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EPIGRAPH

The only way to swim fast is to swim fast.

Coach Ray Wong
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ABSTRACT OF THE THESIS

Continuous Behavior Acquisition in Clinical Environments

by

Kenny J. Chen
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Professor Vikash Gilja, Chair

Continuous behavioral labels of hospital patients provide quantitative data that can be informative

for both research studies and clinical applications. An analysis of neural correlates to natural behavioral

labels extracted from pose estimates, for example, could enable more robust brain-machine prostheses for

those with limb loss or motor impairment. Automated patient motion analysis could also provide additional

insight to clinicians during motor scoring assessments and seizure classification for a better-informed diag-

nosis. Likewise, continuous patient safety monitoring enabled by posture annotations could detect potential

bed falls or other injury risks and quickly alert nurses to administer preventive measures. Such scenarios

rely on consistent and accurate patient posture tracking in clinical environments.
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While many existing pose estimation frameworks are effective when subjects are located in unclut-

tered settings, clinical environments can provide several visual challenges that these general frameworks

are not calibrated for. In this thesis, we propose a semi-automated approach for improving upper-body pose

estimation in noisy clinical environments, whereby we adapt and build around an existing joint tracking

framework to improve its robustness to environmental uncertainties. The proposed framework uses subject-

specific convolutional neural network (CNN) models trained on a subset of a patient’s RGB video recording

chosen to maximize the feature variance of each joint. Furthermore, by compensating for scene lighting

changes and by refining the predicted joint trajectories through a Kalman filter with fitted noise parameters,

the expanded framework can yield more consistent posture annotations in these settings when compared to

general methods. The perspectives gained from this work provide better insight in developing a practical

pose estimation framework for researchers and clinicians in these environments.

xii



Chapter 1

Introduction

1.1 Motivation

Accurate patient joint tracking and posture estimates provide quantitative data that can be experi-

mentally and clinically informative. Upper-body annotations for long-term continuous video of patients in

the epilepsy monitoring unit (EMU), for example, can be used to further explore the relationship between

neural activity and unconstrained human movement when combined with a neural recording system [1, 2].

Analysis of neural correlates to behavioral labels extracted from long duration naturalistic datasets collected

in the hospital could then provide a pathway for more robust brain-computer interfaces (BCI’s). These in-

clude assistive robotic arms [3–5] and neural prostheses [6, 7] for those with limb loss or total paralysis.

Alternatively, posture annotations can be used to objectively score patient motor capabilities to enhance

current subjective assessments. For instance, the Unified Parkinson’s disease rating scale (UPDRS) [8] is

the current standard for evaluating the severity of motor impairment associated with Parkinson’s disease,

but it involves a qualitative evaluation by interview and clinical observation. The outcome of this process

is limited to the clinician’s interpretation during examination and can be inconsistent between evaluators.

Combining such assessments with additional insight from objective motion analysis could help improve the

efficacy of treatment protocols. Other motor scoring assessments (e.g., BOT-2 [9], FMA [10], MAS [11])
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General Model

Estimated Pose Confidence Heatmap

PatientPose(a) (b)

Figure 1.1: Comparison of pose estimation models. Upper-body posture annotations and their corresponding
probability heatmaps using (a) a prepackaged model and (b) our patient-specific model. Both models were
developed using the Caffe-Heatmap architecture. Our proposed framework accounts for variability in clinical
environments to improve pose estimates, and can be more confident and accurate than generalized methods.
Subject 1 is depicted in these images.

would benefit similarly.

Several studies in automated motor scoring incorporate wearable devices (such as inertial measure-

ment units [12, 13] and accelerometers [14–16]) that collect kinematic data of subject appendages, but may

risk complications from prolonged wear of physical sensors [17]. These systems can be complemented

with less invasive video-based tracking methods that supplant physical sensors when they are temporarily

removed for relief. Additionally, for patients who are unable to wear such sensors due to injuries at the

wrists or at other attachment areas, video-based joint tracking and behavioral labeling can create a nonin-

trusive means to monitor their well-beings.

To further motivate this work, other uses of patient pose estimates include enhanced seizure clas-

sification and automated patient safety monitoring. Current methods for classifying epileptic seizure types

depend on a manual inspection of seizure semiologies [18], and an analysis of patient movements during

an episode could provide clinicians with further intuition on which seizure treatment protocol to select. In

addition, preventive measures for accidental bed falls could be administered on a shorter notice, since auto-

mated patient video monitoring can alert nurses of impending bed falls faster than current weight sensors.

Video safety monitoring can also analyze overall patient motility during an extended period of stay and

2



automatically notify nurses to prevent pressure ulcers or other complications from developing. This would

allow nurses to attend more patients who require manual care by freeing their time from constant check-ups.

To this end, we introduce PatientPose, an adaptation of Caffe-Heatmap [19] for semi-automated

pose estimation in clinical environments. Our additions to the existing pose estimation framework include

three key elements that enable more accurate and consistent patient posture tracking than before:

(i) A preprocessing step to accommodate for the frequent scene lighting changes found in hospital rooms.

(ii) A training technique that targets separate convolutional neural network (CNN) models specifically to

each patient to capture the high variance of postures a subject can realize during their hospital stay.

(iii) A Kalman filter with tuned noise parameters which refines the predicted joint trajectories.

We show that for three subjects recorded in two research clinics, the extended system provides an increase

in tracking performance when compared to two state-of-the-art generalized frameworks (Figure 1.1).

1.2 Related Work

The importance and potential impact of human pose estimation is supported by the substantial his-

tory of research in this field. Recent work in computer vision [19–27] suggests using deep convolutional

neural networks (CNN’s) to automatically estimate joint locations in long-term recording sessions. Toshev

and Szegedy [25] were the first to use CNN’s for human pose estimation and regressed joint coordinates

directly from a cascade of deep CNN regressors. More recently, Pfister et al. [19] instead regressed confi-

dence heatmaps for the joint positions of each input frame and improved estimates by aligning and pooling

heatmaps with neighboring frames. This framework was then extended by Charles et al. [26] who recur-

sively filtered and processed the estimates for even better labels. Cao et al. [27] later used a two-branch

multi-stage CNN architecture to encode the location and orientation of body parts into a set of 2D vector

fields and achieved real-time multi-person pose estimation.

