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Abstract: Alzheimer’s disease (AD) is characterized by the presence of β-amyloid (Aβ) and tau, and
subcortical vascular cognitive impairment (SVCI) is characterized by cerebral small vessel disease
(CSVD). They are the most common causes of cognitive impairment in the elderly population. Concur-
rent CSVD burden is more commonly observed in AD-type dementia than in other neurodegenerative
diseases. Recent developments in Aβ and tau positron emission tomography (PET) have enabled the
investigation of the relationship between AD biomarkers and CSVD in vivo. In this review, we focus
on the interaction between AD and CSVD markers and the clinical effects of these two markers based
on molecular imaging studies. First, we cover the frequency of AD imaging markers, including Aβ

and tau, in patients with SVCI. Second, we discuss the relationship between AD and CSVD markers
and the potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia. Next,
we discuss the clinical effects of AD and CSVD markers in SVCI, and hemorrhagic markers in cerebral
amyloid angiopathy. Finally, this review provides both the current challenges and future perspectives
for SVCI.

Keywords: subcortical vascular cognitive impairment; Alzheimer’s disease; ß-Amyloid; tau; cerebral
small vessel disease; interaction; positron emission tomography

1. Introduction

Dementia is a progressive and deteriorative syndrome that affects memory and other
cognitive domains, which interferes with a daily living [1]. Alzheimer’s disease (AD) and
vascular dementia (VaD) are the two most common causes of dementia in the elderly [2].
AD is characterized by senile plaques formed by β-amyloid (Aβ) and neurofibrillary tangles
(NFTs) formed by hyperphosphorylated tau. These changes, along with loss of neurons,
contribute to the symptoms of dementia [3]. Based on these core AD pathological features,
including Aβ [A], tau [T], and neurodegeneration [N] biomarkers, the National Institute on
Aging—Alzheimer’s Association (NIA-AA) proposed the AT(N) classification system [4]. A
and T biomarkers are specific for the Aβ plaques and tau NFTs that constitute the hallmark
neuropathologic signs of AD, respectively, while biomarkers of (N) (such as atrophy on
magnetic resonance imaging, MRI) are not disease specific [4,5]. Brain atrophy is indicative
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of the considerable loss of neurons and synapses in the cerebral cortex [6]. Although
the assessment of atrophy lacks specificity to determine whether the cause is cell loss or
synaptic loss, cortical thickness is widely used as a surrogate marker for neuronal loss [7,8].
The NIA-AA research framework defines AD biologically based on neuropathologic change
or biomarkers and considers cognitive impairment a symptom or sign of the disease rather
than the definition of the disease [4].

Further, Alzheimer’s disease is frequently associated with other aging-related dis-
orders such as cerebrovascular disease, Lewy body disease, transactive response DNA-
binding protein of 43 kDa (TDP-43) proteinopathies, and argyrophilic grain disease [6]. AD
pathology mixed with vascular disease is more frequent in the elderly population (also
known as mixed pathology in dementia or mixed dementia) [9]. Vascular diseases include
arteriolosclerosis, cerebral amyloid angiopathy (CAA), atherosclerosis, macroinfarcts, and
microinfarcts [10]. In fact, previous studies have shown that AD combined with vascular
disease is the most prevalent mixed pathology [9,11,12].

Vascular dementia is caused by ischemic or hemorrhagic brain lesions that are char-
acterized by numerous clinical syndromes [13]. The most common forms of VaD in the
elderly are subcortical vascular dementia (SVaD), strategic infarct dementia, and multi-
infarct dementia [14]. VaD is generally known to be the second most common cause of
dementia in later life among Caucasian populations, although it may be the most com-
mon cause in East Asia [15–17]. SVaD, one of the main forms of VaD, is characterized by
extensive cerebral small vessel disease (CSVD), including white matter hyperintensities
(WMHs) and multiple lacunes [18]. Vascular risk factors, such as age, hypertension, and
diabetes mellitus, contribute to the development of CSVD MRI markers. These markers
gradually form deposits in subcortical regions over several decades, eventually resulting in
SVaD [19]. Thus, SVaD shows a progression pattern similar to that of AD, which reveals an
insidious onset and gradual progression; however, it is dissimilar to that of multi-infarct
dementia (another major form of vascular dementia). From this perspective, there is a
prodromal state of SVaD, referred to as subcortical vascular mild cognitive impairment
(svMCI). Subcortical vascular cognitive impairment (SVCI), which incorporates SVaD and
svMCI, refers to cognitive impairment caused by subcortical vascular lesions [20–24].

