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On the Existence of Stationary States in General Road Networks

Wen-Long Jina,∗

aDepartment of Civil and Environmental Engineering, California Institute for Telecommunications and
Information Technology, Institute of Transportation Studies, 4000 Anteater Instruction and Research Bldg,

University of California, Irvine, CA 92697-3600

Abstract

Our daily driving experience and empirical observations suggest that traffic patterns in a road
network are relatively stationary during peak periods. In numerous transportation network
studies, there has been an implicit conjecture that stationary states exist in a network when
origin demands, route choice proportions, and destination supplies are constant. In this study,
we first rigorously formulate the conjecture within the framework of a network kinematic
wave theory with an invariant junction model. After defining stationary states, we derive a
system of algebraic equations in 3-tuples of stationary link flow-rates, demands, and supplies.
We then introduce a new definition of junction critical demand levels based on effective
demands and supplies. With a map in critical demand levels, we show that its fixed points
and, therefore, stationary states exist with the help of Brouwer’s fixed point theorem. For
two simple road networks, we show that the map is well-defined and can be used to solve
stationary states with a brute-force method. Finally we summarize the study and present
some future extensions and applications.

Keywords: Network kinematic wave model; stationary states; demand and supply; critical
demand levels; fixed point.

1. Introduction

During peak periods in an urban freeway network, a daily commuter would have almost
the same schedule and route everyday and also experience congestion at similar locations and
times. Therefore, from the viewpoint of the traffic system, ‘‘the traffic demand and origin-
destination desires are relatively constant over the time period”, and the network reaches
a stationary state, in which the locations and sizes of queues are nearly time-independent
(Wattleworth, 1967). Such stationary traffic patterns can be observed from the snapshots of
speed profiles in the Los Angeles freeway network during the morning peak hours on June 18,
2013, as shown in Figure 1: in the network, congested links, queue lengths, and bottleneck
locations remain the same during the peak period from 7:30 to 9:00.
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(a) 7:30 AM

(b) 8:00 AM

(c) 8:30 AM

Figure 1: Stationary traffic patterns in the Los Angeles freeway network during the morning peak period
(7:30-8:30) on June 18, 2013 (Data source: http://pems.dot.ca.gov/)
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In many studies on analysis, control, management, planning, and design of road networks
during peak periods, traffic patterns have been assumed to be stationary (Merchant and
Nemhauser, 1978b; Yang and Yagar, 1995; Yang and Lam, 1996): in (Beckmann et al., 1956),
the static traffic assignment problem was formulated to determine the aggregate route choice
behaviors of vehicles; in (Godfrey, 1969), it was postulated that a network-wide macroscopic
fundamental diagram (MFD) exists in such stationary, or steady, states, and this has been
verified by observations (Geroliminis and Daganzo, 2008); in (Wattleworth, 1967), the local
and global control problem of a freeway system was solved with linear programming methods;
in (Potts and Oliver, 1972), network flow conservation problems are solved; and in (Payne and
Thompson, 1974), the integrated traffic assignment and ramp metering problem was solved
for stationary traffic patterns. Thus, there has been an implicit conjecture that constant
demand and route choice patterns lead to stationary patterns in general networks. Even
though an understanding of characteristics of stationary states is instrumental for studying
various network problems, there has been no theoretical proof or disproof of it.

Furthermore, link performance functions have been widely used to determine travel
times from flow-rates on stationary links during peak periods (Beckmann et al., 1956).
For example, the BPR link performance functions have been critical for the advancement
of transportation network analysis, planning, and design, since they enabled well-defined
mathematical programming formulations and numerical solution methods of the static traffic
assignment problem in large-scale road networks (Sheffi, 1984; Boyce et al., 2005). However,
more and more evidences have shown that link performance functions fail to capture realistic
traffic characteristics on links or through junctions in oversaturated networks, as (i) they
contradict the fundamental diagram of traffic flow, which suggests that the travel time
cannot be uniquely determined by the flow-rate (Greenshields, 1935); (ii) they cannot capture
the interactions or competitions among different traffic streams at merging and diverging
bottlenecks (Daganzo, 1995a). Such limitations of link performance functions have motivated
many studies on dynamic traffic assignment problems (Merchant and Nemhauser, 1978a;
Peeta and Ziliaskopoulos, 2001), in which more realistic traffic flow models are used. But
such dynamic problems are much more challenging both analytically and computationally. In
addition, even though link performance functions are physically limited for congested links,
the existence of stationary traffic patterns during peak periods is a reasonable assumption and
has been verified by our daily experience and observations. Therefore, a more reasonable next
step for traffic assignment is to develop a physically meaningful link performance function
for stationary links. Such an undertaking again requires an understanding of characteristics
of stationary states in general networks during peak periods.

In this study, we first rigorously formulate the conjecture and then prove it affirmatively.
This study is facilitated by the network kinematic wave model, in which traffic dynamics
are described by the LWR model on links and macroscopic merging and diverging models at
general junctions (Jin, 2012b,a). Then we define stationary states on a link and at a junction
in terms of densities as well as 3-tuples of link flow-rates, demands, and supplies. We then
formulate the traffic statics problem as solving a system of algebraic equations in 3-tuples for
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all links. We further define a map in critical demand levels for all junctions and show that
the fixed points of the map correspond to the stationary states in a network. Finally we will
be able to prove the existence of such stationary states with constant demand patterns by
proving the existence of fixed points of the map. We can see that stationary states defined in
this study are physically realistic, since they satisfy both fundamental diagrams and junction
models.

