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Abstract: The multifaceted nature of CRISPR screens has propelled advancements in the field of functional genomics. Pooled CRISPR 
screens involve creating programmed genetic perturbations across multiple genomic sites in a pool of host cells subjected to a chal- 
lenge, empowering researchers to identify genetic causes of desirable phenotypes. These genome-wide screens have been widely 
used in mammalian cells to discover biological mechanisms of diseases and drive the development of targeted drugs and thera- 
peutics. Their use in non-model organisms, especially in microbes to improve bioprocessing-relevant phenotypes, has been limited. 
Further compounding this issue is the lack of bioinformatic algorithms for analyzing microbial screening data with high accuracy. 
Here, we describe the general approach and underlying principles for conducting pooled CRISPR knockout screens in non-conventional 
yeasts and performing downstream analysis of the screening data, while also reviewing state-of-the-art algorithms for identification 

of CRISPR screening outcomes. Application of pooled CRISPR screens to non-model yeasts holds considerable potential to uncover 
novel metabolic engineering targets and improve industrial bioproduction. 

One-Sentence Summary: This mini-review describes experimental and computational approaches for functional genomic screening 
using CRISPR technologies in non-conventional microbes. 

Keywords: Functional genomics, CRISPR screening, Non-conventional yeasts, Genetic screen analysis, Genotype–phenotype relation- 
ships 

Graphical abstract 

Schematic representation of the end-to-end pipeline for performing pooled CRISPR screens in microbes. Major steps include sgRNA 

library design, phenotypic screening, and quantitative analysis of the screening data. 

 

 

 

 

 

 

 

 

 

 

 

2018 ) . Genome-wide CRISPR screens have also been performed in 
bacteria and yeasts to unravel genetic hits influencing a diverse 
set of phenotypes, including those relevant to industrial biopro- 
duction. Previous studies in model microbes—Escherichia coli and 
Saccharomyces cerevisiae—have identified essential genes as well as 
those required for conferring tolerance to biochemicals like isobu- 
tanol and furfural ( Bao et al., 2018 ; Rousset et al., 2018 ; Wang et al., 
2018 ) . Other studies have focused on non-conventional microbes, 
such as the oleaginous yeast Yarrowia lipolytica , to identify genes 
essential for growth on glucose, and those important for provid- 
ing tolerance to environmental stress conditions, such as low pH 

and high salt concentration ( Ramesh et al., 2022 ; Schwartz et al., 
Introduction 

High-throughput CRISPR screens have become a versatile tool in
enabling identification of the genetic basis of various phenotypes
( Doench, 2018 ; Hart et al., 2015 ; Peters et al., 2016 ) . For instance,
they have been used extensively in mammalian cancer cell lines
to identify essential genes for survival, for facilitating targeted
drug design, and in immunological studies to identify genes in-
volved in various pathways in human immune cells ( Aguirre et al.,
2016 ; Meyers et al., 2017 ; Parnas et al., 2015 ; Shifrut et al., 2018 ;
Tzelepis et al., 2016 ) . Moreover, with the ability to target combi-
nations of multiple genes simultaneously, CRISPR screens have
made it possible to elucidate functions of poorly characterized

genes via construction of gene interaction maps ( Horlbeck et al., 

2019 ) . 
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Fig. 1 Experimental workflow for conducting pooled CRISPR knockout screens. A library of sgRNA spanning multiple genomic sites is designed, 
synthesized, and cloned into a plasmid backbone. The plasmid library is transformed into control and treatment host strains, and cells are cultivated 
for a predetermined number of days to select for significant gene knockouts. Upon completion of the screen, plasmids are extracted from the cells, 
quantified by qPCR, and sequenced using NGS. Figure created with BioRender.com. 
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CRISPR screens typically use a library of programmable single
uide RNAs ( sgRNAs ) and a CRISPR-associated endonuclease, typ-
cally Cas9 or Cas12a, to create mutations or alter gene expression
 Bock et al., 2022 ; Bodapati et al., 2020 ; Kampmann, 2018 ) . The
ost common type of CRISPR screens is knockout screens where

