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ABSTRACT OF THE DISSERTATION

Domain Knowledge-Assisted Methods for a Weakly Supervised Task: Automated Diagnosis

of Idiopathic Pulmonary Fibrosis Using High Resolution Computed Tomography Scans

by

Wenxi Yu

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2021

Professor Grace Hyun Jung Kim, Co-Chair

Professor Hua Zhou, Co-Chair

Idiopathic pulmonary fibrosis (IPF) is one type of interstitial lung disease (ILD) of un-

known causes. High-resolution computed tomography (HRCT) scans play a crucial role in

distinguishing IPF from non-IPF among subjects with ILD. This radiological evaluation is

an important yet difficult task. In clinical practice, making a correct and reliable IPF di-

agnosis is critical to ensure patients with different causes of pulmonary fibrosis be treated

appropriately and patients with IPF be assessed for novel therapies and lung transplanta-

tion. Therefore, this dissertation aims to build an automated IPF diagnosis system for ILD

subjects, using volumetric and non-contrast chest HRCT scans.

Supervised learning methods are a type of machine learning methods that require labels

of training samples as ground truth to learn a mapping function between input and output

labels. Depending on the type of labels provided, if only coarse-level labels are available,

rather than fine-scale labels, this task is called a weakly supervised task. For our example,

acquiring fine-scale information of certain radiological patterns can be helpful for building

the diagnostic system, but fine-scale labels are expensive to obtain. On the other hand,

coarse-level labels are usually easier to acquire, such as CT scan-level information. Since

we only have labels at a CT scan level, our problem is a weakly supervised task. To tackle

this challenge, this dissertation leverages domain knowledge acquired from previous studies,

ii



including IPF progression and quantification information, to provide more efficient, reliable,

and explainable diagnostic support.

In project I, we used 2D deep learning models with IPF progression information and

optimal design criterion to weigh HRCT samples differently. In project II, 3D deep learning

models with multi-scale attention models were used with IPF quantification maps to achieve

good model accuracy and explainability. Furthermore, we evaluated the robustness of these

developed models under a different set of HRCT parameters, using paired HRCT scans.

These proposed methodologies in project I and II can be applied to other weakly supervised

tasks, where domain knowledge is available. The method used in the robustness tests can

be applied to evaluate model performance if paired medical images are available.
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CHAPTER 1

Introduction

Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive, irreversible,

and usually lethal lung disease of unknown causes [KPS11]. IPF is reported to have an

estimated median survival time of 3 to 5 years from the time of first diagnosis [KPS11]. In

clinical settings, making a correct and reliable IPF diagnosis is critical to ensure patients

with other causes of pulmonary fibrosis be treated appropriately and patients with IPF be

assessed for novel therapies and lung transplantation.

According to the official clinical guideline [RRM18], computed tomography (CT) has

become an integral part of the diagnosis of IPF. Radiological patterns of usual interstitial

phenomena (UIP) are the hallmark of IPF [RRM18]. Specifically, several CT features are

frequently observed in UIP patterns, including honeycombing, subpleural reticulation, and

traction bronchiectasis in a lower lobe subpleural distribution [RRM18]. Despite the exis-

tence of these guidelines, the evaluation of these radiological patterns is a difficult task and

largely subject to inter-observer variability [WCS16, WL20].

To this end, this dissertation aims to develop a deep learning-based automated diagno-

sis system to distinguish IPF from non-IPF among subjects with interstitial lung disease

(ILD) based on axial chest CT scans. The clinical meanings of this research area are to (1)

reduce inter-observer variability in the IPF diagnosis task, (2) enable timely and reliable

IPF diagnosis, and (3) ensure patients with different causes of pulmonary fibrosis be treated

appropriately.

In the past few years, several machine learning and deep learning approaches have been

developed to provide diagnostic support for IPF. For example, Walsh et al. [WCS18] de-

veloped a deep learning system that can automatically classify segmented lung slices into
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three radiological patterns: UIP, possible UIP, and inconsistent with UIP. Later, Christe et

al. developed a pipeline for UIP diagnosis which involves lung segmentation and voxel-level

tissue characterization, such as ground glass opacity, honeycombing, etc [CPD19]. The de-

velopment and maintenance of these techniques usually involve extensive collaborative efforts

from radiologists, imaging analysts, software engineers, data scientists, etc.

These two aforementioned UIP diagnosis models are reported to perform on par with the

radiologists [WCS18, CPD19]. At the same time, they reflect two common challenges that

researchers frequently encounter when applying deep learning methods in medical imaging

applications:

1. Limited availability of fine-level annotations from imaging analysts or radiol-

ogists. Building an automated diagnosis tool usually requires labels from domain-specific

experts as ground truth. Roughly speaking, for a given task, depending on the type of

ground truth labels available, we can describe the labels as coarse-level (high-level) or fine-

level labels. Take our purpose of building IPF diagnosis tool as an example, scan-level labels

of whether each CT scan is collected from one IPF or non-IPF subject are coarse-level labels;

on the other hand, radiologists’ labels of lung abnormalities at a voxel-level or region of in-

terest (RoI) level are fine-scale labels. For the aforementioned UIP diagnosis paper [CPD19],

the process of acquiring fine-level (i.e. voxel-level) disease labels is necessary for the model

construction, which is usually labor-intensive and time-consuming.

Taking the time and resource limitation into account, this dissertation aims to build a

diagnosis model with only coarse-level labels, but not fine-scale labels. When only coarse-

level labels are provided, this task is a weakly supervised task with inexact supervision.

There are three types of weakly supervised tasks: inexact supervision, where only coarse-

level labels are provided; incomplete supervision, where the ground truth labels are only

provided to a proportion of the total samples; inaccurate supervision, where the labels may

be erroneous [Zho18]. For our IPF diagnosis task, where only scan-level information is

available, this belongs to the category of inexact supervision. In particular, we only have

clinical information of whether the CT scan is collected from an IPF or non-IPF subject,

without other fine-scale (such as pixel-level) information, such as whether lung abnormalities
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exist and the locations of where they are in the CT scan.

2. Lack of explainability. Deep learning models are often criticized for being un-

explainable (“black box nature”), causing doubts and suspicions among healthcare profes-

sionals. Walsh et al. mentioned that “Developing better methods for visualizing the inner

workings of deep neural networks will be important if this technology is to be integrated into

clinical practice.” [WCS18]

Taking these two challenges into account, our work aims to build an efficient, explain-

able, and domain knowledge-assisted IPF diagnosis model. For the first challenge of limited

information, we propose to bring in population-level domain knowledge, which is easier to

acquire as opposed to pixel-level labels, to assist the IPF diagnosis task. In this dissertation,

population-level domain knowledge was acquired using two well-developed techniques: one

is a machine learning model that can predict whether a CT voxel suggests progression or

not, for IPF subjects; the other one is an automated algorithm to quantify the extent of

fibrotic patterns for segmented lungs.

For the second challenge of lacking of explainability, project I and project II use post-hoc

explanations and trainable attention mechanisms to shed light on how deep learning models

function, respectively.

We begin the introduction by discussing the history and background of data science in

Section 1.1. Medical imaging and the current advancement of deep learning approaches are

discussed in Section 1.2. Since the major focus of this dissertation is about using CT scans

for IPF diagnosis, Section 1.3 and Section 1.4 introduces CT and IPF, respectively. Lastly,

the aim and novelty are provided in Section 1.5.

1.1 Data Science

At a high level, data science is an interdisciplinary field that supports and guides the extrac-

tion of generalizable knowledge from data [PF13].

This term data science can be traced back to a few decades ago. In 2001, Dr. William
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S. Cleveland published a paper “Data Science: An Action Plan for Expanding the Technical

Areas of the Field of Statistics.” [Cle01] The author devised a plan to “to enlarge the major

areas of technical work of the field of statistics. Because the plan is ambitious and implies

substantial change, the altered field will be called data science.”

In recent years, data science has gained popularity and many institutions offer data

science as a major. Why do people use this new term data science, other than statistics,

which has been used for centuries? The increase in the amount of data available itself may

not be a sufficient answer. Dhar [Dha13] offered two key differences in the recent development

of data science and traditional statistics: (1) data science concentrates on the increasingly

heterogeneous and unstructured data. For example, for an online advertising company, the

available information collected from text, image, and video, complicates the decision making

process. (2) data science emphasizes the predictive power of models. That is, the model

performance on the data that will be collected in the future is an essential consideration of

data science.

Our work lies in the field of data science because we use medical imaging data, which is

especially high-dimensional and heterogeneous, to extract useful disease-specific information,

that can generalize to broad clinical applications. Notably, these two aforementioned key

characteristics are commonly observed in the field of medical imaging, including this disser-

tation, since (1) imaging data collected at multiple centers with multiple scanner machines,

are, by all means, heterogeneous; (2) the predictive power of the model, i.e. whether certain

knowledge extracted from a set of subjects could be extended to other subjects, who share

similar characteristics of the sets of subjects in the training data, is very critical for clinical

evaluation and furthermore clinical deployment.

1.2 Machine learning in medical imaging

Medical imaging is a series of techniques that use images to capture the interior structure

and composition of the body, for the purpose of diagnosing, evaluating disease progression

or treatment efficacy. There are several medical imaging modalities, including computed
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tomography (CT), magnetic resonance imaging (MRI), ultrasound, etc.

1.2.1 Imaging biomarkers

The flourishing development of medical imaging in the past several decades has created

numerous opportunities and challenges for the field of developing quantitative imaging sys-

tems. According to the definition from the U.S. Food and Drug Administration (FDA),

biomarkers are defined as “a characteristic that is measured as an indicator of normal bio-

logical processes, pathogenic processes, or responses to an exposure or intervention, including

therapeutic interventions [FDA19]”.

A quantitative imaging biomarker is defined as an image-based quantifiable characteris-

tic that can be used for disease diagnosis, prognosis, or measuring a clinical response to a

certain intervention. As the need for medical imaging increases, quantitative imaging sys-

tems prospered. Recognizing the urgent need for reliable and reproducible quantification of

biomedical imaging data, the Radiological Society of North America organized the Quan-

titative Imaging Biomarkers Alliance (QIBA) in 2007. The aim of QIBA is to “improve

the value and practicality of quantitative imaging biomarkers by reducing variability across

devices, sites, patients and time [RSN21]”. In other words, a successful imaging biomarker

needs to be defined under certain standardized technical and clinical contexts to ensure a

consistent and reliable measurement [MGA15].

The development of imaging biomarkers usually requires domain-specific expert knowl-

edge. For example, CT texture features within certain regions of interest, such as entropy and

uniformity of a tumor in patients with metastatic renal cell cancer, reflect the tumor hetero-

geneity and are found to be associated with disease progression [GGN11]. The development

of these texture features is based on the knowledge that heterogeneity is a well-recognized

sign of malignancy and poor prognosis in tumor studies [GGN11, DYL12].
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1.2.2 Deep learning applications in medical imaging

Deep learning is a subset of machine learning methods that are based on neural networks to

extract useful information from data. It has the general principle of learning multiple levels

of composition and the word “deep” refers to the use of multiple layers [GBC16].

With the increasing availability of imaging data and computing power, the development

of deep learning-based methods in medical imaging domains has thrived in the past decades

[LJC17, SWS17]. Deep learning requires limited image processing and incorporates the fea-

ture engineering step in a machine-trainable manner. Therefore, the burden of extracting

meaningful imaging features shifted from human experts to computers, providing great op-

portunities for researchers with limited clinical knowledge to contribute to the development

of meaningful clinical biomarkers [SWS17].

However, this is not to say that deep learning is magic that solves every medical imaging

problem at no cost. Admittedly, the successful development of deep learning approaches

requires extensive architecture design, hyperparameter tuning, and monitoring, which are

usually based on trial and error. Deep learning approaches also suffer from the critics of

lacking explainability and unknown generalizability to unseen domains [ZBL18]. For exam-

ple, Lehman et al. reviewed the diagnostic accuracy of an FDA-approved and commonly

used computer-aided detection (CAD) for mammography that assisted radiologists to detect

subtle cancers on a number of 324k women [LWB15]. Although early studies supported the

high sensitivity of CAD in laboratory-based environments [JNS99] and the cost of applying

CAD was approximately over $400 million per year in US health care expenditures (as of

2015), CAD did not improve diagnostic accuracy [LWB15].