This study is an extension to (Jin, 2012c), where the traffic statics problem was defined
as to find stationary states in a road network subject to constant origin demands, destination
supplies, and route choice proportions within the framework of network kinematic wave
theories and formulated as a system of algebraic equations in 3-tuples. However, in (Jin,
2012c), only a diverge-merge network is studied with separate diverging and merging models,
and the problem was solved by a brute-force method, which cannot be extended for general
road networks. In contrast, in this study we employ a unified junction model, which leads to
a map and enables the definition and resolution of the conjecture for general networks.

In addition, the traffic statics problem is related to special network loading problems
with constant demands and route choice proportions, which have been extensively studied
either by assuming link performance functions (Xu et al., 1998; Prashker and Bekhor, 1998;
Wu et al., 1998; Xu et al., 1999; Chabini, 2001; Astarita et al., 2001) or with microscopic
or mesoscopic models (Barcelo and Casas, 2005; Bliemer, 2007). But the new model of
stationary traffic flow is both mathematically tractable and physically meaningful, since it is
analytically based on network kinematic wave models, which can lead to network models .

The rest of the paper is organized as follows. In Section 2, we review a network kinematic
wave model, in particular, a general closed-form junction model, and formulate the conjecture
within the framework of the network kinematic theory. In Section 3, we define stationary
states on links and at junctions and derive a system of algebraic equations of 3-tuples in
stationary states. In Section 4, we present a map in critical demand levels and prove the
conjecture. In Section 5, we present two examples. Finally in Section 6, we conclude with
some follow-up research directions.

2. A network kinematic wave model

For a general road network, e.g., the Braess network shown in Figure 2, we have the
following notations:

1. R: the set of origin links (dash-dotted red lines); W : the set of destination links
(dash-dotted green lines); A: the set of regular links (solid black lines); A′ = R∪W ∪A:
the set of all links. Here the origin and destination links are dummy links with zero
lengths.

2. Ω: the set of commodities (blue dashed lines), where vehicles using the same path
belong to a commodity; Ωa: the set of commodities using link a ∈ A′.

3. J : the set of junctions (cyan dots); Ij : the set of upstream (incoming) links of junction
j ∈ J ; Oj: the set of downstream (outgoing) links of junction j.
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Figure 2: The Braess network

4. (a, xa): point xa on link a ∈ A, where the positive direction of xa is the same as traffic
direction, and xa ∈ [X−a , X

+
a ] with −∞ ≤ X−a ≤ X+

a ≤ ∞.

For example, the Braess network in Figure 2 has two origin links, two destination links, five
regular links, three commodities, and six junctions, and we can number them accordingly.

2.1. Link model

At a point (a, xa) and time t, we denote the total density, speed, and flow-rate by ka(xa, t),
va(xa, t), and qa(xa, t), respectively. We denote density, speed, and flow-rate of commodity
ω ∈ Ωa by ka,ω(xa, t), va,ω(xa, t), and φω(xa, t), respectively. Hereafter we omit (xa, t) from
the variables unless necessary. Then the evolution of traffic density ka is described by the
following LWR model (Lighthill and Whitham, 1955; Richards, 1956):

∂ka
∂t

+
∂Qa(ka)

∂xa
= 0, (1)

which can be derived from the flow conservation equation, ∂ka
∂t

+ ∂qa
∂xa

= 0, and a fundamental

diagram (Greenshields, 1935):1, qa = Qa(ka), and va = Va(ka). For commodity ω on link a,
we have the following multi-commodity LWR model

∂ka,ω
∂t

+
∂ka,ωVa(ka)

∂xa
= 0, (2)

from which the commodity proportion,

ξa,ω =
ka,ω
ka

=
φω
qa
, (3)

1Without loss of generality, we assume that all links are homogeneous; i.e., the fundamental diagram of a
link is location-independent. But we allow different fundamental diagrams for different links, since they can
have different numbers of lanes, free-flow speeds, and other characteristics.
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Figure 3: The fundamental diagram, demand (red dashed) and supply (green dash-dotted) functions, and
flow-density relation

satisfies the following equation

∂ξa,ω
∂t

+ Va(ka)
∂ξa,ω
∂xa

= 0.

We can see that ξa,ω always travels forward and the LWR model satisfies the First-In-First-Out
principle (Lebacque, 1996).

Generally, Qa(ka) is a unimodal function in ka and reaches its capacity, Ca, when traffic
density equals the critical density ka,c. If traffic density ka is strictly smaller than, equal to,
or strictly greater than the critical density ka,c, then we call the traffic state as strictly under-
critical (SUC), critical (C), or strictly over-critical (SOC), respectively. An under-critical
state (UC) can be SUC or C, and an over-critical state (OC) can be SOC or C.

Therefore, the link model, (1) and (2), is a system of network hyperbolic conservation
laws. Due to the existence of shock waves, the solutions of (2) are defined in the weak sense.
However, some entropy conditions have to be specified to pick out unique, physical weak
solutions in such systems (Lax, 1972).

2.2. Junction model

In (Jin et al., 2009; Jin, 2010, 2014, 2012b), it was shown that macroscopic junction
models, which were first presented in the discrete Cell Transmission Model (CTM) (Daganzo,
1995b; Lebacque, 1996), can be used as entropy conditions. That is, they can be used to
complement the link model to form a network kinematic wave theory.

