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SEQUENTIAL PHENOMENA YN PSYCHOPHYSICAL JUDGMENTS:
A THEORETICAL ANALYSIS

R. C. Atkinson
Stanford University
Stanford, California

Summary

This paper deals with an analysis of psycho-
physical detection experiments designed to sssess
the limit of & human observer's level of sensitiv-
ity. A mathematical theory of the detection pro-
cess 1is introduced that, in contrast to previous
theories, provides an analysis of the seguential
‘effects observed in psychophysical data. Two
variations of the detection task are considered:
information feedback and no-information feedback.
In the feedback situation the subject is given
information concerning the correctness of his res-
ponses, whereas in the no-feedback situstion he is
not. Data from a visual detection experiment with
ac-information feedback, and from an auwditory de-
tection experiment with information feedback are
analyzed in terms of the theory. Finaliy, some
general results are derived concerning the rele-
tionship between performance in the feedback situs-
tion and the no-feedback situation.

Introduction

This paper presents an analysis of the process
by which s human observer detects the occurrence
of wery weak signals. The theoretlcal formulation
that we offer should apply to signals received via
any sensory mode, but our discussion will be re-
stricted to visual and auditory stimuli. Further-
more, the analysis is behavioral rather than phys-
dological since it deals with the subjects’ overt
responses rather than with biochemical or neuro-
physiologieal activity.

A methodology for assessing the limits of a
subject's sensitivity to external stimuli based on
phenomenal reports was developed quite early
(Fechner, 1860) and has remained reletively un-
changed since that time. Most simply, these meth-
ods offered a means for determining the probability
of a "detection" for various signal intensities.
Early investigators often interpreted the subject's
rhenomenal report guite directly; i.e., a reported
detection implied that the signal was above the

- subject's 1limit of sensitivity and a report of no
detection implied that 1t was below this 1limit.
The Lrimit, or threshold as it has often been call-~
ed, was viewed as varylng rendomly in time about
a fixed mean value. . Therefore, the threshold wes
def'ined statistically as that signal intensity re-
ported by the subject on half of the occasions on
which it was presented. More recently, alterna-
tive interpretations of the subject's performance
have been proposed (e.g., see Blackwell™ and Swets,
Tanner, and Birdsall2}. These proposels all view
~ the subject as utilizing more than the lmmediate
sensory information to determine his response on
each trial. However, these newer approaches are
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still traditiona} in at least one major respect:
they represent the detection process as fixed
over long series of trials. This static concep-
tion of psychophysical phenomens is surprising in .

.view of the sequential effects that are epparent

In the trial-to-trial data. Investigators as far
back as Fechner” have noted that the subject's
response tendency on one trial is markedly influ=
enced by the stimuli and responses that oeccur on
preceding trials. Most investigators elither have
ignored these sequential effects or treated them
as experimental artifacts, to be minimized by ran-
domization, counterbalancing, trial spacing, or by
use of trained subjects. In this paper seguential
effeets will be considered as an important aspect
of the subject's performance; furthermore it is
ocur contention that consideration of these effects
provides a valuable insight into the character of
the detectlon process. Specifieally, we deal with
an analysis of seguential statistics in two types
of detectlon situations; cne situation involves
information feedback on each trial the other. does
not.

The type of psychophysicel situation that we
anglyze is a two-response, foreced-cholce detection
task. On each trial two temporal, or spatisl, in-
tervals are defined and the subject is iInstructed
to report which of these two intervals contained
a signal. It 18 & forced-choice task in that on
each trial the subject must identifly one of the
two intervals as containing a signal even if he is
uncertain as to what occurred. The following no-
tation will be used to identify each trials

T, , = the presentation of a signal in inter-
4 vel 1 ontriel n {i=1, 2) ; or
the presentation of a signal in neith-
er interval (i= Q)

Aj n= the subject's selection of interval J
% (J=1, 2) as the intervel containing
the signal on trial n .