1.2.3 Concepts in deep learning

We clarify several frequently used concepts in the deep learning domain in this section.

2D versus 3D convolutions: An illustrative figure of 2D and 3D convolutions is shown

in Figure 1.1. Convolution operations are essentially elementwise multiplication, using the
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same set of parameters sliding over the entire region of the input. Suppose we take a 3D

image tensor Xin P RHinˆWinˆDin as input, for 2D convolutions, we use a series of 2D kernels

of size HK ˆWK . A filter is defined as a collection of kernels. By convention, the number of

kernels for each filter must match with the depth dimension of the input feature maps (both

are Din shown in Figure 1.1). Then, for one fixed filter, each kernel is applied to one slice (or

channel) of the input feature map (dimension: Hin ˆDin) and the output is later summed

up together across Din number of kernels. After adding the bias term, this filter produces

one channel of the output feature map. The number of channels in the output feature maps

(C) is decided by the number of filters.

For 3D convolutions, three-dimensional kernels (HK ˆWK ˆ DK) are used. Each filter

is applied to the input feature maps independently, producing one channel of the output

feature map. Similar to 2D convolutions, the number of channels in the output feature maps

(C) is decided based on the number of filters.

Figure 1.1: An illustrative figure of 2D and 3D convolutions.

In summary, 2D and 3D convolutions differ in terms of how convolutions operate. For 2D

7



convolutions, the entire input volume is first separated into isolated slices and each kernel

operates on one specific slice. Thus, there is no direct parameter sharing across the depth

dimension. With respect to 3D convolutions, the entire input feature maps are fed into the

system and the same parameters (same kernels) are applied across the depth dimension.

Weights: Parameter within a neural network. For example, for a convolutional layer,

kernels and the bias terms are weights.

Layer: A layer is a high-level building block in deep learning, which involves one type of

operation. Commonly used layers include convolutional layer that applies the convolution

operation to the input and passes the results to the next layer, pooling layer which reduces

the dimension size of the intermediate feature maps while preserving the features with locally

large values, dropout layer which randomly sets a proportion of deep learning weights to zero

during training for the purpose of preventing overfitting, etc.

Feature maps: The output of certain layers, which is a certain representation of the input

image.

1.2.4 Explainable artificial intelligence (AI)

Explainable AI is a system that can explain how and why a decision has been made in

human-understandable representations. Explainable AI may be beneficial for the following

reasons:

Reduce confounding effects. Without building explainable AI, the system may exploit

confounding factors, such as imaging protocols, hospital information, etc., to achieve a good

model performance. Explainable AI may serve as an important step for model diagnostics

and warn the researchers when these things happen. For example, Zech et al. [ZBL18] found

that CNN learned to detect a metal token that a technician placed on the patient when the

X-ray image was taken, using an activation heatmap. Without realizing this, the system

may perform extremely well by leveraging confounding factors using the training cases, but

it is prone to fail to generalize to other studies.

Build trust. In medical domains, explainable AI is a critical step for building trust
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among clinicians, patients, and healthcare professionals [WCS18].

Manage responsibilities. Explainable AI is important for safety-critical applications,

such as self-driving cars or medical domains. For example, in 2018, a self-driving Uber

car killed a pedestrian in Arizona [Gua18]. This tragedy reminds the public that blindly

believing in deep learning systems is dangerous. Specifically, having explainable models may

help us understand the decision process of the model, prevent similar tragedies to happen

again, and manage responsibilities among stakeholders.

Consequently, building an IPF diagnosis model that is both accurate and explainable is

the main goal of this dissertation. In project I, we implemented a well-developed gradient-

based class activation mapping (Grad-CAM, [SCD17]) to visualize the important regions for

disease diagnosis. This post-hoc method provides case-specific and class-dominant explana-

tions after the model is trained. In project II, we built an explainable model with guided

information to encourage the network to focus on specific regions. The goal of enhancing

explainability was integrated into the training of the model, in an end-to-end manner.

1.3 Computed tomography (CT) and image processing

1.3.1 Introduction of CT

Computed tomography (CT) is a commonly used medical imaging device invented and de-

veloped in the 1970s. It uses a single X-ray source and multiple radiation detectors which

rotate around the object. The word “tomography” is a combination of two Greek words:

tomos(slice) and graphein(draw). Nowadays, it is widely used for preventive or diagnostic

clinical purposes in the head, neck, lungs, and many other domains.

Typically, certain image reconstruction methods are needed to reconstruct the object

from its raw X-ray projections and produce multiple cross-sectional images of the object

as the output of the CT scan. X-rays are attenuated to different extents when passing

through different components of the objects. As a result, the reconstructed CT scan is a

volume of pixels, where each pixel represents the attenuation value µ, which shows different
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radiodensity at varying locations of the object. Normally, CT values are defined by a linear

transformation of the attenuation values µ, which are calibrated with reference to water:

CT value “
µ´ µwater

µwater

˚ 1000, (1.1)

where µwater is the attenuation coefficient of water.

CT values are unitless numbers. In honor of the inventor of CT, Godfrey Hounsfield, the

unit of CT values is called the Hounsfield unit (HU). CT values typically range from -1000 to

3000 HU. By definition, CT values of water are zero, air is -1000 HU, normal lungs usually

lie in the range of -900 HU to -400 HU, and abnormal lungs usually fall in the range of -1000

HU to -200 HU. For better visibility, clinicians usually select different ranges of HU to view

different tissues. For example, a window of [-1000 HU, 250 HU] is usually used to view lung

parenchyma, which is called as “lung window”. By setting a lung window of [-1000 HU, 250

HU], any CT values greater than 250 HU are set to be 250 HU; any CT values below -1000

HU (if any) are set as -1000 HU.

1.3.2 Introduction of DICOM images

Digital Imaging and Communications in Medicine (DICOM) is a commonly used imaging

standard for storing and transferring CT images. A DICOM file is composed of both a

header file that contains the information about the CT scan (such as slice thickness, dose

level, etc.) and a 2D array that stores data for one image slice. Normally, a CT scan is

composed of multiple CT slices and each CT slice is stored as one DICOM file. According

to the DICOM protocol, image data is saved as grayscale values (usually ranges from 0 to

255). Grayscale values can be transformed into CT values (unit: HU) by the following linear

transformation:

CT value “ Gray value ˚ Slope` Intercept, (1.2)
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where the slope and intercept can be extracted from the DICOM header file under tags

Rescale Slope and Rescale Intercept.

1.3.3 Image processing in this dissertation

Starting with CT images of DICOM format, we applied a series of image processing steps

as follows. The accompanying figures after each processing step, using one non-IPF ILD

scan as an example, are provided in the Supplementary Figure A.1. In this thesis, we refer

the axial (cross-sectional) plane as XY plane and the Z-dimension represents craniocaudal

direction from apex to base of the lungs.

Step 1: Converted grayscale values to Hounsfield Units and created a lung window of

(-1250 HU, 250 HU) Hounsfield units (HU) for better visibility of lung parenchyma. Specif-

ically, HU values below -1250 HU (or above 250 HU) were set to -1250 HU (or 250 HU).

Step 2: Aligned patient positions to be supine. We checked the DICOM image header

“ImageOrientationPatient”: if the CT was scanned under the prone position, we rotated the

image 180 degrees to match supine positions.

Step 3: In project II, we added a step of isotropic resampling to a uniform cube of size

1mm ˆ 1mm ˆ 1mm using cubic spline interpolation. Pixel spacings represent the row-wise

and column-wise physical distances between the center of each pixel along the axial plane,

which can be checked from DICOM header files “PixelSpacing”. Z-dimension spacing, which

represents the distance between each adjacent CT slice along the Z-dimension, was calculated

from the DICOM header file “ImagePositionPatient”. If step 3 is added, then non-volumetric

scans, where the Z-spacing is not consistent across the entire scan, are excluded.

Step 4: Automatically crop each CT slice based on the presence of the patient’s body

by canny edge detector using Python library of scikit-image. We note that after automated

cropping, the image dimensions are varied for each CT slice.

Step 5: To make each CT slice with uniform image dimension, we center-cut or pad the

cropped image to the same dimension (256ˆ 256ˆ 128).

Step 6: We rescaled the image values xi at image location i to a range of [0, 1] on a scan
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level via:

x̂i “
xi ´mini xi

maxi xi ´mini xi
, (1.3)

where x̂i is the rescaled image values of xi.

Step 7: In project II, to boost sample size, we further resampled a certain number of

CT samples (“bootstrapped samples”) along the Z-dimension from apex to base. For each

bootstrap sample, along the Z-dimension, we randomly sampled 64 out of in total 128 slices.

Along the axial dimension, each slice was resized from 256ˆ 256 from 128ˆ 128 using cubic

spline interpolation. We named the number of CT samples per scan as M ; sensitivity analysis

results with a selection of M were shown in Figure 3.4.

1.4 Idiopathic pulmonary fibrosis (IPF)

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive

fibrosing interstitial pneumonia of unknown causes. IPF is limited to the lungs and usually

occurs in older adults [RCE11]. It is a rare disease with irreversible and unpredictable

progression and survival [RCE11]. The prevalence estimates of IPF in the USA varied

between 14 and 27.9 cases per 100,000 in the population [NCR12]. The median survival time

ranges from 2 to 5 years, but some patients live much longer [RCE11, NCR12, RRM18].

IPF is associated with histopathologic and/or radiologic pattern of usual interstitial pneu-

monia (UIP) [RRM18]. Chest CT images are used to determine the presence of the UIP

pattern. UIP pattern is associated with some common CT representations, including hon-

eycombing, ground glass opacity, reticular pattern with peripheral traction bronchiectasis or

bronchiolectasis, etc [RRM18]. Notably, these CT features usually occur in the subpleural

and basal areas.

The diagnosis of IPF involves the collaboration of multi-disciplinary discussion (MDD)

from specialists: clinicians, radiologists, and pathologists. The up-to-date clinical practice

guideline for IPF, published in 2018 [RRM18], provides a detailed explanation and flowchart

regarding the overall diagnostic workflow (see Figure 1.2). In more detail, patients suspected
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to have IPF should undergo an in-depth evaluation of potential causes or associated con-

ditions, such as hypersensitivity pneumonitis, connective tissue disease, etc. If there is no

potential cause identified, the chest HRCT patterns of the patient is evaluated during an

MDD. The patient is diagnosed with IPF if certain combinations of HRCT patterns and

histopathological patterns (if applicable) are present.

According to the guideline, CT assessment has become a cornerstone in the diagnosis of

IPF, for subjects with unknown clinical causes or associated conditions. However, using CT

evaluation for IPF diagnosis is a difficult task and subject to inter-observer variability, even

for experienced radiologists [WCS16, WLR19]. Developing an automated diagnosis of IPF

using CT can be helpful for a prototype of this task or a pre-screening tool.
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MDD, multidisciplinary discussion; UIP, usual interstitial pneumonia; BAL, bronchoalveolar lavage, which

is a useful adjunct to lung biopsy.

Figure 1.2: Diagnostic workflow of IPF [RRM18].

Additionally, as shown in Figure 1.2, in some cases where a definite diagnosis of IPF could

not be made, surgical lung biopsy is suggested [RRM18]. However, surgical lung biopsy is also

known to be associated with an increasing risk of in-hospitalization or mortality [HFM16].

In this context, investigating automated CT evaluation for IPF diagnosis may potentially

reduce the need for lung biopsy in the long run.

In recent years, several anti-fibrotic treatments have been found to reduce the decline in

lung function in patients with IPF [ANT05, NAB11]. The successful development of these

anti-fibrotic treatments further necessitates the urgent needs of developing automated and
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reliable IPF diagnosis tools. This is because IPF diagnosis is a critical step for designing the

inclusion and exclusion criteria when conducting clinical trial designs.