In the continuous CTM formulation of the network kinematic wave theory, traffic demand
and supply functions, also known as sending and receiving flows, denoted by da(xa, t) and
sa(xa, t) respectively, are defined from local densities:

da = Da(ka) ≡ Qa(min{ka, ka,c}), (4)
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Figure 4: A general junction with m upstream links and n downstream links

sa = Sa(ka) ≡ Qa(max{ka, ka,c}). (5)

Here the traffic demand function, Da(ka), increases in ka, and the traffic supply function,
Sa(ka), decreases in ka. Furthermore, qa = min{da, sa}, Ca = max{da, sa}, and ka can be
uniquely determined by da/sa, since da/sa = Da(ka)/Sa(ka) is a strictly increasing function
of ka. We denote its inverse function by

ka = Ka(da/sa). (6)

Therefore, instead of ka, traffic demand and supply, Ua = (da, sa), can also be used as state
variables: a traffic state at a point is SUC iff da < sa = Ca, SOC iff sa < da = Ca, and C iff
da = sa = Ca. Thus in UC states, Ua = (qa, Ca); and in OC states, Ua = (Ca, qa). Thus a flow-
rate qa corresponds to two densities: Ka(qa/Ca), and Ka(Ca/qa), where Qa(Ka(qa/Ca)) =
Qa(Ka(Ca/qa)) = qa, and Ka(qa/Ca) ≤ ka,c ≤ Ka(Ca/qa). A fundamental diagram, demand
and supply functions, and flow-density relation are illustrated in Figure 3.

The core of a junction model is a flux function, which determines in- and out-fluxes
from upstream demands, downstream supplies, and turning proportions. Here we use the
following invariant2 junction model based on the fair merging and FIFO diverging rules
derived in (Jin, 2012b). At a junction j, as shown in Figure 4, we assume that X+

a = 0 for
a ∈ Ij ≡ {1, 2, · · · ,m} and X−b = 0 for b ∈ Oj ≡ {m + 1,m + 2, · · · ,m + n} (m ≥ 1 and
n ≥ 1). Here the upstream variables are defined at (0−, t), downstream variables at (0+, t),
and boundary fluxes at (0, t). The junction model consists of the following four steps: first,
we calculate from commodity densities on a link upstream demands, downstream supplies,
and turning proportions; second, we calculate the critical demand level and out-fluxes of
upstream links; third, we calculate commodity fluxes; and finally, we calculate in-fluxes of
downstream links. The details are in the following:

2The continuous CTM formulation of the network kinematic wave theory is still well defined with non-
invariant junction models. But invariant junction models lead to much simpler analyses since we can ignore
the existence of interior states (Jin, 2012b).
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1. At any time t, from total and commodity densities on all links next to the junction, ka
(a ∈ Ij), ka,ω (a ∈ Ij, ω ∈ Ωa), kb (b ∈ Oj), and kb,ω (b ∈ Oj, ω ∈ Ωb), we can calculate
all upstream demands, da (a ∈ Ij), downstream supplies sb (b ∈ Oj), and the turning
proportions ξa→b

ξa→b =
∑

ω∈Ωa∩Ωb

ξa,ω. (7a)

2. The out-flux of upstream link a ∈ Ij is

ga = min{da, θj(t)Ca}, (7b)

where the critical demand level of junction j at time t, θj(t), uniquely solves the
following min-max problem

θj(t) = min
b∈Oj
{1,Γb(sb, ~d, ~C, ~ξb)}, (7c)

where ~d = (da)a∈Ij ,
~C = (Ca)a∈Ij , the remaining supply of downstream link b is

πb = sb −
∑

a∈Ij daξα→b,
~ξb = (ξa→b)a∈Ij , and the critical demand level of downstream

link b

Γb(sb, ~d, ~C, ~ξb) = max
B⊆Ij ,B 6=∅

πb +
∑

i∈B diξi→b∑
i∈B Ciξi→b

. (7d)

Note that this formula is equivalent to but simpler than those in (Jin, 2012b) and
(Jin, 2012a): in (Jin, 2012b), B was allowed to be empty; in (Jin, 2012a), the critical
demand level θj(t) was also bounded by maxa∈Ij

da
Ca

.

3. The commodity flux is (a ∈ Ij, b ∈ Oj, ω ∈ Ωa ∩ Ωb)

φω = qb,ω = qa,ω = gaξa,ω. (7e)

4. The in-flux of downstream link b ∈ Oj is

fb =
∑
a∈Ij

gaξa→b. (7f)

Since linear (m = n = 1), merging (m > n = 1), and diverging (n > m = 1) junctions are
special cases of a general junction, (7) is a unified junction model with an arbitrary number of
upstream links and an arbitrary number of downstream links. As shown in (Jin, 2012a), the
junction model is consistent with the fair merging rule, since the out-fluxes of uncongested
(UC) upstream links equal their demand (ga = da), and the out-fluxes of congested upstream
links are proportional to their capacities (ga = θj(t)Ca); it is consistent with the FIFO
diverging rule, since all upstream links are in ‘‘one-pipe regime’’ and the commodity fluxes
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are proportional to their proportions (φω = gaξa,ω). In an extreme case, when sb = 0 for link

b and all turning proportions to this link are positive, then Γb(sb, ~d, ~C, ~ξb) = 0, θj(t) = 0, and
all upstream links become jammed. That is, one jammed downstream link would block all
upstream links, and this verifies the FIFO diverging principle.

In this model, the most important quantity is the junction critical demand level θj(t), which
determines the criticality of the downstream state of an upstream link: when da/Ca < θj(t),
or when the demand level is smaller than the critical demand level, an SUC state arises at the
downstream boundary of link a; when da/Ca > θj(t), or when the demand level of the link is
higher than the critical demand level, an SOC state arises at the downstream boundary of
link a; when da/Ca = θj(t), or when the demand level equals the critical demand level, either
an SOC, C, or SUC state can arise at the downstream boundary of link a. From (7d) we

have Γb(sb, ~d, ~C, ~ξb) ≥ sb∑
i∈Ij

Ciξi→b
≥ 0. Thus the critical demand level θj is bounded:

0 ≤ θj(t) ≤ 1. (8)

Furthermore, from Theorem 4.3 of (Jin, 2012a), we can replace the upstream demands in
(7c) by the corresponding out-fluxes:

θj(t) = min
b∈Oj
{1,Γb(sb, ~g, ~C, ~ξb)}, (9)

where ~g = (ga)a∈Ij .