AD-related cognitive impairment (ADCI) and SVCI are considered to lie on opposite
ends of a single disease spectrum, where ADCI with non-ischemia lies at one end and
SVCI without AD pathology lies at the other end [25]. One of the main reasons is that
these two types of dementia share risk factors, such as age, hypertension, and diabetes [26].
In fact, these risk factors are known to be associated with AD-type dementia as well as
SVCI [27]. The other reason is based on previous studies suggesting a strong association
between AD and CSVD burden [28,29]. Several pathological studies have shown an
overlap between AD and CSVD burden and their association with dementia. In particular,
concurrent CSVD burdens are more commonly observed in AD-type dementia than in
other neurodegenerative diseases [30]. AD dementia can develop in the presence of CSVD
lesions [31]. Among patients with dementia, 38.0% (19/50) have AD and infarcts, 30.0%
(15/50) have pure AD, and 12% (6/50) have vascular dementia [9]. The association between
AD and CSVD could be explained by the possibility that CSVD hampers the clearance of
Aβ [32–34].

In most dementia cases, lesions are pathologically identified after death. Therefore, we
do not have exact information on the patients when they were at earlier stages. However,
with advancements in molecular imaging, AD biomarkers have been detected in living AD
patients at earlier stages of dementia. Abnormal levels of AD imaging markers can be quan-
tified with specific positron emission tomography (PET) tracers, such as 11C-Pittsburgh
Compound-B (PiB) [35], 18F-florbetapir [36], 18F-flutemetamol [37], and 18F-florbetaben [38]
for Aβ, and 18F-flortaucipir (AV-1451) [39], 18FMK-6240 [40], 18F-PI-2620 [41], and 18F-RO-
948 PET [42] for tau. Specifically, compared to cognitively normal individuals, patients
with AD-type dementia show higher Aβ uptakes in the brain [35]. Furthermore, 20–30% of
cognitively normal individuals and 40–60 % of individuals with mild cognitive impairment
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(MCI) both show Aβ positivity on PET [43,44]. According to a previous study, tau PET pos-
itivity in the temporal region has been shown to be 6.1% for cognitively normal individuals,
46.5% for MCI, and 88.6% for AD-type dementia [45]. Tracers for paired helical filament
tau have also been reported to correspond to Braak’s pathological NFT stage and to be
correlated with disease severity and symptom progression [46–48]. However, compared to
AD, there has been relatively little interest in research using molecular imaging for SVCI.

In this review, we discuss the interaction between AD and CSVD biomarkers and the
clinical effects of these two biomarkers using molecular imaging studies. More specifically,
we discuss the following topics: (1) the frequency of AD imaging markers, including Aβ

and tau in SVCI patients; (2) the relationship between AD markers and CSVD burdens;
(3) potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia;
(4) the clinical effects of AD and CSVD markers in SVCI; (5) hemorrhagic markers in CAA
and the clinical effects; and (6) current challenges and future perspectives.

2. Imaging Markers of Alzheimer’s Disease (AD) and Cerebral Small Vessel Disease
(CSVD) in Subcortical Vascular Cognitive Impairment (SVCI)
2.1. Frequency of AD Imaging Markers in SVCI

AD markers are more commonly observed in patients with SVCI than in cognitively
unimpaired individuals. Specifically, in svMCI patients, the frequencies of Aβ positivity
have been reported to be about 30% [25,29,49]. SVaD patients tend to display more frequent
Aβ positivity than svMCI patients, ranging from 30% to 53% [25,50,51]. In terms of the tau
marker, it has been shown that tau positivity is 70% (14/20) in Aβ (+) ADCI patients, 25.9%
(7/27) in Aβ (+) SVCI patients, and 6.1% (2/33) in Aβ (−) SVCI patients. [52].

