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Abstract

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant 

protein moieties remain difficult to produce. Here, we identify metabolic engineering targets 
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limiting expression of recombinant human proteins through a systems biology analysis of 

the transcriptomes of CHO and HEK293 during recombinant expression. In an expression 

comparison of 24 difficult to express proteins, one third of the challenging human proteins 

displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a 

comprehensive transcriptomics comparison between cell lines, especially highlighting differences 

in secretory pathway utilization, a co-expression screening of 21 secretory pathway components 

validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, 

more heavily glycosylated products benefitted more from the elevated activities of the N- and 

O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of 

HEK293 for expression rescue of human proteins and suggest a methodology for identification of 

secretory pathway components for metabolic engineering of HEK293 and CHO.

Keywords

HEK293; CHO; Bioproduction; Protein secretion; Transcriptomics; Differential gene expression 
analysis; Secretory pathway

1. Introduction

The Chinese hamster ovary (CHO) cell line is commonly used for producing recombinant 

proteins (r-proteins) as it enables efficient expression of proteins with the need for human-

like post-translational modifications. The CHO cell line provides several attractive properties 

for large-scale production of biopharmaceuticals, such as the ability to be cultivated at high 

cell densities in serum-free and chemically defined media and low risk of infection of human 

viruses (Kim et al., 2012). Currently, CHO cell lines are the biopharmaceutical mammalian 

workhorses, producing 84% of recently approved monoclonal antibodies (Walsh, 2018). 

However, with the boom of biologics within the pharma industry combined with more 

complex pharmaceutical proteins reaching the market, there is a demand for bioproduction 

platforms that can produce more difficult to express proteins. Data from the human 

secretome project (Tegel et al., 2020; Uhlén et al., 2019), a comprehensive research study 

that includes the secreted production of >1500 human proteins, suggests approximately 35% 

of proteins are challenging to efficiently produce in secreted form by the CHO expression 

system. Besides successful metabolic and cell line engineering efforts of CHO cells (Hong 

et al., 2018; Kol et al., 2020; Mulukutla et al., 2019; Torres and Dickson, 2021), expression 

systems based on alternative cell lines may provide improved bioproduction. As cells of 

different origins can have tissue-specific expression patterns of secretory pathway genes 

(Feizi et al., 2017), such differences can bring about variation in expression and processing 

of r-proteins depending on expression host, which in turn can impact the protein’s stability, 

function, activity, immunogenicity and production titer. Moreover, poor expression of 

human proteins in CHO has previously been overcome by exogenous expression of human 

endoplasmic reticulum (ER)-associated proteins in the CHO production cells (Cartwright 

et al., 2020; Hansen et al., 2017; Le Fourn et al., 2014). Thus, one could speculate, when 

focusing on improving expression of many challenging human proteins, that the CHO cell 

line may have a secretory systems disadvantage compared to human production hosts. In 

particular, the human embryonic kidney 293 (HEK293) cell line has traditionally been a 
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popular alternative for bioproduction and is commonly used for transient production of 

proteins for research and preclinical studies. HEK293 is considered easy to transfect, it 

adapts well to suspension cultivation, grows rapidly in serum-free media and is capable of 

producing r-proteins at high titers (Jiang and Zhu, 2013; Pham et al., 2006). In particular, 

glycosylation profiles of r-proteins produced in either CHO or HEK293 have been shown 

to differ (Böhm et al., 2015; Croset et al., 2012; Goh and Ng, 2018). In the context of 

biopharmaceutical production, specific demands for human post-translational modifications 

for certain r-proteins have made HEK293 successful alternatives to the conventional CHO 

cells and in 2018 five approved protein therapeutics were produced in HEK293 cell lines 

(Dumont et al., 2016; Walsh, 2018).

Here, we evaluated alternative expression systems for production of a set of human difficult 

to express secreted proteins or extracellular domains of single-pass plasma membrane-

anchored proteins (Tegel et al., 2020; Uhlén et al., 2019). Expression systems were evaluated 

both based on r-protein expression level but also systemic differences based on transcription 

of secretory pathway components between cell lines. Initially, a comparison of two CHO-

based expression systems was carried out followed by a comparison of the secreted 

expression between CHO and HEK293. Moreover, transcriptome data from CHO and 

HEK293 cells transiently expressing proteins was analyzed to map differences in secretory 

pathway components between HEK293 and CHO. Based on the most profound differences 

in the expression of secretory pathway components between the cell lines, secretory pathway 

genes with significant impact on secreted productivity of human difficult-to-express proteins 

were identified. These include genes that assist protein secretion in a product-independent 

fashion. Additionally, we coupled specific post-translational modifications (PTMs) of 

different r-proteins with the protein titer improvements from CHO to HEK293 cells and 

showed that differences in titer improvements can be jointly explained by PTM features of 

the r-proteins and the activities of the enzymes responsible for these PTMs. These highly 

product-specific genes enable bespoke cell line designs that cater to the unique secretory 

requirements of different r-proteins and allows for a more rational selection of cell hosts for 

a given r-protein.

2. Results

2.1. The CHO platforms ExpiCHO and QMCF provide different benefits for difficult to 
express proteins

Due to differences in expression platform protocols, performance in productivity of r-

proteins may vary even between hosts of the same origin. To shine light on differences 

between platforms for a range of difficult to express proteins, we compared expression levels 

in various systems. Initially, we evaluated two CHO-based expression systems by expressing 

challenging human proteins in the ExpiCHO system and compared secreted productivities 

to Human Secretome Project production data, wherein expression had previously been 

performed using the episomal stable QMCF technology (Silla et al., 2005). Briefly, this 

system utilizes CHOEBNALT85 cells stably expressing the Epstein-Barr virus EBNA-1 

protein and the mouse polyomavirus (Py) large T antigen, which facilitates nuclear retention 

and replication of the pQMCF expression vector. The ExpiCHO platform is a fully transient 

Malm et al. Page 3

Metab Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



system that enables protein production at very high cell densities. In this comparison, 

transient expression of a set of 22 human moderately challenging proteins, covering a range 

of different sizes and post-translational modifications (Table 1), was performed in ExpiCHO 

using the expression vector pKTH16_dPur, developed in-house (Supplemental Data and 

Supplemental Fig. S1A and S1B). Results from this comparison showed different expression 

profiles depending on r-protein expressed and expression platform used (Fig. 1A). Even 

though purified secreted protein titers varied dramatically between the two platforms for 

some proteins, no platform provided an overall improved expression profile compared 

to the other. Instead, each platform provided improved expression in a protein-feature 

specific manner. Notably, a significant correlation between titer fold changes between 

the ExpiCHO and QMCF platforms and both protein size (R = −0.47, p = 0.028) and 

glycosylation (R = 0.4, p = 0.078) was observed (Fig. 1B, Supplemental Figs. S1C and 

S1D). This suggested that each platform provided improved expression in a protein-feature 

specific manner, where larger and less glycosylated proteins tended to have an expression 

advantage in the QMCF system and vice versa in case of the ExpiCHO platform. We 

performed gene expression profiling of the ExpiCHO and CHOEBNALT85 cell lines 

and noticed comparable transcriptional and secretory pathway activities across the two 

platforms (Supplemental Figs. S1E and S1F). Interestingly, the stable QMCF system 

showed significantly higher translational utilization than the ExpiCHO system. The protein-

feature specific expression profiles observed between the two CHO expression platforms 

suggested that neither of the CHO expression hosts or cultivation-protocols provided optimal 

conditions in a protein-independent manner.