2.3. The conjecture

Traffic dynamics can be completely described by the network kinematic wave model,
(1) and (2) with (7), whose solutions are determined by initial conditions in ka(xa, t) and
ka,ω(xa, t) (a ∈ A, ω ∈ Ωa) and boundary conditions in the origin demands, dr(t) (r ∈ R),
route choice proportions, ξr,ω(t) (ω ∈ Ωr), and destination supplies, sw(t) (w ∈ W ).

By a stationary state, we mean that, if a road network starts with a traffic state, the
traffic patterns will remain the same along the time. Intuitively, if the boundary conditions
vary with time, wo do not expect to have such a stationary state. But if the boundary
conditions are constant, we would expect to have a stationary state. Within the framework
of the network kinematic wave theory, we formulate such a conjecture as follows.

Conjecture 2.1. When the boundary conditions are time-independent, i.e., if the origin
demands, dr(t) = dr (r ∈ R), route choice proportions, ξr,ω(t) = ξr,ω (ω ∈ Ωr), and
destination supplies, sw(t) = sw (w ∈ W ), there exist time-independent stationary solutions
of ka(xa, t) = ka(xa) and ka,ω(xa, t) = ka,ω(xa) on each regular link a ∈ A for the network
kinematic wave model, (1) and (2) with (7).

3. Stationary states in a road network

In this section we first define stationary states on regular links and at junctions and then
derive a system of algebraic equations for stationary states in a road network.
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Figure 5: A stationary state on a link

3.1. Stationary states on regular links

Traffic is stationary on a regular link a, if and only if both commodity and total densities
are time-independent: ∂ka(xa,t)

∂t
= 0 and ∂ka,ω(xa,t)

∂t
= 0. Clearly, in stationary states both

link flow-rates qa(xa, t) = qa and commodity flow-rates φω(xa, t) = φω are both time- and
location-independent, and the commodity proportion ξa,ω(xa, t) = ξa,ω is also both time- and
location-independent when link a is not jammed.3 In addition, when a regular link a becomes
stationary, its density can be written as (xa ∈ [0, La])

4

ka(xa, t) = H(uaLa − xa)Ka(qa/Ca) + (1−H(uaLa − xa))Ka(Ca/qa), (10)

where ua ∈ [0, 1] is the uncongested fraction of the road, H(·) is the Heaviside function,
We refer to sa(0

+, t) as link supply and da(L
−
a , t) as link demand. Thus in stationary

states, they are also constant and denoted by sa(0
+, t) = sa, and da(L

−
a , t) = da. There can

be four types of stationary states:

Strictly under-critical (SUC): ua = 1, qa = da < sa = Ca (11a)

Strictly over-critical (SOC): ua = 0, qa = sa < da = Ca (11b)

Critical (C): ua ∈ [0, 1], qa = da = sa = Ca (11c)

Zero-speed shock wave (ZS): ua ∈ (0, 1), qa < da = sa = Ca (11d)

A stationary state on link a is illustrated in Figure 5. Note that all types of stationary states
can be considered as special cases of a zero-speed shock wave, depending on the fractions of
UC (green) and OC (red) regions.

From (11) we can see that the flow-rate and type of stationary state of link a can be
uniquely determined if we can find the 3-tuple, (qa, da, sa), which satisfies (11). Thus (11)
is the feasible condition for the 3-tuple. Note that for C stationary states traffic densities
are the same for any ua, but the interface of a zero-speed shock wave cannot be uniquely

3Note that, when link a is jammed, the commodity proportions may be location-dependent, but the
commodity flow-rate is zero and therefore still location-independent.

4We denote X−
a = 0 and X+

a = La, where La is the length of link a.
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determined when qa < da = sa = Ca. However, this property does not impact the existence
of stationary states.

To find (qa, da, sa), we introduce two new variables for link a: the upstream demand, d−a ,
and downstream supply, s+

a . With the two new variables, we can decouple a network into
|A′| separate links: as shown in Figure 5, for link a, it has an artificial origin with a demand
of d−a and an artificial destination with a supply s+

a . Note that for an origin link r, we just
need to introduce s+

r ; and for a destination link w, we just need to introduce d−w .

3.2. Stationary states at junctions

In stationary states we have fa = ga = qa
5. In this subsection, we derive the conditions

for all 3-tuples of flow-rates, demands, and supplies, (qa, da, sa) for a ∈ A, from the junction
model (7) and (9).

First, in stationary states the critical demand level at junction j is also time-independent:

θj = min
b∈Oj
{1,Γb(sb, ~q, ~C, ~ξb)}, (12a)

where ~q = (qa)a∈Ij , πb = sb −
∑

α∈Ij qαξα→b, and

Γb(sb, ~q, ~C, ~ξb) = max
B⊆Ij ,B 6=∅

πb +
∑

i∈B qiξi→b∑
i∈B Ciξi→b

. (12b)

In addition, we define the critical demand level excluding the potential bottleneck effect of
link β ∈ Oj by

θj\β = min
b∈Oj ,b 6=β

{1,Γb(sb, ~q, ~C, ~ξb)}. (12c)

Then we define the downstream supplies of entering links and upstream demands of exiting
links by

s+
a = θjCa, a ∈ Ij, (12d)

d−β =
∑
a∈Ij

min{da, θj\βCa}ξa→β, β ∈ Oj. (12e)

Then from (7b) and the definition of the downstream supply in (12d) the out-flux of link
a is given by

qa = min{da, s+
a }; (12f)

