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This paper deals with an analysis of psycho­
physical detection experiments designed to assess
the limit of a human observer's level of sensitiv­
ity. A mathematical theory of the detection pro­
cess is introduced that, in contrast to previous
theories, provides an analysis of the sequential
effects observed in psychophysical data. Two
variations of the detection task are considered:
information feedback and no-information feedback.
In the feedback situation the subject is given
information concerning the correctness of his res­
ponses, whereas in the no-feedback situation he is
not. Data from a visual detection experiment with
no-information feedback, and from an auditory de­
tection experiment with information feedback are
analyzed· in terms of the theory. Finally, some
general results are derived concerning the re1a­
tionshipbetween performance in the feedback situa­
tion and the no-feedback situation.

Introduction

This paper presents an analysis of the process
by which a human observer detects the occurrence
of very weak signals. The theoretical formulation
that we offer should apply to signals received via
any sensory mode, but our discussion will be re­
stricted to visual and auditory stimuli. Further­
more, the analysis is behavioral rather than phys­
iological since it deals with the subjects' overt
responses rather than with biochemical or neuro­
physiological activity.

A methodology for assessing the limits of a
subject's sensitivity to external stimuli based on
phenomenal reports was developed quite early
'(Fechner, 1860) and has remained relatively un­
changed since that time. Most simply, these meth­
ods offered a means for determining the probability
of a "detection" for various signal intensities.
Early investigators often interpreted the subject's
phenomenal report quite directly; i.e., a reported
detection implied that the signal was above the
subject's limit of sensitivity and a report of no
detection implied that it was below this limit.
The limit, or threshold as it has often been call.­
"ed, was viewed as varying randomly in time about
a fixed mean value. Therefore, the threshold was
defined statistically as that signal intensity re­
ported by the subject on half' of the occasions on
which it was pre sented. More recently, a1terna­
tive interpretations of the subject's performance
have been proposed (e.g., see B1ackwelll and Swets,
u:'anner, and Birdsal12). These proposals all view
the subject as utilizing more than the immediate
sensory information to determine his response on
each trial. However, these newer approaches are

still traditional in at least one major respect:
they represent the detection process as fixed
over long series of trials. This static concep­
tion of psychophysical phenomena is surprising in
view.of the sequential effects that are flopparent
in the tria.l-to-tria1 data. Investigators as far
back as Fechner3 have noted that the subject's
response teridency on one trial is markedlyinf'lu""
enced by the stimuli and responses that occur on
preceding trials. Most investigators either have
ignored these sequential effects or treated them
as experimental artifacts, to be minimized by ran~

domization, counterbalancing, tria.l spacing, or by
use of trained subjects. In this paper sequential
effects will be considered as an important aspect
of the subject's performance; furthermore it is
our contention that consideration of these effects
provides a valuable insight into the character of
the detection process. Specifically, we deal with
an analysis of sequential statistics'in two types
of detection situations; one situation involves
information feedback on each trial, the other doefl
not.

The type of psychophysical situation that we
analyze is a two-response, forced-choice detection
task. On each trial two temporal, or spatial, in~

tervals are defined and the subject is instructed
to report which of these two intervals contained
a signal. It is a forced-choice task in that on
each trial the subject must identify one of the
two intervals as containing a signal even if he· is
uncertain as to what occurred. The following no-'
tation will be used to identify each trial:

the presentation of a signal in inter­
val i ontrial n (i=l, 2); or
the presentation of a signal in neith­
er interval (i = 0) •

the subject's selection of interval j
(j= 1, 2) as the interval containing
the signal on trial n.

the occurrence of an information event­
at the end of trial n which informs
the subject that the signal has occur­
red in interval k' (k = 1, 2); or
no information at- the conclusion of
trial n (k= 0) •

Using this notation, each trial may be described
by an ordered triple. (Ti,Aj'~) .

As indicated above, the two variations of the
detection task that we analyze in this paper are
information feedback and no-information feedback.
The information condition requires that the exper~

1menterpresent E on a TI trial and E2 on a
T2 trial; the no-Information case requires that



EO occurs on all trials. In addition to these
two cases one can also study the effects of pre­
senting incorrect in€ormation on some trials.
Carterette and Wyman have investigated the influ­
ence of misinformation, and the theory we present
here is applicable to their experiment. However,
to simplify our discussion we shall not examine
the misinformation condition.