he CRISPR-Cas system generates a double-stranded break at the
enomic target site, evoking native DNA repair pathways such as
on-homologous end joining to create INDEL mutations that re-
ult in loss of gene function ( Shalem et al., 2014 ; Wang et al., 2014 ) .
esides knocking out gene function, CRISPR screens can make
se of a nuclease-deactivated Cas protein to modulate transcrip-
ion when fused to activator ( CRISPR activation or CRISPRa ) or re-
ressor ( CRISPR interference or CRISPRi ) domains. These screens
an be conducted in a pooled or arrayed format. Arrayed screens
hysically separate predefined gene perturbations, making them
alleable to amalgamation with downstream -omics profiling;
ut they have limited throughput and are relatively expensive
 Bock et al., 2022 ; Bodapati et al., 2020 ; Kampmann, 2018 ) . On the
ontrary, pooled screens have a much higher throughput as they
re devoid of physical separation between gene targets, making
hem more commonplace compared to arrayed screens, but re-
uire performing comparisons to a baseline for hit identification
 Bock et al., 2022 ; Bodapati et al., 2020 ) . The customizable nature
f sgRNA and the ease of inducing perturbations to gene function
sing CRISPR-Cas systems make high-throughput CRISPR screens
n effective tool for establishing genotype–phenotype relation-
hips in both model and non-conventional organisms. 
The CRISPR screening workflow comprises of a series of ex-

erimental and computational steps, ranging from host selec-
ion and library design to identification and biological interpre-
ation of hits. In this review, we explore some of these steps in
etail, with a focus on pooled CRISPR knockout screening in non-
onventional yeasts. We begin by discussing the experimental de-
ign for conducting the screens, followed by bioinformatic pro-
essing of screening data. We also describe the general working
rinciples behind the identification of screening outcomes while
uxtaposing the nature of yeast and mammalian cell datasets.
astly, we review some of the existing algorithms for analyzing
RISPR screens and discuss their performance on yeast screening
atasets, with a goal of assisting researchers in choosing the most
ppropriate tool for analyzing their data. 

unctional Genetic Screening with Pooled 

RISPR Libraries 

 schematic representation of the experimental pipeline for per-
orming pooled CRISPR knockout screens is depicted in Fig. 1 .
ince microbes exhibit different sets of desirable phenotypes,
 preliminary step in CRISPR screening is the selection of an
ppropriate biological host for a given application. In the case
f non-conventional yeasts, relevant phenotypes influencing host
election include a microorganism’s natural ability to synthesize
 certain bioproduct or tolerate harsh environmental conditions
hat may be present in industrial bioprocesses ( Thorwall et al.,
020 ) . Once a host is chosen, an sgRNA library is designed to target
elevant or all protein-coding genes in the genome of the organ-
sm ( although non-coding regions could also be targeted [Shukla
 Huangfu, 2018 ] ) . 