5In (Branston, 1976), it was observed that ‘‘the necessary condition for a steady state’’ ‘‘is simply that,
during such a period, both entry and exit flows on a link will be equal and time independent.’’ But note that
this is not a sufficient condition.
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from the definition of the upstream demand in (12e) the in-flux of link a is

qa = min{d−a , sa}, (12g)

which was proved in Lemma 4.4 of (Jin, 2012a). From (12f) and (12g) we can see that s+
a

and d−a are indeed downstream supply and upstream demand for link a.
In particular, at destination w ∈ W , the in-flux is given by

qw = min{d−w , sw}, (12h)

and at origin r ∈ R, the out-flux and commodity fluxes are given by{
qr = min{dr, s+

r } = s+
r ;

φω =
∑

r∈R qrξr,ω,
(12i)

where we set Cr = dr. Then from the link-path relation the flow-rate on a regular link a ∈ A
is given by

qa =
∑
ω∈Ωa

φω, (12j)

and the turning proportions at junction j are

ξa→b =
∑

ω∈Ωa∩Ωb

φω/qa, (12k)

for a ∈ Ij and b ∈ Oj. In addition, from flow conservation at junction j we have for b ∈ Oj

qb =
∑
a∈Ij

qaξa→b. (12l)

From (11) and (12), we obtain a system of algebraic equations in terms of the 3-tuples
(qa, da, sa) (a ∈ A) for general road networks. In these equations, dr, ξr,ω, and sw (r ∈ R,
ω ∈ Ω, w ∈ W ) are given, but there are other intermediate unknown variables: junction
critical demand levels θj (j ∈ J), downstream supplies s+

a (a ∈ R ∪ A), upstream demands
d−a (a ∈ A ∪W ), origin flow-rates qr (r ∈ R), destination flow-rates qw (w ∈ W ), commodity
flow-rates φω, and turning proportions ξa→b.

4. Proof of the conjecture

In this section, we present a proof of the existence of stationary states for Conjecture 2.1.
That is, we prove that there exist solutions of (qa, da, sa) (a ∈ A) for the system of equations,
(11) and (12), when dr, ξr,ω, and sw are given.

12



4.1. A new definition of junction critical demand levels

We denote the effective link demand and supply by δa and σa, respectively. For origin
r ∈ R, δr = dr; for destination w ∈ W , σw = sw. For regular link a ∈ A and a ∈ Ij,{

δa = min{qa, Ca},
σa = θjCa = s+

a .
(13a)

Based on the effective demands and supplies, we have the following new definition of the
critical demand levels at junction j:

θj = min
b∈Oj
{1,Γb(σb, ~δ, ~C, ~ξb)}, (13b)

θj\β = min
b∈Oj ,b6=β

{1,Γb(σb, ~δ, ~C, ~ξb)}, (13c)

where ~δ = (δa)a∈Ij .

Lemma 4.1. In stationary states, which satisfy (11) and (12), the critical demand levels in
(13b) and (13c) are equivalent to those in (12a) and (12c), respectively.

Proof. From (12d) and (12f), we can see that, in stationary states, qa ≤ Ca. Thus
δa = min{qa, Ca} = qa; i.e., the effective demand is the same as the flow-rate, and we

can replace ~q by ~δ in (12a) and (12c) to obtain (13b) and (13c), respectively.
From (11) and (12f), we can have the following cases:

1. When link b is stationary at SOC, sb = qb < db = Cb. Thus sb = qb = s+
b = σb.

2. When link b is stationary at C, sb = qb = db = Cb. Thus s+
b = Cb. In this case, sb = σb.

3. When link b is stationary at SUC, sb = Cb > qb = db. Thus σb = s+
b ≥ qb.

4. When link b is stationary at ZS, sb = Cb = db > qb. Thus σb = s+
b = qb < sb.

In the latter two cases, we show that σb can also be replaced by sb in (13b) and (13c). At
junction j (b ∈ Oj), we denote the set of its SOC upstream links by A∗. Then from (12l) we
have qb =

∑
α∈Ij\A∗ qαξα→b + θj

∑
a∈A∗ Caξa→b.

1. If A∗ = ∅, from (12a) we can see that θj ≥ maxa∈Ij
qa
Ca

. In this case if we replace sb by

qb, then πb = 0 and Γb(qb, ~q, ~C, ~ξb) = maxi∈Ij
qi
Ci

. Thus θj ≥ maxa∈Ij
qa
Ca

. Similarly if we
replace sb by σb ≥ qb, we also have θj ≥ maxa∈Ij

qa
Ca

.

2. If A∗ 6= ∅, there must exist another bottleneck link β such that Γβ(sβ, ~q, ~C, ~ξβ) = θj.

Otherwise, θj = Γb(sb, ~q, ~C, ~ξb) =
πb+

∑
i∈A∗ qiξi→b∑

i∈A∗ Ciξi→b
, which leads to sb =

∑
α∈Ij\A∗ qαξα→b +

θj
∑

a∈A∗ Caξa→b. This is not possible since sb = Cb > qb in the latter two cases.
Therefore, in this case, if we replace sb by σb ≥ qb, θj remains the same.
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Therefore, in all cases, we can replace sb by σb in (12a) to obtain (13b). This is also true for
(12c) and (13c).

Therefore, (13b) and (13c) are equivalent to (12a) and (12c), respectively. �
Note that effective demands and supplies of all links in (13a) are determined by link flow-

rates and junction critical demand levels. Also note that the new junction critical demand
levels are determined by effective demands and supplies as well as turning proportions, which
are calculated from both link and commodity flow-rates as in turning-proportion. This
suggests that we can solve flow-rates and critical demand levels separately from (11) and
(12).

In the following Lemma, we can see that the original link demand and supply, da and sa,
can be computed from the effective upstream demand and downstream supply.