2.2. Correlation between AD and CSVD Imaging Markers

Molecular imaging studies have enabled us to investigate the relationship between AD
markers and CSVD MRI markers throughout the whole brain. There is increasing evidence
from these studies showing that AD marker uptake is correlated with WMH volume, which
is a characteristic MRI marker of CSVD. This has been observed prominently in the poste-
rior regions of the brain. In our previous study of 53 SVCI patients, a relationship between
Aβ uptake and WMH volume was observed in APOE4 non-carriers [53]. WMH volume is
correlated with Aβ uptake in the posterior cerebral regions. Another study using clustering
analyses classified SVCI patients and AD patients into the Aβ occipital-predominant and
Aβ occipital-sparing groups. The frequency of the occipital-predominant group has been
shown to be higher in SVCI patients (62.2%) than in AD patients (37.8%) [33]. Furthermore,
the Aβ spreading pattern in patients with SVCI is quite different from in patients with
ADCI. Specifically, the Aβ spreading pattern of patients with SVCI demonstrates that
Aβ accumulates in the occipital area before the temporal and frontal regions, whereas in
patients with ADCI, the parietal and fronto-temporal regions precede the occipital region.
(Figure 1a) [33,54–57]. The predominant Aβ deposition in the occipital region, mainly ob-
served in patients with SVCI, may be related to the distribution pattern of CAA or ischemic
vulnerability of the posterior circulation [53]. CAA is primarily found in the occipital
region [53,58]. Moreover, ischemic injury and dysfunction of the endothelial layer may lead
to disruption of the blood–brain barrier (BBB), which in turn leads to the deposition of Aβ.
Since the vertebrobasilar system, which is responsible for the posterior circulation, may be
vulnerable to ischemia, SVCI patients may show Aβ deposition primarily in the posterior
region [53]. Figure 1a illustrates the spreading pattern of Aβ in AD, compared with that
in SVCI. Interestingly, the Aβ spreading pattern in patients with ADCI developed using
molecular imaging evidence seems to be different from that based on pathological studies.
That is, a pathologic study conducted by Braak and Braak showed an early pattern of Aβ

deposits in the basal parts of the frontal, temporal, and occipital lobes (Stage A) [46,59].
However, several molecular imaging studies suggest that there are diverse early Aβ accu-
mulating regions such as the precuneus, posterior cingulate, isthmus cingulate, insula, and
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medial and lateral orbitofrontal cortices, in which several of the core regions of the default
mode network are located [60–62].
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Figure 1. Spreading order of Aβ and tau in SVCI and AD, respectively. (a) Spreading pattern of Aβ

in SVCI (a-1) and AD (a-2); (b) Spreading pattern of tau in SVCI (b-1) and AD (b-2). In the order
of spreading Aβ in SVCI, unlike AD, Aβ accumulates in the occipital area before the temporal and
frontal regions. In contrast to AD, tau accumulates in the fusiform gyrus and inferior temporal gyrus
before the parahippocampal cortex in SVCI patients. Aβ—β-amyloid; SVCI—subcortical vascular
cognitive impairment; AD—Alzheimer’s disease.

In terms of the relationship between CSVD and tau, previous studies have suggested
that ischemia might increase tau burdens regardless of the amyloid pathway [63]. Animal
studies have also shown an association between increased cerebrovascular pathology
and tau formation [64]. In vivo imaging studies have shown that CSVD burden may be
associated with higher tau accumulation in the inferior temporal regions regardless of
Aβ positivity [65]. Furthermore, in terms of tau spreading order, patients with SVCI are
quite different from patients with ADCI. Unlike in ADCI, tau accumulates earlier in the
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fusiform gyrus and inferior temporal gyrus than in the parahippocampal cortex in SVCI
(Figure 1b) [65,66].