gRNA Library Design 

t is well known that guide RNAs present disparities in induc-
ng genetic edits and that guide activity is crucial to the ac-
uracy of screening results. Highly active guides can correlate
he phenotypic variations to the appropriate genomic perturba-
ion with high accuracy, while poorly active guides may obscure
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Fig. 2 Typical steps in pooled CRISPR screen analysis and visual depiction of results. Raw sequencing reads from the screen are processed to generate 
sgRNA read counts, which, upon passing quality control, are used to identify significant genes in the dataset. The identified hits are characterized to 
elucidate underlying biological mechanisms, and screening results are visualized by making plots. Figure created with BioRender.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gene hits. It is thus advantageous to create a library comprising
a large proportion of high-activity guides to improve hit calling.
High-activity libraries can be designed by picking guides based
on in silico activity scores estimated using activity prediction algo-
rithms. Existing software tools such as CHOPCHOP ( Labun et al.,
2019 ) , CRISPRLearner ( Dimauro et al., 2019 ) , DeepCpf1 ( Kim et al.,
2018 ) , and DeepGuide ( Baisya et al., 2022 ) , among others, use one
or more sequence, structural, and epigenetic features of sgRNA to
predict on-target activity with endonucleases, such as Cas9 and
Cas12a. See Konstantakos et al., ( 2022 ) for an in-depth review on
guide activity prediction and benchmarking across current tools.
Despite most of the prediction algorithms being developed for
model organisms, they have been reasonably effective in facilitat-
ing the design of active sgRNA libraries in non-conventional hosts
relative to an unbiased approach that is blinded to in silico activ-
ity scores ( Ramesh et al., 2022 ; Schwartz et al., 2019 ) . Even when
using activity prediction scores, it is advisable to design several
guides targeting each gene ( i.e., a high genome coverage ) , ensur-
ing the presence of an active guide per gene and sufficient sta-
tistical power for hit identification—an approach that comes with
a cost of increasing downstream analytical complexity. Regard-
less of the design strategy, it is critical to ensure that every sgRNA
in the final library is ( i ) unique within the genome, so that off-
target effects are minimized; ( ii ) does not target intronic regions
of the coding sequence; ( iii ) sufficiently spaced from other sgRNA
to improve diversity of target locations; and if possible, ( iv ) located
within 5–65% of each coding sequence to maximize the chances
of a gene knockout resulting in a non-functional protein ( Doench
et al., 2016 ; Ramesh & Wheeldon, 2021 ) . 

Conducting the Screening Experiment 
The designed library is synthesized as pooled single-stranded oli-
gos on a DNA microchip that are cloned into a plasmid vector, re-
sulting in a library of plasmids. This plasmid library is amplified by
transforming it into E. coli before isolation and subsequent trans-
formation into the actual host cells for the screening experiment.
Stable Cas expression in host cells is often accomplished through
heterologous expression from a genomically integrated expres-
sion cassette. In addition to the sample ( or treatment ) strain, a 
control ( or reference ) strain is also needed so that changes in
guide abundances at the end of the screen can be determined. In
many cases, a strain devoid of Cas endonuclease but harboring the 
guide RNA library is used as a control ( Hart et al., 2015 ; Koike-Yusa
et al., 2014 ) . Other examples of the reference conditions include
the treatment sample immediately post-transformation ( day 0 of 
the screen before gene knockouts occur ) or the untransformed li- 
brary ( Meyers et al., 2017 ) . 

Upon transformation of the sgRNA library in the control and 
treatment strains, cells are allowed to proliferate until they reach 
confluency, and then subcultured to allow for genetic selection.
At the end of the screen, the connection between genotype and 
phenotype is made by sequencing isolated plasmids expressing 
the sgRNA. That is, the fitness effect of disrupting a given gene is
determined by quantifying the abundance of the sgRNA targeting 
the gene. To do so, the plasmid library is extracted from the treat-
ment and control samples, the encoded guides are amplified by 
PCR, and the amplicon pool is sequenced using an Illumina or sim-
ilar NGS platform. For accuracy of results, it is advisable to ensure
sufficient depth in the sequencing run, which should be about 100 
times the library size or higher for every screening replicate. 

The resulting sequencing reads, the counts of which are indica- 
tive of the abundance of a given mutant in the microbial popula-
tion, can be bioinformatically processed to identify genes that af- 
fect growth in the screened condition. The raw sgRNA abundances 
themselves cannot be used directly for accurate determination of 
screening outcomes, since they do not account for variability in 
sgRNA activity and variability in sequencing depth across sam- 
ples, necessitating bioinformatic analysis to obtain significant hits 
from the screen. 