Lemma 4.2. For link a, given qa, d
−
a , and s

+
a , we can determine its link demand and supply

as follows:

1. When qa = d−a < min{Ca, s+
a }, the link is stationary at SUC with da = qa < Ca = sa;

2. When qa = s+
a = Ca ≤ d−a , the link is stationary at C with da = sa = qa = Ca;

3. When qa = s+
a < min{d−a , Ca}, the link is stationary at SOC with da = Ca > qa = sa;

4. When qa = d−a = s+
a < Ca, the link is stationary at either SUC, SOC, or ZS.

Proof. From (11), (12f), and (12g), we have qa = min{d−a , sa, da, s+
a }, which leads to

qa = min{d−a , Ca, s+
a }. Therefore we can determine the stationary state as follows:

1. Link a is stationary at C if and only if Ca ≤ min{d−a , s+
a };

2. When d−a < min{s+
a , Ca}, link a is stationary at SUC. When link a is stationary at

SUC, d−a ≤ s+
a and d−a < Ca.

3. When s+
a < min{d−a , Ca}, link a is stationary at SOC. When link a is stationary at

SOC, s+
a ≤ d−a and s+

a < Ca.

4. When d−a = s+
a < Ca, link a can be stationary at SUC, SOC, or ZS. When link a is

stationary at ZS, d−a = s+
a < Ca.

From (11) we can determine da and sa accordingly. �
Since the upstream demand and downstream supply in (12e), and (12d) are calculated

from flow-rates and critical demand levels, stationary states can be determined by flow-rates
and critical demand levels. Furthermore, from (12i), (12j), and (12k), link flow-rates can be
uniquely determined by the critical demand levels at junctions downstream to origins. That
is, stationary states can be solved in four steps: first, we find all critical demand levels; second,
we calculate link flow-rates from (12i) and (12j); third, we calculate upstream demands and
downstream supplies; finally, we determine stationary states from Lemma 4.2. Therefore,
Conjecture 2.1 is proved if we can prove that there exist critical demand levels satisfying
(12) and (13).
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4.2. A map in critical demand levels and proof of the conjecture

We denote the vector of critical demand levels by ~θ = (θj)j∈J . From (12d), (12i), (12j),
(12k), and (13a), we can see that link flow-rates, effective demands and supplies, and all

turning proportions are functions of ~θ. Therefore (13b) can be written as

~θ = F(~θ). (14)

That is, ~θ is the fixed point for the following map from ~θ to ~θ′:

~θ′ = F(~θ). (15)

The updating sequence of the map in (15) is as follows:

1. Given ~θ, we have the critical demand level for each junction.
2. From (12d), we calculate all downstream supplies.
3. For origin link r ∈ R, from (12i) we calculate qr and φω.
4. From (12j), we calculate link flow-rates on all regular links.
5. From (12k), we calculate the turning proportions at all junctions.
6. From (13a) we calculate effective demands and supplies.

7. From (13b) we calculate new critical demand levels ~θ′ at all junctions.

Lemma 4.3. There exists a fixed point for (15). That is, there exist critical demand levels
in a general road network with constant demand patterns.

Proof. First, since all functions in (12d), (12i), (12j), (12k), (13a), and (13b) are continuous,

F(~θ) is a continuous function in ~θ.

Second, maxA1⊆Ij
σb−

∑
α∈Ij\A1

δαξα→b∑
a∈A1

Caξa→b
≥ maxA1⊆Ij

σb∑
a∈Ij

Caξa→b
≥ 0, since θj ≥ 0. In addi-

tion, since 0 ≤ δa ≤ Ca, we have that 0 ≤ θ′j ≤ 1.

Third, the dimension of ~θ equals the number of junctions in a road network and is finite.
Then from Brouwer’s fixed point theorem (Zeidler, 1986, Section 2.3), there exists a fixed

point for the map, ~θ∗, such that ~θ∗ = F(~θ∗). �

Theorem 4.4. [Existence of stationary states] Stationary states always exist in a road
network with constant origin demands, route choice proportions, and destination supplies.

Proof. From Lemma 4.3, there exist critical demand levels ~θ that satisfy (15) as well as (12)

and (13). From ~θ we can calculate link flow-rates, qa, from (12i) and (12j). Further from
(12e) and (12d) we can calculate upstream demands and downstream supplies, and from
Lemma 4.2 we can determine stationary states and the 3-tuples. 6 Therefore there exist
stationary states in a road network when the origin demands, route choice proportions, and
destination supplies are constant. This proves Conjecture 2.1. �

6Note that we can calculate a link’s upstream demand from (12e), when all of its upstream links’ demands
are known. The computation sequence should start with links downstream to origins. It can be seen that,
when there exists no ring roads in a network, all links’ stationary states can be calculated.
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1 2

Figure 6: A network of a link

5. Examples for simple networks

For simple road networks, we can enumerate all combinations of stationary states and
directly solve the algebraic equations to obtain the stationary states.

5.1. A single link

We consider the stationary state in a simple network, shown in Figure 6, with one origin
r, one destination w, one regular link a, and two junctions 1 and 2. We assume that dr and
sw are given.

From (12d), (12i), (12j), (12k), (13a), and (13b), we obtain the following map in critical
demand levels, (15):

θ′1 = min{1, θ2Ca
dr
},

θ′2 = min{1, sw
Ca
},

for which the fixed point clearly exists and can be calculated as θ∗1 = min{1, Ca
dr
, sw
dr
} and

θ∗2 = min{1, sw
Ca
}. Then from (12i) and (12j), we find the link flow-rate qa = qr = θ1dr =

min{dr, Ca, sw}. Further from (12e) and (12d) we have the upstream demand and downstream
supply d−a = dr and s+

a = θ2Ca = min{Ca, sw}. Further from Lemma 4.2 we can determine
stationary states: link a is stationary at SUC when dr < min{Ca, sw}; C when min{dr, sw} ≥
Ca; SOC when sw < min{dr, Ca}; either SUC, SOC, or ZS when dr = sw < Ca. Unsurprisingly
for this example, the upstream demand and downstream supply are equivalent to the origin
demand and destination supply: d−a = dr and s+

a = sw.
Note that there exist multiple stationary states when dr = sw < Ca. From this example,

we expect that there exist multiple stationary states in more general networks when a link
can be stationary at ZS.