Ek n = the occurrence of an information event
’ at the end of trial n which informs
the subject that the signel has occur-
red in interval k° (k=1, 2) ; or
no information at the conelusion of
triel n (k=0)

Using this notation, each trial may be deseribed’
by an ordered triple (Ti,Aj,Ek)

Ag indicated above, the two variations of the
detection task that we analyze in this paper are
information feedback and no-information feedback.
The information condition requires that the exper-
imenter present E,; one T, trial and E, ona
To - trial, the no—}nfonmation case requires that



Eg occurs on all trials. In addition to these
two cases one can also study the effects of pre-
senting incorrect information on some trials.
Carterette and Wyman' have investigated the influ-
ence of misinformation, and the theory we present
here 1s applicable to their experiment. However,
to simplify our discussion we shall not examine
‘the misinformation condition.

When no information is given io the subject
it seems natural on occasion to introduce a "blank"
trial and note its effect on choice behavior. Hence
for the no-information condition we permit T
trials. However, the introduction of Ty trgals
in the information condition raises problems re-
garding the type of feedback that should be given
on these trials; to avoid these special issues we
restrict our analysis of the information case to
situations invelving only T; and T2 trials.
Thus for the no-information case the experimenter
has the option of presenting Ty - E, , T2 - Eq ,
or Tg - Ep on emch trial. For the information
case he may present either Tl— E, or Th-E, .
In.this paper we consider only siiiple probabilistic
schedules for presenting events. For the informe-
tion case we denote the probability of the two
events as follows:

¥ Pr(Tl & 31)

1-y = Pr(T,

For the no-information case:

& EE)

w, = Pr(Tl & Eo)

T, = Pr(T2 % EO)

1y = Pr(TO & Eo) .
where w +x +nq, =1 .

1 "2 ¢

Theory

Before we turn to a discussion of the theory
on which cur analysis is based, a few general re-
marks will be useful. All psychological theories
of signal detection incorporate two distinct pro-
cesses: an activation process and a decision pro
cess, The activation process specifies the rela-
tion beiween external stimulus events and hypothe-
sized sensory states of the subject. The decision
process specifies the relation between the sensory
states and the observable response of the subject.
For example, the model proposed by Blackwelll may
be interpreted 1n terms of these two processes.

Two sensory stetes, "true detection” and "no de-
tection", are defined and the activation process
is characterized by specifying the probability
that cone of these two sensory states occurs for a
given signal intensity. The decision process 1is
characterized by specifying the probability of the
subject's response for each of these two sensory
states. In Blackwell's model the subject always
makes the correct response given a "true detection')
but guesses one response or the other with some
fixed probability when the "no detection" state

]

occurs. Other models of the detection process
{e.g., Swets, Tanner, and Birdsall®) have more
complicated views of the activation and decision
processes. However, all of these models are sim-
ilar in one respect: +the charascter of the activa-
tion and declsion processes is viewed as fixed over
long series of trials. It is thils common feature
that was referred to earlier as a static view of
the detection process. The general theogy used in

- pur analysis was developed by Atkinson?’® and con-

siders both the activation and decision processes
as varying from trial to trial. Howsver, & satis-
factory treatment of the problems that we consider
in this paper can be obtailned by using s special
case of the general theory; for this case only the
decision process is viewed as dynamie.

The theoretiecal representation that will be
used here is a generalization of stimulus sampling
concepts as originally formulated by EstesT; a
comprehensive survey of stimulus sampling theory
mey be found in Atkinson and Estes”. For purposes
of this paper the stimulus situation will be rep-
resented in terms of two sensory patterns, 87
and s, , and a set 5 of stimulus patterns as-
sociated with background stimulation. These pat-
terns are theoretical constructs to which we as-

" sign certailn properties. Although it is sometimes
convenient and suggestive to speak in such terms,
one should not assume that these patterns are to
be identified with any simple neurcophysiological
unit such as a receptor cell. At the present
stage of theory construction, we mean to assume
only that certain properties of the set-theoreti-
cal model represent certain properties of the pro-
cess of stimuletion. If these assumptions prove
to be adequately substantiated when the model is
tested against a wide range of behaviorasl data,
then it will be in order to look for neurophysio-
logical variables that might underlie the corres-
pondence .