CRISPR Screen Data Analysis 

CRISPR screen analysis pipelines typically include steps for se- 
quencing read processing, quality control, hit identification, and 
investigation of screening results. These steps and a typical analy- 
sis pipeline are shown in Fig. 2 , and described in detail below along
with the associated bioinformatic tools available for use. 
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rocessing Raw Sequencing Data 

hile analysis tools like PinAPL-Py ( Spahn et al., 2017 ) and
AGeCK ( Wang et al., 2019 ) can accept raw sequencing data as

nput and process it as part of their pipelines, most other analysis
ackages require sgRNA abundances or log2-fold changes as in-
ut. Consequently, raw sequencing reads from the genome-wide
creen need to be modified and aligned separately before ana-
yzing them to generate screening outcomes. This can be accom-
lished with a number of existing bioinformatics tools and work-
ows. For instance, FastQC ( Andrews & Others, 2010 ) allows users
o perform quality control on the sequencing data based on met-
ics such as per base sequence quality, sequence length distribu-
ion, and overrepresented sequences, among others. 
If multiple screening samples and replicates were sequenced

n a single run, then the reads could be demultiplexed to split
he data into individual samples and replicates on the basis of
ample-specific adapters. This is achieved with the help of tools
uch as Cutadapt ( Martin, 2011 ) , Ultraplex ( Wilkins et al., 2021 ) , or
a-utils ( Aronesty, 2011 ) . Other tools like fastp ( Chen et al., 2018 )
r Trimmomatic ( Bolger et al., 2014 ) could be used to trim the
eads by removing the vector backbone and other miscellaneous
equences to only retain the sgRNA sequence. 
In regard to mapping reads to the genome and/or the sgRNA li-

rary, available methods, include BWA-MEM2 ( Vasimuddin et al.,
019 ) , Bowtie2 ( Langmead & Salzberg, 2012 ) , or HISAT2 ( Kim et al.,
019 ) , which align NGS reads to a reference sequence by ex-
ct or approximate matching. Of these tools, Bowtie2 is most
idely used for read mapping in CRISPR screen analysis. The read
lignment information is used to compute the read count ( i.e.,
bundance ) of each sgRNA across samples. 
For CRISPR screens in non-model yeasts like Y. lipolytica , the

ools Cutadapt and Trimmomatic have been found to be suitable
or demultiplexing and trimming sequencing reads, respectively
 Baisya et al., 2022 ; Ramesh et al., 2022 ) . Similarly, a combination
f Bowtie2 and naive exact matching has been shown to perform
easonably well in aligning reads, especially due to the ability of
owtie2 to account for mismatches during alignment, that mainly
tem from sequencing errors. 

uality Control of the Screening Data 

efore using the read counts for further analysis, it is essential
o assess the quality of experimental data, for example, by de-
ermining pairwise replicate correlation coefficients per sample
nd examining the sgRNA abundance distribution in the original
ibrary. This is done to ensure authenticity of screening results
nd reduce spurious hit predictions. High correlation values ( e.g.,
earson’s coefficient > 0.7 ) indicate consistency between biologi-
al replicates. Upon passing this quality check, raw sgRNA read
ounts from control and treatment samples are provided to one
r more CRISPR screen analysis methods that employ statistical
pproaches to identify significant genes in the screen. 

dentifying Screen Hits 
ost methods normalize the raw sgRNA abundances to account

or varying sequencing depths across samples and ensure a fair
omparison between controls and treatments. These normalized
bundances are used directly or converted to log2-fold change to
stimate gene essentiality scores, predominantly using Bayesian
rinciples. 
The genome-wide library contains sgRNA with variable activ-

ty; failure to account for this variability could lead to inaccurate
redictions of screening results. High-activity sgRNA should thus
ave a greater influence in determining gene essentiality com-
ared to low-activity sgRNA. A common strategy to infer sgRNA
ctivity involves screening across multiple conditions and ap-
lying probability-based approaches to make a prediction ( Allen
t al., 2019 ; Li et al., 2015 ) . Alternatively, guide RNA activity can be
etermined experimentally by screening in an additional treat-
ent sample containing a knockout of the native DNA repair
echanism. The activity of sgRNA can then be estimated as the