When no information is given to the subject
it seems natural on occasion to introduce a llblank ll

trial and note its effect on choice behavior. Hence
for the no-information condition we permit TO
trials. However, the introduction of TO trials
in the information condition raises problems re­
garding the type of feedback that should be given
on these trials; to avoid these special issues we
restrict our analysis of the information case to
situations involving only Tl and T2 trials.
Thus for the no-information case the experimenter
has the option of presenting TI - EO ' T2 - EO '
or TO - EO on each trial. For the information
case he may present either Tl - El or T2 - E2 .
In this paper we consider only simple probabilistic
schedules for presenting events. For the informa­
tion case we denote the probability of the two
events as follows:

Y Fr(Tl & El )

1- y Fr(T
2

& E
2

)

For the no-information case:

~l Fr(Tl & EO)

~2 Fr(T2 & EO)

~O Pr(TO & EO)

Before we turn to a discussion of the theory
on which our analysis is based, a few general re­
marks will be useful. All psychological theories
of signal detection incorporate two distinct pro­
cesses: an activation process and a decision pro­
cess. The activation process specifies the rela­
tion between external stimulus events and hypothe­
sized sensory states of the subject. The decision
process specifies the relation between the sensory
states and the observable response of the subject.
For example, the model proposed by Blackwelll may
be interpreted in terms of these two processes.
Two sensory states, "true detectionll and "no de­
tection", are defined and the activation process
is characterized by specifying the probability
that one of these two sensory states occurs for a
given signal intensity. The decision process is
characterized by specifying the probability of the
subject 1 s response for each of these two sensory
states. In Blackwell's model the subject always
makes the correct response given a Ittrue detection'~

but guesses one response or the other with some
fixed probability when the uno detection ll state

2

occurs. Other models of the detection process
(e.g., Swets, Tanner, and Birdsal12) have more
complicated views of the activation and decision
processes. However, all of these models are sim­
ilar in one respect: the character of the activa­
tion and decision processes is viewed as fixed over
long series of trials. It is this common feature
that was referred to earlier as a static view of
the detection process. The general the06y used in
our analysis was developed by Atkinson5, and con­
siders both the activation and decision processes
as varying from trial to trial. However, a satis­
factory treatment of the problems that we consider
in this paper can be obtained by using a special
case of the general theory; for this case only the
decision process is viewed as dynamic.

The theoretical representation that will be
used here is a generalization of stimulus sampling
concepts as originally formulated by Estes7 ; a
comprehensive survey of stimulus swmPling theory
may be found in Atkinson and EstesO. For purposes
of this paper the stimulus situation will be rep­
resented in terms of two sensory patterns, sl
and s2' and a set S of stimulus patterns as­
sociated with background stimulation. These pat­
terns are theoretical constructs to which we as·
sign certain properties. Although it is sometimes
convenient and suggestive to speak in such terms,
one should not assume that these patterns are to
be identified with any simple neurophysiological
unit such as a receptor cell. At the presez:tt
stage of theory construction, we mean to assume
only that certain properties of the set-theoreti­
cal model represent certain properties of the pro­
cess of stimulation. If these assumptions prove
to be adequately substantiated when the model is
tested against a wide range of behavioral data,
then it will be in order to look for neurophysio­
logical variables that might underlie the corres­
pondence.

On every trial a single pattern is activated
from the background set S,· and simultaneously
one of the sensory patterns mayor may not be ac~

tivated. If·the sl sensory pattern is activated
~ occurs; if s2 is activated A2 occurs. If
neither sensory pattern is activated the subject
makes the response to which the background pattern
is conditioned. Conditioning of patterns in S
may change from trial to trial via a simple learn­
ing process. It is the manner in which this con­
ditioning process is conceptualized that distin­
guishes the information situation from the no-in­
formation situation. In the feedback situation
the information event itself controls the condi­
tioning process; without feedback the conditioning
process is controlled by the sensory pattern acti­
vated on each trial. This distinction will become
clear after consideration of the axioms; The
axioms will be formulated verbally; it is not dif­
ficult to state them in mathematically exact form,
but for present purposes this is not necessary.
The ax:iomsfall into three groups: the first group
defines the activation process, the second group
defines the decision process, and the third group
defines the manner in which the conditioning of
background elements occurs. Two sets of conditioning



axioms will be stated: one set is applicable to
the information case, and the other to the no­
information case.