On every trial a single pattern 1s activated
from the background set 8§ ,- and simultaneously
one of the sensory patierns may or may not be se-
tivated, If the = sensory pattern is activeted

oceursj if s, “Is activated Ap oceurs. If
neither sensory pattern is activated the subject
makes the response to which the background pattern
is conditioned. Conditloning of patterns in 8
may change from trial to trisl via a simple learn-
ing process. It is the manner in which this con-
ditioning process is conceptusalized that distin-
guishes the information situation from the no-in-
formation situation. Imn the feedback situation
the information event itself controls the condil-
tioning process; without feedback the conditioning
process is controlled by the sensory pattern acti-
vated on each trial. This distinction will become
clear after consideration of the axioms. The
axioms will be formulated verbally; it is not dif-
fieult to state them in mathematically exact form,
but for present purposes this 1s not necessary.
The axicms fall into three groups: the first group
defines the activation process, the second group
defines the decision process, and the third group
defines the manner in which the conditioning of

background elements cccurs. Two sets of conditioning



axioms will be-stated: one set is applicable to
the informstion case, and the other to the no-
information case.

Activation Axioms

AL, Ir T;(i=1, 2) occurs, then sensory pat-
tern “s, will be activated with probability
h (witﬁ probability 1-h nelther s, nor
8, Wil be activated).

2
a2, Ir TO occurs, then neither 5) mor s,
will “be activated.

A3, Exsctly one pettern is activated from set &
: on every trial, Given the set 8 of N
patterns, the probability of activating a
particular pattern is 1/ W .

Response Axioms

R1. If sensory pattern s
the A4 response wil

is activated, then
ceecur .,

Ra. If neither sensory pettern is activated, then

the response to which the pattern activated
from set 5 1s condltioned will oeccur.

Conditioning Axloms: No Information Feedback

- 1. On every trial each pattern in 8§ 1s con-
. ditioned to either Al or A, .

c2. If sy (1=1, 2) 1s activated on trisl n ,
then with probability ¢' +the patiern ze-
tivated from S5 on the trial beeccmes con-
ditioned to Ai at the end of trial n .

C3. If neither s, nor 8, are activeted on
trial n, tﬁen with probability ¢ the
pattern activated from 8 on the trial be-
comes conditioned with equal llkelihood to
either Ay or A2 at the end of trial n.

Conditioning Axiome: Information Feedback

Cl. On every trial each pattern in 8§ 1s con-
ditioned to either Al or A2 .

cz. The pattern activated from S on each trial
becomes condltioned with probability € to
the A, response if E; occurs on that
trial; if it is already conditioned to that
response, it remains so.

Thut the information case differs from the no-in-
formation case in that in the former the feedback,
. By -+ 1& the reinforcing event on trial n ,
vhéreas in the no-feedback case the patterns acti-
vated on trial n determine the conditioning
process.

The symbol p_ will be used to denote the
proportion of elements in set S conditioned to
A1 &8t the start of triml n . The expression
for p will differ for the information and the
no-information conditions. However, once the ex-
pression for p = has been derived (for either the

Ty on trial n may be written immediately.

information or no-informetion case) the eguations
for the probability of response Ai given event

3 These
expressions are obtained by the application of ax-
ioms Ri and R2 and are as follows:

Pr(Al’anlln) =h+ (1-hjp (1a)
Pr{Aé,aneyn) =h+ (1-n)}(1- pn) (1v)
Pr(AljanO,n) =P, (1e)

It will be recalled thet our discussion is restrict-
ed to cases where T, trials only occur when there
is no information feedback; consequently Eq. lec

will only be applicable to the no-feedback case.

Application to No-Feedback Data

In this section we shall evaluate gate from
a detection study by‘Kinchla9 in which no-informa-
tion feedbsck was given to the subject, A two-
response, forced -choice, visual detection task was
used and each subject was run for a series of over
800 trials; we shall only consider date from the
last 400 trials. Two areas were cutlined on & uni-
formly iliuminated milk glass screen and the begine
ning of each trial was indicated by an auditory
signal. During the auditory signal one of three
possible events occurred: a fixed increment in
radiant intensity occurred on one of the two areas
of the visual display, or no change occurred in
either area. A trial will be termed a T1 or Ty
trial depending updn which of the two signal areas
had an increment in illumination; trials on which
no change occurred will be termed T, trials., As
indicated eariier, the probabillity 09 a Ty trisl
will be dencted n, . BSubjects were instructed
that a change woul& oceur in one of the two areas
on each trisel. Fellowing the auditory signal the
subject was required to meke either an Ay or
response (press one of two keys) to indicate which
ares he felt had changed in brightness. No infox-
mation was given him about the correctness ‘cf his
response.,