og2-fold change in sgRNA abundance in the knockout-containing
train ( in the presence of the Cas endonuclease ) to that in the
ontrol strain ( Ramesh et al., 2022 ; Schwartz et al., 2019 ) . Us-
ng this approach not only improves the reliability of the activ-
ty estimate, but also avoids the need to screen across multiple
onditions ( substantially reducing the size of the experiment ) , al-
hough knockout of DNA repair may not always be viable for all
rganisms. 
Once essentiality scores have been computed, a statistical test

or every gene to determine whether it belongs to a ‘‘null’’ pop-
lation of scores ( i.e., population of essentiality scores of non-
ssential genes ) is typically conducted, thus resulting in a p -
alue for the essentiality of each gene. The p -value is further cor-
ected for multiple comparisons ( typically using FDR; Benjamini
 Hochberg, 1995 ) , and genes having a corrected p -value lower
han a predetermined threshold are deemed as significant hits or
ssential genes. 

electing a Null Model for Significance Testing 

 suitable choice for the ‘‘null’’ population depends on the host or-
anism used to generate the screening data. Ideally, the null pop-
lation is representative of the behavior of non-essential genes
n the screen. For mammalian cells, the non-essential gene pop-
lation overlaps well with the population of negative control
gRNA, and as a result, the negative control population serves as
 suitable null model. On the other hand, non-conventional yeast
atasets, in our experience, have a non-essential gene population
hat is relatively distant from the population of negative control
gRNA ( Ramesh et al., 2022 ) . Using negative controls to create the
ull population would thereby result in a large number of false es-
entiality predictions, prompting the use of putative non-essential
enes to create the null population. 
While negative control sgRNAs do not make knockouts in the

enome, knockouts produced by targeting sgRNA result in growth
efects and a corresponding drop in the targeting sgRNA abun-
ance compared to the control sample. The proximity between
he negative control sgRNA and non-essential gene populations
hus depends on the ability of host cells to stem these growth de-
ects. Non-conventional yeasts lack this ability to suppress growth
efects, likely due to the absence of multiple gene copies and al-
ernate splicing mechanisms. This is in contrast to the case of
ammalian cells, which exhibit polyploidy and undergo alter-
ate splicing of genes, presumably suppressing growth defects
nd causing the non-essential gene population to overlap well
ith the negative control population. 

nvestigation of Screening Results 
fter identifying significant genes from a screen, the next step is to
lucidate their biological importance. Databases such as UnitProt
 UniProt Consortium, 2015 ) and Pfam ( Sonnhammer et al., 1997 )
an be used to investigate protein functions of known genes. In
ddition, analyses like gene ontology-enrichment test ( Ashburner
t al., 2000 ) and GSEA ( Subramanian et al., 2005 ) could be per-
ormed to identify biological pathways relevant to the significant
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Table 1. Comparison of Software Packages for Analysis of Pooled CRISPR Screens 

Implement- Quality Experimental Multiple Applicable to 
Method ation control sgRNA efficiency screens CRISPRa/i Reference ( s ) 

MAGeCK-VISPR Python Yes No Yes No Li et al. ( 2015 ) 
CRISPhieRmix R,C ++ No No No Yes Daley et al. ( 2018 ) 
JACKS Python No No Yes No Allen et al. ( 2019 ) 
ACE R No No Yes No Hutton et al. ( 2021 ) 
BAGEL2 Python Yes No No No Kim & Hart ( 2021 ) 
acCRISPR Python No Yes No No Ramesh et al. ( 2022 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hits. Since non-model organisms have a considerable number of
unannotated genes, these could be investigated by performing
BLAST ( Altschul et al., 1990 ) against proteomes of model organ-
isms or more rigorously by experimentation. Finally, screening re-
sults can be visualized, for example, by plotting log2-fold changes
of sgRNA targeting significant genes against a backdrop of those
of the entire library. Moreover, if a gold-standard set of essential
genes is available, then receiver operator characteristic plots or
precision–recall ( PR ) plots can be constructed and area under the
curve can be calculated to determine accuracy of the predictions.