3



While the aforementioned frameworks were developed independently from subject and environ-

ment and intend to be all-inclusive solutions, they often do not generalize well to patients within clinical

environments. Previous works on improving pose estimation performance in these complex environments

take advantage of a wide range of available sensors [28–33]. Achilles et al. [28] used a single depth camera

to regress joint coordinates specifically for body tracking under blanket occlusion, and Liu et al. [29] relied

on a novel infrared image acquisition technique using a bird’s-eye view in order to monitor patient sleep-

ing postures. Belagiannis et al. [30] combined information from multiple RGB cameras to track surgeons

and medical staff in operating rooms, and Kadkhodamohammadi et al. [31] improved upon pose estimation

in operating rooms by using depth sensors in tandem with multiple RGB cameras. Chaaraoui et al. [32]

also used a multi-camera setup but for vision-based monitoring and action recognition by learning subject

activity patterns from estimated silhouettes. However, none have attempted to extract high-quality joint

estimates to track freely-behaving patients in hospitals across hours of data using a single RGB camera.

Capturing RGB video is trivial with the current state of consumer technology, and to our knowledge this

work is the first to create a pose estimation framework that specifically targets subjects in clinical environ-

ments using only one angle of recorded RGB video. Additionally, the proposed extensions to Pfister et

al.’s Caffe-Heatmap [19] do not modify the original framework’s central CNN architecture and could po-

tentially be adopted to improve other general pose estimators, and our framework is capable of a real-time

implementation after a patient’s initial training procedure.

1.3 Thesis Overview

The remainder of this thesis consists of five chapters, and is organized as follows:

In Chapter 2, we introduce our data acquisition system and the different modalities we captured

during each recording session. We outline our novel dataset we recorded of several consenting patients in

different research clinics, and we also detail the various clinical considerations and concerns during the data

4



acquisition phase and our solutions to address them.

In Chapter 3, we provide a brief overview of two state-of-the-art generalized pose estimation frame-

works that we used as benchmarks against our framework.

In Chapter 4, we present our three main augmentations to an existing pose estimation framework

that enable more consistent posture tracking in clinical environments. Each component serves a specific

purpose, and we provide our reasons for implementing each one into our pipeline.

In Chapter 5, we analyze each component to convince the reader that our techniques are reasonable

for improving patient pose estimation in noisy clinical settings. Additionally, we explain our evaluation

criteria and provide pose estimation accuracy comparisons between our framework and the two benchmark

general frameworks. These comparisons used selected test sets of patient data for three subjects recorded in

various clinical monitoring units.

In Chapter 6, we summarize the contributions made in this thesis and discuss the trade-offs between

our patient-specific framework and general pose estimation frameworks. In particular, we note that our

framework serves a different purpose than generalized methods and we discuss who the target user is for

each one. We also consider several potential directions of future work and refer the reader to the appendix

for preliminary results on two that are particularly interesting.

5



Chapter 2

Systems and Data Acquisition

2.1 Subject Recording and Dataset Description

In this work, we conducted our experiments using a subset of a novel dataset. Three patients with

intractable epilepsy were enrolled according to protocols approved by the Institutional Review Board (IRB)

at the New York University (NYU) Langone Comprehensive Epilepsy Center and the Rady Children’s

Hospital (RCH), San Diego, Pediatric Epilepsy Center. Video was recorded using a Microsoft Kinect v2

during each patient’s stay, targeting 1–2 days post-implant of electrodes when the subjects were expected to

be most active. Video was recorded using multiple modalities (i.e., RGB, depth, infrared), but only the RGB

images were considered for this study. Specific details regarding the duration of each subject’s recording

session and the number of frames used for framework training/evaluation are provided in Table 2.1, and a

sketch of the setup can be seen in Figure 2.1. Note that the Kinect v2 RGB camera samples at either 15 or

30 frames-per-second (fps) depending on room luminance and horizontally flips all images when saving to

disk. Our data acquisition system was fit onto a custom-built mount that stood 5 feet tall and was placed

about 20 degrees to the left of Subjects 1 and 3 (S1 and S3) and 45 degrees to the left of Subject 2 (S2).

Although the work presented in this thesis only considers RGB video for three subjects, we note

that our novel dataset also includes other modalities recorded from four adult subjects and five adolescent

6



iEEG
Amplifier

Subject
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Clinical
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Sync

Microsoft
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(a) (b)

Figure 2.1: Data acquisition system. Our data acquisition system was deployed to each hospital using a
similar setup as seen in (a) the cartoon schematic and (b, top) our mock hospital room. Multiple modalities were
captured during each patient recording session, including RGB/depth/infrared video by a Microsoft Kinect
(b, bottom left) and neural activity by cortical implants connected to an intracranial electroencephalography
(iEEG) amplifier. The modalities were then time-aligned using an Arduino microcontroller (b, bottom right).

Table 2.1: Dataset summary. Subject datasets varied in recording duration and number of frames, but the
number of training frames used per dataset was consistent across all subjects (2,000 for CNN model training
and 500 for Kalman filter parameter training). Note that the Kinect automatically recorded S1’s dataset at 15fps
and S2/S3’s dataset at 30fps due to a difference in room luminance.