To summarize, there are three potential clinical meanings of this work: (1) it facilitates

automatic diagnosis of IPF that saves time and reduces inter-observer variability; (2) it

enables early diagnosis and treatment, which may lead to early anti-fibrotic treatment and

increase the likelihood of a slow disease progression; and (3) it potentially reduces the need

for lung biopsy in the diagnostic process. The latter is an important consideration since lung

biopsy is associated with increased in-hospital mortality.

1.4.1 Population-level domain knowledge (DK)

IPF is a disease of a highly progressive and unpredictable nature. The heterogeneous rate of

progression hampers the process of efficient drug development. Developing reliable imaging

biomarkers are indispensable for assessing the disease severity and evaluating the efficacy

of anti-fibrotic drugs. Compared with other commonly accepted clinical outcomes in IPF

studies, such as forced vital capacity (FVC), quantitative imaging biomarkers are more rapid,

objective, reproducible, traceable, and are less prone to missing data.

UCLA Computer Vision and Imaging Biomarkers (CVIB) group has been concentrat-

ing in the field of interstitial lung disease, including IPF, for decades. Given the avail-

able resources from well-developed imaging biomarker tools, including voxel-wise progres-

sion prediction and quantification information for IPF subjects, we can acquire DK from

previous studies. By leveraging DK at a population level, we hope to provide more knowl-

edge/guidance to the constructed IPF diagnosis models.

Progressive trends across the lungs (IPF progression, 1D information) and disease quan-

tification maps (IPF quantification, 3D information), both on a population level, were incor-

porated as the DK for the development of project I and project II, respectively. For project

I, IPF progressive trends were utilized to judiciously sample CT slices that capture the IPF

disease information; for project II, disease quantification maps were included to encourage

the model to focus on the regions of interest. We will discuss the acquirement of DK in the
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next section.

1. IPF Progression: Progressive trends from apex to base of the lungs

Previous studies used quantum particle swarm optimization incorporated with a resam-

pling technique and a random forest method to predict the pixel-level IPF progression status

(i.e. whether the pixel of the segmented CT lung image suggests progressive or not progres-

sive) [SWG19]. CT scans from a total number of of N “ 122 patients with IPF under-

went an automated lung segmentation pipeline and the methodology was applied to predict

voxel-level disease progression [SWG19]. Using the predictive results on a CT slice-level, we

deduced (1) the number of segmented lung area voxels; (2) among these segmented lung area

voxels, the percentage of voxels that are classified as progressive.

We observe that, on a population-level, CT slices that contain more percentage of pro-

gressive voxels usually appear in the bottom of the lungs (more details are provided in Figure

2.3). This is consistent with the radiological findings that IPF characteristics are usually

predominant in the lower lungs [RRM18]. This IPF progression information across the lung

positions can provide guidance for a better sampling strategy, which will be discussed in

project I.

2. IPF Quantification: Disease severity maps

Quantitative lung fibrosis (QLF) is a texture-based scores of disease extent calculated

from a classification model, based on chest CT scans [KTC10]. QLF score is calculated by

the percentage of voxels that are classified as fibrotic reticulation patterns [KBC15]. QLF

can be calculated as follows: CT images underwent a series of processing steps, including

(1) denoise CT, (2) sample voxels within the 4-by-4 grid from the segmented lung boundary,

(3) calculate texture features from each grid sampled pixel or voxel, (4) run a support vector

machine classifier to classify each sample voxel based on its texture features, (5) count the

proportion of voxels which were classified as abnormalities among total samples to get the

QLF score. In recent years, QLF scores have been clinically applied to multiple clinical trials

for subjects with interstitial lung disease. These biomarkers can provide objective surrogate

measures for treatment efficacy evaluation [KBE11, LGT20] and can provide prediction of
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clinical progression in subjects with IPF [KWB20].

In this study, we acquired the voxel-wise predictions using the aforementioned technique

from a total number of N “ 102 subjects with IPF. After resizing the CT scans to a uniform

dimension, we calculated the marginal probability of getting lung fibrosis (LF, fibrotic retic-

ulation) and other lung fibrosis (OLF, pulmonary fibrosis with similar texture features of

vascularity from textural images out of the decomposed images) for these N “ 102 subjects,

for each CT voxel location. By definition, the sum of LF and OLF is the extent of QLF

scores. This marginal probability map can serve as population-level guidance on where the

disease patterns usually locate, especially for subjects with IPF. In project II, this disease

map information was incorporated in the training process of the IPF diagnosis model.

1.5 Aims and novelty

The ultimate goal of this line of research is to develop an automated and reliable tool that

can distinguish subjects with IPF from non-IPF among subjects with ILD, using axial chest

CT scans.

To this end, the dissertation includes two projects that aim to tackle this problem from

different perspectives:

For project I, we built a 2D deep learning-based IPF diagnosis model. We incorporated

an optimal design criterion to train the diagnostic model in an end-to-end manner. IPF

progression trends across the lung position were used to judiciously sample CT slices.

For project II, we constructed an explainable 3D deep learning-based IPF diagnosis

model. Attention models and population-level disease severity maps were included to en-

courage the network to focus on specific regions of interest.

We summarize the novelty and its corresponding clinical context in this work from these

four perspectives:

1. Domain knowledge-assisted: We bring in clinical knowledge (i.e. IPF progression

and IPF quantification) to this IPF diagnosis task to provide extra information/guidance to
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the model.

2. End-to-end training: For both project I and project II, domain knowledge is

incorporated into the training of the deep learning models in an end-to-end manner. The

developed IPF diagnosis models can be easily implemented in a clinical workflow, with no

extra lung segmentation needed.

3. Explainable: Provide visual explanations on how models make the classification

decisions using deep learning-extracted features.

4. Innovative clinical paradigm: Current clinical practice relies on pre-defined visual

patterns (such as honeycombing, ground glass opacity, etc.) to distinguish IPF. On the other

hand, this work is a preliminary and innovative attempt to change the current paradigm

of IPF diagnosis by obviating the need for examining visual patterns. Notably, this is a

preliminary attempt and further clinical studies are needed.

Clinically, providing automatic IPF diagnosis support is timely and meaningful because

the proposed method (1) facilitates automated IPF diagnosis and reduces inter- and intra-

reader disagreement; (2) enables early anti-fibrotic treatment and so may prolong patient’s

survival time; (3) decreases the likelihood of requiring of lung biopsy in the long run and its

attendant’s risks.

The rest of the dissertation is organized as follows. Chapter 2 and chapter 3 describe

project I and project II, respectively. Chapter 4 includes a series of robustness tests which

used paired CT images to evaluate the robustness of models constructed from project I and

II.
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CHAPTER 2

Project I: A domain knowledge-assisted 2D-CNN

network

2.1 Background

In recent years, there have been growing research interests in developing automated diag-

nostic support for patients with interstitial lung disease, using machine learning and deep

learning approaches [ACE16, WCS18, CPD19, AKK20].

Image patch-level tissue characterization: Anthimopoulos et al. developed 2D-

CNN architectures that took image patches (size 32 ˆ 32) sampled from human-contoured

lung regions as input and produced a label of ground glass opacity, reticulation, honeycomb-

ing, etc [ACE16].

Scan-level UIP pattern determination: Patient-level UIP diagnosis has recently

gained much attention to provide diagnostic support for patients with fibrotic lung disease.

This workflow classifies patients into three categories based on CT scans: UIP, possible

UIP or inconsistent with UIP. Walsh et al. developed deep learning tools which showed

comparable performance when patients were diagnosed by radiologists [WCS18]. Similarly,

Christe et al. developed a pipeline for the automatic classification of CT images to certain

UIP patterns [CPD19]. The diagnostic pipeline involves lung segmentation and voxel-level

tissue characterization, such as ground glass opacity, honeycombing, etc.

For these aforementioned research efforts, the development and maintenance of these

techniques usually involve extensive time and effort. This includes building automated lung

segmentation tools, reviewing lung segmentation results, labeling tissue characterization, and
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UIP pattern determination. Taking these time and resource considerations into account, our

work aims to concentrate on the following perspectives:

1. Efficiency: Build an efficient and automated system that does not require lung seg-

mentation or pixel-level tissue labels, by leveraging information provided by domain knowl-

edge. Population-level domain knowledge, which was obtained from previous studies, is more

time-efficient to acquire compared with having new images labeled.

2. Explainability: Although it has been widely accepted that enhancing explainability

of deep learning models is critical for clinical practice [WCS18], current work in this area

does not emphasize the explainability of models. With this goal in mind, our work aims to

account for the classification result (project I) and enhance (project II) explainability for

building IPF diagnosis models.

In conclusion, using CT scans to automatically diagnose IPF is limited so far and we

believe our proposed methods from both project I and II can have a potential impact on

patient-level classification of IPF, from efficiency and explainability point of view.

2.2 Materials and methods

2.2.1 Datatsets

Axial lung CT scans were retrospectively acquired from five multi-center studies, including

two IPF studies and three non-IPF studies. The inclusion criterion is that each patient

has been clinically diagnosed as interstitial lung diseases. CT scans with IPF diagnosis

were confirmed by multidisciplinary clinical teams [RCE11, RRM18]. CT images of IPF

patients were collected from December 2004 to July 2016; CT images of non-IPF patients

were collected from May 1997 to May 2018. For each patient, only the first available total

lung capacity (TLC) scans are used for the algorithm development and testing. In total,

there are 1089 patients, including 389 IPF and 700 non-IPF patients, collectively obtained

from the five multi-center studies. CT images were acquired under different CT scanners

and protocols, which are summarized in the Supplementary Table B.1.
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Table 2.1: Basic clinical information of the CT scans.
Study Type Disease diagnosis Number of subjects Number of CT slices

per visit (mean ˘ SE)
1 IPF IPF 245 359 ˘ 106
2 IPF IPF 144 280 ˘ 46

3 Non-IPF
RAILD, SjS-ILD,
SSc-ILD and HP

449 53 ˘ 25

4 Non-IPF Myositis ILD 81 253 ˘ 75
5 Non-IPF SSc-ILD 170 106 ˘ 83

Note: SE, standard error. RAILD, rheumatoid arthritis-associated ILD; SjS-ILD, Sjögren’s
syndrome-associated ILD; SSc-ILD, Systemic sclerosis-associated ILD; HP, hypersensitivity pneu-
monitis.

Figure 2.1 shows the data flow of image preprocessing and model construction. Table

2.1 summarizes the disease diagnosis, the number of subjects, and the number of CT slices

per visit for the five cohorts with study 1 and 2 involving IPF patients, and study 3, 4, and

5 involving non-IPF ILD patients. CT scans from study 1 and 2 were confirmed as IPF

with the IPF diagnostic criteria [RCE11, RRM18]. CT scans from study 3, 4, and 5 were

clinically confirmed as other ILD diseases. We note that some scans (13.3%, N “ 60) from

study 3 are non-volumetric scans, where the spacing between each adjacent CT slice along

the z-dimension is not consistent. As a result, the average number of CT slices in study 3 is

fewer than that of other studies.
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Ns: the number of CT slices for each scan, which varies for each scan.

Figure 2.1: Data flow of image preparation and model construction for project I.

2.2.2 Problem statement

Our main research problem is a binary classification task to determine whether a CT scan

is collected from an IPF subject or not. The model input is the axial lung CT images of

one CT scan, which are usually of dimension 512 × 512 × Number of CT slices. Here 512

is the image resolution and the number of slices usually varies from different CT scans.

The output is a binary label yi P t0, 1u indicating whether the CT scan is from a subject i

with IPF or not, i “ 1, 2, .., N. Further clinical information, such as gender and age, cannot

be retrieved due to the anonymization process, and thus is not provided for the automatic

diagnosis system.
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To reduce dimension size and boost sample size, we use three CT slices, which is refered

to as triplets in this chapter, as one training and testing unit. We use i “ 1, ..., N as the

subject index, j “ 1, ...,M as the sample (triplet) index, and M is the number of triplets

sampled from one CT scan. Xij P R224ˆ224ˆ3 is a three-dimensional tensor of the processed

CT triplet from subject i and triplet j; yij “ yi, for all j “ 1, ...,M, is the clinical ground

truth of whether the CT scan i is collected from an IPF subject (yi “ 1) or non-IPF ILD

(yi “ 0). The patient-level diagnosis result is decided based on the majority voting of the

results from all triplets.