2.2. Expression of challenging human proteins in HEK293 resulted in overall improved 
secreted titers compared to CHO

We hypothesized that a human expression host may have a more compatible secretory 

pathway for human secreted proteins and hence provide benefits for the expression of those 

that are particularly difficult in CHO. Thus, we also sought to compare r-protein production 

between CHO and HEK293. A new panel of 24 difficult to express proteins from the 

Human Secretome Project was selected, representing even more challenging proteins in 

CHO compared to the set evaluated in the ExpiCHO study described above, as shown by 

the generally lower titers produced in the human secretome project (Table 1). Here, all 

R-proteins were expressed side-by-side in CHO and HEK293 cells using a standardized 

expression- and evaluation-pipeline (Fig. 2A). Expression was performed in both an 

optimized version of the semi-stable QMCF technology, using the CHOEBNALT85-1E9 

and 293ALL cell lines, and a fully transient expression setup with 293-F, Freestyle 293-F 

and Freestyle CHO–S cell lines (Fig. 2A). In the episomal stable QMCF-system, 9 out of 24 

exogenously expressed genes (THBS4, ARTN, BMP10, POSTN, FSTL3, AMBP, CCL28, 

CXCL13 and NRTN) showed more than two-fold improved expression (secreted titer plus 

pseudocount +1 to account for samples with undetectable r-protein) in HEK293 (293ALL) 

compared to CHO cells (CHOEBNALT85-1E9) (Fig. 2B, Supplemental Fig. S2A). Two 

genes (CCL20 and LOX) resulted in no detectable secreted expression in either CHO or 

HEK293. Moreover, four r-proteins could only be detected in HEK293 supernatants (NRTN, 

NRTNpp, CXCL13 and CCL28), whereas only one gene (PLG) resulted in secreted protein 

only in CHO cultures.
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In the small-scale fully transient expression setting the improvement in secreted expression 

using HEK293 compared to CHO was even more profound. For transient protocol setup, 

western blots and harvest data see Supplemental Data and Supplemental Figs. S2B–F. The 

results showed more than two-fold higher secreted titers (secreted titer plus pseudocount 

+1 to account for samples with undetectable r-protein) of 15 of the 24 difficult to express 

proteins in both of the closely related HEK293 cell lines compared to the CHO cell line 

(Fig. 2C). Only one protein, PLG, showed higher expression in CHO cells (1.6 μg/ml) 

compared to HEK293 (not detected). For half of the evaluated genes (12 of 24), no or 

only traces of protein could be detected in supernatants from CHO cells. Moreover, for 

nine of the investigated r-proteins (THBS4, CCL28, CXCL13, CCL20, HGF, PAMR1, 

LOX, NRTN and NRTN pp) no or only traces of protein could be detected in both the 

culture supernatant and cell lysate of CHO cells (Supplemental Fig. S2C). In the case of 

expression in HEK293 cells, only four genes (PAMR1, LOX, ADM5 and PLG) resulted in 

no or only traces of secreted protein in both HEK293 cell lines. However, three of these 

proteins (PAMR1, LOX and ADM5) could be detected in cell lysates of both HEK293 cell 

lines, suggesting inefficient secretion from HEK293 cells. Strikingly, only one of the 24 

investigated proteins, PLG, could not be detected in either cell lysates or cell supernatants in 

any of the HEK293 cell lines. For a subset of supernatant samples, the relative titer change 

between cell lines were confirmed using liquid chromatography tandem mass spectrometry 

(LC-MS/MS) combined with protein quantification based on the SIS PrEST technology 

(see Supplemental Data and Supplemental Table S1) (Edfors et al., 2014). Results from 

the MS/MS analysis showed the same expression trends between HEK293 and CHO cells 

for each r-protein investigated compared to the western blotting data (Supplemental Fig. 

S2G). As the two methodologies in this case depend on different parts of the polypeptide 

sequences for r-protein detection, depending on r-protein processing in the samples and 

differences in r-protein processing between cell lines, protein titers of either method reported 

here should be considered estimates and not absolute quantities.

Taken together, 8 out of 24 genes (BMP10, ARTN, THBS4, AMBP, FSLT3, NRTN, 

CXCL13 and CCL28) consistently expressed better in HEK293 cells in both the semi-stable 

and the transient expression comparison. For CHO, the only gene that expressed better 

compared to HEK293 in both setups was PLG.

2.3. Transcriptome profiling showed variation in secretory pathway utilization between 
HEK293 and CHO driven by limited set of gene outliers

Based on the observed improvement of the expression of several human r-proteins in 

HEK293 compared to CHO, a transcriptomic comparison between the two cell lines 

was performed with emphasis on r-protein transcript levels and host gene expression 

patterns. Initially, transcript levels for each transgene in the panel were quantified and 

compared to the r-protein titers in supernatants. Overall, both HEK293 cell lines showed 

elevated transgene transcript levels compared to CHO cells, consistent with the generally 

higher transfection efficiency observed for HEK293 compared to CHO (Fig. 2D and E, 

Supplemental Fig. S3A). However, neither the transgene transcript abundance nor its fold 

changes correlated with secreted protein titers (Supplemental Fig. S3B). Notably, some of 

the proteins with the highest transgene abundances (CCL20, CCL28, CXCL13 and ADM5) 
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displayed among the lowest titers of secreted protein, or no secretion at all. Moreover, 

among the proteins with the highest secreted titers in HEK293 (FN1 and THBS4), mRNA 

levels of the transgene were among the lowest in the data set (between 40 and 4200 TPM).

Furthermore, the mRNA expression levels across major molecular processes in CHO and 

HEK293 cells were quantified, both for cells expressing the panel of r-proteins (expressing 

cells) and cells transfected with empty plasmid (non-expressing cells) (Fig. 3A). Means 

of normalization between samples were further validated by comparison monitoring of 

genes of mitochondrial origin which were similar (around 10%) throughout all samples 

(Supplemental Fig. S3C). Between expressing and non-expressing cells within each cell 

line, the transcriptome usage was similar for both CHO and HEK293, with the exception of 

transcription of genes related to translation and signaling molecules in the Freestyle 293-F 

cell line. Overall, HEK293 and CHO cells showed great variation in the utilization of their 

respective transcriptomes. Most evidently, genes associated with translation showed lower 

mRNA expression on average in CHO cells, compared to HEK293 cell lines, whether a 

transgene is being expressed or not. In addition, the CHO cells showed a higher proportion 

of their transcriptome expression focused on biosynthesis, central carbon metabolism and 

signal transduction. Interestingly, HEK293 cells showed an overall less active secretory 

pathway compared to CHO (Fig. 3A and Supplemental Fig. S3D), despite secreting higher 

amounts of r-proteins. However, the overall gene expression levels were generally higher 

in HEK293 compared to CHO of all secretory pathway subgroups, with the exception of 

protein folding that was significantly higher in CHO, driven mainly by FBXO6, PDIA4, 

HSPA8. DNAJC3 and TMX3 (Fig. 3B). Instead, the higher fraction of the transcriptome 

devoted to the secretory pathway in CHO cells compared to HEK293 was due to a 

very small subset of highly expressed secretory pathway genes (PPIA, HSPA8, HSP90B1, 

HSPA5, CALR and PDIA3). On the other hand, several secretory pathway genes showed 

low expression in CHO cells whereas HEK293 cells expressed a more diverse set of 

secretory pathway genes (Supplemental Fig. S3E). While the fraction of the transcriptome, 

across all samples, that was utilized for secretory pathway genes did not correlate with 

transgene expression levels nor estimated secreted r-protein titers (Supplemental Fig. S3F), 

there was a linear relationship between expression of several secretory pathway genes and 

transgene mRNA abundances in CHO producers (Supplemental Fig. S3G). In HEK293 cells 

however, peak secretory pathway activities occur in clones with low to medium transgene 

load. This suggested a saturation of the secretory pathway in HEK293 cells, which may 

be a result of the exceptionally high transgene mRNA loads observed in case of several 

transgenes. Across all samples, a significant negative correlation was observed between r-

protein titer and gene expression within the protein folding and ER glycosylation functional 

groups, respectively (Supplemental Fig. S3H). Focusing on individual secretory pathway 

genes, overall similar expression levels were observed between the two cell lines with the 

exception of a limited set of extreme gene outliers (Fig. 3C). Amongst these outliers, there 

was a substantial group of genes with very low or no expression in CHO whereas the 

expression in HEK293 was moderate to high (Fig. 4A). Within this group of genes, we 

observed several genes with previous support of impact on r-protein secreted titers (Table 

2) (Hansen et al., 2015; Haredy et al., 2013; Hwang et al., 2003; Ishaque et al., 2007; 
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Lasunskaia et al., 2003; Le Fourn et al., 2014; Lee et al., 2009; Meleady et al., 2011; Ohya et 

al., 2008; Orellana et al., 2018; Sommeregger et al., 2016).