Subject Study ID Hours
Number of Frames

Total Training Testing

S1 NY531 1.8 94,470 2,500 3,000
S2 RCH1 5.8 625,127 2,500 1,000
S3 RCH3 22.2 2,399,469 2,500 1,000

subjects across more than 250 collective hours in the two hospitals. These subjects were implanted with

either electrocorticography (ECoG) or stereoelectroencephalography (sEEG) electrodes for electrophysi-

ological monitoring of epileptic seizures and other complications they may have had. In addition to the

modalities recorded by the Kinect, the signals captured by these electrodes were also collected to create a

dataset that can enable a wide range of potential studies in neurophysiology.

7



(a) (b)

Figure 2.2: Prototype of the opt-out device. (a) A front-view of our prototype for a patient’s opt-out device,
and (b) the internals of the device showing its simple two-button circuit and the Arduino Uno. Patients were
given two options to temporarily opt-out of data collection during a continuous recording session: one which
paused data collection for 15 minutes (blue button) and one which erased the previous 15 minutes of data
recording (yellow button). Another version of this device featuring a studier construction was created prior to
the system’s deployment, but a photo of it was not taken.

2.2 Time-Aligning Recorded Modalities

Data stemming from multiple sources (i.e., Microsoft Kinect and neural acquisition system) needed

to be synchronized to ensure that information between the sources were relevant at each time step. Although

the RGB, depth, and infrared modalities were automatically aligned via the Kinect’s internal clock, synchro-

nization between patient video and acquired neural signals was not as trivial, and relying on wall-clock time

resulted in poor data alignment. As part of our data acquisition system, we used an Arduino Uno as an

intermediate device that sent audio/visual cues to the Kinect through a speaker and an LED, and pulses to

the neural acquisition system through a 3.5mm connection (Figure 2.1). These triggers were then used to

calculate the offset in time between the sources for a better temporal alignment of data.

2.3 Patient Recording Opt-Out

As part of our agreement for recording patients in each hospital, we were required to create a device

that temporarily paused the data acquisition system during a continuous recording session. Patients were

8



often bound to their hospital beds and could not move without nurse assistance, and therefore occasionally

had private moments they did not wish to be recorded. To provide patients with an option of pausing the

system during these sensitive moments, we built an additional “opt-out” device using another Arduino Uno

microcontroller (Figure 2.2). This device included two buttons that allowed patients to opt-out of recording:

one which paused data collection for 15 minutes and one which deleted the previous 15 minutes of data

recording. An LED on the device also indicated when the 15 minute pause was nearing its end.

2.4 Handling Sensitive Data

Patient data collected from hospitals required careful data handling procedures to ensure full com-

pliance with hospitals confidentiality agreements. In addition to our contractual bindings for upholding

patient anonymity, we were also obligated as researchers to responsibly manage and store sensitive (and po-

tentially identifying) patient data. Therefore, we stored our collected datasets onto encrypted and password-

protected external hard drives to prevent access from unauthorized persons. Furthermore, video recorded

from the Kinect was anonymized prior to visualizations, and only those who were authorized could view

the de-anonymized images.
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Chapter 3

General Pose Estimation

General pose estimation frameworks are effective when subjects are located in uncluttered settings,

but they can be unreliable when applied to noisy environments such as epilepsy monitoring and intensive

care units. Such locations present several visual challenges that these generic frameworks do not account for,

including variance in lighting conditions throughout a recording session, non-subject (e.g., clinician, nurse,

visitor) interferences, and environmental occlusions (e.g., bed blankets, head wrapping, hospital gown). As

a result, estimated joint locations of patient video recorded in the hospital using all-inclusive pose estimators

can be inconsistent in its predictions and may not generalize well to clinical environments.

Two state-of-the-art generic pose estimation frameworks include Pfister et al.’s Caffe-Heatmap [19]

and Cao et al.’s OpenPose [27]. Although these frameworks both aim to predict subject joint positions,

they are vastly different in their approaches. Caffe-Heatmap estimates joint coordinates by first regressing

confidence heatmaps of positions using a pretrained model, and then aligning neighboring heatmaps with

optical flow to take advantage of temporal information. OpenPose, however, encodes the location and

orientation of body parts into a set of 2D vector fields and uses nonparametric representation to learn the

association of body parts to individuals. While these algorithms are quite impressive in their ability to

work on data in many different environments, we found that their predictions were sensitive to the visual

challenges within clinical environments; this motivated the work presented in this thesis.
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Chapter 4

Patient-Specific Pose Estimation

To calibrate general pose estimation frameworks for clinical environments, we developed three key

add-ons to address the visual challenges found within these settings. In this chapter, we present these

three augmentations in detail and discuss the challenges that each component tries to compensate for. In

particular, we present a preprocessing step that accounts for shifts in lighting conditions, a high-quality

training strategy that captures a patient’s diverse collection of postures, and a Kalman filter with trained

noise parameters that better predicts partially occluded joints. These methods were built around the Caffe-

Heatmap architecture [19], and a complete pipeline of our framework can be seen in Figure 4.1.

4.1 Image Preprocessing

4.1.1 Cropping

RGB frames were originally recorded at a resolution of 1920x1080 pixels in width and height, but

then cropped and resized to 256x256 pixels centered around the patient for memory efficiency during GPU

training. The location of cropping was manually selected once per patient dataset and used to crop all frames

within that same set.
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Figure 4.1: Pipeline of framework. The proposed framework extends Caffe-Heatmap to improve pose es-
timation of patient video recorded in clinical environments. Prior to estimation, a new patient-specific CNN
model is trained using a subset of preprocessed video frames that maximize feature variance (À). This model is
then used to estimate the joint positions of the same patient from additional video, which are then refined using
a Kalman filter with noise parameters trained using another subset of preprocessed frames (Á). This work used
2,000 frames for À and 500 frames for Á.