2.3. Potential Distinct Pathobiology of AD Markers in SVCI

Considering that SVCI and ADCI patients show different spreading patterns of AD
imaging markers, there may be differences in the potential pathobiology of AD biomarkers
between SVCI and ADCI patients. In patients with SVCI, vascular risk factors may lead
to Aβ deposition. Several cohort studies have reported an association between vascular
risk factors and Aβ deposition (Table 1) [67–72]. This Aβ deposition is increased by
impaired Aβ clearance via a deficit in perivascular drainage of Aβ and breakdown of the
BBB (Figure 2) [73,74]. BBB breakdown causes faulty transport of Aβ through reduced
levels of low-density lipoprotein receptor-related protein 1 (LRP1) and increased levels
of receptor for advanced glycation end products (RAGE). These changes eventually lead
to impaired clearance of toxic Aβ species [75,76]. Furthermore, Aβ accelerates the tau
hyperphosphorylation by mediating the activation of protein kinases, including cyclin-
dependent kinase 5 (CDK-5) and glycogen synthase kinase 3β (GSK-3β) [77,78]. In addition,
Aβ induces the activation of caspase-3 and calpain-1 and the cleavage of tau, generating
neurotoxic tau fragments (Figure 2) [79,80]. The link between Aβ and tau aggregation may
involve microglial activation [81]. Soluble Aβ oligomers are known to activate microglial
cells [82]. Mouse studies on transgenic AD have revealed that the microglial activation
precedes tau aggregation [83] and facilitates tau hyperphosphorylation through cytokine
release with subsequent NFT formation [84]. There are two potential mechanisms that may
explain how vascular risk factors induce tau accumulation. One hypothesis is that ischemia
may activate CDK-5 and GSK-3β, resulting in tau phosphorylation [85]. Activation of
CDK-5 occurs when ischemia inhibits the pumping of calcium ions out of cells and raises
intracellular calcium levels [86,87]. GSK-3β is activated by ischemia through decreased
activity of the phosphatidylinositol 3-kinase/Akt pathway [88,89]. Moreover, vascular risk
factors and the accumulation of Aβ plaques lead to oxidative stress [90–92]. Oxidative
stress may also be caused by several mechanisms, such as mitochondrial dysfunction or
inflammatory responses [92]. It may manifest as damage to synapses and changes in Ca2+

homeostasis, resulting in an apoptotic cascade and neurotoxicity [92] (Figure 2).

Table 1. Cohort studies investigating the association between vascular risk factors and brain β-
amyloid deposition.

Study (Country) Length of the
Study

Number of Study
Participants

(Age, Mean [SD])

Vascular Risk
Factors

Measurement of
Brain β-Amyloid

Load
Results

Gottesman et al.
(2017) (USA) [67]

Evaluation of
vascular risk
factors since

1987–1989 with
18F-florbetapir PET
scans in 2011–2013

322 without
dementia (27%

MCI) (75.8 [5.3])

HTN, DM, BMI ≥
30, TC ≥ 200

mg/dL, current
smoking status

18F-florbetapir PET
(SUVR)

(1) Association between
elevated BMI in midlife and

elevated SUVR (OR: 2.06, 95%
CI: 1.16–3.65) (2) OR for

elevated SUVR and 1 vascular
risk factor: 1.88 (95% CI:

0.95–3.72), OR for elevated
SUVR and 2 or more vascular

risk factors: 2.88 (95% CI:
1.46–5.69)

Hughes et al. (2018)
(USA) [68]

Evaluation of
vascular risk
factors since

1987–1989 with
18F-florbetapir PET
scans in 2011–2013

321 (27% MCI)
(76 [5])

Arterial stiffness by
pulse wave velocity

(PWV,
carotid-femoral

[cfPWV] and
heart-carotid

[hcPWV])

18F-florbetapir PET
(SUVR)

(1) Association between greater
central stiffness (hcPWV) and

greater Aβ deposition (OR: 1.31,
95% CI: 1.01–1.7)

(2) Association between cfPWV
and a higher odds of

Aβ-positive scans (OR: 1.4, 95%
CI: 1.1–2.1).
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Table 1. Cont.