We shall begin our analysis of this study by
considering the expression for p ‘This exXpres-
sion may be derived from the mode? by applying the
conditioning axioms for the no-feedback case. Since
detalled derivations of the relevant expressions
for this case are available elsevhere (Atkinson’)
these derivations will not be repeated here. How-
ever, the techniques used in the derivations are
analogous to those used in the informeiion case
which is discussed later in this paper. A& direct
application of the conditioning axioms and subse-
quent simplification yields the following expres-
sion for o, :

: 1 . n-1
», =2, - (p,-7) [1 - -ﬁ{afb)] {2)
where
- ) _n)e L
& = he f (1 h)2 tahs
. ¢ c
b= gehc' + (1 -h)§ + xeh 3



And. 1 1
By +-§(l—h) + nhs

poo = (l-ﬂo)(l- h"'h\lf) + ﬁo ¥ , (3)

where V¥ =c'fo . Tt is interesting to note that
the asympiotic expression, b, + does not depend
on the absolute values of ¢’ and ¢ but on
their ratio, ¥ . Throughout the remainder of
this paper we shall only present mathematical re-
sults for the limiting case in which n - .,

The reason is that all the data we consider in
this paper was cbtained after the subject hesd al-
ready been run for a large number of trials. Hence,
the data can best be interpreted in terms of the
asymptotic form of the theory.

Using Eq. 3 we shall now conslder one aspect
of the data from Kinchla's study. Two groups. of
24 subjects were run: Group I employed a presen-
tation schedule where m, =1w5 = .4 , end x,=.2;
Tor Group II, =ny=.2, n = .6, and nu= 2 .+ The
average proporticon of A responses made on T
trials over the last 400 trials was computed for

.each group of subjects; the values are given in
Teble 1. The corresponding asymptotic proportions
are speclfied in terms of Egs. 1 and 35, and are
simply:

Llim Pr(a, [T ) =h+ (1-Dh)p, (ka)
- o » 3

lim Pr(Ae’n|T2’nj =h+ {1-n)(1-p) (Lb)
n—e

lim Pr(Al,anO,n) =p, (4e}
n—-eo

Consideration of Eq. 3 reveals that p = 1/2 if
.My =%, ; thus, p, = 1/2 for Group 1. By set-
ting tﬁe observed asymptotic value for Pr{a,|T )
in Group I (1.e., .645) equal to h+ {1-h l/%

an-estimate of h = .289 was obtained. Since .
there was no relevant systematic difference in the
two groups' experimental situation this estimate
of h 1is appropriate for both groups. An estimate’
of ¥ was obtained by setting the observed value
of Pr(AlITO) in Group IT equel to Eg. 3 with'
h=.289", «x =7g=.2 and wp = .6 ; this
method yielde& an estimste of V¥ = 2.8 . Using
these estimates of h and Vv , Egs. 3 and h gen-
erate the asymptotie predictions given in the top
panel of Table 1. It is apparent that the model
provides a reasonably close fit to thls aspect of
the data.

In contrast to a static theory of a signal
detection the present theory provides a much deep-
er analysis of the experiment than indicated by
the predictions summarized in the top panel of
Table 1; the dynamic character of our model allows
an -analysis of sequential effects as well as aver-
ege performance. In the model these sequential
effects are produced by the trial-to-trial fluctu-
ations that occur in the conditioning of patterns
in set 8.

_ The notation Pr(Ay|T,AT,) will be used to
represent the asymptotic prgbability of en Ay
Tesponse on & TJ trisl when the previous trial

bad been & Ty trial on which an A) response
was made. Egs. 5& through 5f are expressions for
these quantities derived from the axioms of the -
model., BSince the derivations are quite lengthy
they will not be given here; the reader interested
in the mathematical tecgniques invelved should con~
sult Atkinson and Estes®.

Pr(a, |Ta 7))

[h+ {(1-n)8 1- ht'
_ ( ) }Rw +( Em) 13 . (N- V)%

DY % (58)
(1-n)s'(1-p)

Pr(AliTl‘ﬂLETl) = WI- = -Nl)x {5b)

Pr(a, |7 4,T))

ngp, + [6° + (1-W)8'1(1-p) -
= - 4 L N1)}( (50)

{1- h)ﬁpw _

prialmar) = T (N Nl)}c (5)

Priay [many) = § + LA "~ (5e)

Po(ay 1Ay = 5 + LGS (5¢)

vhere £ =c'h+ (l-e¢') , 8" ~c' +(1-c')n,

b =(c/eln+ (1-¢/2) , 8 = ¢f2 + (L-¢/2)n,
X=h+(l-h)p , end Y=h+(1-h)(l-p) .