5.2. A diverge-merge network

We consider a diverge-merge network, shown in Figure 7, with one origin r, one destination
w, two regular links 1 and 2, two junctions 1 and 2, and two paths 1 and 2.

From (12d), (12i), (12j), (12k), (13a), and (13b), we obtain the following map in critical
demand levels, (15):

θ′1 = min{1, θ2C1

ξdr
,

θ2C2

(1− ξ)dr
}, (16a)
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Link 2

Link 1

Figure 7: A diverge-merge network with unstable stationary states

θ′2 = min{1,max{ sw
C1 + C2

,
sw −min{C1, θ1ξdr}

C2

,
sw −min{C2, θ1(1− ξ)dr}

C1

}}.(16b)

From Theorem 4.4 we can see that, given dr, sw, and ξ, there exists a fixed point for (16).
However, it is not straightforward to calculate such fixed points.

In the following we present a systematic brute-force method, in which we enumerate all
possible stationary states so as to solve all fixed points for (16):

1. From (12d) and (12e) we have s+
1 = θ2C1, s

+
2 = θ2C2, d

−
1 = min{ξdr, θ2C2

ξ
1−ξ}, and

d−2 = min{(1− ξ)dr, θ2C1
1−ξ
ξ
}.

2. From Lemma 4.2 we can enumerate all 16 types of stationary states on the two
links. Here we just consider one case: links 1 and 2 are stationary at SOC and SUC,
respectively.7 In this case, s+

1 < min{d−1 , C1} and d−2 < min{s+
2 , C2}; i.e., θ2 < 1,

θ2C1 < ξdr, and ξ > C1

C1+C2
. Then (16) can be simplified as (here θ1 and θ2 are fixed

points)

θ1 =
θ2C1

ξdr
,

θ2 = min{1,max{ sw
C1 + C2

,
sw − θ2C1

1−ξ
ξ

C1

}}.

Since θ2 < 1, there are two possible solutions. First, when θ2 = sw
C1+C2

, we have

sw
C1+C2

≥ sw−θ2C1
1−ξ
ξ

C1
, which leads to 1−ξ

ξ
≥ C2

C1
. This contradicts ξ > C1

C1+C2
. Therefore,

sw
C1+C2

≤ θ2 =
sw−θ2C1

1−ξ
ξ

C1
, which leads to θ2 = ξ sw

C1
and θ1 = sw

dr
. Note that such

stationary states occur when sw < dr and C1

C1+C2
< ξ < C1

sw
. These conditions are

consistent with those in Table 4 of (Jin, 2012c), in which C0 = dr, C3 = sw, and SOC
and SUC states along with ZS states were also considered.

3. Then from (12i) and (12j) we can calculate the link flow-rates. In the special case
above, we have qr = sw, q1 = ξsw, and q2 = (1− ξ)sw. Since we already know the types

7Here we exclude the cases when the links can also be in ZS states.
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of stationary states on both links, their corresponding demands and supplies can be
computed. Furthermore, if we know the fundamental diagrams on both links, we can
obtain the densities from (10).

Note that this method is more streamlined than the brute-force method in (Jin, 2012c).

6. Conclusion

In this study we formulated and proved the existence of stationary solutions for a network
kinematic wave model with an invariant junction model, when the origin demands, route
choice proportions, and destination supplies are constant. After introducing the network
kinematic wave model and defining stationary states on links and at junctions, we established
a system of algebraic equations in 3-tuples of link flow-rates, demands, and supplies for
stationary states. Then we derived a map in critical demand levels and proved the existence
of stationary states by following Brouwer’s fixed point theorem. We further showed that
fixed-points of the map and stationary states are well-defined and can be solved with a
brute-force method for simple road networks.

To achieve the goal, a number of new concepts were introduced. First, algebraic equations,
(11) and (12), were derived in terms of the 3-tuples. Thus we can prove the conjecture by
showing the existence of solutions to such equations. Second, the upstream demand and
downstream supply, d−a and s+

a , were introduced for link a. They help to decouple a general
road network into links with artificial origins and destinations, as shown in Figure 5, and
determine the stationary state on each link separately according to Lemma 4.2. Third, the
effective demand and supply, δa and σa, were introduced for link a, and a new definition of
the critical demand level at a junction was introduced in terms of effective demands and
supplies in (13b). They help to isolate link flow-rates and junction critical demand levels
from other variables and split the solution of stationary states into a number of steps as
shown in the proof of Theorem 4.4. Finally, the most critical contribution of this study is
the derivation of the map in critical demand levels, as it is instrumental for establishing the
existence of stationary states and also for calculating them, as shown in the examples.

However, this study is only a starting point for a systematic theory of stationary states
in a road network. Various extensions are possible along the line:

1. In (Jin, 2013), it was shown that stationary states can be unstable or converge to
gridlocks when there exists a circular information propagation path in a general road
network. In the future, we will be interested in analyzing such stability property of
stationary states with the help of the map in critical demand levels. As shown in (Jin,
2012c), there can be multiple stationary states in a road network. We will examine the
uniqueness of stationary critical demand levels for the map.