2.4. Helper proteins more highly expressed in HEK293 compared to CHO enhance 
secretion of difficult to express proteins when co-expressed in CHO cells

We hypothesized that the secretory pathway genes with extreme expression variation 

between the cell lines may contribute to profound differences in productivity observed 

between the cell lines for some human difficult to express proteins. Consequently, a set 

of secretory pathway genes was co-expressed with the difficult to express protein THBS4 

in CHO and HEK293 to evaluate their impact on secreted productivities. We hypothesized 

that gene outliers observed in HEK293 may aid expression, especially in CHO cells, where 

expression was generally lower than in HEK293. Hence, THBS4 was selected as a model 

difficult to express protein since it was consistently better expressed in HEK293 compared 

to CHO with the most profound difference between the two cell lines. The selection of gene 

outliers to evaluate was based on the highest differential expression between the cell lines 

but also on previous literature supporting potential roles in protein secretion or demonstrated 

effects on productivity (Table 2; Supplemental Table S4) (Hansen et al., 2015; Haredy et 

al., 2013; Hwang et al., 2003; Ishaque et al., 2007; Lasunskaia et al., 2003; Le Fourn 

et al., 2014; Lee et al., 2009; Meleady et al., 2011; Ohya et al., 2008; Orellana et al., 

2018; Sommeregger et al., 2016). The selected genes were divided into three groups (I, II 

and III) based on expression levels in the two cell lines (Fig. 4A) and co-expressed along 

with THBS4 at a plasmid ratio of helper gene to THBS4 of 1:2 and 1:10. Two genes 

(HSPA1B and ATF4) had a small, albeit significant, positive effect on the secreted titer 

of THBS4 at the 1:2 ratio in HEK293 compared to cells only expressing THBS4 (Fig. 

4B). To evaluate if more helper gene compared to transgene would improve the expression 

even further, a 1:1 ratio between selected genes (HSPA1B, AGAP2, PDIA4, SRP9 and 

PDIA3) and THBS4 was also evaluated, where AGAP2 resulted in significantly improved 

expression of THBS4 compared to the control. For CHO cells, profound titer improvements 

were observed when co-expressing genes in group II (Fig. 4C), including SRP9, ATF4 

and JUN, which had moderate endogenous expression in CHO but significantly higher 

expression in HEK293. More than two-fold improvements in secreted THBS4 titers were 

observed in CHO when co-expressed with ATF4 or SRP9, and a 1.5-fold titer increase 

was observed when co-expressed with JUN. In addition, slight improvements (however not 

statistically significant) of THBS4 titers in CHO cells were observed when co-expressed 

with some secretory pathway genes from groups I and III such as HSPA1B, HSPA4L 

and RAB31, depending on the plasmid ratio between the co-expressed transgenes. Two 

genes, PDIA3 and RAB43, gave inconsistent results at the 1:2 ratio in CHO cells and were 

hence excluded from the overall analysis (Supplemental Fig. S4A). For further validation 

of some of the interesting gene outliers, co-expression evaluation was performed during 

expression of an additional difficult to express protein with different protein characteristics 

compared to THBS (Table 1) in CHO, ARTN. Results showed a significant positive impact 

of ATF4, PDIA3 and HSPA8 on ARTN secretion (Fig. 4D). Moreover, HSPA1B and SRP9 

overexpression generated a small increase in ARTN titers, albeit not significant. Higher 

secreted ARTN titers, but not THBS4, in CHO cells were associated with lower viable cell 

densities and viability at harvest compared to controls (Supplemental Figs. S4B and C). This 
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may relate to differential effects of the two r-proteins on cells. In addition, several outlier 

secretory pathway genes of group I (EIF2AK2, RAB11FIP1, MGAT3, DERL3, SVIP1 

and GALNT18), with low or no expression in CHO, but moderate to high expression in 

HEK293, dramatically decreased secreted THBS4 titers when added exogenously in CHO. 

A similar trend was observed for some of these genes upon co-expression in HEK293 even 

though the negative impact on secreted THBS4 titers was not as profound. In the case of 

some of these co-expressed genes (DERL3, MGAT3 and EIF2AK2), these effects were 

likely the result of a negative impact on cell growth in CHO but not in HEK293, suggesting 

that these genes are not compatible with the CHO cell machinery that support cellular 

growth and productivity.

Since both THBS4 and ARTN were profoundly better expressed in HEK293 compared 

to CHO and the low expression of these proteins in CHO could be rescued by the 

overexpression of secretory pathway components expressed at higher levels in HEK293, 

we hypothesize that such differences in secretory pathway components may be beneficial for 

the secretion of difficult to express proteins in HEK293.

2.5. Proteasomal and propeptide convertase genes were differentially expressed between 
CHO and HEK293

To obtain a more detailed understanding of the cell line differences, differential expression 

analysis comparing HEK293 to CHO cells was performed. Due to drastic organismal 

differences, many genes outside of the secretion machinery showed distinct expression 

between CHO and HEK293 cells (Supplemental Fig. S5A, Supplemental Table S4). In fact, 

more than 80% of the genes were significantly differentially expressed between the two 

organisms. Few canonical pathways were consistently up- or down-regulated in one cell line 

compared to another, as shown by gene-set enrichment analysis (Supplemental Fig. S5B). 

However, among them the proteasome protein family, which degrades misfolded proteins 

in a controlled fashion, was expressed at significantly higher levels in CHO compared to 

HEK293 cells (Supplemental Fig. S5C). Another protein family that showed significantly 

different expression profiles between HEK293 and CHO is the propeptide convertase family 

(Supplemental Fig. S5D). HEK293 showed significant upregulation of PCSK2, PCSK4, 

PSCK5, PCSK6 and PCSK8 compared to CHO. On the other hand, CHO expressed higher 

levels of PCSK1, PCSK3 and PCSK7.

2.6. Differentially activated secretory pathway genes between HEK293 and CHO upon 
transgene expression

To evaluate overall differences in cellular dynamics between HEK293 and CHO cells 

when producing r-proteins and to better account for organismal disparity, we calculated 

the average activation of genes by determining the differential expression upon transgene 

expression across cell lines during r-protein production with non-producer cells as reference 

(Fig. 5A). While most of the genes were not differentially activated in either of the 

cell lines, several genes showed significantly opposite trends in HEK293 and CHO cells 

(Supplemental Table S5). The top 20 genes identified as differentially activated in producers 

between CHO and HEK293 were strongly enriched for members of the secretory pathway 

(hypergeometric p-value < 0.0005). Among them, four genes (SEC61A1, SEC63, DNAJC3 
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and ERO1B) are directly involved in posttranslational functions of the secretory pathway. 

Co-expression evaluation of SEC61A1, DNAJC3 or ERO1B between HEK293 and CHO, 

did however not result in improved secreted expression of THBS4 in either cell line 

(Supplemental Fig. S6). On the contrary, over-expression of all these genes had a significant 

detrimental effect on secreted titers in CHO cells. This may suggest that the activation of 

these genes is likely a result of, rather than the cause of a systemic response upon transgene 

expression and that further activation of these genes has no, or detrimental, effects on protein 

production.

To systematically identify genes with potential impact on productivity of the cell lines, we 

calculated for each gene the correlation between its differential activation (Supplemental 

Table S6) and the r-protein titer changes from HEK293 to CHO across clones. Overall, 

only a small number of the genes displayed r-protein titer change-dependent differential 

activation. The top genes with the highest positive or negative correlation are given in Fig. 

5B. Results showed that three secretory pathway genes (EIF2AK2, HSPA8 and ERN1) 

correlated in titer and activation change between HEK293 and CHO. Interestingly, HSPA8 

and EIF2AK2 were also found amongst the genes with high expression fold-change between 

HEK293 and CHO cells (Supplemental Table S4).

To see pathways that were preferentially activated in each cell line, gene set enrichment 

analysis (GSEA) was performed using the fold changes of differential activation for each 

cell line (Fig. 5C). The producers in all three cell lines significantly upregulated genes 

involved in translation, as evidenced by the increase in ribosomal expression. However, 

HEK293 cells showed higher expression for genes related to protein secretion, compared 

to CHO cells. For example, translocation and protein export were much more strongly 

activated in both 293-F and Freestyle 293-F. Genes involved in protein folding such as 

molecular chaperones, were significantly downregulated in CHO cells, while significantly 

upregulated in the HEK293 cell lines. Similar pathway activation was observed between the 

two HEK293 cell lines variants, with the only notable exception being proteasomal function, 

whose activation was stronger in Freestyle 293-F than in 293-F.

Beyond the differences in titer improvements, the r-proteins are diverse in their PTM 

compositions (Table 1), utilizing distinct sets of enzymes. With this, we explored whether 

the differential expression of the enzymes responsible for some of the PTMs between CHO 

and HEK293 can explain the variation in titer improvements seen by different r-proteins. 