Software Packages for CRISPR Screen 

Analysis 

Here, we introduce and describe the most commonly used soft-
ware packages for analyzing pooled CRISPR screens. A compari-
son of the tools based on some common features is provided in
Table 1 . 

MAGeCK-VISPR 

MAGeCK-VISPR is an end-to-end workflow for quality control,
analysis, and visualization of CRISPR screens ( Li et al., 2015 ) . The
analysis is carried out by an expectation–maximization algorithm
that takes raw sgRNA counts from multiple screening conditions
as input and uses them to iteratively compute gene essentiality
across conditions and sgRNA activity. Read counts are modeled as
a negative binomial distribution, and a generalized linear model is
used to deconvolute gene effects from multiple screens. Although
shown to be robust in making predictions for mammalian cancer
cell lines, the method inaccurately estimates sgRNA activity for
datasets from non-conventional yeasts, which leads to erroneous
predictions for gene essentiality ( Ramesh et al., 2022 ) . 

CRISPhieRmix 

Originally designed to analyze CRISPRa and CRISPRi screens,
CRISPhieRmix can also be applied to knockout screens ( Daley
et al., 2018 ) . The method requires log2-fold changes of sgRNA as
input and fits that data to a hierarchical mixture distribution, con-
stituting a broad-tailed null distribution ( to account for asymme-
try in the screening data ) and an alternative distribution. This
model is used to compute and return the posterior probability of
belonging to the alternative distribution for each gene, marginal-
ized over all possible mixture distributions of sgRNA targeting es-
sential genes. Since CRISPhieRmix uses the negative control pop-
ulation to form the null distribution, it performs well on screening
data from human cancer cells but has been found to result in an
excessive number of false positives for screening datasets in the
yeast Y. lipolytica ( Ramesh et al., 2022 ) . 
JACKS 

JACKS is a Bayesian method that processes data from multiple 
screens simultaneously to improve the modeling of sgRNA activity 
and hence, estimation of condition-dependent gene essentiality 
( Allen et al., 2019 ) . The method starts out by assuming Gaussian
priors for gene essentiality scores and sgRNA efficacies. It further 
uses raw sgRNA counts as input to compute log2-fold changes 
that constitute the likelihood function. The final values of sgRNA 

activity and gene essentiality per condition are inferred from their 
respective posteriors and determined using variational inference.
Like MAGeCK-MLE, JACKS effectively identifies essential genes in 
human datasets, but has been shown to fall short of correctly clas-
sifying essential genes in non-conventional yeasts like Y. lipolytica ,
mainly due to its inability to make accurate sgRNA activity infer- 
ences ( Ramesh et al., 2022 ) . 

BAGEL2 

Developed as an updated version of BAGEL ( Hart & Moffat, 2016 ) ,
this method uses information from gold-standard sets of essen- 
tial and non-essential genes to infer essentiality of every gene in
the screening dataset, via calculation of a Bayes factor corrected 
for off-target effects ( Kim & Hart, 2021 ) . BAGEL2 accounts for copy
number effect using the tool CRISPRcleanR ( Iorio et al., 2018 ) . Ad-
ditionally, it determines the quality of each screening replicate 
by computing a quality score based on log-fold change of sgRNA 

targeting reference essential and non-essential genes. Since gold- 
standard sets of essential and non-essential genes may not al- 
ways be available, as is the case with most non-model organ- 
isms, this method may have limited cross-species applicability at 
present. 