4.1.2 Scene Lighting Normalization

Hospital rooms can fluctuate in lighting conditions as a result of its dynamic atmosphere. Clinicians,

nurses, and visitors frequently enter and exit the patient room and often block sources of light from entering

the recording camera’s lense, resulting in video frames with inconsistent brightness. In addition, for long

duration recording sessions, natural sunlight entering from a nearby window can vary in intensity as the

sun rises and sets, thereby affecting image consistency. To account for these fluctuations, image brightness

was normalized by first transforming each frame to the Hue-Saturation-Value (HSV) color space and then

applying contrast-limited adaptive histogram equalization (CLAHE) [34] onto the value layer with an 8x8

tile size. Regions with similar surroundings (e.g., bed sheets) were susceptible to noise amplification when

normalized using global or regular adaptive equalization [35], and CLAHE limited the amount those regions

could increase in contrast (Figure 4.2).
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Figure 4.2: Scene lighting normalization. Raw patient images (left) during daytime (top) and evening (bot-
tom) were significantly different in lighting conditions for the same clinic. However, after applying contrast-
limited histogram equalization (CLAHE, right), the frames across a dataset became more consistent in bright-
ness. Subject 3 is depicted in these images.

4.2 Convolutional Neural Network Models

4.2.1 Motivation

Prepackaged convolutional neural network (CNN) models trained using movie or video frames

work well against other generic pose estimation datasets (e.g., BBC Pose [36], Common Objects in Context

(COCO) [37], Frames Labeled in Cinema (FLIC) [38], MPII Human Pose [39]), but can be less reliable

when applied to videos of hospital patients due to various challenges unique to the clinical setting. There-

fore, we trained a separate CNN model for each of our subjects using an extracted subset of frames held out

from the test set. These high-quality training sets were designed to capture the wide range of postures the

corresponding patient may naturally take on throughout a recording session.
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4.2.2 High-Quality Training Dataset

To maximize posture diversity and therefore feature variance in a patient’s training data, frames

were selected from both movement and non-movement periods. This was accomplished by first applying

the Gunnar-Farnebäck dense optical flow algorithm [40] onto the raw RGB video of the same patient to

calculate the average magnitude of scene movement between adjacent frames. A threshold on this average

flow empirically set to 0.15 pixels per frame then partitioned patient RGB video into periods of movement

and idleness. Afterwards, a subset of frames was uniformly sampled from the segmented video such that

frames drawn from movement and rest periods were distributed 70%/30%. Using this strategy, 2,000 frames

for model training were selected across the entire span of each patient’s dataset which captured different

postures the patient may take on during their stay. Frames with significant patient occlusions were excluded.

4.2.3 Patient-Specific Model Training

Ground truth (x,y) coordinates of the seven joints (i.e., head, left/right hands, elbows, and shoul-

ders) were manually marked for each training set using a custom labeling script. A CNN model was then

trained for each patient using the Caffe-Heatmap model training architecture [19] on an NVIDIA GeForce

GTX 1080 Ti with the annotated images. One million iterations of batch size 14 were used with a learning

rate of 10−8 and momentum of 0.95, and each iteration took approximately 0.75 seconds for a total of nine

days of training per model. The resulting models learned features specific to each patient through the high-

quality training set. Using the same hardware and configurations, training a generic model on the FLIC

dataset with about 4,500 frames would span around twelve days.

4.2.4 Inference via Patient-Specific Model

To enable easy adoption of our augmentations onto other pose estimators, we did not directly mod-

ify the Caffe-Heatmap framework. We therefore treated it as a black box, with the inputs as the patient-

14



specific Caffe [41] model and N number of frames, and an output of seven 256x256 confidence heatmaps

for each frame. Each joint location was then taken to be at the argmax of its corresponding heatmap, re-

sulting in a 2x7xN structure of (x,y) ∈ [0,256] joint coordinates. For each frame, inference spanned ∼0.03

seconds when using the same NVIDIA GeForce GTX 1080 Ti (compared to ∼10 seconds per frame on an

Intel Xeon CPU E5-2630), enabling the potential for a real-time implementation. Specific details of the

Caffe-Heatmap architecture can be found in [19].

4.3 Kalman Filter

4.3.1 Motivation

Joint locations estimated by a patient-specific CNN model were generally reasonable, but occasion-

ally contained jitter or large jumps when a patient moved quickly or was occluded. Therefore, a standard

Kalman filter [42] was used as a post-processing step to leverage the temporal information found between

frames in order to refine any noisy measurements. The Kalman filter consists of two primary components

(a state transition function and a measurement function) that model the underlying physics of a system to

predict its state over time, making it an appropriate choice for denoising estimated joint trajectories. In

addition, we chose to use a Kalman filter (as opposed to a non-causal Kalman smoother [43]) to preserve

our framework’s potential to be implemented in real-time due to the filter’s causality.

4.3.2 General Equations

The Kalman filter is a recursive two-step process which iteratively predicts a system’s next state

using past information and a predefined model, then updates its predictions using external sensor measure-

ments. These two functions are defined by the linear state transition and measurement matrices A and H. In

addition, the estimated state µt at each tth iteration is accompanied with a covariance Σt that measures the
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accuracy of the estimate to the true state. In the Kalman filter’s prediction step, we have:

µ̂t = Aµt−1 ,

Σ̂t = AΣt−1A>+Q ,

where the hat indicates that these values are purely estimates by the filter without considering any outside

measurements yet. The Q term above is the covariance of the process noise that captures the error between

the transition model and the true dynamics of the system, and it is assumed to be Gaussian distributed in

this work. In the update step, we have:

Kt = Σ̂tH>(HΣ̂tH>+R)−1 ,

µt = µ̂t +Kt(zt −H µ̂t) ,

Σt = Σ̂t −KtHΣ̂t ,

where Kt is the Kalman gain that adjusts the next predicted state µt and covariance Σt depending on the

accuracy of the model. In this step, external sensor measurements zt provide the filter with additional

information on the system’s next possible state, and the R term captures the noise in these measurements

(also assumed to be Gaussian). Complete derivations of these equations can be found in [44–46].