Study (Country) Length of the
Study

Number of Study
Participants

(Age, Mean [SD])

Vascular Risk
Factors

Measurement of
Brain β-Amyloid

Load
Results

Rabin et al. (2018)
(USA) [69] 7 years

223 clinically
normal older

adults (73.7 [6.0])

Framingham Heart
Study general
cardiovascular

disease (FHS-CVD)
risk score (age, sex,
antihypertensive
treatment, SBP,
BMI, history of

DM, and current
cigarette smoking

status)

11C-PiB PET (DVR)

(1) Associations of a higher
FHS-CVD risk score

(β = −0.064; −0.094 to −0.033;
p < 0.001) and higher Aβ

burden (β = −0.058; −0.079 to
−0.037; p < 0.001) with faster

cognitive decline
(2) Synergistic effect of

FHS-CVD risk factors and Aβ
burden (β = −0.040, 95% CI:
−0.062 to −0.018; p < 0.001)

Arfanakis et al.
(2020) (USA) [70] 25 years

603 (No cognitive
impairment: 178,

MCI: 154,
dementia: 271) (age
at death: 90 [7]; No

cognitive
impairment: 88 [7],

MCI: 90 [6],
dementia: 90 [7])

HTN, DM,
smoking, history of

heart disease

Neuropathologic
examination

Association between WMH
burden and both vascular and

Alzheimer’s pathologies
(arteriolosclerosis (p < 10−4),

gross (p < 10−4) and
microscopic infarcts (p = 0.04),

Aβ plaques (p = 0.028)

Kobe et al.(2020)
(Canada) [71] 7 years

215 participants
(PREVENT-AD

cohort of
cognitively
unimpaired
individuals)
(62.3 [5.0])

TC, HDL, LDL
cholesterol levels,
SBP, DBP, pulse

pressure,
Framingham

Coronary Risk
Profile (age, sex,
SBP, DBP, HDL,
LDL, smoking,

DM)

18F-NAV 4694 PET
(SUVR)

Association of vascular risk
factors with Aβ burden but not

tau burden (only among
individuals who were not using

vascular medications)
TC level (β = −0.002 [SE, 0.001];
p = 0.02), LDL cholesterol level

(β = −0.002 [SE,0.001];
p = 0.006), SBP (β = −0.006 [SE,
0.002]; p = 0.02), pulse pressure

(β = −0.007 [SE, 0.002];
p = 0.004), and Framingham
Coronary Risk Profile score

(β = −0.038 [SE, 0.011];
p = 0.001)

Lockhart et al.
(2022) (USA) [72]

19 years
(enrollment,

2000–2002; 1st

cognitive abilities
screening,

2010–2012; 2nd
screening,
2016–2018)

159 participants
(49.7%

African-American,
50.3% White)

(baseline age 55.8
[6.7])

FSRP, CAIDE,
ASCVD (All

vascular risk factor
scores include age,

sex, SBP); FSRP,
ASCVD (DM,

antihypertensive
treatment,

smoking); CAIDE,
ASCVD (TC)

11C-PiB PET
(SUVR)