2. In this study, a brute-force method was proposed to solve the critical demand levels
and stationary states by enumerating all possible combinations of stationary states.
Even though effective for analyzing all possible stationary states in such small networks
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as those studied in Section 5, for large networks with |A| regular links, the number
of possible combinations of stationary states is 4|A|, and the brute-force method is no
longer applicable. In the future, we will be interested in developing efficient methods
to numerically compute critical demand levels and stationary states with given origin
demands, route choice proportions, and destination supplies in a specific network.

3. In the future we will study the same problem when turning proportions at all junctions,
not route choice proportions, are given, or when other junction models are used. In
this study, junctions are unsignalized. In the (Jin et al., 2013), stationary states are
defined as periodic solutions in a signalized double-ring network. In the future, we will
be interested in establishing the existence of stationary states in signalized networks.

4. In this study, networks are open with origins and destinations. Studies on closed
networks, which have periodic boundary conditions, can also reveal important char-
acteristics of a network. For example, in (Jin et al., 2013), the stationary states in a
closed double-ring network were solved and used to study the macroscopic fundamental
diagram as well as impacts of signals and route choice behaviors. In the future we will
be interested in establishing the existence of stationary states in more general closed
networks.

5. Finally, we will also be interested in empirically examining the existence of stationary
states in a real-world network.

This study lays a theoretical foundation for a mathematically tractable and physically
meaningful model of stationary traffic flow within the framework of the kinematic wave
theory. In the future we will be interested in studying transportation networks during peak
periods within this framework. For example, we can analyze bottleneck locations in a network,
developing transportation network management, control, planning, and design strategies, in-
cluding ramp metering algorithms, evacuation schemes, dynamic traffic assignment, advanced
traveler information systems, congestion pricing, and network design.
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Transportation Research Part B 57, 191-208.

Jin, W.-L., 2014. Analysis of kinematic waves arising in diverging traffic flow models.
Transportation Science 49 (1), 28-45.

Jin, W.-L., Chen, L., Puckett, E. G., 2009. Supply-demand diagrams and a new framework
for analyzing the inhomogeneous Lighthill-Whitham-Richards model. Proceedings of the
18th International Symposium on Transportation and Traffic Theory, 603-635.

Jin, W.-L., Gan, Q.-J., Gayah, V. V., 2013. A kinematic wave approach to traffic statics and
dynamics in a double-ring network. Transportation Research Part B 57, 114-131.

Lax, P. D., 1972. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of
Shock Waves. SIAM, Philadelphia, Pennsylvania.

20

http://arxiv.org/abs/1204.6727


Lebacque, J. P., 1996. The Godunov scheme and what it means for first order traffic flow
models. Proceedings of the 13th International Symposium on Transportation and Traffic
Theory, 647-678.

Lighthill, M. J., Whitham, G. B., 1955. On kinematic waves: II. A theory of traffic flow on
long crowded roads. Proceedings of the Royal Society of London A 229 (1178), 317-345.

Merchant, D., Nemhauser, G., 1978a. A model and an algorithm for the dynamic traffic
assignment problems. Transportation Science 12 (3), 183-199.

Merchant, D., Nemhauser, G., 1978b. Optimality conditions for a dynamic traffic assignment
model. Transportation Science 12 (3), 200-207.

Payne, H., Thompson, W., 1974. Allocation of freeway ramp metering volumes to optimize
corridor performance. IEEE Transactions on Automatic Control 19 (3), 177-186.

Peeta, S., Ziliaskopoulos, A., 2001. Foundations of dynamic traffic assignment: The past, the
present and the future. Networks and Spatial Economics 1 (3), 233-265.

Potts, R. B., Oliver, R. M., 1972. Flows in Transportation Networks. Academic Press.
Prashker, J., Bekhor, S., 1998. Investigation of stochastic network loading procedures.

Transportation Research Record: Journal of the Transportation Research Board 1645,
94-102.

Richards, P. I., 1956. Shock waves on the highway. Operations Research 4 (1), 42-51.
Sheffi, Y., 1984. Urban Transportation Networks: Equilibrium Analysis with Mathematical

Programming Methods. Prentice Hall, Englewood Cliffs, NJ.
Wattleworth, J., 1967. Peak period analysis and control of a freeway system/with discussion.

Highway Research Record 157, 1-21.
Wu, J., Chen, Y., Florian, M., 1998. The continuous dynamic network loading problem: A

mathematical formulation and solution method. Transportation Research Part B 32 (3),
173-187.

Xu, Y., Wu, J., Florian, M., 1998. An efficient algorithm for the continuous network loading
problem: a DYNALOAD implementation. In: Bell, M. G. H. (Ed.), Transportation
Networks: Recent Methodological Advances. Selected Proceedings of the 4th EURO
Transportation Meeting. Pergamon Press, pp. 51-66.

Xu, Y., Wu, J., Florian, M., Marcotte, P., Zhu, D., 1999. Advances in the continuous dynamic
network loading problem. Transportation Science 33 (4), 341.

Yang, H., Lam, W. H., 1996. Optimal road tolls under conditions of queueing and congestion.
Transportation Research Part A 30 (5), 319-332.

Yang, H., Yagar, S., 1995. Traffic assignment and signal control in saturated road networks.
Transportation Research Part A 29 (2), 125-139.

Zeidler, E., 1986. Nonlinear functional analysis and its applications: I. Fixed-point theorems.
Springer-Verlag, New York.

21


	1 Introduction
	2 A network kinematic wave model
	2.1 Link model
	2.2 Junction model
	2.3 The conjecture

	3 Stationary states in a road network
	3.1 Stationary states on regular links
	3.2 Stationary states at junctions

	4 Proof of the conjecture
	4.1 A new definition of junction critical demand levels
	4.2 A map in critical demand levels and proof of the conjecture

	5 Examples for simple networks
	5.1 A single link
	5.2 A diverge-merge network

	6 Conclusion
	References