In this work, we used a constant velocity model [47] to define the state transition and measurement

matricies A and H in these equations, and we assumed independent movement between the seven joints.

Therefore, we ran a separate Kalman filter on each joint, in which the 4D state estimates µt contained a

joint’s (x,y) pixel position and velocity at time t. Additionally, we used the (x,y) coordinates provided by

a patient’s CNN model as the external zt measurements to update the filter’s predictions on the system’s

state. These Kalman filter equations recursively computed a next-best-guess on a joint’s position using the

predefined constant velocity model and pose estimates by the CNN model.
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4.3.3 Learning the Noise Parameters

The Q and R process and measurement noise covariances are critical components to the Kalman

filter that model unforeseen perturbations on the system. In the context of this work, the Q term captures

how erroneous the constant velocity model is to the real dynamics of a patient and the R term captures

the variability in the CNN’s pose estimates to the true positions. However, these matrices are frequently

difficult to estimate and are often constructed using prior knowledge of the problem, tediously tuned by

hand, or assumed to be independent between variables for convenience. Abbeel et al. [48] demonstrated

that Q and R can be learned by maximizing the joint likelihood between the states and the measurements of

a training dataset. In other words, for T number of training datapoints, the optimal parameters Q j
MLE and

R j
MLE for each jth patient joint can be formulated as:

〈
Q j

MLE ,R
j

MLE

〉
= argmax

Q,R
log p(x j

0:T ,z
j

0:T ) . (4.1)

Here, the joint probability distribution between the sequence of ground truth states x j
0:T and CNN pose

estimates z j
0:T is:

p(x j
0:T ,z

j
0:T ) = p(x j

0)
T

∏
t=1

p(x j
t |x

j
t−1)

T

∏
t=0

p(z j
t |x

j
t ) (4.2)

with some prior p(x j
0), where the Gaussian motion and observation models are:

p(x j
t |x

j
t−1) = N (x j

t ;Ax j
t−1,Q) , (4.3)

p(z j
t |x

j
t ) = N (z j

t ;Hx j
t ,R) . (4.4)

Substituting (4.2), (4.3), and (4.4) into (4.1) results in:

Q j
MLE = argmax

Q

[
−T log |2πQ|−

T

∑
t=1

(x j
t −Ax j

t−1)
>Q−1(x j

t −Ax j
t−1)

]
,

R j
MLE = argmax

R

[
− (T +1) log |2πR|−

T

∑
t=0

(z j
t −Hx j

t )
>R−1(z j

t −Hx j
t )
]
.
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Finally, by computing the closed form solutions, we have the following optimal equations:

Q j
MLE =

1
T

T

∑
t=1

(x j
t −Ax j

t−1)(x
j

t −Ax j
t−1)

> , (4.5)

R j
MLE =

1
T +1

T

∑
t=0

(z j
t −Hx j

t )(z
j

t −Hx j
t )
> . (4.6)

4.3.4 Patient-Specific Noise Parameter Training

Equations (4.5) and (4.6) require ground truth states x j
t and CNN pose estimates z j

t from a set of

training data for each patient joint. In addition, because (4.5) depends on states at times t and t –1, the

training joints must be continuous over time. Therefore, in an attempt to capture the process variability

across the entire span of a patient dataset, we constructed a “semi-continuous” training subset using the

following steps. First, we segmented a patient’s video into periods of movement and idleness using the

same optical flow method as described in Section 4.2.1. Afterwards, we extracted the first 10 frames of a

movement period for 50 periods chosen uniformly across the span of the patient’s video. This resulted in

a set of 500 “semi-continuous” frames (50 discontinuous movement periods of 10 continuous frames each)

for each patient which we used to train patient-specific noise parameters. Occluded segments, movements

less than 10 frames in length, and frames used for evaluation were excluded during period selection. After

extraction, these 500 frames were manually annotated for ground truth joint positions. To obtain the ground

truth states x j
t , joints were assumed to have zero initial velocity at the start of each movement period, and the

remaining velocity values were calculated as the difference in pixel position between adjacent frames within

the same period. The frames of each segment were then sent through Caffe-Heatmap’s pose estimator along

with the corresponding patient-specific model to obtain z j
t .

To calculate a patient’s set of measurement noise covariances R∗, we directly implemented (4.6) for

each joint such that R j
∗ = R j

MLE using all 500 training datapoints. Equation (4.6) only depends on values

at time t, and therefore its training set need not be continuous. However, because (4.5) depends on values

at times t and t− 1, we first calculated a separate Q j,m
MLE for each mth movement period of length T = 10
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frames in the semi-continuous set using (4.5). The resulting M = 50 matrices per joint were the covariances

that maximized the data likelihood in their corresponding movement sequence. A joint’s process noise

parameter Q j
∗ was then taken to be the average of these covariances, such that:

Q j
∗ =

1
M

M

∑
m=1

Q j,m
MLE . (4.7)

These calculated parameters Q∗ ∈ R4x4x7 and R∗ ∈ R2x2x7 for each patient modeled any unforeseen pertur-

bations on the system throughout a patient’s dataset at runtime of the filter.
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Chapter 5

Pose Estimation Performance

In this chapter, we first provide an analysis of each component to convince the reader that our

techniques are reasonable for improving pose estimation in clinical environments. Then, to validate our

methods as a whole, we present pose estimation accuracy comparisons between our framework and two

state-of-the-art general frameworks using selected test sets of patient data for three subjects recorded in

various clinical monitoring units. In this part, we define our criteria for evaluating our framework and show

that it is a reasonable approach for measuring performance, and we provide quantitative results at various

spatial tolerances from the ground truth for each method. A representative demo video of patient pose

estimation can be viewed at https://youtu.be/c3DZ5ojPa9k.1

5.1 Analysis of Components

5.1.1 Scene Lighting Normalization

After normalizing image brightness by applying CLAHE onto the value layer of each HSV frame,

we observed a significant reduction in scene lighting variance throughout each patient dataset. This reduc-

tion is depicted by the histograms of the mean V-channel magnitude for each frame in the S2 dataset using

1Video frames have been blurred for patient confidentiality
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Figure 5.1: Average brightness before and after normalization. Overlaid distributions of the average image
brightness before (gray) and after (blue) CLAHE confirm that the lighting conditions across images become
more similar after equalization. Average brightness of a frame was measured by taking the mean of a frame’s
value-layer intensity. Each histogram used the entire Subject 2 dataset (N = 625,127 frames).