In clinical settings, the classification task needs to be carried out in a timely manner with

limited training samples and computational storage. Due to the weak supervision nature

of this task (i.e. one ground truth label per CT scan) and the relatively limited number of

images available, we propose to use two-dimensional convolutional neural network (2D-CNN)

models, rather than 3D-CNN, for this work. 2D-CNN models are commonly used for other

medical-related tasks [LYM19, ZHL19].

Dimensionality reduction is necessary before implementing the 2D-CNN models. The

input of these models are usually composed of three dimensions: height, width, and depth.

The height-width plane is the axial plane for the CT image and the depth plane corresponds

to the three RGB channels. We propose to reduce the input dimension to 224ˆ 224ˆ 3 by

the incorporation of DK and optimal design theory, where 224 ˆ 224 is the axial CT plane

and 3 corresponds to three RGB channels for natural imaging tasks. Thus, for each training

and testing sample, only three lung CT slices are used as model inputs. We refer the three

CT slices as a triplet throughout the rest of the chapter.
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Notes: The top row is one IPF patient with radiological diagnosis of UIP pattern; the second row is one

IPF patient with possible UIP diagnosis; the third row is a non-IPF patient with possible UIP pattern; and

the bottom row is one non-IPF patient.

Figure 2.2: Four representative CT triplets of original CT images and rescaled images.

For illustration, Figure 2.2 shows four representative triplets in terms of their original

and rescaled images, with different clinical diagnoses. After preprocessing, we automatically

remove the information that is outside of the body. Each CT slice is rescaled to a uniform

dimension of 224ˆ224, which is the commonly used as the default size of CNN architectures,

to normalize patients with different sizes along the anteroposterior and lateral dimensions.

Additionally, for prone CT scans, we rotate the scans 180 degrees to align scans with different

patient positions. More details of the preprocessing steps are described in Section 1.3.3.

It is well-known that deep learning models usually require a large amount of training
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data. Specifically, a rule of thumb is that around 5, 000 labeled cases per category is needed

to build a supervised deep learning model with acceptable model performance as of 2015

[GBC16]. Acquiring thousands of labeled medical image is hard; accordingly, for each scan,

we randomly sample a user-selected number M of triplets to enrich the number of training

and testing samples. In our study, we select M “ 20. At the same time, we include some

sensitivity analysis experiments by setting an adaptive number for M based on the number

of CT slices for each scan, with more details provided in Section 2.2.8 (scenario 1).

2.2.3 Domain knowledge (DK)

We leverage DK in the selection of triplet locations using a statistical optimality design

criterion and the training of the classification model in an end-to-end manner.

Specifically, we utilize the population-level disease trends of IPF in our classification task.

Previous studies used quantum particle swarm optimization incorporated with a resampling

technique and a random forest method to predict the pixel-level IPF progression status (i.e.

whether the pixel of the segmented CT lung image suggests progressive or not progressive)

[SWG19]. Intuitively, CT slices that contain more progressive pixels have more disease

patterns of IPF and thus could be useful information in the classification task. Therefore,

we assign higher weights for triplets which have well-represented IPF progressive trends, and

vice versa. The weights for each triplet are then evaluated using an optimal design criterion.

Before discussing technical details, we first define standardized slice position (SSP) to

align patient visits with a varying number of CT slices. We define SSPi “
ith CT slice number´1
Number of CT slices´1

.

For example, suppose one CT scan contains 400 CT slices, then, for a specific slice number

i “ 20, its corresponding SSPi “
20´1
400´1

“ 0.05. By definition, SSP ranges from 0 to 1, where

0 is the first CT slice at the very first slice that contains the lung and 1 is the last CT slice

at the very bottom of the lung.

25



(a) (b)

Notes: The blue line represents the median curve on a population level and the gray area represents the
range of 2.5th percentile and 97.5th percentile. The red dotted lines represent SSP=0.05 and SSP=0.95.

Figure 2.3: The number of segmented lung area voxels (a) and the percentage of progressive
voxels (b) across standard slice positions (SSP).

SSP: standardized slice position, DK: domain knowledge with optimization, CE: cross entropy without

optimization in selecting slices.

Figure 2.4: Flowchart of the study design for project I.
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Based on the predictive results [SWG19], we plot the number of segmented lung area

pixels and the percentage of progressive lung area versus SSP based on the population

level, see Figure 2.3 (a) and (b), respectively. The blue line represents the median curve

on a population level and the gray area represents the range of 2.5th percentile and 97.5th

percentile.

We observe that except for the boundaries (i.e. the apex and base of the lungs), which

are defined by the top and bottom 10%, the percentage of progressive lung areas gradually

increases as the slice moves towards the base of the lungs. This is consistent with previous

findings for UIP patterns, which are indicative of IPF and usually reside in the base of lung

parenchyma. We note that, at the boundaries (the first and last few CT slices), the number

of segmented lung area voxels are much smaller than that of other areas (shown in Figure

2.3(a)). Also, there is a high level of noise effect due to the proton refection near scapula.

Based on these two reasons, the prediction results at the boundaries are unstable with wide

percentiles for the percentage of progressive lung areas. We therefore remove the boundaries

for future analysis. Figure 2.4 (a) shows four vertical orange dotted lines, which are the SSP

locations at 0.1, 0.37, 0.64, and 0.9. They are obtained by removing the top and bottom

10% to avoid the boundary effects, and then evenly dividing the rest of the lung positions

into three zones, indicated as zone 1, 2, and 3 in the figure. Specifically, zone 1, 2, and 3

represent SSP locations from 0.1 to 0.37, from 0.37 to 0.64, and from 0.64 to 0.9, respectively,

and they capture the upper, middle, and lower of the lungs respectively.

For each triplet, we sample one slice from each zone. We test the model performance

with and without DK-enhanced loss function in Figure 2.4. Without DK, we treat each

triplet identically and assign the same weights for all triplets. With DK, we assign greater

weights to triplets that are more representative of the population level IPF progressive trends;

see for example, triplet 2 shown in Figure 2.4 (c) for calculating the loss function. Thus,

these triplets play an important role in estimating parameters in the IPF diagnostic model

when the entire process is conducted in an end-to-end manner. We provide the detailed

steps on how to calculate the D-criterion value of triplet 1, shown in Figure 2.4 (b), in the

Supplementary B.3.
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2.2.4 D-optimal design

Model-based optimal design theory has numerous and useful applications in medical research,

engineering and many other disciplines [BW05, BW09]. When we have a statistical model

to describe the relationship between the mean response variable and covariates, optimal

design theory provides guidance on how to judiciously design an experiment to optimize the

criterion. One common criterion is that model parameters be estimated as accurately as

possible with minimal cost. Such an objective is attained by a D-optimal and described in

more details below. For our project, a D-optimal design helps us determine the weights to

be used in each triplet to assess the overall trends of the population-level IPF progressive

curve using information from prior studies (see Figure 2.4 (a)) via a DK-enhanced loss

function shown as DpZiq in the formula (d) in Figure 2.4. Additional background information

on optimal designs can be found in Berger and Wong [BW05], and the following design

monographs [BW09, Puk06, Fed13].

We now provide some fundamentals on constructing D-optimal designs. Suppose we

have N independent responses from an assumed statistical model given by yi “ fpxiq
Tβ` εi,

i “ 1, ..., N . Here yi is the univariate response variable from subject i, fpxiq is a design

vector of dimension pˆ1, β is the unknown parameter of dimension pˆ1 and the error term

εi is normally distributed with mean 0 and constant variance. For example, we may have two

covariates age and gender in our study and the regression function fpxiq “ p1, agei, genderiq
T

has p “ 3 parameters.

If the interest is to estimate the three parameters in the model, two common design

criteria are D-optimality and A-optimality, and if interest is to estimate the entire response

surface, G-optimality is frequently used [BW05]. Here D, A, and G stand for the determinant

(Det), average variance and global criterion, respectively and the resulting optimal designs

have different properties. The D-optimality criterion is the most popular for estimating

model parameters and mathematically, it is defined by DetrCovpβ̂qs . A design that achieves

the smallest D-criterion value among all designs is D-optimal and such a design estimates

the model parameters with the smallest volume of the confidence ellipsoid for β.
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For nonlinear models, the criterion depends on the unknown parameters that we want to

estimate and they have to be replaced by an initial set of estimates for the model parameters

before the D-optimality criterion can be optimized. The resulting designs are, strictly speak-

ing, locally D-optimal designs because they depend on the initial set of model parameters

estimates.

Our response variable is the population trends of the percentage of progressive lung area

over SSP and we estimated it using data acquired from the pilot study for N “ 122 subjects

with IPF [SWG19]. We used the generalized linear model (GLM) with a logit link function

since the response variable, the percentage of progressive pixels, is not normally distributed.

We used data and fitted several what we thought are plausible models: they include

polynomial models of degrees 3 and 4 and more flexible models like fractional polynomi-

als. The latter class models the mean response as a polynomial but additionally allows for

fractional powers in each nominal. Fractional polynomials were proposed by Royston et al.

[RA94, RAS99, RS08, AR01] where they showed via many examples that fractional poly-

nomials can fit univariate response variables in the biomedical sciences much better than

polynomials. They further recommended that for practical applications, it suffices to con-

sider a set consisting of positive and nonnegative powers only. For this reason, we also used

fractional polynomials to estimate the median population level disease progression. Akaike

information criterion (AIC) and visual examination were used as criteria for model selection

[SIK86]. Both criteria suggest that FP is the best model that describes the median popu-

lation trends of IPF progression among all the models we have considered. Details on the

model comparisons and estimated parameters are in the Supplementary B.2.

In a nutshell, for each randomly sampled triplet, we evaluate its D-criterion value based

on the determinant of the information matrix. Triplets with a larger D-criterion value better

represent the overall population level IPF progressive trends. Supplementary B.3 and B.4

contain further discussion on the D-optimal design under a generalized linear model setting

and the visualization of D-criterion values.
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2.2.5 Two-dimensional convolutional neural network (2D-CNN)

Before implementing 2D-CNN models, we normalized each CT scan if the scan did not

meet the study-level criteria. Four main study-level criteria are: (a) align patient’s position

into supine, (b) center a patient position, (c) automatically remove the location of table

information, and (d) rescale to a uniform image size. If a CT scan was deviated from the

general platform, we normalized the images prior to the algorithm development. As a result,

the processed image has the uniform property of creating a consistent lung windowing based

on Hounsfield units, aligning patients’ positions, automatically cropping the scans based

on the presence of the body by canny edge detector using Python library scikit-image, 33

resizing to a uniform scale of 224 × 224 by cubic spline interpolation, and standardizing to

a scale of zero to one. Traditional 2D-CNNs are designed for processing RGB images (three

channels), which are usually of size 224 × 224 × 3. We use each triplet as one training or

testing sample, where three CT slices correspond to three RGB channels.

Four state-of-the-art 2D-CNN structures are implemented for this disease classification

task, which are MobileNet [HZC17], VGG16 [SZ14], ResNet-50 [HZR16], and DenseNet-121

[HLV17].
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Conv: convolution.

Figure 2.5: Baseline CNN architecture.

To compare, a baseline CNN model is also designed with two convolutional modules and

one decision module. The architecture of the baseline CNN model is provided in Figure 2.5.

For all of the aforementioned models (baseline CNN, MobileNet, VGG16, ResNet-50,

and DenseNet-121), we run 40 epochs using batch size of 10. We use Adam optimizer

with learning rate 0.0001 for all scenarios. These hyper-parameters are selected based on

exploratory attempts. Model parameters are pre-trained by ImageNet [DDS09] and updated

using medical images for this task. All models are implemented using Keras.