Activation Axioms

information or no-information case) the equations
for the probability of response Ai given event
Ti on trial n way be written immediately. These
expressions are obtained by the application of ax­
ioms Rl and R2 and are as follows:

Pr(A
1

IT
1

) h + (1 c hlp (la),n ,n n

Pr(A
2

IT
2

) h + (l-h)(l c p) ( 1b)
,n ,n n

Pr(A1 ITo ) Pn (10)
,n ,n

It will be recalled that our discussion is restrict­
ed to cases where TO trials only occur when there
is no inf'ormation feedbackj consequently Eq. lc
will only be applicable to the no-feedback case.

Application ~ No-Feedback Data

Exactly one pattern is activated from set S
on every trial. Given the set S of N
patterns, the probability of activating a
particular pattern is 1/ N .

Al. If Ti(i=l, 2) occtu's, then sensory pat­
tern 6i will be activated with probability
h (with probability 1- h neither sl nor
s2 will be activated).

If TO occtu's, then neither sl nor s2
will be activated.

AS.

A2.

Response~

Conditioning~: No Information Feedback

Cl. On every trial each pattern in S is con­
ditioned to either Al or ..~

In this section we shall evaluate data from
a detection study by Kinchla9 in whichno-informa­
tion feedback was given to the subject. A two­
response, forced -choice, visual detection task was
used and each subject was run for a series of over
800 trialsj we shall only consider data from the
last 400 trials. Two areas were outlined on a uni­
formly illuminated milk glass screen and the begin~

~ing of each trial was indicated by an auditory
signal. During the auditory signal one of' three
possible events occurred: a fixed increment in
radiant intensity occurred on one of the two areas
of the visual display, or no change occurred in
either area. A trial will be termed a T1 or T2
trial depending upon which of the two signal areas
had an increment in illuminationj trials on which
no change occurred will be termed T trials. As
indicated earlier, the probability o~ a Ti trial
will be denoted ~i' Subjects were instructed
that a change woula occtu' in one of. the two areas
on each trial. Following the auditory signal the
subject was required to make either an Al or ~
response (press one of two keys) to indicate which
area he f'elt had changed in brightness. No inf'or­
mation was given him about the correctness 'of his
response.

If neither sensory pattern is activated, then
the response to which the pattern activated
from set S is conditioned will occur.

If sensory pattern si is activated, then
the Ai response will occur.

If' si (i = 1, 2) is activated on trial n,
then with probability c' the pattern ac­
tivatedfrom S on the trial becomes con~

ditioned to Ai at the end of trial n.

CS. If neither sl nor s2 are activated on
trial n, tlien with probability c the
pattern activated from S on the trial be­
comes conditioned with equal likelihood to
either Al or A2 at the end of trial n.

Conditioning~: Information Feedback

C2.

Rl.

H2.

Cl. On every trial each pattern in S is con­
ditioned to either Al or A2

C2. The pattern activated from S on each trial
becomes conditioned with probability e to
the Ai response ifEi occurs on that
trialjif it is already conditioned to that
response, it remains so.

Thus the information case differs from the no-in­
formation case in that in the f'ormer the feedback,
Ei n' is the reinforcing event on trial n,
wh~reas in the no-feedback case the patterns acti­
vated on trial n determine the conditioning
process.