We posited that proteins with more frequent PTM sites might be more sensitive to changes 

in the expression of the enzyme responsible for the PTM in question. To quantify the 

degrees to which certain PTMs are overrepresented in each r-protein, we calculated a 

“PTM-index” for each r-protein - PTM combination based on the PTM site densities in 

each r-protein (Supplemental Fig. S7). Among the three most ubiquitous PTMs taking place 

within the secretory pathway-disulfide bond, GPI anchor and N-/O-linked glycosylation, 

we saw significant interaction between glycosylation-index and enzyme expression in 

determining titer improvement. More specifically, the titer improvement for more heavily 

glycosylated proteins showed a strong positive correlation with the differential expression 

of glycosyltransferases, whereas for non- and lightly glycosylated r-proteins, the changes in 

titer were negatively correlated with the glycosyltransferases fold change (Fig. 5D).
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3. Discussion

The CHO cell line is a well-established bioproduction host with readily available expression 

protocols both in transient and stable settings. However, with the increasing number of new 

biologics approaching the market, including next-generation biologics such as engineered 

scaffold proteins and antibody-fusion proteins, the pharmaceutical industry faces new 

challenges for efficient protein production. But even natural human proteins can pose 

challenges for bioproduction both in transient and stable expression systems and require 

laborious process optimization. Due to the clonal divergence of different immortalized 

cell lines (Feichtinger et al., 2016; Lin et al., 2014; Malm et al., 2020; Stepanenko and 

Dmitrenko, 2015; Vcelar et al., 2018; Wurm, 2013), the expression of r-proteins may 

vary considerably between hosts even of the same origin. Indeed, this was observed in 

this study, where the two CHO–S based expression platforms, QMCF and ExpiCHO, 

showed protein-dependent differences in secreted titers. The higher secreted titers of smaller 

r-proteins and/or more heavily glycosylated r-proteins observed in ExpiCHO compared to 

the QMCF platform (Fig. 1C) may relate to the high cell densities of cultivation and high 

amount of plasmid DNA added upon transfection in the ExpiCHO system. We speculate 

that this may put growth pressure on the cells, making this platform better suited for 

producing smaller proteins. On the contrary, the lower cell densities of the QMCF system 

in combination with the reduced cultivation temperature (30 °C instead of 37 °C) and 

longer cultivation times may result in lower cellular stress compared to the ExpiCHO 

system, enabling production of larger proteins. Changes in titer between the platforms 

could also be related to clonal differences between cell lines, even though the overall 

transcriptome utilization is comparable between the CHOEBNALT85 and ExpiCHO cell 

lines (Supplemental Figs. S1E and S1F). Thus, the data suggest that each system can provide 

protein-specific advantages possibly related to platform differences. On the other hand, 

a r-protein-independent improved secreted expression of challenging human proteins was 

observed when changing expression host from CHO to HEK293 (Fig. 2). One third of the 

proteins were expressed at more than two-fold higher titers in HEK293 compared to CHO in 

both systems.

Overall, observed differences between HEK293 and CHO could potentially relate to 

vector components (e.g. choice of promoter, codons, Poly A signal and signal peptide) 

and or media composition with cell-line specific impact on r-protein expression. To 

reduce variation, a common promoter, signal peptide and poly-A signal was used for 

this comparison. The effect of variation in transfection efficiency was monitored by flow 

cytometry of GFP reporter plasmid, indicating up to two-fold higher plasmid uptake in 

HEK293 compared to CHO (Supplemental Fig. S2E). This difference was further observed 

in overall higher mRNA abundances of the transgenes investigated in HEK293 (Fig. 2, 

Supplemental Fig. S3A), again in line with previous observations that HEK293 tend to 

perform well as a transient expression host and are easier to transfect compared to CHO 

(Jäger et al., 2015; Pham et al., 2006). While the improved transfection efficiency in 

HEK293 correlated well with improved overall GFP production, indicated as higher mean 

fluorescence intensity (MFI) (Supplemental Fig. S2E) for the non-secreted GFP constructs, 

such a trend was not observed for all secreted transgenes (Supplemental Fig. S3D). For 
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some r-proteins extremely high transcript levels resulted in very low or no secreted product, 

suggesting that such extreme transgene mRNA levels could come at the cost to endogenous 

gene expression, restricting available resources for protein synthesis and export. Moreover, 

one third of r-proteins showed increased titers in the HEK293 cell lines compared to CHO 

in the semi-stable expression system of QMCF, which provides comparable transfection 

efficiencies between HEK293 and CHO cells (personal communication with Icosagen). 

Even though we cannot rule out the impact of above-mentioned attributes on the observed 

results, we hypothesized that at least a partial explanation to the differences we see between 

HEK293 and CHO in both episomal stable expression settings, were a result of differences 

related to the secretory machinery of the two cell lines.

Transcriptomic analysis of transiently expressing HEK293 and CHO cells showed a 

profound difference in the overall utilization of the transcriptomes between CHO and 

HEK293 (Fig. 3A), which is expected due to the different origins of the cell lines. 

The higher translational machinery activities in HEK293 cells may afford them increased 

capacity for translating mRNA, although the level of transgene mRNAs seen in this 

study should not saturate the ribosomal capacity, as transgenes with mRNA levels ranging 

upwards of 20% of total mRNA content has been shown to translate efficiently (Kallehauge 

et al., 2017). As the secretory pathway is a major determinant of the titers of secreted 

proteins (Gutierrez et al., 2020), comparisons between the cell lines focused on secretory 

pathway components. Higher activities were observed in the protein quality control 

pathways of UPR and ERAD in HEK293 cells compared to CHO (Fig. 3B), which 

may impact protein secretion as upregulated transcription of genes associated with these 

pathways can increase secretory capacities of host cells (Hussain et al., 2014; Prashad and 

Mehra, 2015). Moreover, genes involved in protein folding were more highly expressed in 

CHO cells compared to HEK293. Notably, protein folding showed a significant association 

with decreased protein titer (FDR p-value = 0.0023, Supplementary Fig. S3H). This could 

be a cellular response to increased difficult-to-express protein load, especially if the native 

machinery for r-protein folding is lacking. At the gene level, most secretory pathway genes 

have similar expression between the two cell lines (Figs. 3C and 4A). However, a limited 

set of genes showed extreme variation in expression between the cell lines. For instance, 

CHO cells do not express many of the moderately expressed secretory machinery genes 

expressed in HEK293 cells. Since the r-proteins in our screen are all human proteins, it is 

possible that the lack of compatible secretory components forced the CHO cells to utilize a 

smaller subset of more generic machinery components, and this lack of specialization could 

possibly impact secreted titers. Alternatively, the absence of expression of such genes in 

CHO may be compensated by the expression of other genes without a human ortholog and 

hence not included in our analysis. Notably, amongst the genes more highly expressed in 

HEK293 compared to CHO, we identified several examples of genes that have previously 

been associated with improved protein production (Table 2). For instance, both ATF4 and 

SRP9 have previously been associated with improved recombinant expression in CHO cells 

either alone or in combination with other ER components (Haredy et al., 2013; Le Fourn et 

al., 2014; Ohya et al., 2008). In this study we could show a profoundly positive effect of 

ATF4 also on secreted production of two difficult to express proteins in CHO cells (Fig. 4), 

suggesting that this protein acts in a more universal way to improve yield. Overexpression of 
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SRP9 significantly increased THBS4 titers dramatically and had a slightly positive, but not 

statistically verified, impact on ARTN secretion. The already high endogenous expression 

of these two genes in HEK293 compared to CHO may explain why the positive effect 

on secreted titers was not as profound in this cell line and moreover, we hypothesize that 

such differences in secretory pathway components may be beneficial for the secretion of 

difficult to express proteins in HEK293. In addition, several genes with more moderate 

impact on the secreted expression of r-proteins in either CHO or HEK293 were identified 

in this study, supporting the usage of transcriptomic data to shine light upon secretory 

pathway differences that impact productivity between cell lines. In HEK293 cells, AGAP2, 

HSPA1B and ATF4 significantly boosted THBS4 secretion, whereas in CHO cells, SRP9, 

JUN, PDIA3 and HSPA8 had significant positive impact on secretion of either THBS4 or 

ARTN. As summarized in Fig. 6, such genes could indicate productivity bottlenecks in CHO 

cells when expressing a difficult to express protein.