ACE 

ACE is a probabilistic method with the ability to predict differ- 
ential gene essentiality between samples, in addition to abso- 
lute essentiality ( Hutton et al., 2021 ) . The method does this us-
ing the sgRNA abundance in the untransformed library, along 
with initial and final abundances from each screening sample,
which are all modeled as Poisson distributions and help define 
the likelihood function. Knockout efficiency of sgRNA is com- 
puted using a logistic regression model, assuming that it de- 
pends on the GC content of each guide sequence. Finally, ACE 
estimates gene essentiality and the logistic regression coeffi- 
cients iteratively using maximum-likelihood estimation and de- 
termines gene significance from separate likelihood ratio tests 
for absolute and differential essentiality. Thus far, this anal- 
ysis package has primarily been used to successfully identify 
gene essentiality in mammalian cancer cell lines ( Hutton et al.,
2021 ) . 
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cCRISPR 

cCRISPR is an activity-correction method that improves CRISPR
creening outcomes by optimizing sgRNA library activity ( Ramesh
t al., 2022 ) . The method uses experimental sgRNA efficiency pro-
les, obtained by knocking out the dominant host DNA repair
echanism ( such as non-homologous end joining by deletion of
u70 gene ) , to remove low-activity sgRNA from the analysis and
orrect screening outcomes based on an activity threshold, by cal-
ulating an ac-coefficient ( given as the product of sgRNA activity
hreshold and library coverage ) . In the absence of experimental
ctivity values, acCRISPR can utilize predicted activity scores for
he library, if available. Gene essentiality is determined by testing
gainst a null distribution, created using sgRNA targeting putative
on-essential genes, which makes acCRISPR a suitable method
or analyzing screens in non-model yeasts. This method has been
hown to accurately call essential genes and genes important for
nvironmental stress tolerance in the oleaginous yeast Y. lipolytica
 Ramesh et al., 2022 ) . 

onclusions and Perspectives 

ooled CRISPR screens have shown great promise in facilitating
iological discovery by enabling identification of genetic signa-
ures for known and novel phenotypes. Although CRISPR screens
ave been extensively used in mammalian cells to investigate
isease mechanisms, their application to non-conventional mi-
robes for improving metabolic engineering-relevant phenotypes
as been limited so far. This review describes the experimental
nd computational steps involved in conducting and analyzing
RISPR knockout screens, with a focus on approaches and meth-
ds that have been successfully deployed in non-conventional
easts. While the integration of these steps makes for an end-to-
nd workflow, there are several considerations that one needs to
e mindful of in the entire process. 
The ability of the sgRNA library to produce genetic knockouts,

or instance, plays a pivotal role in determining the effectiveness
f a screen. Accordingly, libraries should be formulated to include
s many high-activity guides as possible. This could be achieved
n part by using activity scores obtained from sgRNA activity pre-
iction tools to inform library design. In the absence of accurate
ctivity predictions, as is often the case with most non-model or-
anisms, it is advisable to create a library having high genome cov-
rage to ensure sufficient statistical power in evaluating screening
utcomes. 
Another key aspect of improving screen design and analysis is

he successful delineation of sgRNA activity profiles in the con-
ext of the screen itself. While predicted activity scores may be
eadily available, sgRNA efficiencies are susceptible to variation in
he screening environment, warranting this extra measurement.
uch activity profiles can be derived experimentally or by model-
ng single or multiple screens. This additional data can be lever-
ged to diminish the influence of low-activity sgRNA in estimating
ene effects, thereby enhancing the accuracy of hit identification.
ther considerations for optimizing experimental design of the
creen include using an adequate number of biological replicates,
nsuring high library representation at the start of the screen, and
equencing the library at a sufficient depth. 
Overall, CRISPR knockout screening in non-conventional mi-

robes is an evolving tool that could be harnessed to investi-
ate biological mechanisms and thus decode the genetics of the
ost organism. In addition to knockout screening, future stud-
es should focus on knockdown and activation screens ( CRISPRi
nd CRISPRa, respectively ) , promoting discovery of gene function
nd establishment of novel genotype–phenotype relationships.
hese biological findings would further improve host genetic en-
ineering, drive enhancement of desirable phenotypes, and con-
equently improve the feasibility of industrial bioprocesses. 
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