We shall begin our analysis of this study by
considering the expression for Pp.' This. expres-'­
sion may be derived from the model by applying the
conditioning axioms for the no-feedback case. Since
detailed derivations of the relevant expressions
for this case are available elsewhere (Atkinson5)
these derivations will not be repeated here. How­
ever,the teChniques used in the derivation.s are
analogous to those used in the information case
which is discussed later in this paper. A direct
application of the conditioning axioms and subse­
quent f?implification yields the following expres­
sion for Pn:

[ 1] n-1
Pn = Poo - (poo c P1) 1 c i(a+ b)

propor~~ns~b~iem~RtsWi~s=~u~edc~~d~~~~::dt~~
Al at the. start of trial n. The expression
for Pn will differ for the information and the
no-information conditions. However, once the ex­
pression for Pn has been derived (f'or either the

where

a=1C
l

hc '

b = 1C
2

hC'

+ (l-h)~

+ (1 -h)~

;:;



And

+:n:o 1

where *= c'/c It is interesting to note that
the asymptotic expression, Pro J does not depend
on the absolute values of c' and c but on
their ratio J "If. Throughout the remainder of
this paper we shall only present mathematical re­
sults for the limiting case in which n ~oo .
The reason is that all the data we consider in
this paper was obtained after the subject had al­
ready been run for a large number of trials. Hence,
the data can best be interpreted in terms of the
asymptotic form of the theory.

had been a Tm trial on which an Ak response
was made. Eqs. 5a through 5f are expressions for
these quantities derived from the axioms of the
model. Since the derivations are quite lengthy
they will not be given here; the reader interested
in the mathematical tecgniques involved should can..
sult Atkinson and Estes •

Pr(All T1Al Tl )

(h + (1- h)8Jp~ + (1- p)h!' (N _ l)X
NX + N

(l-h)8'(1- p) + (N-l)X
N(l- X) N

where £ = c1h + (l-c l) ,£1 = c l + (l-c')h,
8 =(c/2)h + (1- C/2) , 8' = c/2 + (1- c/2)h ,
X = h + (l-h)p~, and Y = h + (l-h)(l-p) .

Comparable sets of equations can be written f'or
Pr("2IT2'\;T'I') and !'r(A1IT..,A,.T_) and are of the
same genera form as those ~n"Eq. 5.

Two ·points of interest regarding these expres­
sions should be noted. First, the average response
probabilities defined in Eq. 4 depend only on h
and V, whereas the quantities in Fq. 5 .are func­
~ions of all four parameters "N , c , c' , and h.
Second, independently of the parameter values cer·.·
~ain relations among the sequential probabilities
can be specified; e.g., Pr(AlIT1A1TO);::Pr(A1IT1"2To)
for any stimulus schedule and any set of parameter
values. To see this, simply subtract Eq. 5f "from
Eq. 5e and note that 8 ~ 8' .

In Table 1 the observed values for
Pr(AiITjAkTm) are presented; these are based on
the same data as the observed values of' Pr(AiIT)
presented in Table 1. In order to genel'ate theoJ
retical predictions for the observed sequential
entries in Table 1, values of N, c , c' , and h
are needed. Since estimates of hand '4r = cl/c
already have been made for this set of data, it
was only necessar,y to estimate N and either c
or c I • The predicted values in Table 1 are based
on a least squares estimate of Nand c'; i.e.,
Nand c' were chosen so as to minimize the sum
of the squared deviations between the 36 observed
values in Table 2 and the corresponding theoretical
values. The values of the four parameters that
were used to generate the predictions are as fol­
lows: N: 4.23 , c' =1.00 , c = .357, and

( 5c)

(N - l)X
N

Pr(A1IT1A2T2)

hlp + [h2 + (l-h)8'](l-p)
--=~'------MV-----=~:'"+ (N - l)X

NY N
(1- h)8p~

N{ l-Y) +

The notation Pr:(AiIT AkTm) will be used to
represent the asymptotic pr3bability of an Ai
response on a Tj trial when the previous trial

In contrast to a static theory of a signal
~etection the present theory provides a much deep­
er analysis of the experiment than indicated by
the predictions summarized in the top panel of
~able 1; the dynamic character of our model allows
:ananalysis of sequential effects as well as aver­
~ge performance. In the model these sequential
effects are produced by the trial-to-tr1al fluctu­
ations that occur in the conditioning of patterns
in set S.