0.005 bin widths before and after lighting normalization (Figure 5.1). The value-layer in the HSV color

space corresponds to image brightness, and therefore the lower histogram variance after normalization in-

dicates a higher similarity in lighting conditions within the patient dataset than before. This translates into

joint features that are more likely to be consistent in visibility.

5.1.2 High-Quality Training

To establish that our high-quality training strategy can capture a large variety of postures within

a patient dataset, we compared against another manually annotated subset defined as the first 15 minutes

of frames for the same patient (∼13.5k frames at 15 fps). Patients were observed to engage in different

postures depending on the time of day (e.g., upright vs. rest), and we therefore inferred that frames extracted

using our “high-variance” (HV) training strategy would contain greater posture diversity than frames within

this “low-variance” (LV) set. To investigate this, we first defined each posture as a 14-dimensional vector

containing the (x,y) pixel coordinates for each of the seven joints. These vectors were then projected

down to 2-dimensional space using t-distributed stochastic neighbor embedding (t-SNE) [49] for a graphical
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Figure 5.2: Visualization of posture varieties. Manually annotated postures from two training strategies were
projected onto a 2D space using t-SNE to provide a graphical intuition of the various poses included in each set.
“High-variance” training frames were selected from periods of movement and rest across the entire span of the
patient dataset, whereas “low-variance” training frames were the first 15 minutes of recording. Note that the
“high-variance” set initially contained twice as many unique postures than “low-variance,” but was uniformly
downsampled to prevent bias in the projection. Points within the same cluster resemble similar postures.

intuition of the posture coverage between the two strategies. Only unique datapoints were considered in this

analysis, and we observed that the HV set initially contained twice as many unique postures than the LV set.

Therefore, prior to t-SNE dimensionality reduction, we uniformly sampled the HV set to ensure an equal

number of datapoints that would have otherwise biased the t-SNE manifold towards the more represented

HV postures. In addition, the two sets were concatenated prior to projection to ensure compatibility in

the output space. In this analysis, the exact t-SNE algorithm was implemented with a standard Euclidean

distance metric for 1,000 iterations at a perplexity of 50 and a learning rate of 500, and the two subsets were

derived from S1.

The results after projecting the 14D postures onto a 2D space (Figure 5.2) represent a low-dimensional

clustering of different patient postures extracted from the two training strategies. Each color-coded data-
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point represents a unique set of seven joint coordinates, and points within the same cluster resemble similar

postures. Despite downsampling the HV set to match the size of the LV set for an unbiased projection, the

HV set still visually occupies a larger area in the projected space. This suggests that our high-quality train-

ing strategy can capture a diverse collection of patient postures. In addition, the spread of the HV datapoints

encompasses nearly all of the LV points, indicating that there may be little to no trade-off between posture

diversity and coverage quality when extracting training data from the entire span of frames. Therefore, our

high-quality training strategy constructs a more informative training set when compared to frames extracted

from a limited window of time, and can provide the CNN architecture with more representations of each

joint to train on.

5.1.3 Kalman Filter with Trained Noise Parameters

Immediate joint coordinates estimated by Caffe-Heatmap using a patient-specific CNN model are

still subject to inconsistencies during periods of quick movements or patient occlusions. However, a Kalman

filter with trained noise parameters refines these predictions and reduces the jitter and noise within estimated

paths. Prior to optimizing S1’s left hand in the testing data, the original trajectory demonstrated reasonable

tracking with an average error of 10.42±5.85 pixels from the ground truth. In contrast, a denoised trajectory

using patient-specific parameters followed the true path more closely at an average error of 8.23± 5.19

pixels and exhibited less jitter at sharp turns. This is illustrated in Figure 5.3 which shows a segment of

S1’s left hand trajectory using the different Q and R noise parameters. For reference, using stock constant

velocity parameters resulted in an average error of 9.94± 6.34 pixels within the same test set, and these

observations were consistent throughout all joints and subjects.
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Figure 5.3: Comparison of Kalman filter trajectories. Estimated (x,y) coordinates of S1’s left hand dur-
ing an example segment of movement before (blue) and after (orange) using a Kalman filter with fitted noise
parameters, as compared to the ground truth (black). A filtered path using constant velocity (CV) noise param-
eters (green) is also provided for reference. Across all testing data for Subject 1’s left hand, the trained Kalman
filter produced a lower average prediction error of 8.23 ±5.19 pixels from the ground truth, compared to the
original path’s error of 10.42 ±5.85 pixels.

5.2 Comparison to General Pose Estimation

5.2.1 Evaluation Criteria

Performance was measured using the Euclidean distance of estimated joint coordinates against an

additional set of manually annotated frames held out from the training set for each patient. These frames

were chosen for their variety in postures, fluctuations in lighting conditions, and occasional nurse appear-

ances. For each patient test set, we compared our framework’s pose estimation performance against two

state-of-the-art generalized frameworks by evaluating joint estimates from each method at distances be-

tween 0 and 30 pixels (px) from the ground truth. These methods included Caffe-Heatmap by Pfister et

al. [19] trained on FLIC and OpenPose by Cao et al. [27] trained on COCO.2 Figure 5.4a provides a spatial

2Models were provided out-of-box by their respective authors
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Figure 5.4: Spatial reference and Subject 2 accuracy curves. (a) Example skeleton and heatmap with a 15-
pixel (3-inch) radius for spatial reference, and (b) Subject 2 accuracy curves between 0 and 30 pixel tolerances
from the ground truth.

reference of 15 pixels (approximately 3 inches) and Figure 5.4b shows an example plot of joint accuracies

at varying tolerances.