Association of higher baseline
Framingham stroke risk profile

(FSRP) (p = 0.014) and
Cardiovascular Risk Factors,

Aging, and Incidence of
Dementia (CAIDE) scores

(p = 0.004) with global brain Aβ

Abbreviations: Standard Deviation—SD; MCI—mild cognitive impairment; HTN—hypertension; DM—diabetes
mellitus; BMI—body mass index; TC—total cholesterol; LDL—low-density lipoprotein; SUVR—standardized
uptake value ratio; OR—odds ratio; SBP—systolic blood pressure; DBP—diastolic blood pressure; Aβ—β-
amyloid; DVR—distribution volume ratio; WMH—white matter hyperintensity; PREVENT-AD—Presymptomatic
Evaluation of Experimental or Novel Treatments for Alzheimer Disease; FSRP—Framingham stroke risk profile;
CAIDE—Cardiovascular risk factors, aging and incidence of dementia risk score; ASCVD—Atherosclerotic
cardiovascular disease risk estimate from the pooled cohort equation.
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Figure 2. Potential mechanism of Aβ and tau deposition in SVCI. The CSVD burden is associated with
Aβ and tau deposition in SVCI. Ischemic events can lead to Aβ deposition by reducing Aβ clearance
via BBB breakdown or deficits in perivascular drainage of Aβ from the brain interstitial fluid. BBB
breakdown causes faulty transport of Aβ by reducing LRP1 levels and increasing RAGE levels,
resulting in impaired clearance of toxic Aβ species. Aβ accelerates the tau hyperphosphorylation
by mediating the activation of protein kinases, including CDK-5 and GSK-3β. In addition, Aβ

induces the activation of caspase-3 and calpain-1, and the cleavage of tau generates neurotoxic tau
fragments. The association between Aβ and tau aggregation may involve microglial activation.
Soluble Aβ oligomers have been known to activate microglial cells. Microglial activation precedes tau
aggregation and facilitates tau hyperphosphorylation through cytokine release and the subsequent
NFT formation. Vascular risk factors can also induce tau accumulation. Ischemia caused by vascular
injury may activate CDK-5 and GSK-3 β, resulting in tau phosphorylation. Moreover, vascular risk
factors and the accumulation of Aβ plaques lead to oxidative stress. Oxidative stress may also be
caused by several mechanisms, such as mitochondrial dysfunction or inflammatory responses. It
may manifest as damage to synapses and changes in Ca2+ homeostasis, resulting in an apoptotic
cascade and neurotoxicity. CSVD—cerebral small vessel disease; Aβ—β-amyloid; BBB—blood–brain
barrier; LRP1—low-density lipoprotein receptor-related protein 1; RAGE—receptor for advanced
glycosylation end products; CDK-5—cyclin-dependent kinase 5; GSK-3β—glycogen synthase kinase
3β; NFTs—neurofibrillary tangles; ISF—interstitial fluid; CSF—cerebrospinal fluid; WMH—white
matter hyperintensity; BM—basement membrane.
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Notably, there are distinct effects of APOE genotyping on Aβ deposition between
patients with SVCI and ADCI. Specifically, apolipoprotein E4 (APOE4) is a risk factor for
Aβ positivity in patients with ADCI and SVCI. Apolipoprotein E2 (APOE2) is a protective
factor in ADCI (OR = 0.43); however, it is a risk factor in SVCI (OR = 2.26) [93]. Thus,
APOE2 might accelerate apolipoprotein E leakage in the vessel walls of patients with SVCI,
which in turn leads to impaired vascular drainage of Aβ. This impaired drainage eventually
results in increased Aβ burdens in the brain parenchyma [93]. Alternatively, APOE2 may
contribute to the development of CAA, which in turn leads to increased CSVD [93].

2.4. Clinical Effects of AD and CSVD Markers in SVCI Patients

There has been some debate related to the clinical effects of Aβ and CSVD imaging
markers. In fact, among patients with extensive WMHs, some tend to show severe de-
mentia symptoms, while others have no symptoms. In this regard, our previous studies
investigated which imaging markers might affect the clinical features of SVCI and found
that AD biomarkers and CSVD independently affect cognition, abnormal behavior, and
gait disturbances [29,32,51,65,94–96]. A cross-sectional study has reported that Aβ uptake
is only associated with memory dysfunction, whereas CSVD burden is associated with
memory, visuospatial, and frontal executive functions [94]. Longitudinal cohort studies
have also shown that Aβ positivity is associated with faster cognitive decline in patients
with SVaD [51] and higher conversion to dementia in patients with svMCI [32]. In terms of
abnormal behavior, Aβ predicts the signs of delusions and irritability, while CSVD burdens
are associated with other behavioral symptoms, such as apathy and depression [97]. In
addition, periventricular WMHs are the most important predictor of gait disturbances [98].