Using Eq. 3 we shall now consider one aspect
of the data from Kinchla 1 s study. Two groups of
24 subjects were run: Group I employed a presen­
tation schedule where 11:1 =' 1(2 = .4, and "0 = .2;
for Group II, 1(1= .2, 1(2'" .6, and :1(0= .2. The
average proportion of Ai responses made on Tj
trials over the last 400 trials was computed for
each group of subjects; the values are given in
Table 1. The corresponding asymptotic proportions
are specified in terms of Eqs. 1 and 3, and are
simply:

lim Pr(Al IT1 ) h + (1- h)p~ (4a)
n-?lXI ,n,n

lim Pr(A2 nlT2 n) = h + (1- h)(l- p) (4b)
n-?lXI ' ,

lim Pr(Al niTa n) =' p~ • (4c)
n-?oo , ,

Consideration of Eq. 3 reveals that P. = 1/2 if
, 1C1 = 1\ ; thus, P. = 1/2 for Group 'f. By set­
ting t~e observed ac;ymptotic value for Pr(A1IT1)
in Group I (i.e., .645) equal to h + (1- h)l/2
an:estimate of h = .289 was obtained. Since
there was no relevant systematic difference in the
two groups' experimental situation this estimate
of h is appropriate for both groups. An estiJnate
bf W was obtained by setting the observed value
of Pr(A1 ITO) in Group II equal to Eq. 3 with
h = .289, 1\1 = 1C O =.2 and 1\2 = .6; this
method yielded an estimate of '" = 2.8. Using
these estimates of h and If, Eqs. 3 and 4 gen­
erate the asymptotic predictions given in the top
panel of Table 1. It is apparent that the model
prOVides a reasonably close fit to this aspect of
the data.

4



Table 1

Predicted and Observed Response Probabil ities ill the

Visual Experiment

Group I Group II

Observed Predicted Observed Predicted

Pr<A I IT1) .645 .645 .558 .565

Pr<A 2IT 2) .643 .645 .730 .724

Pr<A liT0) .494 .500 .388 .388

Pr<A 21T2 Al T1) .57 .58 .59 .64

Pr<A 2IT2 A 2 T1) .65 .69 .70 .76

Pr<A 2IT 2 A2 T2) .71 .71 .79 .77

Pr<A 2IT 2 Al T 2) .61 .59 .69 .66

Pr<A 2IT2 Al TO) .54 .59 .68 .66

Pr<A 2IT2 A 2 TO) .66 .70 .71 .76

Pr<AI IT1 Al T1) .73 .71 .70 .65

Pr<A I IT1 A 2 T1) .62 .59 .59 .52

Pr<A I IT1 A 2 T2) .53 .58 .53 .51

Pr<A I IT 1 Al T2) .66 .70 .64 .64

Pr<A I IT1 Al TO) .72 .70 .61 .63

Pr<A I IT 1 A 2 TO) .61 .59 .48 .52

Pr<A 2ITa Al T1) .38 .40 .47 .49

Pr<A 2ITa A 2 T1) .56 .58 .59 .66

Pr<A 2ITa A2 T2) .64 .60 .67 .68

Pr<A 2ITOA l T2) .47 .42 .51 .51

Pr<A 2ITa Al To) .47 .42 .50 .51

Pr<A 2ITa A 2 To) .60 .58 .65 .66
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This recursion can be s§lved by standard methods
(see Atkinson and Estes )to yield the explicit
formula

h= .289. Since only four of the 36 possible
degrees of freedom represented in Table 1 have
been utilized in estimating parameters, the close
fit provided by the model lends considerable sup­
port to the conception of the detection process
made explicit in the axioms.

Application to Feedback Data

r(l-p)$ (p +-Nl )n n

+ [1 - r(l -P )$ ­
n (6)

Pc:o = " •

Predicted and Observed Response Probabilities

1E-~ Auditory Experiment

Expressions for the sequential probabilities,
Pr(Ai!T A:kTm) ~ may be derived for the feedback
case ju~t as they were for the no-feedback case.
Once again, since the derivations are rather lengtllY,;
only the expressions themselves will be presented
here.