5.2.2 Pose Estimation Results

At a tolerance of 15 pixels, our framework was more accurate than Caffe-Heatmap by 42.4±8.3%

and OpenPose by 11.4± 3.9% on average across our three patient test sets (Table 5.1). Patient hands

and elbows were typically the most challenging joints to estimate for every method, but we saw more

consistent tracking in these categories using our framework. Figure 5.5 shows a complete performance

comparison against the two generalized methods for all three subjects. With Subjects 1 and 2, we observed
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Table 5.1: Pose estimation accuracy rates at 15 pixels. Subject pose estimation accuracy rates [%] at a
15-pixel tolerance for each category of joints averaged between the left and right body parts. The average and
standard deviation was calculated using the corresponding accuracies of that method for each subject.

Subject 1

Method Head Hands Elbows Shoulders Average

CH-FLIC 95.6 0.4 22.1 30.7 49.8 ±41.0
OpenPose 99.4 37.3 93.4 88.4 83.7 ±28.6
Ours 99.9 87.8 99.1 95.6 96.5 ±5.6

Subject 2

Method Head Hands Elbows Shoulders Average

CH-FLIC 78.4 2.0 16.6 48.8 49.2 ±34.1
OpenPose 99.4 49.4 69.2 92.9 82.3 ±23.1
Ours 98.5 94.5 93.7 97.1 96.8 ±2.2

Subject 3

Method Head Hands Elbows Shoulders Average

CH-FLIC 82.0 38.9 23.9 12.0 49.7 ±30.9
OpenPose 97.9 48.0 52.5 79.5 75.6 ±23.5
Ours 99.4 60.1 73.0 80.2 82.5 ±16.4

a considerable improvement on tracking performance for all seven joints, and our framework labeled at least

80% of frames for any joint within 15 pixels from the ground truth. In addition, our framework provided

∼50% more hand annotations at this tolerance when compared to OpenPose for these two subjects.

In contrast to the test sets for Subjects 1 and 2, Subject 3’s chosen test set contained more frequent

hand occlusions in which Subject 3 often placed their left and right hands behind their head during rest. This

decreased the overall tracking consistency across all methods for these two joints. However, our framework

still on average provided 22.0±9.5% and 9.8±6.8% more hand labels than Caffe-Heatmap and OpenPose,

respectively. For Subject 3’s elbows, the second most challenging category, we saw an overall increase in

performance by 38.2± 17.7% against Caffe-Heatmap and 11.3± 5.7% against OpenPose when using our

framework. This suggests that our framework can be more consistent within reasonable spatial tolerances

for particularly noisy segments of video compared to generic methods.
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Figure 5.5: Pose estimation comparison. Performance of our proposed method as compared to OpenPose and
Caffe-Heatmap with FLIC (CH-FLIC) for each subject is shown above. The left column provides the accuracies
of each joint at various tolerances from the ground truth using our framework, and the middle shows the error
rates at 15 pixels. The right column compares the accuracies of each category of joints averaged between the
left and right body parts.
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This chapter, in part, has been submitted for publication of the material as it may appear in K. Chen, P.

Gabriel, A. Alasfour, C. Gong, W.K. Doyle, O. Devinsky, D. Friedman, P. Dugan, L. Melloni, T. Thesen, D.

Gonda, S. Sattar, S. Wang, and V. Gilja, “Patient-specific pose estimation in clinical environments,” IEEE

Journal of Translational Engineering in Health and Medicine, 2018. The thesis author was the primary

investigator and author of this material. Reprinted with permission.
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Chapter 6

Conclusion

In this thesis, we presented several extensions onto an existing pose estimation framework to im-

prove posture tracking in clinical environments. By extracting images from periods of movement and idle-

ness across the entire span of a patient’s dataset, we can construct a subset of training frames that captures

a diverse collection of postures for a patient-specific CNN model. Furthermore, by accounting for the fre-

quent lighting changes often found in these environments and by refining the predicted trajectories through

a Kalman filter with trained noise parameters, our framework can provide more reliable annotations on a

patient’s pose in these settings when compared to general pose estimation frameworks.

Our framework relies solely on low-resolution RGB images to be implemented and therefore can

be used by anyone with a means of recording RGB video. In addition, our augmentations can be potentially

adopted to improve other pose estimators, and our framework is capable of running in real-time after train-

ing as a consequence of the Kalman filter’s causality. We have open-sourced our standalone PatientPose

toolbox,1 and we encourage others to use our framework for their own experimental or clinical studies or

to apply and build upon our methods. However, we suggest that the trade-off between PatientPose and

generalized frameworks should be considered before use. In particular, although we have demonstrated the

potential to substantially improve posture estimation quality with our add-ons, we note that our framework’s

1https://github.com/TNEL-UCSD/PatientPose
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upfront cost of labeling and training a separate CNN model for each patient is greater. Frameworks that are

built independent from subjects and environments are often prepackaged with general models that can be

applied to patient data right away without any additional work, and therefore may be the preferred choice

for those seeking an immediate solution. However, for others who require a more custom approach which

can result in a higher consistency and accuracy of pose annotations in these environments, we encourage

them to look into PatientPose as a means to extend beyond current general methods.

Work in this field will continue to expand with the increasing desire for automated behavioral labels,

since these labels can be informative for both research studies and clinical applications. Analysis of neural

correlates to natural behaviors extracted from pose estimates, for example, could enable more robust brain-

computer interfaces that would assist those with motor disabilities. In addition, automated patient tracking

can provide a way to monitor patient safety, and could improve current motor scoring assessments, overall

patient management, and the effectiveness of treatment protocols. Such studies and applications all seek to

improve the quality of our health care.