2.2.6 DK-enhanced training of 2D-CNN

We add a dense layer at the last layer of the CNN for all models, producing two CNN scores

(IPF and non-IPF) for each input triplet. The softmax function is applied afterwards to

normalize the CNN scores from two real numbers into two probabilities that sum up to 1.

The two probabilities are the probabilities of the patient being classified into one of two
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classes: IPF (p̂ij) or non-IPF (1 ´ p̂ij) based on their specific input triplet j from subject

i. Let sij0 and sij1 be the CNN scores after the last dense layers for triplet j from subject

i being classified as non-IPF or IPF, respectively. Softmax function is used to calculate the

predicted probability of being classified as IPF:

p̂ij “
exppsij1q

exppsij0q ` exppsij1q
. (2.1)

Without leveraging DK, categorical cross entropy is used as the loss function. The

categorical cross entropy evaluated with deep learning model weights W at triplet j from

subject i and is presented below:

LWCEpXij, yiq “ ´ryilogpp̂ijq ` p1´ yiqlogp1´ p̂ijqs. (2.2)

Let Xij be the CT input triplet j from subject i, let X “ pX11, ..., XNMq be the set of all

triplets and let y “ py1, ..., yNq, where yi is the label of ground truth for subject i with yi “ 1

if the subject i is an IPF patient and yi “ 0 if subject i is an non-IPF patient. The overall

categorical cross entropy is calculated by averaging the categorical cross entropy across all

NM triplets:

LWCEpX, yq “
1

NM

M
ÿ

j“1

N
ÿ

i“1

LWCEpXij, yiq, (2.3)

where N and M are the total number of patients and the number of sampled triplets from

each patient respectively (N=1089 and M=20 in our research).

With DK, we designed a DK-enhanced loss function, where we weigh each triplet by its

D-criterion value DpZijq and Zij “ pzij1, zij2, zij3q is a 3ˆ 1 vector representing the SSP for

triplet j from subject i, and Z “ pZ11, ..., ZNMq is the set of SSPs for all NM triplets. The

DK-enhanced loss function is

LWDKpX, y, Zq “
1

NM

M
ÿ

j“1

N
ÿ

i“1

DpZijqL
W
CEpXij, yiq, (2.4)

Two sample proportion tests between DK and CE were conducted for the overall sen-
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sitivity, specificity, and accuracy on all five models (baseline CNN, MobileNet, VGG16,

ResNet-50, and DenseNet-121), respectively. We set the significant level to be 0.05. To

account for multiple hypothesis testing, we used the Bonferroni correction to set the signifi-

cance cutoff for each statistical test at 0.05/3=0.017, where 3 is the number of tests for each

model, i.e. the overall sensitivity, specificity, and accuracy [Sha95].

2.2.7 Explainability evaluation: Grad-CAM

Gradient-weighted class activation mapping (Grad-CAM) is a commonly used technique in

deep learning to produce visual explanations for model decisions [SCD17]. This method can

provide class-discriminative and case-specific explanations for a broad range of deep learning

models. Grad-CAM is a post-hoc explanation method and therefore can only be used to

evaluate models, without impacting the training process of models.

Using 2D-CNN as an example, Grad-CAM contains the following procedures [SCD17]:

(1) calculate the gradients of the score for each class c, yc, with respect to a certain two-

dimensional intermediate feature map Ak P Ruˆv: Byc

BAk ; (2) global average these gradients to

calculate a weight for each feature map Ak:

αck “
1

Z

ÿ

i

ÿ

j

Byc

BAkij
, (2.5)

where Z is a normalizing factor to make the weights sum up to 1;

(3) the final output is obtained by calculating the weighted average of the feature maps

Ak and applying an ReLU transformation:

LcGrad-CAM “ ReLUp
ÿ

k

αckA
k
q, (2.6)

where ReLU is an activation function with ReLUpxq “ maxp0, xq.
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2.2.8 Sensitivity analysis

Sensitivity analysis is defined as a method to determine the quality of a model by evaluating

the extent to which results are impacted by changing model assumptions, methods, or certain

model inputs. We design three scenarios to assess whether altering one of the preprocessing

steps may lead to a different model performance, including sampling different number of

triplets for each scan (scenario 1), adding an image interpolation step which CT voxels are

resampled into an isotropic dimension of 1mm ˆ 1mm ˆ 1mm (scenario 2), and sampling

triplets only from lower zones (scenario 3).

Under scenario 1, instead of sampling a fixed number of triplets per scan, we sample

a varying number of triplets from each scan. That is to say, the number of triplets is

decided based on the number of CT slices from each CT scan. This tests if the number of

triplets should vary in scans which contain different numbers of CT slices. We empirically

set Mi “ 0.1ˆNumber of CT slicesi, where Mi is the number of sampled triplets for this CT

scan i. For example, if one CT scan contains 250 CT slices, we set Mi=25 for this CT scan

i, i.e. sample 25 triplets from this scan. The DK-enhanced loss function under scenario 1

is

LWDK,S1
pX, y, Zq “

1
řN
i“1Mi

N
ÿ

i“1

Mi
ÿ

j“1

DpZijqL
W
CEpXij, yiq. (2.7)

Under scenario 2, in order to mitigate the possible confounding effects caused by varying

slice thicknesses and pixel spacing, we resample all CT scans to a uniform isotropic cube of

volume 1 ˆ 1 ˆ 1mm3 by cubic spline interpolation. In this step, we exclude scans which

have inconsistent spacing along the z-dimension across all CT slices (non-volumetric scans,

N=68, 6.2%). This step aims to align scans with different pixel spacing and slice thicknesses.

The DK-enhanced loss function under scenario 2 is

LWDK,S2
pX, y, Zq “

1

NM

N
ÿ

i“1

M
ÿ

j“1

DpZijqL
W
CEpX

1
ij, yiq, (2.8)
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where X 1
ij is the CT input triplet j sampled from subject i (Xij) after isotropic resampling.

Regarding scenario 3, since IPF-related radiological features usually occur in the lower

lungs, it is instructive to add one experiment to use triplets only collected from lower lungs

(i.e. zone 3 in Figure 2.4 (a)). The DK-enhanced loss function with respect to scenario 3

is

LWDK,S3
pX̃, y, Z̃q “

1

NM

N
ÿ

i“1

M
ÿ

j“1

DpZ̃ijqL
W
CEpX̃ij, yiq, (2.9)

where Z̃ij “ pz̃ij1, z̃ij2, z̃ij3q
T is the 3ˆ 1 standardized slice position for triplet j from subject

i which are sampled from zone 3 only, i.e. z̃ijk P p0.64, 0.9s, k “ 1, 2, 3 for all i, j. And X̃ij is

the CT input triplet collected based on the standardized slice position Z̃ij.

2.3 Results

In this section, we summarize the main results and the sensitivity analysis results in Section

2.3.1 and 2.3.2, respectively.

2.3.1 Main results

We pooled CT images from all five cohorts (two IPF studies and three non-IPF studies)

together for the training and testing of the model. We performed a stratified five-fold cross-

validation, a commonly used technique to separate training and testing sets 41, where the

proportion of IPF versus non-IPF is fixed across all folds. During cross-validation, these five

folds were separated at the patient level, therefore, no triplets from the same patient are

evaluated in both training and testing samples. During the testing phase, M triplets were

sampled from each scan following the manner as discussed, producing M predictive results

(IPF versus non-IPF) for each scan. The final predictive result for each scan was decided

based on majority vote of all M triplets. We set M “ 20 for our task. We use sensitivity,

specificity, and accuracy as statistical measures. Sensitivity is defined as the number of scans

which are correctly classified as IPF divided by the total number of IPF scans. Specificity

is defined as the number of scans which are correctly classified as non-IPF divided by the
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total number of non-IPF ILD scans. Accuracy measures the proportion of CT scans that

are correctly classified.

Table 2.2 summarizes the study-wise and overall model performance using five models

(Baseline CNN, MobileNet, VGG16, ResNet-50, and DenseNet-121) under two loss functions,

i.e. cross entropy loss (CE) and DK-enhanced loss function (DK). Note that study 1 and

study 2 include IPF patients, which is referred to as positives in this research, with sensitivity

information only. Similarly, study 3, 4, and 5 contain non-IPF ILD patients, which is

defined as negatives, with specificity information only. For baseline CNN model, using DK

significantly increases the overall sensitivity (P ă 0.001), but decreases the overall specificity

(P ă 0.01). There is no significant difference between DK and CE for other methods under

this scenario.

2.3.2 Sensitivity analysis results

The complete results of scenario 1 (selecting a varying number of triplets per scan), 2 (adding

an isotropic resampling step), and 3 (sampling from lower zones only) are provided in the

Supplementary Table B.3, Table B.4, and Table B.5, respectively. For each of the scenario,

we calculate the absolute difference in terms of the overall model sensitivity, specificity, and

accuracy between the main results (Table 2.2) and that of each scenario. We calculate the

median and interquartile range (IQR) across all ten models for each metric, under each

scenario.

Under scenario 1, the median (˘ IQR) for the overall model sensitivity, specificity, and

accuracy between the main results and that of scenario 1 across all ten model architectures

is 0.04 (˘ 0.04), 0.01 (˘ 0.03), and 0.02 (˘ 0.03), respectively.

Under scenario 2, the median (˘ IQR) for the overall model sensitivity, specificity, and

accuracy between the main results and that of scenario 2 across all models are 0.01 (˘ 0.03),

0.01 (˘ 0.01), and 0.01 (˘ 0.02), respectively.

Under scenario 3, the median (˘ IQR) for the overall model sensitivity, specificity, and

accuracy between the main results and that of scenario 3 across ten models is 0.03 (˘ 0.03),
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Table 2.2: Study-wise model performance and overall model performance.
Sensitivity Specificity

Overall model performance
(IPF patients) (Non-IPF ILD patients)

Model
(Loss

function)

Study
1

Study
2

Study
3

Study
4

Study
5

Sensitivity Specificity Accuracy

Baseline
CNN (CE)

0.77
(0.38)

0.68
(0.39)

0.96
(0.04)

0.94
(0.09)

0.98
(0.02)

0.74
(0.38)

0.97
(0.03)

0.89
(0.12)

Baseline
CNN (DK)

0.89
(0.13)

0.81
(0.20)

0.91
(0.07)

0.88
(0.19)

0.96
(0.03)

0.86
(0.15)

0.94
(0.05)

0.91
(0.04)

MobileNet
(CE)

0.97
(0.01)

0.96
(0.07)

1
(0)

0.96
(0.04)

0.99
(0.02)

0.97
(0.02)

0.98
(0)

0.98
(0.01)

MobileNet
(DK)

0.98
(0.02)

0.94
(0.06)

1
(0)

0.96
(0.04)

0.98
(0.01)

0.96
(0.02)

0.98
(0.01)

0.97
(0.01)

VGG16
(CE)

0.96
(0.03)

0.87
(0.07)

0.99
(0.02)

0.95
(0.06)

0.99
(0.01)

0.93
(0.04)

0.98
(0.01)

0.96
(0.01)

VGG16
(DK)

0.95
(0.04)

0.86
(0.09)

0.99
(0.02)

0.95
(0.06)

0.99
(0.01)

0.92
(0.05)

0.98
(0.01)

0.96
(0.01)

ResNet-50
(CE)

0.96
(0.02)

0.92
(0.05)

0.98
(0.05)

0.97
(0.03)

0.99
(0.01)

0.95
(0.02)

0.98
(0.01)

0.97
(0.01)

ResNet-50
(DK)

0.96
(0.02)

0.90
(0.09)

1
(0)

0.96
(0.05)

0.99
(0.01)

0.94
(0.03)

0.98
(0.01)

0.97
(0.01)

DenseNet-
121 (CE)

0.97
(0.02)

0.98
(0.02)

1
(0)

0.97
(0.04)

0.98
(0)

0.97
(0.01)

0.98
(0.01)

0.98
(0)

DenseNet-
121 (DK)

0.96
(0.04)

0.94
(0.06)

1
(0)

0.97
(0.04)

0.99
(0)

0.95
(0.02)

0.99
(0.01)

0.97
(0)

Note: Mean and standard deviations shown in brackets are calculated across the results from each
testing fold. CE: cross entropy loss without domain knowledge-enhanced loss function; DK: domain
knowledge-enhanced loss function. Statistically significant results (P ă 0.017) are highlighted in
bold font. The significance cutoff 0.017 is decided by Bonferroni correction for multiple testing,
which is dividing the pre-specified significance level 0.05 by the number of tests (3, including the
overall sensitivity, specificity, and accuracy) for each model.
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0.01 (˘ 0.01), and 0.02 (˘ 0.01), respectively.