(8a)

(8b)+ (N - l)X
N

Observed Predicted
l'r(A1IT1 ) ·73 .73

l'r(A1 IT2) .28 .27

l'r(Al ITIA1Tl ) .80 ·78

l'r(AIIT1~Tl) ·76 ·75

l'r(All T]hT2 ) .73 ·71

l'r(AIITIA2T2) .67 .68

l'r(AIIT2AIT1) .30 .32

l'r(All T;f2Tl) .32 .29

l'r(AI IT;flT2) .26 .25

l'r(All T;f2T2) .22 .22

l'r(AIITIA2Tl)

(l-p)(l- h) (e + (1- e)h)

N(l- X)

Pr(Al ITIAIT1 )

P~ + (1- p)h ($ + (1- $)h) + (N-l)X
-"'----::......,IIX=----- N

where

Table 2 presents the observed values for Pr(A1ITl)
and l'r(A2 1T2) • Since r = 1/2 we have immediatelY
(via Eq. 7) that p. = 1/2. Knowing Pc:o and the
observed value of Pr(A1!T1 ) = .73 we may use Eq.
4a to obtain an estimate of' h = .46. Using this
estimate of' h the model predicts that Pr(A1 IT2 )=
.27 which is quite close to the observed value of
.28.

To indicate the nature of the predictions
for an information feedback problem we shall exam­
ine some data from two subjects run in a two-res­
ponse, forced-choice. auditory detection task. Two
temporal intervals were defined on each trial by a
pair of lights. A band-limited Gaussian noise (the
masking stimulus) was present continuously through­
out the experimental situation and on every trial
one of the two intervals contained a fixed inten­
sity, 1000 cps tone. The subject pulled one of
two levers to indicate which of the two intervals
he believed contained the signal. Each trial end­
ed with the location of the signal being indicated
to the subject by another set of lights. The ex­
perimental procedure is described in detail in
Atkinson and CarterettelO; that paper deals with
an analysis of forced-choice and yes-no data from
six subjects, each run for 350 trials per day for
30 days. The preliminary data we present here 1s
not to be regarded as a test of the theory, but
only a means of illustrating some of the predic­
tions. A trial will be denoted T1 or T

2
de­

pending upon whether the first or second interval
contained-the 1000 cps signal, and a correct res­
ponse on a Ti trial (1 = 1, 2) will be termed
an Ai response. Thus each Ti trial concludes
with an Ei event which indicates to the subject
that an Ai response was the correct response on
that trial. The probability_ of a T or T2 ("
and 1-", respectively) was set at l/2t:or the
data that will be considered.

The t:irst step_ in our analysis of the inf'or­
mation t:eedback case will be to derive an expres­
sion for Po' To do this we first note that
(whatever the value of Pn) the value of Pn+1
will. be either Pn ' P + liN, or p - liN ,i the
reason for this is tha~ (by axiom A3) ~f a change
in the conditioning of the background pattern oc­
curs it will only involve one of the N patterns.
Thus Pn+l may bewritten-aB an average of these
three possible values, with each value weighted by
its probabil.ity of occurrence. The probability of
occurrence of each of these values may be deter­
mined directly t:rom the axioms. For example, the
probability that Pn+l = Pn + liN is simply the
probability that Tl occurred on trial n (,,) ,
times the probability that the background pattern
sampled on that trial is conditioned to an A2
response (1 - Pn) , times the probability that
conditioning is effective on that trial (8) ; i.e.~

l'r(Pn+l = P + liN) = r(l-Pn)$. In a similar
;fashion Pr{Pn+l = Pn - liN) may be shown to eq~.:l:
(1- Y)Pn6. Finally, since Pn+l must be one ot:
~hree values, Pr(p +1 =Pn) = 1 - ,,(1- Pn) 8 ­
(1-,,)Pn8. Thus tRe following recursive expres­
sion for Pn+l may be written:

6



I
Pr(A

1
IT

1
),n ,n

(10)

Pr(Cn) = 7 Pr(A
1

IT
1

) + (1-7) Pr(A
2

IT
2

) ;,n ,n ,n ,n

In view of the inequalitiesinEq. lOwe immediately
have

A comparison of sequential statistics in the
information and no-information cases is more tedi­
'ous and for purposes of this paper we examine only
one prediction; namely

