, P4, CP6 
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Figure 4.9. Comparison between subjects P01 (top) and P02 (bottom) as to their average frontal alpha band (8-12 Hz) activity 

(microvolts) over the course of six experimental blocks. Alpha band power was averaged across three left hemisphere and 

three right hemisphere frontal electrodes. Frontal Left: F7, F3, AF3; Frontal Right: F8, F4, AF4 
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Figure 4.10. For subject P01, plotted is the average difference in frontal alpha band (8-12 Hz) activity (microvolts) between 

the left and right hemispheres over the time course of the trials. The upper graph represents the activity of the left hemisphere 

subtracted from the right hemisphere, while the bottom graph represents the activity of the right hemisphere subtracted from 

the left hemisphere. Time 0 (seconds) represents the onset of the switch cue. Blocks 1 through 6 are represented in different 

colors as referenced by the key. Alpha band power was averaged across three left hemisphere and three right hemisphere 

frontal electrodes. Frontal Left: F7, F3, AF3; Frontal Right: F8, F4, AF4 
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Figure 4.11. For subject P02, plotted is the average difference in frontal alpha band (8-12 Hz) activity (microvolts) between 

the left and right hemispheres over the time course of the trials. The upper graph represents the activity of the left hemisphere 

subtracted from the right hemisphere, while the bottom graph represents the activity of the right hemisphere subtracted from 

the left hemisphere. Time 0 (seconds) represents the onset of the switch cue. Blocks 1 through 6 are represented in different 

colors as referenced by the key. Alpha band power was averaged across three left hemisphere and three right hemisphere 

frontal electrodes. Frontal Left: F7, F3, AF3; Frontal Right: F8, F4, AF4 
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Figure 4.12. Comparison between subjects P01 (top) and P02 (bottom) as to their average frontal alpha theta (4-7 Hz) activity 

(microvolts) over the course of six experimental blocks. Theta band power was averaged across three left hemisphere and 

three right hemisphere frontal electrodes. Frontal Left: F7, F3, AF3; Frontal Right: F8, F4, AF4 
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Figure 4.13. For subject P01, plotted is the average difference in frontal theta band (4-7 Hz) activity (microvolts) between the 

left and right hemispheres over the time course of the trials. The upper graph represents the activity of the left hemisphere 

subtracted from the right hemisphere, while the bottom graph represents the activity of the right hemisphere subtracted from 

the left hemisphere. Time 0 (seconds) represents the onset of the switch cue. Blocks 1 through 6 are represented in different 

colors as referenced by the key. Theta band power was averaged across three left hemisphere and three right hemisphere 

frontal electrodes. Frontal Left: F7, F3, AF3; Frontal Right: F8, F4, AF4 
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Figure 4.14. For subject P02, plotted is the average difference in frontal theta band (4-7 Hz) activity (microvolts) between the 

left and right hemispheres over the time course of the trials. The upper graph represents the activity of the left hemisphere 

subtracted from the right hemisphere, while the bottom graph represents the activity of the right hemisphere subtracted from 

the left hemisphere. Time 0 (seconds) represents the onset of the switch cue. Blocks 1 through 6 are represented in different 

colors as referenced by the key. Theta band power was averaged across three left hemisphere and three right hemisphere 

frontal electrodes. Frontal Left: F7, F3, AF3; Frontal Right: F8, F4, AF4 
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Chapter 5 

“Conclusion” 
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Our work on Cochlearity was a success, and we showed that mobile platforms are 

capable of the computation necessary for auditory beamforming and powering attentional 

prosthetic devices. Both the Delay and Sum (DS) and the Minimum Variance 

Distortionless Response (MVDR) beamforming algorithms showed great strengths in 

spatially filtering our audio. While we made great strides over the development of 

Cochlearity, we were unable to finalize our “dual beamformer” paradigm, which is where 

we route the high frequency audio to the DS beamformer and the low frequency audio to 

the MVDR beamformer before combining them back together into a single output. We 

believe this approach could be particularly potent at noise cancellation, and we encourage 

further research into this method of combining beamformers together to maximize their 

effects. Nevertheless, our work successfully pushed the limits of using mobile technology 

for such scientific and therapeutic applications, and we expect to see more work in this 

class of research soon. 

Alongside our mobile version of Cochlearity, we also made great strides on a 

second iteration of Cochlearity built using MATLAB on top of a standard x86 PC. This 

version of Cochlearity allowed us greater flexibility at implementing new algorithms and 

features and provided much more computational power at the expense of portability. 