Comparable sets of equations can be written for

Pr(a,|T AT ) end Pr(A |T AT ) and are of the
SamﬁagegzgaT form as tho%e gikEE. 5. :

Two polnts of interest regerding these expres-
sions should be noted. First, the average response
probabilities defined in Eq. 4 depend only on h
and ¥ , whereas the quantities in Eq. 5 are func-
tions of all four parsmeters W, ¢ , ¢! , and h.
Second, independently of the parameter values cer-

-tein relations among the seguential probabilities

can be specified; e.g., Pr(Aq[Tya3Tq)>Pr(a;|TiA,T,)
for any stimulus schedule and any set of parameter
values. To see this, simply subtract Eq. 5f from
Eq. 5e and note that & > &' .

‘ In Table 1 the obeserved values for
FT(AiiTJAkTm) are presented; these are based on
the samé data as the observed values of Pr(AilTJ)
presented in Table 1. In order to generate theo*
retical predictions for the observed sequentlal
entries in Table 1, values of N , ¢ , ¢' , and h
are needed., Since estimates of h and ¥ = c'/e

‘already have been made for this set of data, it

was only necessary to estimate N and elither ¢ |
er e¢' . The predicted values in Table 1 are besed
on & least squares estimate of ¥ and c' ; 1l.e.;
N and ¢! were chosen so a8 to minimize the sum
of the sguared deviations between the 36 observed
values in Table 2 and the corresponding theoretical
values. The values of the four parameters that -
were used to generate the predictione are as fol-
lows: N =4.23 , ¢' =2.,00, ¢ = .357T , end



Table 1

Predicted and Observed Response Probabilities in the

Visual Experiment

Group | Group 11
Observed Predicted Observed Predicted
PriA4[T,) .645 645 558 .565
PriA,IT,) 643 645 .730 724
Pria T 494 .500 388 .388
CPrALIT, AL T .57 .58 .59 .64
PrAITH Ay Ty 65 - 69 .70 76
Pr(AlezAé Ty 71 71 .79 .77
PrASIT, Ay T .61 .59 .69 .66
Pr(A-2|T2 Ay Ty .54 - .59 .68 .66
Pria,iT, A, Ty .66 .70 71 76
Pra,{T) A7 Ty .73 71 70 .65
PrA T, Ay Ty 62 .59 .59 .52
PrAy Ty Ay T 53 58 53 51
Pra|Ty A T .66 .70 .64 .64
PrA,{Ty Ay Ty .72 .70 .61 .63
PragiT; A, To) 61 .59 48 52
PrAL[Ty Ay Tq) .38 .40 AT 49
PriaglTo A, Ty .56 .58 .59 .66
PrALIT, Ay Ty) .64 .60 67 68
PrasiTo A Ty 47 42 .51 51
PriaslTy Ag Tg) 47 42 .50 .51
Pra[Ty Ay Tg) .60 .58 .65 .66




h-= .289. Since only four of the 36 possible
‘degrees of Treedom represented in Table 1 have
been utilized in estimsting parameters, the close
fit provided by the model lends considerable sup-

© . port to the conception of the detection process

made explicit in the axioms.

Application to Feedback Data

To indicate the nature of the predietions
for an information feedback problem we shall exam-
ine some data from two sublects run in & two-res-
ponse, forced-choice auditory detection task. Two
temporal intervals were defined on each trial by a
pair of lights. A band-limited Gaussian noise (the
masking stimulus) was present continuously through-
‘out the experimental situation and on every trial
one of the twe intervals contained a fixed inten-
sity, 100C cps tone. The subject pulled one of
two levers to indicate which of the twoe intervals
he believed contained the signal. Each trial end-
ed with the location of the signal being Iindicated
to the subject by ancther set of iights. The ex-
perimental precedure 1s_described in detail in
Atkinson and Carterette™; that paper deals with
an znalysis of forced-choice and yes-no data from
six subjects, each run for 350 trilals per day for
30 days. The preliminary data we present here is
not to. be regarded as a test of the theory, but
only a means of illustrating some of the predic-
tions. A trial will be denoted T or T, de-
pending upon whether the first or second ifterval
contained the 1000 cps signal, and a correct res-
ponse on & Ty trial (i=1, 2) will be termed
en Ay vrespomse. Thus each T, +trial concludes
with an Ej event which indicates to the subJect
that an Aj; response was the correct response on
that trial.. The probability of & T; or T, (y
and 1-y , respectively) was set st 1/2 for the
data that will be considered.