2.3.3 Explainability evaluation: Grad-CAM

Figure 2.6 and 2.7 are the Grad-CAM results for one IPF subject non-IPF subject with a

clinical diagnosis of myositis-related ILD, respectively. We used one ResNet-50 model with

categorical cross entropy loss as an example. These plots are the testing cases (not training

cases) for the selected model. By definition, Grad-CAM plots are case-specific and class-

specific. Therefore, for each triplet, we have its corresponding Grad-CAM plots with respect

to the IPF class and non-IPF class, respectively. Greater values in Figure 2.6 and 2.7, as

shown in red, are the important regions in this triplet for classifying as each class.

Since the three CT slices are combined and treated as one input for the model, by the

definition of Grad-CAM, we can only acquire one 2D image as the output for a given triplet,

per class. For ResNet-50 models, the dimension of the 2D Grad-CAM plot is 7 ˆ 7, based

on the default dimension changes of the feature maps. For plotting purposes, we rescaled

the 2D Grad-CAM plot as the same size as the processed CT slice (i.e. 224 ˆ 224) and

superimposed the same Grad-CAM plot to these three CT slices.
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Notes: This triplet is incorrectly classified as Non-IPF by the ResNet-50 model (i.e. Prob(Non-IPF)ą 0.50).

Figure 2.6: Grad-CAM plots for one IPF subject. Processed CT triplets, Grad-CAM plots

for the IPF class, and Grad-CAM plots for the non-IPF class are plotted in column (a), (b),

and (c).
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Notes: This triplet is correctly classified as Non-IPF by the ResNet-50 model (i.e. Prob(Non-IPF)ą 0.50).

Figure 2.7: Grad-CAM plots for one Non-IPF subject. Processed CT triplets, Grad-CAM

plots for the IPF class, and Grad-CAM plots for the non-IPF class are plotted in column

(a), (b), and (c).

2.4 Discussions and conclusions

We developed a deep learning-based model for IPF diagnosis: (1) from a clinical perspec-

tive, by incorporating DK regarding the disease pattern distribution of IPF; (2) from a

methodological perspective, by including optimal design methods in building a loss func-

tion. Methodologically, to the best of our knowledge, this is the first work that leverages

the merits of optimal design in the training of deep learning methods in an end-to-end man-

ner. Clinically, providing automatic IPF diagnosis support is timely and meaningful because

the proposed method (1) facilitates automated IPF diagnosis and reduces inter- and intra-

reader disagreement; (2) enables early anti-fibrotic treatment and so may prolong patient’s

survival time; (3) decreases the likelihood of requiring of lung biopsy in the long run and its
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attendant’s risks.

In medical imaging domain, as contrary to natural imaging, well-labeled and high-quality

images are time-consuming and expensive to acquire. Therefore, several researchers aim to

tackle the limited sample size problem in medical imaging by utilizing DK [CLX18, PMW19].

Unlike previous work, we now focus on the population-level information acquired from the

previous studies and utilize both DK and optimal design guidelines in the training process

of the deep learning models.

Each of the earlier studies used in this research contains either IPF patients in study 1

and study 2 or non-IPF patients in study 3, study 4 and study 5, and one may argue that

the diagnosis model captures confounding effects (or batch effects) rather than IPF-related

CT features. Admittedly, this is one limitation of this work due to the availability of imaging

data and the nature of retrospective data collection. However, we note that each study is

conducted at multiple sites with different protocols and a variety of experimental conditions

that likely involve CT scanners, slice thickness, reconstruction kernel, and patient positions,

see Supplementary B.1 for an expanded list of potential confounders. This heterogeneous

experimental setup contributes to a fair model that concentrates on the underlying CT

features of IPF rather than picking up other confounding factors.

In addition, to address this concern of confounding effects, we have added multiple model

generalizability experiments (see Supplementary B.6 for more details). By setting aside one

study as the holdout test set at one time, we evaluate the generalizability of the constructed

model to unseen domains (i.e. institutions and clinical diagnoses) using MobileNet. The

results suggest that, most experiments can successfully classify more than 90% of patients

in the holdout study (accuracies greater than 90%). This suggests that most experiments

are able to generalize well to unseen domains. Notably, there is a certain level of decrease in

overall model accuracy compared to results provided in the Table 2, when using one study as

the holdout study at a time. For example, for six out of eight generalizability experiments,

we observe a 1%-4% degradation in model accuracy; for two out of eight experiments, we

observe a 25%-26% decrease in model accuracy, which we provide some explanations in the

Supplementary B.6. This degradation in performance may due to the fact that the number
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of training and testing samples are fewer since we set one study aside as the holdout set. At

the same time, this lack of generalizability is not surprising as such findings are frequently

reported in many areas of research when deep learning models are applied to unseen domains

[ZBL18]. This provides a warning that when deploying the developed model to scans collected

from other institutions or ILD patients with different clinical diagnoses, some decrease in

model performance is to be expected. Many domain adaptation and domain generalization

techniques have been developed to tackle this problem, but they are out of the scope for this

dissertation [KBL17, DOC18, DCK19, MMK18, SWU18].

In summary, we have, for the first time, incorporated the population-level DK (i.e. IPF

progression trends across the lung position acquired from pilot studies) with ideas of optimal

design methodology into the training of deep learning models. Specifically, we sample 20

triplets from each CT scan to augment the number of training data and boost model per-

formance. These triplets were randomly sampled with one from each zone (the top, middle,

and bottom of the lungs). Intuitively, these 20 triplets should not be treated identically, as

these randomly sampled CT slices might not be fully representative and reflect the disease

characteristics fairly. Some triplets might contain three slices which are adjacent to each

other, and thus contain less disease information.

To this end, we estimated the population-level disease trends across lung positions from

previous studies and evaluated the importance of each triplet by its D-optimality value.

The triplet with a larger value is “a better design” for estimating the parameters of the

population-level trends, and consequently, it is believed to be more representative of the

overall disease trends. We then design the DK-enhanced loss function, where the D-criterion

value of each triplet is used as a weight to evaluate the importance of each triplet. This

process is incorporated into the training of the deep learning models in an end-to-end manner.

Current experiments show that incorporating DK in the training of deep learning models

increases the overall accuracy from 0.89 to 0.91 for the baseline CNN model. However,

this increase in the overall accuracy using DK is not observed for other well-known model

architectures, including MobileNet, VGG16, ResNet50, and DenseNet-121. This may occur

due to the existence of ceiling effect, since other well-developed deep learning architectures
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have already achieved a satisfactory model performance with overall accuracy greater than

0.95. We also expect the proposed methodology is generally applicable to tackle other

similar problems in the medical arena as well, even though our work here only concerns IPF

diagnosis.

Sensitivity analysis experiments suggest that (1) selecting a flexible number of triplets

per scan, (2) isotropic resampling each scan to a constant size of 1mm3 cube, and (3)

sampling triplets only from lower zones may change the overall model sensitivity, specificity,

accuracy in a reasonable range. For example, there is no notable increase in the overall

model performance by adding one step of isotropic resampling, for our experiment. This

may in part due to the ceiling effect.

Our future work includes exploring the constructed model on prospective studies, where

IPF and non-IPF ILD patients are collected under the same imaging protocols. This is a

more accurate reflection of the clinical applicability of the developed model, as contrary to

using five-fold cross validation without independent studies.

In conclusion, we develop an efficient IPF diagnosis model using DK (i.e. population-level

disease information) and optimal design theory. This study shows satisfactory performance

using various well-known deep learning models in the task of IPF diagnosis using CT images.

To the best of our knowledge, this is the first work that (1) leverages population DK with

optimal design criterion to train deep learning models in an end-to-end fashion; (2) focuses

on patient-level IPF diagnosis solely based on CT images.
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CHAPTER 3

Project II: A Two-stage Multi-scale Guided Attention

Model

3.1 Background

Generally speaking, the successful application of deep learning systems in clinical practice

usually relies on these three prerequisites: (1) the availability of well-labeled fine-scale data,

which are usually at a voxel, regions of interest (RoI), or image slice level; (2) the extent of

explainability on where and how the deep learning-based system makes the decision; and (3)

the ability to generalize well to a new dataset [LYM19].

To address these aforementioned concerns, we propose a two-stage, attention-based model

that is generally applicable to weakly supervised tasks, where only CT scan labels are avail-

able, to enhance the explainability and generalizability.

Specifically, this scan-level IPF diagnosis task falls into the category of inexact supervi-

sion in the field of weakly supervised learning, where some level of high-level supervision (in

our case, CT scan-level ground truth) is provided, but not as desired, such as having every

region of interest or CT slice labeled with IPF-related features [Zho18]. Contrary to the ex-

pensive fine-scale labels, population-level domain knowledge is easier and less labor-intensive

to acquire. In this project, population-level domain knowledge was acquired using a well-

developed and automated algorithm to characterize IPF prognosis over the entire lung. We

used attention models to encourage the constructed diagnosis system to focus on the regions

guided by the population-level domain knowledge.

Attention mechanisms (or attention models), which originated from natural language
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processing, have gained substantial interest in multiple research areas, such as computer

vision, medical imaging, speech recognition, etc [CMP19]. The intuition behind attention

models is similar to human behaviours that different input elements have a varying extent

of relevance and contribution for a specific task. For example, for an image classification

task, our visual recognition system tends to selectively concentrate on several important

regions while paying less attention to other irrelevant regions, such as background. This

is what attention models are designed for: to encourage models to capture the relevance

of input elements in spite of the distance between each element and concentrate on the

important regions for this task. Accordingly, attention models are reported to have several

advantages. Firstly, they can capture long range dependencies between each input element,

such as two words in a sentence that are semantically related but are distant from each

other [WGG18]. Secondly, attention models are one way to explain which region of the

input image the network’s decision depends on and can enhance the explainability of deep

learning-based systems [LWP18]. Thirdly, attention models encourage the network to focus

on the task-specific regions and therefore strengthen model generalizability to a new dataset

[JLL18].

Attention mechanisms have recently become popular in the medical imaging domain to

solve the research question of segmentation [SOS19, LDT20, SD19], classification [YKK19],

detection [ZDG19], and so on. In this work, guided attention modules of multiple scales are

implemented to encourage the deep learning-based system to focus on the areas of interests,

which are lung parenchyma, especially the peripheral lung areas, based on the provided

population-level domain knowledge acquired from prior studies.

To summarize, in this work, we propose a two-stage automated IPF diagnosis model: at

stage one, the multi-scale guided attention (MSGA) is a trainable, end-to-end IPF diagnosis

model that leverages the provided domain knowledge at two resolution scales; at stage two,

we further construct a random forest (RF) model that takes the MSGA output and pro-

duces the final patient-level diagnosis results. Our contributions are (1) developing an IPF

diagnosis model that only uses scan-level weak supervision; (2) incorporating population-

level domain knowledge into the training of IPF diagnosis model in an end-to-end manner;
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(3) enhancing the explainability of deep learning systems at various layers by introducing

multi-scale attention mechanisms; (4) further boosting model performance by adding an RF

classifier.

3.1.1 Attention models

1. Origination: natural language processing

Attention models, originated from natural language processing, have gained research

interests in recent years. Attention models have been known for its abilities to capture

long-range dependencies, regardless of the distance between two input words in a sentence.