Among the top 20 most differentially activated genes, four ER-associated genes (SEC63, 

SEC61A1, DNAJC3 and ERO1B) were found upregulated in HEK293 but not in CHO upon 

transgene expression (Fig. 5A). Even though SEC61A1 along with the other subunits of 

the translocon has previously been shown to improve the specific productivity of a difficult-

to-express antibody in CHO cells (Le Fourn et al., 2014), the individual overexpression 

of ERO1B, DNAJC3 or SEC61A1 along with THBS4 showed a significantly detrimental 

effect on productivity in CHO cells in this study (Supplemental Fig. S6). This may support 

a less active role of these proteins in the CHO secretory pathway. On the other hand, 

the significant upregulation of these genes in HEK293 may be well tuned by the cells 

without further improvements added by exogenous overexpression. Interestingly, differential 

activation between CHO and HEK293 were overall independent of protein identity or 

r-protein titer change between the cell lines. This observation suggested that the differential 

activation upon r-protein expression was mainly driven by cell line differences rather than 

protein identity or load and highlights cell-line dependent variation in utilization of cellular 

machinery upon protein production. However, a subset of differentially activated genes 

correlated in activation fold-change and titer change between the cell lines (Fig. 5B). 

Three of these (EIF2AK2, HSPA8 and ERN1) are part of the secretory machinery, out 

of which HSPA8 has previously been recognized as a marker for protein productivity in 

CHO cells (Meleady et al., 2011). Notably, EIF2AK2 and HSPA8 were also recognized as 

extremely differentially expressed between CHO and HEK293. Overexpression of HSPA8 

had a slightly positive effect on THBS4 secretion in HEK293 and CHO and a significantly 

positive effect on ARTN secretion from CHO cells. HSPA8 showed stronger activation in 

HEK293 compared to CHO in THBS4 producing clones, and a reversed activation trend 

was observed in ARTN producing clones (Fig. 5B). Hence, HSPA8 expression could be 

part of the secretory machinery orchestrating differences in protein secretion between the 

cell lines. On the other hand, overexpression of EIF2AK2 showed a negative effect on 

THBS4 secretion, especially in CHO cells where endogenous EIF2AK2 levels were much 

lower compared to HEK293. Notably, the correlation between EIF2AK2 activation and titer 

fold-change between the cell lines was mainly driven by the strong negative activation 

fold-change of EIF2AK2 in HEK293 producing PLG compared to all other transgenes in 

the panel. As EIF2AK2 encodes a protein involved in ER stress and the UPR, causing 
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inhibition of mRNA translation, this remarkably lower differential expression activation of 

EIF2AK2 in HEK293 cells expressing PLG, along with non-detectable secretion of the PLG 

r-protein, may suggest that PLG expression is limited already at steps prior to ER processing 

in HEK293 cells. On the other hand, as HSPA8 and ERN1 showed a more consistent 

correlation across transgenes these genes may be universal secretory pathway markers for 

secreted titer differences between the cell lines across a variety of r-proteins (Fig. 6).

At pathway levels, all cell lines responded to transgene expression by up-regulating 

ribosomal activities (Fig. 5C). However, CHO cells struggled with activating the 

components responsible for the downstream processing and export of the r-proteins. This 

may explain why over-expressing a single gene in most cases only had minor positive effects 

or failed to boost the expression of THBS4, as the genes in pathways showing deficient 

expression in CHO cells likely work in tandem, and the overexpression of just one gene is 

often not sufficient to activate these under-expressed pathways.

Some secretory pathway genes identified to positively affect r-protein secretion but seemed 

to assist r-protein expression indiscriminately. However, mounting evidence suggests 

product-specific roles for many of the components within the secretory pathway (Kuo 

et al., 2021). Genetic perturbation studies targeting the secretory pathway revealed that 

different secreted proteins utilize distinct sets of secretory pathway components during 

their production (Fischer et al., 2015; Ikawa et al., 1997; Leung-Hagesteijn et al., 2013; 

Sheng et al., 2017). Further lending credence to this product-specific nature of the 

secretory pathway was the secreted protein-dependent expression of the secretory pathway 

components. For example, protein disulfide isomerase (PDI) expression and disulfide-

rich protein secretion rates are correlated across human tissues (Feizi et al., 2017) and 

mouse lymphocytes (Roth and Koshland, 1981). While our results show no significant 

PDI-dependent titer improvements, the availability of N- and O-linked glycosyltransferases 

can restrict titer improvements of glycosylation-enriched r-proteins (Fig. 5D). Notably, 

increased glycosyltransferase activities seemed to decrease the expression of lightly- and 

non-glycosylated r-proteins, suggesting that when underutilized, the metabolic costs of 

certain cellular resources can easily outweigh their benefits in protein secretion. This 

cautions against the pursuit of an omnipotent host cell line and highlights the importance of 

customizing engineering strategies according to the properties of the r-proteins. Other key 

factors that can have protein-specific impacts on the secreted protein titers are e.g. RNA 

instability (Graf et al., 2004; Hung et al., 2010; Scholten et al., 2006), the choice of signal 

peptide within the transgene sequence (Dalton and Barton, 2014; Güler-Gane et al., 2016) 

and proneness to proteolytic degradation (Dorai et al., 2011; Gao et al., 2011; Goldman 

et al., 1997). Such issues should be addressed for each specific r-protein for thorough 

bioproduction optimization.

4. Conclusion

In summary, we show that HEK293 can serve as a valuable fallback expression strategy, for 

difficult or non-secreting proteins expressed in CHO cells, and that comparisons between 

the different host cells can guide efforts to rescue poor expression in CHO by pathway 

engineering. Taken together the results of this study shine light on the variation in expression 
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and activation of secretory pathway related genes between HEK293 and CHO. Such cell 

line-specific variations could have an impact on the optimal choice of bioproduction 

host for specific r-proteins depending on the requirement for specific secretory pathway 

processing. We hypothesize that the existence of a collection of secretory machinery that 

better conforms to our panel of human proteins in the HEK293 cell lines is key to their 

improvements in protein titers. Indeed, amongst the most profound differences in expression 

between HEK293 and CHO secretory pathways, genes with especially positive impact 

on protein secretion in CHO were found. Although many of the secretory machinery 

components promiscuously assist the secretion of different proteins (Saibil, 2013), there are 

reports of more product-specific improvements to the secretory machinery (Butz et al., 2003; 

Ikawa et al., 1997; Yoshida et al., 2005). Supporting this, we found the N- and O-linked 

glycosyltransferases can aid or restrict protein secretion in a protein specific manner. These 

highly product-specific genes enable bespoke cell line engineering that cater to the unique 

secretory requirements of different r-proteins and allows for a more rational selection of cell 

hosts for a given r-protein.

5. Materials and methods

5.1. Experimental design

This study was performed in three main steps. Initially, difficult to express r-proteins 

were produced in various expression systems (various cell lines and protocols) to evaluate 

performance differences in protein-specific or unspecific secreted production as determined 

by absorbance at 280 nm of purified r-proteins or western blotting and LC-MS/MS analysis 

of cell culture supernatants. In a second step, a transcriptomic evaluation of cell lines 

with distinct differences in performance was conducted in order to evaluate underlying 

secretory pathway components with impact on r-protein secretion, including differential 

expression analysis, gene set enrichment analysis and protein feature analysis. Genes of 

interest, identified by the transcriptomic profiling were subjected to co-expression analysis 

together with a difficult to express protein in CHO and HEK293 to evaluate the impact on 

r-protein secretion. ELISA or western blotting was used to determine relative r-protein titers 

compared to expression of the difficult to express protein alone.

5.2. Cell lines and medium

ExpiCHO-S (Gibco™) cells were cultivated in ExpiCHO expression medium. 293-

F (Gibco™) and Freestyle™ 293-F (Gibco™) cells were cultivated in FreeStyle™ 

293 expression medium (Gibco™). FreeStyle™ CHO expression medium (Gibco™) 

supplemented with 8 mM Gluta-MAX™ (Gibco™) was used for Freestyle™ CHO–S cells 

(Gibco™). Cells were cultivated in 125 ml Erlenmeyer shake flasks at 37 °C, 8% CO2 

and 125 rpm. CHOEBNALT85, CHOEBNALT85-1E9 and 293ALL cells were cultivated 

according to manufacturer’s recommendations (Icosagen Cell Factory OÜ, Tartu, Estonia).