SVCI patients show distinct brain structural and cognitive trajectories based on AT
(Aβ/tau) biomarker profiles [52]. A previous study showed that patients in the A+T+
group predicted a more rapid decline in structural and cognitive trajectories than those
in the A+T− group, followed by those in the A−T− group [52]. Moreover, AD markers
and CSVD burden have a synergistic effect on cognitive decline. In a cross-sectional study,
significant interactions between WMHs and Aβ uptake were apparent in visuospatial
function, suggesting that CSVD and Aβ synergistically affect cognitive impairment [29]. A
longitudinal study comparing patients with SVCI and ADCI who had similar tau levels
has shown that as Aβ turns positive, SVCI shows a steeper cognitive decline compared
to the ADCI group [99]. In addition, as tau levels increase, the SVCI group shows a
steeper cognitive decline than the ADCI group [99]. These findings indicate that there are
interactive effects between AD markers and CSVD on cognitive decline.

Furthermore, Aβ and CSVD affect specific downstream imaging markers, such as
network changes and brain atrophy in specific regions, which in turn lead to the devel-
opment of these corresponding clinical outcomes [32,95,100]. Specifically, Aβ uptake is
associated with cortical thinning in the medial temporal regions including hippocampal
changes, which in turn leads to memory dysfunction. In contrast, CSVD burdens are
primarily associated with frontal thinning [101] and white matter network disruption [95],
which in turn leads to frontal dysfunction. In addition, a three-year longitudinal study has
shown that time-varying Aβ and CSVD affects the temporoparietal and frontal thinning,
respectively, which in turn contributes to the corresponding cognitive decline [32]. Another
cross-sectional study has demonstrated that Aβ positivity and CSVD severity are inde-
pendently associated with higher tau uptake in the medial and inferior temporal regions,
respectively [65]. Moreover, increased tau uptake can mediate the relationship between
Aβ and CSVD uptake and cognitive impairment, indicating that tau is another important
common downstream marker of Aβ and CSVD burdens. The overall mechanisms of SVCI
are summarized in Figure 3.
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Figure 3. Mechanisms of SVCI. SVCI is caused by various factors, including increasing age, diabetes
mellitus, hypertension, genetic predisposition such as APOE ε4 and ε2, and arteriosclerosis. This
can lead to Aβ deposition by impairing Aβ clearance. SVCI is also related to widespread white
matter hyperintensities or multiple lacunar infarctions, which have been gradually deposited in
subcortical regions for several decades. CAA is another factor known to be associated with SVCI.
SVCI—subcortical vascular cognitive impairment; APOE—apolipoprotein E; Aβ—β-amyloid; BBB—
blood–brain barrier; CAA—cerebral amyloid angiopathy.

2.5. Hemorrhagic Markers in Cerebral Amyloid Angiopathy (CAA) and the Clinical Effects

CAA is characterized by Aβ deposition in the small arteries of the meninges and
cortex, which causes vascular dysfunction and brain injury [102]. CAA is clinically and
radiologically characterized by lobar intracerebral hemorrhage (ICH), strictly lobar cerebral
microbleeds (CMBs) and cortical superficial siderosis (CSS) [103]. CAA is generally related
to Aβ parenchymal aggregates, such as neuritic and diffuse plaques, although it can also
occur pathologically without evident AD neuropathological changes [104].