The first step in our analysis of the infor-
mation feedback case will be to derive an expres-
sion for To do this we first note that
(whatever the value of p,) the value of puyq
will ve elther p, , p, + 1/N, or p -1/N ; the
reason for this is that (by axiom A3) If a change
in the conditioning of the background pattern oc-’
curs it will only involve one of the W patterns.
Thus p,,1 @may be written &s an average of these.
three possible values, with each value weighted by
its probability of occurrence. ' The probabllity of
occurrence of each of these values umay be deter-
mined directly from the axioms. For example, the
probability that py.q = B, + 1/N 1s simply the
probability that Ti “occurred on trial n (y} ,
times the probability that the background pattern
- sampled on that trial 1= conditioned to an A,
response (1-p,) , times the probability that
conditioning is effective on that trisl (8) ; i.e.,
Pr(ppe; = Py + 1/N) = y(1-2.)6 . Ine similar
fashion Pr(pp,; = b, - 1/N)" may be shown to equal
{1- 7)pn6 . Finally, since p ., must be one of
three values, Pr{p,., = pn) =1- 7(1-—pn)9 -
(1-y)p,6 . Thus the following recursive expres-
sion for ppy; may be written:

: . 1
Poay = 7(1-2)8 (p+F) + (1-7)p 8 (3, - )

+[1-y(1-p)6-(1-y)polp, .  (6)

This recursion can be sglved by stendard methods
(see Atkinson and Estes®) to yield the explicit

formula
8yn-1

p,=p, - {p,-p)(1-3) (7a)
where n ® ® * ¥

Po=7 - (70)
Tehle 2 presents the observed velues for Pr{A ITl)
and Pr{Ay|T,}. Since y = 1/2 we have immedIately
(via Bq. 7) That p = 1/2. Knowing m, =and the
observed value of Pr(AllT ) = .73 we may use Eg.
ka to obtain an estimet® of h = .46. Using this

estimate of h the model predicts that Pr(a,|T,)=
27 which Is gquite close to the observed value of
.28,

Table 2

Predicted and Observed Response Probabilitiles
in the Auditory Experiment

Observed Predicted
Pr(a, [T,) LT3 T3
Pr(a, |T)) ‘ .28 .27
Pr{a, | TAT ) .80 .78
Pr{A, | T, AT, ) .76 .75
Pr(All TyA T,) .73 .71
Pr(AlI T,A,T,) .67 .68
Pr(a, lram) .30 .32
Pr(a; | T AT, ) 32 .29
Pr(AlI TAT,) .26 .25
Pr(a, 1T A,T,) .22 .22

Expressions for the sequential probabiiities,

PT(AilT AkTm), may be derived for the feedback

case Jugt as they were for the no-feedback case.

Once again, since the derivations sre rather lengthy;
only the expressions themselves will be presented
here.

_ Pr(AliTlAlTl)
p_ +{1l-1p)h {6 + (L-0O)h) _
o= 00 . * (W Nl)){ (8&.)
Pr(Alf'l‘lAETl)
(1-p,)(L-1n) (g + {1-6)n} (N - 1)X
= W1~ %) — TR (Bb)_



p (1-h) (1-8+6n)

Pr(A |T1A1T2) = + (N‘Nl)x (8c)

B{1-7Y)
Pr(a, |Ta.r) = W o (8a}
vhere, as in Eg. 5, X = h + (1~h)p  and Y =
o h+ (1-n){1-p.). Comparable egquations can be
“written for PrTAl T AT J}

To generste theoretical predictions for
Pr(Ay|T;8,T)) estimates of & and N are needed,
in additién to our estimate of h. Once again, we
obtain our estimate of N and € by a least
squares method; f.e., values of N and & were
selected thet minimized the sum of the squared
deviations between the observed values for
Pr(A, [T;A 7)) in Table 2 and the corresponding
predictions generated by Eq. 8. The values of the
three paremeters that were used to generate the
predictions for Table 2 are h = U6, & = .62, and

= 3,85, Since only three of the possible elght
degrees of freedom represented in Table 2 have been
utilized the £it 1s reascnably good.