5.3. Plasmids and expression constructs

For expression validation of difficult to express proteins the pQMCF vector or the in house 

designed pKTH16 or pKTH16_dPur plasmid (Supplemental Fig. S1) was used. Expression 

in both vectors are driven by the CMV promoter. The pQMCF generic expression cassette 
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included an N-terminal CD33 leader sequence (Chapple et al., 2006) followed by a short 

spacer sequence (AAA) and a C-terminal TEV and human protein C tag (Volk et al., 2016). 

The pQMCF-plasmid without gene insert served as empty vector control. Moreover the in 

house pKTH16 plasmid was used as expression vector with the transgene expressed fused to 

a N-terminal CD33 signal peptide (no spacer sequence between signal peptide and mature 

sequence) and a C-terminal human protein C-tag. Transgenes for co-expression validation in 

combination with a difficult to express protein were cloned into the pKTH16 vector in fusion 

with a C-terminal FLAG tag. An empty pKTH16 vector, not encoding a transgene, was used 

as negative control in co-expression experiments.

5.4. ExpiCHO transfection, cultivation and harvest

The pKTH16_dPur plasmid was used for expression of transgenes. The transfections and 

cultivations were performed according to the manufacturer’s ExpiCHO standard protocol. 

One day prior to the transfection, the cells were seeded at 3 × 106 cells/ml. At the day of 

transfection, the cells were split to 6 × 106 cells/ml in 25 ml ExpiCHO expression medium. 

The ExpiFectamine reagent and 20 μg of plasmid DNA were diluted separately in OptiPRO 

SFM and then mixed together and incubated at room temperature for 3 min before addition 

to cells. The cells were cultivated at 37 °C, 8% CO2 and 125 rpm. The day after the 

transfection (18–22 h post-transfection), ExpiFectamine CHO Enhancer and ExpiCHO Feed 

were added to the cells. The cells were harvested at day 8 post-transfection.

5.5. Affinity protein purification

Recombinant proteins were purified using the Anti-Protein C Affinity Matrix (11815024001, 

Roche) on an ASPEC liquid handling instrument (Gilson). The matrix was washed three 

times with equilibration buffer (20 mM Tris, 0,1 M NaCl, 2 mM CaCl2, adjusted to pH 

7,5). The protein sample was filtered through a 0,45 μm filter and then incubated with the 

purification matrix overnight on a rock n roll at 4 °C prior to packing of the matrix-protein 

mixture on columns. The column was equilibrated with 20 mM Tris, 0,1 M NaCl, 2 mM 

CaCl2, at pH 7,5 and washing was performed with 20 mM Tris, 1 M NaCl, 2 mM CaCl2, 

at pH 7,5. HPC4-tagged proteins were eluted by EDTA (20 mM Tris, 0,1 M NaCl, 5 mM 

EDTA, pH 7,5. The elution fractions were loaded on a SDS-PAGE gel to examine the purity 

and the yield of the elution fractions. The elution fractions showing strong and pure bands 

were desalted and buffer exchanged to 1xPBS. Protein concentrations were determined by 

absorbance measurements at 280 nm.

5.6. Medium-scale episomal stable expression (pQMCF system), cultivation and harvest 
in CHO and HEK293

293ALL and CHOEBNALT85-1E9 cells 007 (Icosagen, Tartu, Estonia) were transfected 

using Reagent 007 (Icosagen, Tartu, Estonia) and cultivations were performed at 30–35 

ml scale at 37 °C for the first three days, followed by incubation at 30 °C until end 

of cultivation. Supernatant and cells were harvested at day 7 for 293ALL and day 9 for 

CHOEBNALT85-1E9 according to standard protocols for each cell line. The supernatant 

was clarified by centrifugation at 1800×g for 45 min at 20 °C. Cells were stored in 

RNAlater™ stabilization solution (Invitrogen™) for downstream RNA extraction.
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5.7. Small-scale transient transfection, cultivation and harvest in CHO and HEK293

The pQMCF plasmids encoding 22 difficult to express target proteins and the pKTH16 

plasmid encoding NRTN and NRTN pp were used for transient expression in Freestyle™ 

CHO, 293-F™ and Freestyle™ 293-F. At 24 h before transfection, cells were split to 

0.6 (Freestyle™ CHO) or 0.7 (293-F and Freestyle™ 293-F) million cells/ml in 125-ml 

Erlenmeyer shake flasks (Corning). On the day of transfection, the culture medium was 

exchanged by centrifugation and cells were resuspended in fresh medium at a cell density 

of 1 million cells/ml. Cells were transfected with 25 kDa linear PEI (Polysciences Inc.) at 

a DNA:PEI ratio of 1:4 (Freestyle™ CHO) or 1:3 (293-F and Freestyle™ 293-F) where 1 

μg DNA was added per 1 million cells. Each plasmid was transfected in duplicate wells. 

The pD2529-CMVM-03 plasmid (Atum) expressing DasherGFP was used to monitor the 

transfection. Cultivation was performed in 24 deep-well plates with 2 ml cell suspension per 

well at 37 °C, 8% CO2 and 250 rpm in humidified incubators. At 24 h post-transfection, 

the transfection efficiency was monitored by flow cytometry (Gallios Flow cytometer, 

Beckman Coulter) of GFP-expressing cells based on mean fluorescence intensities in the 

FL-1 channel. At 72 h post transfection the cell culture was harvested. Cells and supernatant 

from each well were separated by centrifugation (500×g, 3 min). Half of the cell pellet 

was resuspended and stored in RNAlater™ stabilization solution (Invitrogen™) according to 

manufacturer’s recommendations for subsequent RNA extraction.

5.8. Expression level evaluation and protein characterization by Western blot

For Western blot analysis of samples, cell pellets were initially lysed in M-PER solution 

(Thermo Fisher Scientific) and samples were separated by SDS-PAGE (Criterion TGX 

Precast gels, 4–12%, Bio-Rad) under denaturing conditions. Proteins were transferred 

onto PVDF membranes (Trans-Blot Turbo Transfer Pack, Bio-Rad) using the Trans-Blot 

Turbo Blotting System (Bio-Rad), followed by blocking of membranes with 5% milk 

in TBST (0.05% Tween-20). Washing of membranes was performed with TBST and r-

proteins were stained using a primary anti-HPC4-antibody (0.2 μg/ml, Icosagen) followed 

by the secondary goat anti-human HRP-conjugated antibody (1:4000, A18805, Invitrogen). 

Stained proteins were detected using Immobilon Western Chemiluminescent HRP Substrate 

(Millipore) and image acquisition using a ChemiDoc Imaging system (Bio-Rad). For protein 

abundance estimations, each supernatant sample was run in duplicate and volumetric band 

intensities were fitted onto a standard curve generated by a dilution series of HPC4-tagged 

EPO on the same membrane using the Image Lab software (Bio-Rad).

5.9. Transcriptome profiling

RNA was extracted using RNeasy plus Mini Kit (Qiagen) according to manufacturer’s 

guidelines and the quality of the isolated RNA was evaluated by BIOanalyzer 2100 (Agilent, 

Santa Clara, CA) using the Agilent RNA 6000 Nano Kit. RNA sequencing was performed 

at GATC Biotech (Konstanz, Germany) using the Inview transcriptomics Discover platform. 

Sequence data for RNA-Seq were quality controlled using FastQC and summarized with 

multiQC (Ewels et al., 2016). Trimmomatic (Bolger et al., 2014) was used to trim low-

quality bases from the reads. The CHO–K1 (Lewis et al., 2013; Rupp et al., 2018) and 

the human GRCh38.p12 reference genomes were extended to incorporate the transgene 
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sequences so that the transcripts of the heterologous secretome can be quantified. Reads 

were then quasi-mapped to either the extended CHO–K1 or the human GRCh38.p12 

genome based on the cell line of origin and quantified with Salmon (Patro et al., 2017). 

To compare the transcriptome usage across CHO and HEK293 cell lines, an ortholog 

conversion table (Kallehauge et al., 2017) was used to convert CHO genes to their human 

orthologs. The functional groups and the color scheme for the transcriptome usage were 

adapted from the Proteomaps tool (Liebermeister et al., 2014). A pseudocount of 1 was used 

across all genes when calculating log2 fold-changes.