6.1 Future Work

The trade-offs between general frameworks and PatientPose directly motivate future work that

could explore the use of insights from generalized frameworks in order to reduce the upfront efforts per

patient, or to develop a framework for “hospital-specific” models that generalize across patients within the

same hospital. In particular, hospitals frequently rotate patients in and out of rooms, and new patients that

require automated monitoring may arrive faster than researchers or clinicians can create patient-specific

CNN models. To address this, a framework for “hospital-specific” models could be developed using the

insights gained from this thesis. Hospitals may have features that are specific to their environments (e.g.,

bed sheets, hospital gowns, room decor), and a CNN model that is generalized across all patients within the

same hospital could provide similar tracking performance by capturing those features within the hospital
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model. In addition, as new patients arrive, a researcher or clinician could manually annotate a subset of new

patient data and retrain their hospital’s CNN model in order to expand its encapsulation of hospital-specific

features. While a deeper study on the potential trade-offs will need to be made before drawing any conclu-

sions, such a method that casts a wider net could provide a more practical “HospitalPose” framework for

research studies and clinical applications within the same clinical environment.

Another direction of potential future work could take advantage of the Microsoft Kinect’s depth

sensor for an additional dimension of patient posture information. This depth information could either

be used in tandem with our PatientPose framework as a post-processing step to refine predicted joints

coordinates (e.g., background subtraction), or be incorporated within the model training process using a

modified CNN architecture that instead regresses 3D joint confidence heatmaps to provide (x,y,z) joint

coordinates relative to the camera. Outside of this thesis, we have already looked into improving PatientPose

with depth information, and we demonstrate the viability of depth-based tracking in Appendix A by showing

preliminary results of patient hand tracking using only data captured by the Kinect’s depth sensor. These

results suggest that a combination of the two modalities could further improve patient tracking performance.

Finally, the work presented in this thesis will be used by my colleagues to conduct research studies

between neural correlates and natural human behaviors. More specifically, we are interested in exploring the

possibility of decoding left and right hand movements from neural activity recorded from cortical implants.

Our previous methods for labeling left and right movements in patient video used optical flow on predefined

regions to detect flow magnitude; however, false-positives were often triggered by outside influences such as

camera bumps, shifts in lighting, environmental objects, and non-subject interferences. Posture annotations

from recorded patient video can extract a greater level of detail in patient behaviors as opposed to optical

flow, and we show the viability of pose estimates for such an application in Appendix A by generating

preliminary results of behavior extraction via an actogram of patient hand movements.
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Appendix A

Preliminary Results of Future Work

A.1 Depth-Based Tracking

In the work presented in this thesis, we only considered RGB frames in order to build around Caffe-

Heatmap to improve pose estimation performance in clinical environments. This was done to create an ex-

tended framework with modular components that other researchers could pick and choose from to improve

their own pose estimation framework, rather than alter the core architecture. However, we note that relying

only on RGB frames limits our framework’s potential, and we are continually seeking to improve upon

our framework’s tracking performance. One possible direction of future work includes taking advantage

of other recorded modalities in addition to RGB frames, such as depth and infrared images. In particular,

depth images provide an extra dimension of information that RGB frames lack and could enable access to

techniques such as background subtraction to improve patient detection, and infrared images could be used

in place of CLAHE to track patient postures in dim lighting conditions or complete darkness. Although

we have yet to work with infrared data, our preliminary results for depth-based hand tracking suggest that

using depth data in tandem with PatientPose could potentially improve the performance of posture tracking

in clinical environments even further (Figure A.1). Our results also serve as a proof-of-concept for patient

hand tracking with only a depth sensor.
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(a) (b)

Figure A.1: Depth-based hand tracking. Depth frames were first converted to point clouds to work in 3-
dimensional space. We show preliminary results of depth-based hand tracking using (a) data of a colleague
captured in a mock hospital room and (b) data of Subject 1 captured in the NYU epilepsy monitoring unit.

To track the position of a subject’s hand using a depth sensor, frames were first converted to 3D

point clouds. The Microsoft Kinect v2 records depth images at a dimension of 512x424, and the value

at each (x,y) index indicates the distance from the sensor to an unobstructed object (in arbitrary units).

With this, depth images were projected onto a 3D world frame using MATLAB’s Computer Vision System

toolbox to create the point clouds. A bounding box was then manually selected in front of the subject for a

desired region of tracking, and the position of a hand was taken to be the average (x,y,z) coordinates of the

points within the selected area. This method was tested on data recorded in both a mock hospital room and

an academic epilepsy monitoring unit (Figure A.1). While this preliminary work is simple in its idea, our

results motivate future work that could incorporate depth information into the PatientPose framework.
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A.2 Patient Actograms from Pose Estimates

Hand Movements

0 200 400 600 800

Time [s]

Right

Left

Ground Truth

Prediction

Prediction

Figure A.2: Actogram of left and right hands. Preliminary results of detecting the onset of patient left
and right hand movements by using a threshold on extracted pose estimates. This motivates future work on
extracting high-level contextual labels of patient behavior from pose estimates for research studies and clinical
applications. This 900 second subset was derived from Subject 1’s dataset.

Estimated joint coordinates of continuous patient video can provide a rich amount of information

regarding patient movements and behaviors, and in this preliminary work we used extracted pose estimates

from a 900 second subset of patient video to detect the onset of left and right hand movement. Using a

threshold similar to the one described by Wang et al. [2] on the pose estimates, we then compared the

predicted onsets of hand movement against manually obtained ground truth labels through an actogram

(Figure A.2). The results above suggest that extracting a deeper context of patient behavior is possible

with posture annotations, and future work could improve the accuracy of such movement detections. In

particular, some of my lab colleagues are currently experimenting with long short-term memory (LSTM)

networks to increase this prediction accuracy and have seen encouraging preliminary results.
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