The equality holds only when ., = 1/2 or when
W~ 00. With these results in mind consider the
overall probability of a correct response on trial
n; namely

(11)
I I

Pr(C ) > Fr(C ) ,
n - n

where, again, equality holds when r = 1/2 or when
"t ~ 00. Thus in terms of overall performance, the
theory predicts that the SUbjects will. tend to be
correct more often in an information feedback situ&­
tion than in a no-information feedback situation. '

Comparison of~ Information and

No-Information Cases

where, as in Eq. 5, X = h + (1- h)p and Y =
h + (1 - h) (1 - P ). Comparable equations can be
written for pr\A11T2AiTj) •

To generate theoretical predictions for
Pr(AIITiAjTk) estimates of e and N are needed,
in addition to our estimate of h. Once again, we
obtain our estimate of Nand e by a least
squares method; Le., values of N and e were
selected that minimized the sum of the squared
deviations between the observed values for
Pr(AIITiAjTk) in Table 2 and the corresponding
predictions generated by Eq. 8. The values of the
three parameters that were used to generate the
predictions for Table 2 are h = .46, e = .62, and
N = 3.83. Since only three of the possible eight
degrees of freedom represented in Table 2 have been
utilized the fit is reasonably good.

So far we have examined the types of analyses
that are possible in both a feedback situation and
a no;.,feedback situation. We now turn to a compari­
son of these two situations in terms of our model.
Experimentally an obvious way to explore. the dif­
ferences between these two situations would be to
conduct a study in which the same subjects were
run on two identical forced-choice detection taSks
that differed only with respect to the presence or
absence of information feedback. Either the visu­
al or the auditory detection task discussed previ­
ously would be appropriate for such a study. To
simplify the comparison we shall permit only Tl
or T2 type trials to occur in both the informa­
tion and no-information conditions and will use
the notation 7 and 1- 7 to denote the proba­
bilities of a Tl and T2 event, respectively.
Thus when interpreting the equations for the 00­

information case we need to set :ll:l = 7' 11: 2 = 1- 7'
and :1\0 = O.

In· our hypothetical. study, the same subject
would be used in both feedback conditions, and also
'the same physical signal. parameters would be used
throughout the experiment. Hence, it would be
reasonable to assume that h and N are the same
under both the information and no-information con­
ditions. Given this assumption we note, by com­
paring Eqs. 3 and 7, that

I> l'Pn _ Pn for r

for

where I and I refer to the information and no­
information situation-s, respectively. Thus using
Eq. 1 (Which is applicable to both situations) we
have forr ~ 1/2,

This equation specifies the largest possible diffe~­

ence between first-order sequential predictions,
and it is interesting to examine the effect of the
information variable on the value of '~. To further
simplify our analysis we shall let r = 1/2 and
therefore Poo = 1/2 for both· the information and
no-information cases.

Using Eqs. 8a and 8d, we may derive anexpres­
sion for ~ in the information case given that
1<. = 7 = 1/2; namely

l'.(I) - (1-h)(1-h+2he) (12)
- N{H h)

Similarly, using Eqs. 5a and-5c (w1th:lt l =r, 11:
2

=
1- r, and ~O= 0) we may derive the following
expression for ~ in the no-information case given,
again, that Poo r = 1/2:

l'.(1') = (1-h)(1-h+c+2c'h) (13)
N{1+ h)

Comparing Eqs. 12 and 13 makes it apparent
that the maximum possible difference between first~

order sequential predictions may be greater or lesa
in the information case, as compared with the no­
information case, depending on the values of e, c I,
and h. Namely

l'.(I) >l'.(1') , if e > c' + 2~

l'.(I) <l'.(1) if e < c' + ;h

Thus, at least for this particular canparlsoh, no
parameter-free conclusions can be drawn about the
overall sequential effects in the . information and
ho-information situations.
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It is clear that more comparisons can be
made between the feedback and no-feedback situa­
tion. However, for our present purposes the re­
sults already developed are sufficient to indicate
the types of analyses that are possible in terms
of the theory presented in this paper.
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