Differential expression was performed using DESeq2 (Love et al., 2014). To facilitate 

the comparison between CHO and HEK293 cells, CHO genes were converted to human 

orthologs using the conversion table described above. With tximport (Soneson et al., 2016), 

the transcript-level abundances were integrated into gene-level counts to be compatible 

with DESeq2. Three different types of comparisons were carried out by specifying the 

corresponding design matrices. For cell line comparisons, gene expression profiles from 

all producers were compared between HEK293 and CHO cells. To estimate the degree of 

gene activation upon recombinant production, the CHO and HEK293 producer cells were 

compared with their non-producing counterparts respectively. To better account for sample 

variation, the fold changes were shrunken towards a beta prior to reduce effect sizes for low 

confidence fold change estimates and improve gene fold changes rankings (Zhu et al., 2019), 

eliminating the need for additional filtering. To obtain genes that show the greatest activation 

disparity between HEK293 and CHO cells, the absolute difference of fold changes for all 

genes across the two cell lines were ranked, and the top 20 (0.12%) of them were chosen 

for further investigation. To estimate the differential activation between cell lines across 

r-proteins, the DESeq2 design matrix was expanded to include an interaction term between 

the cell lines and the r-protein identities.

To not be overshadowed by the expression of extreme genes and to pay more equal attention 

to all the genes within the secretory pathway, a variance-stabilizing transformation was 

applied (Anders and Huber, 2010), similar in implementation to a log-transformation on the 

secretory pathway gene expression.

5.10. Co-expression validation of gene outliers between HEK293 and CHO

Each pKTH16_dPur plasmid encoding gene outliers between HEK293 and CHO, or an 

empty pKTH16_dPur vector control, was co-transfected with the pQMCF plasmid encoding 

THBS4 in duplicates into 293-F and Freestyle CHO–S cells using PEI as described above. 

In total 1 μg of plasmid was transfected per 1 million cells and plasmid ratios of 1:1, 

1:2 and/or 1:10 (gene outlier:THBS4) was used. Cells were cultivated in deep-well plates 

as described above and cells and supernatant were harvested at 72 h post transfection. 

Some gene outliers were also validated in combination with ARTN. The expression of 

THBS4 in each sample was evaluated by sandwich ELISA using a human anti-HPC4-

antibody (Icosagen) as capture antibody, rabbit anti-THBS4 (antibody HPRK2400008 

kindly provided from the Human Protein Atlas) as primary antibody and a HRP-conjugated 

swine anti-rabbit antibody (p039901–2, Dako) combined with TMB substrate (Thermo 

Fisher Scientific) for detection. The relative secreted expression of ARTN was determined 
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by western blotting of culture supernatants using the rabbit antibody HPRK3140989 from 

the Human Protein Atlas and an HRP-conjugated swine anti-rabbit antibody (p039901–2, 

Dako) combined with Immobilon Western Chemiluminescent HRP Substrate (Millipore). 

For Western blot validation of outlier gene expression, cells were lysed using M-PER or 

Mem-PER mammalian protein extraction reagents (Thermo Fisher Scientific) and blotted 

onto PVDF membranes as described above. Proteins were detected using a monoclonal anti-

FLAG M2 antibody (F3165, Sigma/Merck Millipore) and an HRP-conjugated polyclonal 

goat anti-mouse antibody (P0447, Dako).

5.11. Pathway and protein feature analysis

Gene set enrichment analysis was used to calculate the significantly activated pathways 

from gene-level differential expression profiles. Canonical pathway annotation was obtained 

from MSigDB (Liberzon et al., 2011). Additionally, manually curated gene sets on various 

secretory pathway subsystems were referenced from (Feizi et al., 2017). A normalized 

enrichment score (NES) representing the gene-set enrichment analysis (GSEA) statistic 

(Subramanian et al., 2005) was calculated to quantify the overall direction of regulation for 

each gene set along with an accompanying permutation p-value (Korotkevich et al., 2021).

PTM information for each r-protein integrated from UniProt and PhosphoSite.org. Among 

the various types of common PTMs that occur in the cell, we considered glycosylation and 

disulfide bonds due to their occurrences in our panel of r-proteins and their relevance to the 

secretory pathway. For each r-protein, a glycosylation- and disulfide bond-index quantifying 

the level of enrichment of the respective PTM was calculated by dividing the total number 

of occurrences of the PTM in question in the r-protein by the length of the protein. The 

enzymes responsible for the synthesis of glycans and disulfide bonds were obtained from 

(Narimatsu et al., 2019) and KEGG (Kanehisa and Goto, 2000) respectively, and their 

corresponding expression changes from CHO to HEK293 were summarized using the GSEA 

enrichment score statistic for each r-protein. A Bayesian linear regression model (formula 

given below) was used to assess the relationship between titer improvement from CHO to 

HEK293 and the enzyme expression. To further deconvolute the effects of PTMs on this 

dependency, an interaction term between the PTM index and the enzyme expression was 

added to the linear model to capture how the correlation between the enzyme activities and 

the titer improvements changes across r-proteins with different PTM indices. The model 

coefficients were estimated with Markov chain Monte Carlo (MCMC) via the rethinking 

package with default parameters (McElreath, 2020).

LFCTiter[i] Normal(μ[i], σ) (1)

μ[i] = a + bPTM . PTMindex[i] + bEnzymeexpr .Enzymeexpr[i] + bInteractions
. PTMindex[i] . Enzymeexpr[i]

(2)

Priors :a ~ Normal(0, 1)bPTM, bEnzymeexpr  , binteraction ~ Normal(0, 0.25)σ ~ Exponential
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1. For each clone i, draw titer improvement LFC from μ[i] with standard deviation 

σ

2. Break μ[i] down based on PTM, enzyme expression and an interaction term

5.12. Statistical analysis

Statistical analysis of significantly different expression levels of THBS4 and ARTN from 

co-expression experiments was performed in GraphPad Prism 7 using ANOVA one-way 

analysis followed by Dunnetts’s test comparing all expression levels to a control (THBS4 

or ARTN co-expressed with an empty plasmid). The details of the statistical analysis of 

the transcriptomic profiling, including differential expression analysis and protein feature 

analysis, is described in the respective sections above.
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Fig. 1. 
The expression of human secreted proteins in CHO cells.

(A) The secreted and purified titers of 22 difficult to express proteins in the QMCF 

technology versus the ExpiCHO system. (B) Correlation between protein features 

(glycosylation index and molecular weight) and r-protein titer log2 fold-change in ExpiCHO 

compared to the QMCF system. Non-glycosylated proteins are colored red and excluded 

from the correlation calculation.
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Fig. 2. 
HEK293 provides improved secreted titers of difficult to express proteins compared to CHO 

in two different expression systems. Comparison of expression titers from supernatants of 

HEK293 and CHO cell lines from (A) a vector panel of the 24 transgenes was expressed 

side-by-side in HEK293 and CHO cells in both medium-scale (shake flasks) in the stable 

episomal long-term expression system QMCF in CHOEBNALT85-1E9 and 293ALL cell 

lines (1a) and in small-scale (deep-well plates) transient cultivations of Freestyle CHO–S, 

293-F and Freestyle 293-F (1b). The protein expression was analyzed by Western blot where 

r-protein was detected by targeting the C-terminal HPC4-tag using an anti-HPC4 antibody. 

Mean secreted titers ± SD of difficult to express proteins expressed in (B) the stable 

episomal expression system pQMCF using the CHOEBNALT-85-1E9 and 293ALL cell 

lines or (C) the transient cultivation protocol of Freestyle CHO, 293-F and Freestyle-293-F. 

The underlined gene names indicate genes with more than two-fold improved expression in 
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HEK293 cell lines compared to CHO. Differences in protein titer and mRNA levels were 

quantified for each expressed transgene in CHO and HEK293 cells. The transgene RNA 

and protein amounts for Freestyle CHO–S and 293-F cultures (D) and Freestyle 293-F (E) 

cultures are plotted on the X and Y-axis, respectively. For each protein, the changes in 

transcript and protein levels from CHO to HEK293 are represented by an arrow. The fold 

changes in protein levels in HEK293 cells are color-coded.
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Fig. 3. 
The utilization of the secretory pathway differs between CHO and HEK293 as a result of 

a limited set of gene outliers. (A) Comparison of overall transcriptome usage across cell 

lines and producers. The fraction of the transcriptome dedicated to various cellular functions 

is represented by the height of each bar, where related pathways are colored similarly. 