No- Information Cases

So far we have examined the types of analyses
that are possible in both a feedback -situstion and
a no-feedback situation. We now turn to & compari-
son of these twe situations in terms of our model.
Experimentally an obvious way to explore the dif-
ferences between these two situstions would be to
conduet & study in which the same subjects were
run on two identical forced-choice detection tasks
that differed only with respect to the presence or
gbsence of information feedback. =Hither the visu-
al or the sudltory detection task discussed previ-
ously would be appropriate for such a study. To
simplify the ecomparison we shall permit enly T4
or To type trials to oceur in both the informa-
tion and no-information conditions and will use
the notation y and 1-y to denote the proba-
bilities of & T, and T, event, respectively.
This when interpreting the equations for the no-
information case we need to set =ny =y, 1,=1-7,
and Ry = 0.

In our hypothetical study, the same subject
would be used in both feedback conditions, and alsc
the same physical signal parameters would be used
throughout the experiment. Hence, it would be
reascnable to assume that h and N are the same
under both the information and no-information eon-

ditions. @iven this assumption we rote, by com-
paring Egs. 3 and 7, that

T T 1

p, 23, for y >3

L I for -};

P, = P, ¥y =

~where I and I refer to the information and no-.
Information situstions, respectively. Thus using
Bg. 1 {which is applicsble to both situations) we
have for y > 1/2, '

"Informetion variable on the value of A,

3
T ) Pr(Al,anl,n)

1,n

Ty

_Al,n[

1
Pr(A2 ni 2, o < Pr(A ,nl

3.

2,n

The equality holds only when » = 1/2 or when

¥ = o, With these results in mind consider the
overall probability of & correct response on trial
n ; namely

Pr(c ) = y Pr(a 2,0/ o)

1al®y,e) * (=) Pr(a
In view of the Inequalities in Eq. 10 we immedia.tely
heve

I I
Pr(cn) > Pr(cn) ’ {11)
where, again, equality holds when y = 1/2 or when
¥ —w. . Thus in terme of overall performance, the
theory predicts thet the subjects will tend to be
correct more often in an information feedback situs-
tion than in & no-informetion feedback situation. -

A comparison of sequential sta_.tisticé in the

- Information and no-information cases is more tedi-
‘ous and for purposes of this paper we examine only

one prediction; namely

A = Pr{a; I a Br(a) Ly

1 1 l) J. 2 2)

This equation specifies the largest possible differ-
ence between first-order sequential predictions,
and it 1s interesting to examine the effect of the
To furthar
simplify our analysis we shall let + = 1/2 ‘and
therefore p = 1/2 for both the informa.tion and
no-information cases.

Using Egs. 8a and 84, we may derive an expres-
sion for & in the information case given that
R = y = 1/2; nemely
(1-n)(1- h+2h9)
AT = =xa5w

Similarly, using Eqs. Sa and Se¢ (with =, =4y, =
1y, 8nd = 0) we may derive the fo.lLlowing .
expression fof A in the no-information case given,

(12)

again, that B =y = 1/2;
A(T)_= {1- h)grl(.£+h1:~)c+2c'h) (13)

Comparing Eqs, 12 and 13 makes it apparent

. that the maximum possible difference between first-

order sequential predictions may be greater or less
in the information casge, as compared with the no-
informetion case, depending on the values of 86, cf,

and h. Nemely
A(;) >A(T) , if 6 >c' +“2T;
A1) < AT}, if e <e! +—2T1

Thus, st least for this particu]_.ar canparison, no
parameter-free conclusions can be drawn about the
overall sequentlal effects in the- infomatian and
no-information situa.tions.



It is clear that more comparisons can be
made between the feedback end no-feedback situa-
tion. However, for our present purposes the re-
-sults slready developed are sufficient to indicate
the types of analyses that are possible in terms
of the theory presented in this paper.
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