For a language translation task, attention models can adaptively capture the relative

alignment (“attention scores”) between words. Take a sentence as an example: she is reading

a fascinating book. In this case, the word “reading” should have a strong association (higher

attention scores) with the word “book”, regardless of the distance between these two words.

Luong et al. developed a language translation model which for each current word, they

calculated its alignment between all (global attention) or some (local attention) of the pre-

vious words [LPM15]. A schematic of the global attention model is shown in Figure 3.1. At

each time step t, the alignment of the current word and previous words is shown as at, which

is then used to weigh all of the previous words, producing a context vector ct. The context

vector is concatenated with the current word vector ht to produce a hidden state h̃t for fur-

ther word predictions. By this design, every previous word has a potentially varying impact

on the current word prediction, which is consistent with how people perceive languages.
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Figure 3.1: A schematic of the global attention model from [LPM15].

Not limited to natural language processing, attention models have gained popularity in

medical domains recently, largely due to its ability to model long-range dependencies, utilize

parameters efficiently, and highlight salient regions that are important for the task.

Attention models fall under two main categories - unguided (without external guidance)

and guided (guided by external domain knowledge). The majority of the current work focuses

on building unguided attention mechanisms within different layers of the constructed net-

works, without providing external guidance of domain knowledge. For example, researchers

usually used the coarse features extracted at later layers to guide the training under an atten-

tion model, without providing external guidance [SOS19, LDT20]. Recent work on guided

attention models include using region-level coarse annotation [YKK19] or binary maps of

some RoIs [YKH19] to guide the model in an end-to-end training fashion. In this work, we

design an attention model under the guidance of population-level domain knowledge, which

is less labor-intensive to acquire, compared to the previous work [YKH19] [YKK19].

2. Definitions
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We discuss several commonly-used terms in the field of attention models here.

Guided versus unguided attention: as mentioned before, this refers to whether external

guidance or information is provided to the attention model. If external guidance, such as

case-level contours or population-level information, is provided, then the model belongs to

the category of guided attention model. Specifically, for project II, we aim to provide the

model with population-level domain knowledge maps, then our method lies into the category

of guided attention.

Soft versus hard attention: this definition is based on whether some information is se-

lectively and completely ignored (hard attention) or information is reweighted but never

removed (soft attention). Currently, the vast majority of the research is based on soft atten-

tion networks. This is because hard attention is non-differentiable, making gradients-based

deep learning framework failed [MDS18]. Therefore, future discussions are based on soft

attention models and we use soft attention models in our project II.

Inter-attention versus intra-attention: this defines whether the attention scores are cal-

culated within input (intra-attention) or with other information (inter-attention). Intra-

attention, also called as self-attention, models the relationship between each input (i.e. im-

age location or sentence sequence) with all positions at the input [VSP17, ZGM19]. On

the contrary, inter-attention models the alignment between the current intermediate feature

maps with other information, such as global features which are extracted from other layers

[JLL18] or previous words in the sentence [LPM15]. We note that the method we used in

project II falls into the category of intra-attention because we model the relationship within

fixed intermediate feature maps.

3. Advantages

Attention models have prospered in computer vision due to the following strengths.

‚ Attention models can characterize long-range dependencies and utilize model pa-

rameters more efficiently. Without attention gates, common convolutions operate on

local receptive fields, which are fixed-size local areas; it takes several convolutional

layers to propagate long-range dependencies. Attention models, which capture the
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dependencies between each local region with all other positions or a provided global

feature, can effectively model any existing long-range relationships across the image

with the need for fewer model parameters [WGG18].

‚ Attention mechanisms can contribute to the development of explainable AI and serve

as an effective tool for model diagnostics. If the attention coefficients focus on suspi-

cious regions for medical imaging tasks, such as a metal token in the previous example

[ZBL18], this warns the researchers that certain preprocessing steps are needed.

‚ Some researchers found that attention models demonstrated superior generalizability

to unseen datasets [JLL18]. This may due to the fact that attention models capture

the regions of interest, suppress irrelevant background information, and thus are able

to generalize well.

3.1.2 IPF quantitative index: kurtosis

Attention maps can provide visual guidance to enhance the explainability of the models.

However, the visual examination of attention maps requires expert knowledge to examine

whether (1) attention maps can capture the lung parenchyma; (2) the highlighted regions

correspond to the important regions for IPF diagnosis. These evaluations are subjective and

are usually based on the examination of a limited number of cases. Therefore, evaluating

attention maps based on a few randomly-selected or human-picked cases can introduce bias

in terms of both case selection bias and human evaluation bias.

To solve this problem, we aim to develop a quantitative and reproducible measure to

evaluate attention maps objectively without human intervention. This can benefit the re-

searchers from the following perspectives: (1) provide insights on the discrepancy between

IPF and non-IPF using the estimated attention maps; (2) automatically evaluate attention

maps with limited resources.

Previous researchers found that for IPF subjects, histogram features of CT values in the

segmented lung regions, especially kurtosis, are associated with physiological abnormalities
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[BLB03]. Kurtosis measures the tailedness in the distribution of CT values among the lung

regions.

It has been found that the histogram of CT values in a normal lung or mild IPF has

longer tails (higher kurtosis), whereas the histogram of an IPF subject has shorter tails

(lower kurtosis). This may due to the existence of lung abnormalities, such as honeycombing

and reticulation. Figure 3.2 shows an illustrative figure of the two subjects with mild and

severe IPF, where kurtosis is 5 and 0.41, respectively [KBC15].

Figure 3.2: Histograms of CT values from two patients with a mild (kurtosis=5) and severe

IPF (kurtosis=0.41). [KBC15]

Inspired by this work, we plan to use kurtosis as a quantitative measure to evaluate

model explainability. In more detail, we calculate the kurtosis of intermediate feature maps

produced by the attention gates (instead of CT images) and examine whether there is a

statistical difference between IPF and non-IPF subjects.
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3.2 Materials and methods

3.2.1 Datasets

A total number of 878 volumetric non-contrast high-resolution CT (HRCT) scans were retro-

spectively collected from two IPF (N=349, 39.7%) and three non-IPF ILD cohorts (N=529,

60.3%). CT images of IPF patients were collected from December 2004 to July 2016; CT

images of non-IPF patients were collected from May 1997 to May 2018. For each subject,

only the first total scans (performed at total lung capacity) were used for model construction

and testing.

We randomly split these CT scans into two subsets while preserving the proportion of

IPF to non-IPF subjects: the training and validation set (N=702, 80.0%, IPF%=39.7%) and

the testing set (N=176, 20.0%, IPF%=39.8%), as illustrated in Figure 3.3. The training and

validation sets were used for model training and hyperparameter selection for MSGA+RF;

the testing set was employed as a holdout set to examine the final model performance.

Figure 3.3: The overall separation of the dataset. Val: validation, which is the subset that

is used to evaluate the model performance at a specific fold.

A stratified five-fold cross validation was employed to the training and validation set

to explore the changes in the results with respect to different hyperparameter selections.

For each fold, the entire training and validation set were separated into five subsets while

fixing the proportion of IPF subjects at each subset: four subsets were used to construct
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the model and one subset was used to evaluate the model performance (shown as “Val” in

Figure 3.3). For each hyperparameter selection, we constructed five MSGA models, leaving

one fold of data as the validation set as a time; after the training of MSGA was complete,

we then built an RF model for each MSGA model using the training cases in that fold only.

The mean and standard deviations across five folds for both MSGA and MSGA+RF were

reported as validation set performance. Based on the validation set performance, we further

selected best performing hyperparameter combinations as our final model(s) to apply to the

test set. Test set performance was reported as the mean and standard deviation across five

folds constructed using the selected best performing hyperparameters.

3.2.2 Image processing

HRCT scans underwent an in-house image preprocessing pipeline, including (1) creating

a lung window of (-1250 HU, 250 HU) Hounsfield units (HU) for better visibility of lung

parenchyma, (2) aligning patients’ positions to be supine, (3) automatically cropping the

scans based on the presence of patient’s body by canny edge detector using Python library

scikit-image [WSN14], (4) adding a step of isotropic resampling to a uniform cube of size

1mm ˆ 1mm ˆ 1mm, (5) resizing to a uniform scale by cubic spline interpolation, (6) and

standardizing to a range of [0,1] on a scan level. After preprocessing, each CT scan was

resized to a standardized dimension 256 ˆ 256 ˆ 128. To boost sample size and reduce the

data dimension, we further resampled a fixed number (M) of 3D-volumes, with dimension

128ˆ128ˆ64 from each scan. Each sample is treated as a unit for the training and validation

step for MSGA. We use subject index i and sample index j “ 1, . . . ,M ; for example, Xij is

the jth sampled CT volume from subject i.

We evaluate the model performance and computational time with a varying resampling

size M , including M “ 1, 10, 20, 30, and this analysis is reported in Figure 3.4 (a). M “ 20

is chosen in our experiment due to the satisfactory model performance within a limited

computational time.
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(a) (b)

Notes: The hyperparameters that we selected, M=20 and epochs=200, are highlighted as green rectangles.

Figure 3.4: Average AUC scores (˘ standard errors) and average time spent per fold (˘
standard errors, in hours) with different values of the number of samples per scan (a) and
epochs (b) using five-fold cross validation.

3.2.3 Problem statement

The main research question is a supervised binary classification task to determine whether the

CT scan represents a subject with IPF or non-IPF, among subjects diagnosed with ILD. The

input of the MSGA+RF system contains three components: tpX1, ..., XNq, py1, ..., yNq, ĄDKu

and the expected output contains two parts: tpŷ1, ..., ŷNq, pβ̂11, ..., β̂NMq.).

Specifically, Xi is the patient-level CT scan collected from subject i; yi P t0, 1u is the

ground truth indicating whether the subject i is clinically diagnosed as IPF (yi “ 1) or

non-IPF ILD (yi “ 0); N is the number of subjects in the study; ĄDK is a standardized

quantitative measure of population-level domain knowledge collected from previous studies,

indicating which regions are usually critical for this task. ŷi is the predicted label for scan i

and ŷi P t0, 1u.

Here β̂ij is the estimated attention maps for scan i and sample j, highlighting the regions

that are meaningful for this task. In this work, we implemented two attention modules at a

high and medium resolution level, then β̂ij “ pβ̂
h
ij, β̂

m
ij q, where β̂hij and β̂mij is the estimated

attention map at a high- and medium- resolution for subject i and sample j, respectively.

In this study, since only the first CT scan is used for each subject, index i is both subject
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index and scan index.

We provide some dimension information. Xi is usually of dimension 512ˆ 512ˆ

Number of CT slices, where 512 is the number of voxels in the x- and y-dimension for each

CT slice. Standardized domain knowledge (ĄDK) is a multidimensional array of dimension

256ˆ 256ˆ 128, which is downsampled to a high- and medium- resolutions, as represented

by ĄDK
h

and ĄDK
m

, which are dimension 64ˆ 64ˆ 32 and 16ˆ 16ˆ 8, respectively. For the

estimated attention maps, the dimensions of β̂hij and β̂mij are 64 ˆ 64 ˆ 32 and 16 ˆ 16 ˆ 8,

respectively. The image dimension is represented as H ˆW ˆ D throughout this chapter,

where the depth dimension D is the dimension along the patient’s body from apex to base

and height-width (H ´ W ) plane is the axial plane of each CT slice. The dimension of

intermediate features generated by 3D-convolutions is H ˆW ˆD ˆ C where C-dimension

is the channel dimension. The initial design of channels was inspired by the three RGB

channels for 2D images but was extended to a broader definition afterwards.

3.2.4 Population-level Domain knowledge

Explainability: In the past ten years, quantitative CT imaging biomarkers have been

developed and evaluated as clinical outcome measures among patients with ILD [KTC10].

These developed measures are sensitive to localized changes and can be used as domain

knowledge to guide the training of the IPF diagnosis model.

Kim et al. developed an automated algorithm to evaluate the voxel-level disease prognosis

based on CT scans [KTC10]. The algorithm can be applied on denoised and segmented CT

scans and predict whether each pixel is an indication of lung fibrosis (LF, pulmonary fibrosis)

or other lung fibrosis (OLF, pulmonary fibrosis with similar texture features of vascularity).