Generally, the anatomical location of CMBs reflects their underlying etiology. Specif-
ically, deep CMBs are presumed to be due to hypertensive CSVD, whereas lobar CMBs
may reflect CAA [105]. In a cross-sectional study, consistent with previous studies, Aβ

uptake has been shown to be associated with lobar CMBs [23]. CSVD is also associated
with lobar CMBs as well as deep CMBs [23]. Aβ uptake and CSVD synergistically affect
the development of lobar CMB [23]. Furthermore, a longitudinal study demonstrated that
longitudinal measures of Aβ uptake and lacunes synergistically affect the development
of lobar CMBs [69]. According to Thal’s CAA pathologic stage, CAA pathology extends
sequentially from leptomeningeal and cortical vessels to cerebellar vessels and eventually to
the striatum and brainstem vessels [106]. Patients with both cerebellar and lobar CMBs are
more likely to present with CAA features, whereas deep CMBs, regardless of the presence
of both lobar and cerebellar CMBs, are more likely to represent underlying hypertensive
angiopathy than CAA features [107]. Interestingly, restricted superficial cerebellar CMBs
refer to CAA imaging markers, whereas the involvement of the cerebellar dentate nucleus
might be equivalent to deep CMB [107].

Our previous study showed that the frequency of APOE4 was higher in Aβ (+) CAA
than in Aβ (−) CAA, whereas APOE2 was associated with overt hemorrhagic markers of
CAA, such as lobar ICH and CSS [108]. These findings are consistent with other studies
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showing that APOE4 is related to the deposition of Aβ burdens [109,110], and APOE 2 is
related to the breakdown of blood vessel walls [111]. In addition, the number of lobar CMB
and the presence of CSS can predict Aβ (+), whereas ischemic CSVD markers can predict
Aβ (−) [108].

A previous study investigating the clinical effects of CAA hemorrhagic markers has
shown that multiple lobar CMBs are related to cortical thinning across all cortical regions,
and that CSS is associated with frontal thinning, which in turn contributes to the correspond-
ing cognitive decline [112]. Furthermore, path analyses have shown that the relationships
between CAA hemorrhagic markers and cognitive impairments are partially mediated
by thinning in cortical regions related to specific cognitive impairments [112]. A previous
study investigated the clinical outcomes of parenchymal Aβ in patients with CAA, and
showed that Aβ (+) CAA shows a steeper decline in multiple cognitive domains (including
language, visuospatial, memory, and frontal dysfunctions) than Aβ (−) CAA [108].

3. Current Challenges and Future Perspectives

In SVCI, numerous potential biomarkers have been discovered using neuroimaging
techniques, which were the focus of this review, as well as neuropathological research
or genetic testing. These can be grouped broadly into the following categories: clinical
biomarkers (neurobehavioral assessment); neuroimaging biomarkers, including WMHs
and lacunes; biochemical biomarkers (serum, plasma, and CSF biomarkers); pathological
biomarkers; and genetic biomarkers [113,114]. However, due to the lack of specific biomark-
ers for SVCI, additional extensive research on new biomarkers is necessary. Furthermore,
the expansion of the AT(N) system to an ATV(N) framework is recommended [115,116].
Adopting vascular imaging biomarkers will improve the depth and accuracy of biomarker
characterization in people along the AD continuum [115–118].

Research on dementia could further advance by recognizing and incorporating abun-
dant knowledge on therapies to modulate vascular dysfunction and how to prevent and
treat vascular illnesses. Treatment strategies for SVCI include slowing the progression of
CSVD and improving clinical symptoms. For example, the modification of vascular risk
factors, including hypertension and diabetes, has been recommended for the prevention
of AD and SVCI [119–123]. Additionally, studying the pathways associated with Aβ de-
position in SVCI may offer potential targets for treatment. For instance, strategies include
cell-based therapies, which aim to promote the clearance of Aβ through the perivascular
drainage pathway and BBB, such as upregulation of LRP1 and blockage of RAGE [124–128].
These strategies may provide important therapeutic applications that prevent the buildup
of Aβ in the brain and protect vessels against damage in SVCI.

4. Conclusions

This review highlights the relationship between AD and SVCI. We focused on the
interactions between AD and CSVD markers, potential distinct pathobiology, and clinical
effects, based on molecular imaging studies. Therapeutic strategies are needed based on an
understanding of the interactions between AD and CSVD markers in SVCI.
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