The transgene mRNA levels were excluded. (B) Overall gene expression of 11 functional 

secretory pathway subgroups in CHO and HEK293 upon overexpression of target genes. 

For each group, the average gene expression level for the sample was computed and plotted 

for all samples. Black dots represent average expression in each secretory pathway group 

for control samples with an empty vector (pQMCF-plasmid). (C) Differential expression 

MA-plot showing the mean expression and fold-changes for the secretory pathway genes 

between HEK293 and CHO. Positive fold-changes denote higher expression in HEK293 

and vice versa. The top 20 most differentially expressed secretory pathway components are 

labeled.
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Fig. 4. 
Evaluation of outlier secretory pathway genes on secreted protein titers. (A) Comparison 

of expression of individual secretory pathway genes, with transformed counts for CHO and 

HEK293 shown on the X- and Y-axis respectively. Most secretory pathway genes lie within 

the shaded region drawn around the identity line (x = y), showing an overall conserved 

pattern of expression. Differentially expressed secretory pathway genes evaluated based on 

effects of the expression of a difficult-to-express protein are highlighted and divided into 

three groups (I, II and III) based on expression levels in the two cell lines. All other genes 

are shaded. Mean relative secreted titers ± SD (N = 2) of THBS4 determined by ELISA 

in HEK293 (B) and CHO (C) when co-expressed with differentially expressed secretory 

pathway genes (x axis) compared to the expression level of THBS4 alone (empty vector). 

Plasmid ratios of 1:1, 1:2 or 1:10 (secretory pathway gene:THBS4) upon transfection 

was evaluated. The 1:1 plasmid ratio was only evaluated for HSPA1B, AGAP2, ATF4, 

Malm et al. Page 29

Metab Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SRP9 and PDIA3 in HEK293 cells. The 1:2 ratio gave inconsistent results for PDIA3 

and RAB43 in CHO cells and were excluded from the overall analysis. D) Co-expression 

results of ARTN expression levels (determined by Western blot) when combined with a 

subset of the differentially expressed secretory pathway genes in B and C in CHO with 

plasmid ratios 1:2 (secretory pathway gene: ARTN). Mean relative ARTN titers ± SD (N 

= 2) between supernatants of cells co-transfected with secretory pathway genes versus no 

transgene (empty vector). Significantly different expression of THBS4 (B and C) or ARTN 

(D) compared to the co-expression with an empty vector control (determined by one-way 

ANOVA and Dunnett’s test) is indicated by the asterisk sign (*P adj ≤0.05; **P adj ≤0.01; 

***P adj ≤0.001; ****P adj ≤0.0001).
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Fig. 5. 
Transgene expression induces differential activation of genes between cell lines and between 

different r-proteins

(A) Comparison of gene activation upon transgene expression between HEK293 and 

CHO. Log2 fold-changes (LFCs) are calculated based on the differential expression 

between producers and controls for CHO and HEK293 cells, and are plotted on the X- 

and Y-axis respectively. Genes showing the most divergent activation patterns between 

HEK293 and CHO are labeled. The top differentially activated genes are enriched for 

secretory pathway genes (colored red, hypergeometric p-value = 0.004). (B) Heatmap 

of endogenous secretory pathway genes with the highest positive or negative correlation 

between differential activation and r-protein titer change from CHO to HEK293. In each 

entry, a more positive fold-change of the endogenous secretory pathway gene (Y-axis label) 

for a given r-protein (X-axis label) indicates stronger activation in HEK293 compared to 

CHO when producing that protein. (C) Overall activation of secretory pathway subsystems. 

The dots in the scatter heatmap show pathway activities (y-axis) across cell lines (x-axis). 

Colors represent normalized enrichment scores (NES), which indicate activation/suppression 

and sizes indicating the corresponding significance. (D) Differences in activation of O- 

and N-linked glycosyltransferases between HEK293 and CHO cells correlate with titer 

improvement of moderately-to heavily-glycosylated r-proteins. R-proteins harbouring more 

frequent N- and O-glycosylation sites per AA residue (rightmost panel) tend to benefit more 

from increased expression of glycosyltransferases from CHO to HEK, while a reversed trend 

was observed for non- and lightly-glycosylated r-proteins (leftmost panel).
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Fig. 6. 
Overview of secretory pathway components with significantly positive impact on 

productivity in CHO and differential activation markers correlating with differential 

productivity between CHO and HEK293. The arrows indicate the secretion path of 

secretory proteins in the cell. Differentially expressed genes between CHO and HEK293 

with significantly positive impact (P adj. ≤ 0.05) on THBS4 and/or ARTN titers upon 

overexpression in CHO are indicated as productivity bottlenecks in CHO cells. The color 

scale from red to green indicates gene expression fold-change between HEK293 and CHO, 

where genes of similar expression change between the two cell lines are also grouped into 

one of three groups (indicated by the roman numerals I, II and III, further described in 

Fig. 4). Differentially activated secretory pathway genes correlating with titer fold-changes 

between HEK293 and CHO serve as activation markers for titer fold-change of difficult to 

express protein between cell lines. HSPA8 showed a positive correlation between differential 

activation upon transgene expression in HEK293 vs. CHO and titer-fold change in HEK293 

vs. CHO, whereas ERN1 had a negative correlation. All gene product symbols are mapped 

into their respective cellular compartments and the numbers indicate the secretory pathway 

subgroup of these gene products.
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Table 2

Overview of differentially expressed genes between HEK293 and CHO evaluated based on their impact on 

productivity.

Gene ID: log2 Fold 
Change:

p.adj.: Secretory pathway 
subgroup:

Previous association with protein productivity:

HSPA1B 12.89 0 ERAD Previous data support 1) enhanced yields of hybridomas generated with 
Hsp70-expressing mouse myeloma NS0 cells compared to wt cells 
(Lasunskaia et al., 2003); 2) increased yields of rFVIII in BHK-21 cells 
co-expressing Hsp70 (Ishaque et al., 2007); 3) increased culture longevity 
and IFN-gamma titers of CHO cells coexpressing Hsp70 (Lee et al., 
2009).

EIF2AK2 12.71 1.8E-213 UPR Previous study showed up-regulated expression of EIF2AK2 in HP 
antibody-producing CHO clone compared to LP (Orellana et al., 2018).

TBC1D9 12.32 2.0E-206 Trafficking

HSPA4L 12.07 0.0E+00 ERAD

RAB11FIP1 11.86 5.2E-192 Trafficking

GALNT18 9.98 1.2E-188 Golgi glycosylation

SNAP25 9.48 2.9E-117 Trafficking

MGAT3 9.28 1.0E-117 Golgi glycosylation

MYO5B 9.17 3.1E-211 Trafficking

AGAP2 8.05 9.2E-92 Trafficking

SVIP 7.07 2.1E-67 ERAD

RAB6B 6.33 7.0E-98 Trafficking

DERL3 5.62 1.0E-254 ERAD

JUN 3.03 0 Trafficking Previous study showed up-regulated expression of JUN in HP antibody-
producing CHO clone compared to LP (Orellana et al., 2018).

SRP9 2.85 0 Translocation In a study by Le Fourn et al. (2014), expression of SRP9 along with other 
components of the SRP complex increased antibody expression in CHO

PDIA4 1.78 1.6E-24 Protein folding PDIA4 was found expressed at higher levels in CHO cells producing easy 
to express scFv compared to CHO cells producing difficult to express 
scFv (Sommeregger et al., 2016).

ATF4 1.71 1.3E-134 UPR Overexpression of ATF4 has previously been reported to improve the 
productivity of antithrombin III and IgG, respectively, in CHO cells 
(Ohya et al., 2008; Haredy et al., 2013).

RAB31 −3.18 0 Trafficking

RAB43 −2.88 2.0E-167 Trafficking

PDIA3 −2.52 0 Protein folding Shown to be expressed at higher levels in CHO cells producing easy to 
express scFv variant than CHO cells producing difficult to express scFv 
(Sommeregger et al., 2016). Conflicting effects on productivity have been 
reported, with both positive (Hwang et al., 2003) and negative impacts 
(Hansen et al., 2015).

HSPA8 −2.42 0 Protein folding Upregulation of HSPA8 correlated with sustained productivity of 
antibodies in CHO cells over 10 day fed-batch cultures (Meleady et al., 
2011).

Abbreviations: LP: Low producer; HP: High producer.
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