However, we ran into issues due to the single threaded nature of MATLAB processes, 

and not being able to separate subprocesses into separate processing threads. Towards 

this end we decided to abandon this new version of Cochlearity, and instead a newer 

iteration is underway in development using the Python programming language which 
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does not suffer the same limitations as MATLAB. We have great confidence that this 

iteration will be a success, and along with the developing codebase we are developing our 

own custom prototype microphone array boards using state-of-the-art MEMS 

(microelectromechanical systems) microphones. 

Likewise, the work we performed on auditory attentional decoding at the Starkey 

Hearing Research Center has continued to reinforce the idea that the locus of auditory 

attention can be decoded using EEG using the envelope of the incoming speech. The 

work being done in the lab of Edmund Lalor, for which this work was based, had showed 

that tracking the locus of attention using the envelope of speech sound was possible in the 

healthy hearing population (Di Liberto et al., 2015; O’Sullivan et al., 2015b). Our work 

extended this knowledge, showing that this same technique could be applied to the 

hearing-impaired population with success, albeit slightly lower prediction scores. 

An application for this research for which we are very interested is to use this 

attention decoder technique as a control scheme for steerable auditory prostheses. Up 

until now, the work being pioneered by Kidd et al. has made use of visually guided 

paradigms, using either eye tracking or electrooculography, which are powerful measures 

of attention, but are indirect measures of auditory attention that have issues with 

wearability, reliability, and fail with regards to covert listening. While EEG is in no way 

a perfect control system, particularly in real-life settings with noisy electromagnetic 

interference, it does provide us with a direct measure of neural activity, which has been 
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shown to be correlated with the incoming auditory stimulus in such a way as to be 

predictable and useful (Di Liberto et al., 2015; O’Sullivan et al., 2015b). 

Our attention switching paradigm sought to recreate a behaviorally relevant set of 

circumstances that could induce auditory attentional fatigue over the course of a one-hour 

study. This novel paradigm chose to use semantically fluid storytelling as well as cue 

words embedded seamlessly into the stimuli to match the dynamics of a conversational 

setting involving a story switching between talkers. Our goal was to create as realistic of 

an experience as possible to isolate the true metrics of auditory attentional fatigue. 

Towards that end, what we created was a marked success. The paradigm, while simple in 

its nature, is very fatiguing over the course of the study due to the near constant 

attentional switching and the need to suppress the distracting talker. That said, we were 

unable to conduct as robust of a study as we wanted due to events outside of our control, 

though we did successfully pilot our research paradigm with a single young healthy 

hearing participant and a single older healthy hearing participant. Or research would 

seem to indicate that this new paradigm is ready to be used in a myriad of different 

audio/visual attention experiments, and we hope the work done provides a strong 

backbone for future studies. 

The technology behind Cochlearity, while novel at the time, has since grown more 

common in the market of auditory protheses. This is a tremendously positive move for 

consumers and patients with hearing loss. More companies are moving towards ‘smart’ 

hearing aids that make use of a combination of beamforming and clever signal processing 
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in order achieve the goal of full suppression of unwanted sounds in otherwise crowded 

auditory scenes. This work has critical applications for those with hearing impairment, 

but also for healthy listeners. The last piece of this research that unfortunately was never 

realized would have been to model the effects of fatigue on both a healthy and a hearing-

impaired sample of participants, and then to re-run the same paradigm using Cochlearity 

as an attentional prosthetic. If we were able to bring the rate of fatigue of our hearing 

impaired subject closer to their healthy hearing counterparts, that could indicate that 

attentional prostheses, such as what Cochlearity offers, could ease the cognitive burden of 

prolonged attentional scenes in those with hearing impairment. Likewise, if an 

improvement in rate of fatigue was shown for both groups, it would be evidence to 

support attentional prostheses for use outside of just hearing-impaired groups, but also in 

the general population.  

Lastly, while not yet shown, there exists the possibility for auditory prostheses to 

solve the “cocktail party” problem in a way that outdoes normal human performance, 

which could provide wearers with super-human performance in tasks requiring listening 

in noisy scenes. If this were to be the case, it could have untold use cases in society, as 

well as police, military, and medical applications. However, this is particularly hopeful 

thinking on part of the author, and this reality would be many years off. That said, the 

future is bright for the field of auditory and attentional neuroprostheses, and more people 

than ever before can now afford access to this truly life changing technology. 
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