When extending the software constructed using RoI-level information on a whole lung level,

the researchers added one additional step of classify if the voxels are pseudo vessels: that is,

if the mean feature of the decomposed texture image is greater or equal to zero, the voxels

are classified as pseudo vessels (OLF) [Hyu07]; if the mean feature of the decomposed texture

image is less than zero, the voxels are classified as LF. It follows that the sum of LF and
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OLF is the extent of quantitative lung fibrosis (QLF) scores.

Based on a prior study conducted on 102 eligible IPF subjects, with subjects t “ 1, ..., T “

102, we estimated whether each voxel was predicted as LF or OLF based on the developed

algorithm [KTC10]. We define LF t
v “ 1 or OLF t

v “ 1 if the scan for subject t at voxel

location v is predicted as LF or OLF, respectively; We have LF t
v “ 0 or OLF t

v “ 0 if the

scan for subject t at voxel location v is not predicted as LF or OLF, respectively. At each

location v, we summed over all T subjects by LFv “
řT
t“1 LF

t
v and then standardize to a

scale of [0,1]: ĂLF v “
LFv

maxv LFv
. Standardized other lung fibrosis (ĆOLF v) can be estimated

similarly.

Notes: subplots (a) are produced at the 3%, 28%, 53%, 78%, 97% position along the depth D-axis;

Subplots (b) are produced at the 13%, 38%, 63%, 75%, 88% position along the D-axis.

Figure 3.5: Population-level domain knowledge at high (a) and medium (b) resolutions.

We defined the domain knowledge (ĄDKv) as the maximum of ĂLF v and (ĆOLF v) for each

fixed location v: ĄDKv “ maxpĂLF v, ĆOLF vq, where ĄDKv ranges from [0,1] by definition.

Domain knowledge (ĄDK) is later downsampled to two resolution scales: 64×64×32 and

16×16×8, as shown in Figure 3.5. Higher intensity values (more orange) in Figure 3.5

represent a greater value of (ĄDKv), which concentrates on the RoI for this IPF diagnosis

task. Lung areas, especially peripheral lungs, are highlighted in Figure 3.5, which is in
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agreement with IPF-related CT features. In the future sections, we will discuss how domain

knowledge is incorporated as an integral part of the loss function during training to encourage

the model to focus on IPF disease patterns.

3.2.5 Attention gates

Figure 3.6: Attention modules for project II.

We provide a schematic of the proposed guided attention gates in Figure 3.6. Under the

current setting, the attention gates take intermediate feature maps x and population-level

domain knowledge (DK) as input and produce two outputs, including (1) a feature map

that is of same dimension as the input: Apxq and (2) an estimated attention map β̂|x.

For simplicity, β̂|x is represented as β̂ throughout the manuscript. Theoretically, attention

gates can be incorporated in any layer of any existing CNN architecture. In this work, we

focus on the attention gates that are suitable for 3D-CNN architectures, which generate

intermediate feature maps of four dimensions, including height, width, depth and channels.

Attention gates can be applied for 2D-CNN architectures, which contain feature maps of

three dimensions, including height, width, and channels, with minor revisions.
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Suppose the attention gates are implemented at the lth layer and takes the intermedi-

ate feature maps xl that are generated at the previous layer, i.e. pl ´ 1qth layer, as input.

For 3D-CNN architectures, xl is a four-dimensional tensor with xl P RHlˆW lˆDlˆCl
, where

H l,W l, Dl, C l are the height, weight, depth, the number of channels at the lth layer, re-

spectively. For simplicity, we omit the subject index i and sample index j throughout this

section. The intermediate feature maps xl are first transformed into two feature spaces fpxql

and hpxql using 1×1×1 convolutions:

fpxql “ xl ˆW l
f , (3.1)

hpxql “ xl ˆW l
h, (3.2)

where W l
f P RCl

, fpxql P RHlˆW lˆDl
, W l

h P RClˆCl
, hpxql P RHlˆW lˆDlˆCl

.

A sigmoid function is applied to the feature space fpxql to calculate the attention

scores (i.e. estimated attention maps) at layer l at a three-dimensional voxel location

v “ pvH
l
, vW

l
, vD

l
q, β̂lv, where

β̂lv “
1

1` expp´fpxqlvq
. (3.3)

β̂lv is a scalar, and vH
l
P RHl

, vW
l
P RW l

, vD
l
P RDl

.

The dimension of β̂l is decided by the choice of layers l where the attention module is

implemented in. In our example, let the model layers where the attention modules are in-

corporated be l “ h and l “ m, which represent the high and medium attention respectively.

Based on our design, β̂h is a three dimensional tensor with β̂h P RHhˆWhˆDh
“ R64ˆ64ˆ32

and β̂m P RHmˆWmˆDm
“ R16ˆ16ˆ8.

We further calculate the element-wise multiplication of hpxql and the estimated attention

maps β̂l across each channel:

opxqlc “ β̂l d hpxqlc, (3.4)

where opxqlc is the cth channel of the intermediate feature maps opxql, opxqlc P RHlˆW lˆDl
;
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hpxqlc is the cth channel of hpxql, hpxqlc P RHlˆW lˆDl
, and d is the elementwise multiplication

operation.

The final output of the attention gate (Apxql) is a weighted average of the input inter-

mediate feature maps x and opxq:

Apxql “ γl ˆ opxql ` p1´ γlq ˆ xl, (3.5)

where γl is a trainable scalar parameter initialized at zero.

3.2.6 Multi-scale guided attention (MSGA)

Loss function: We use the voxel-wise mean absolute error as the attention-based loss to

measure the similarity between the estimated map of each sample (β̂lij) with the provided

population-level maps (ĄDK
l
):

Llij “ avgp|β̂lij ´
ĄDK

l
|q, (3.6)

where β̂lij is the estimated attention maps for subject i and sample j at layer l, ĄDK
l

is the

rescaled domain knowledge map at layer l that has the same dimension as β̂lij, and avgpxq

is the grand average of all elements from a tensor x.

During training, attention-based loss function is calculated by averaging all of the sam-

ples:

Ll “

řN
i“1

řM
j“1 L

l
ij

NM
. (3.7)

In this work, we introduced two attention modules at a high- and medium- resolution

scales; therefore, attention-based loss (Ll) is incorporated into the overall loss function under

two forms: Lh and Lm, where h and m represent high and medium.
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Notes: Firstly, a total number of M CT samples are generated from one processed CT scan i, Xi. The

samples are presented as Xij , where j “ 1, ...,M . MSGA takes each sample Xij as input and produces: the

predicted probability of being IPF at the last layer (p̂ij) the estimated loss function at a high- (Lh
ij) and

medium- (Lm
ij ), and the estimated attention maps at a high- (β̂h

ij) and medium- (β̂m
ij ) resolutions. At the

final decision stage, RF takes the output from MSGA from all M samples and produces a patient-level

diagnosis. RB: 3D residual blocks; AG: attention gates.

Figure 3.7: Schematic of the overall system for project II.

Explainability: The overall schematic diagram of MSGA is provided in Figure 3.7 (b).

3D-residual blocks are used as building blocks for our model, which is shown as RB1, RB2,

and RB3 in Figure 3.7 (b). Detailed implementations of 3D-residual blocks, including layer

name, hyperparameters, and output size, are provided in the Table 3.1.

For each scan i, we first produce M number of 3D samples for each scan, indexed by

j “ 1, ...,M . The system includes three types of input: the processed CT scans (Xi), the

population-level domain knowledge maps at two resolution scales (ĄDK
h

and ĄDK
m

), and the

patient-level clinical ground truth (yi). MSGA takes each sample as a training or testing unit

and produces three types of output for each input sample: the sample-level predicted score of

being IPF (p̂ij)the learned attention map at different resolution scales (β̂hij and β̂mij ) and the

estimated attention-based loss values at two resolution scales (Lhij and Lmij ). The attention

gates are incorporated into the training of the IPF diagnosis model in an end-to-end manner,
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Table 3.1: Model implementation details of MSGA, including layer name, hyperparameters,
and output size.

Hyperparameters Output Size

Layer
Layer
Name

RB1 RB2 RB3 RB1 RB2 RB3

1 3D CONV (5,5,5)@16 (5,5,5)@64 (5,5,5)@8 (32,64,64,16) (8,16,16,64) (2,4,4,8)
2 Batch normalization (32,64,64,16) (8,16,16,64) (2,4,4,8)
3 3D CONV (1,1,1)@8 (1,1,1)@16 (1,1,1)@4 (32,64,64,8) (8,16,16,16) (2,4,4,4)
4 Dropout 0.6 0.6 0.6 (32,64,64,8) (8,16,16,16) (2,4,4,4)
5 Batch normalization, ReLU activation (32,64,64,8) (8,16,16,16) (2,4,4,4)
6 3D CONV (3,3,3)@32 (1,3,3)@32 NA (32,64,64,32) (8,16,16,32) NA
7 3D CONV (1,1,1)@8 (1,1,1)@16 NA (32,64,64,8) (8,16,16,16) NA
8 ADD: layer 5 + layer 7 NA (32,64,64,8) (8,16,16,16) NA
9 Dropout 0.6 0.6 NA (32,64,64,8) (8,16,16,16) NA
10 Batch normalization, ReLU activation NA (32,64,64,8) (8,16,16,16) NA

Note: The output size is represented as pH,D,W,Cq, which are the height, depth, width, and the
number of filters of the intermediate feature maps, respectively. The hyperparameters in the 3D
convolution layers (3D CONV) are presented in terms of (kernel size) @ the number of filters. The
hyperparameter in the dropout layer is the dropout rate. RB1, RB2, and RB3 correspond to the
three 3D-residual blocks of MSGA.

at two resolution scales, shown as AG1 and AG2.

Binary cross entropy loss is used for the IPF diagnosis task:

LD “ ´
1

NM

N
ÿ

i“1

M
ÿ

j“1

ryilogpp̂ijq ` p1´ yiqlogp1´ p̂ijqs, (3.8)

where yi “ 0, 1 if the subject i is clinically diagnosed as non-IPF or IPF respectively, and

p̂ij is the predicted probability of subject i, sample j being IPF at the last layer of MSGA.

The overall loss function of the system is composed of a weighted average of two attention-

based losses and one diagnosis-based loss:

L “ LD ` λhLh ` λmLm, (3.9)

where LD is the binary cross entropy for IPF diagnosis, Lh is the attention-based loss at a

high resolution, Lm is the attention-based loss at a medium resolution. λh and λm are the

relative task importance for the high- and medium- resolution attention model, respectively,

with λh ě 0 and λm ě 0. We note that when setting λh “ 0 and λm “ 0, this represents a
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scenario where both attention modules are unguided with population-level maps.

3.2.7 Random forests (RF)

Enhanced Improvement: Random forest (RF) is a popular supervised machine learning

approach where the model output is decided based on majority voting of multiple decision

trees [Bre01]. For a classification task, such as patient-level IPF diagnosis in our example,

RF outputs the mode of the classes (IPF versus non-IPF) predicted by individual decision

trees. It has been widely used in medical fields due to its high accuracies, robustness to

outliers, explainable nature, and possibility to parallel processing [LWV14]. RF is chosen as

the final stage classifier for this research since (1) it is easy to implement and computationally

fast; (2) it can handle correlated variables, for example, in our case, the estimated attention

loss from 20 samples; and (3) it is a relatively interpretable algorithm where the variable

importance can be used to empirically understand the model decision process.

The intuition of adding RF in the final decision stage is that other than the predicted

probability of IPF generated in the last layer of MSGA, we observe that the estimated

attention-based loss (Lhi and Lmi ) may also play a role in distinguishing between IPF and

non-IPF. We provide a figure (Supplementary Figure C.1), which shows the distribution of

the estimated attention loss values is visually different for IPF and non-IPF subjects. There-

fore, for each CT scan i, we leverage these three types of information acquired from all sam-

ples, including the estimated high- (Lhi “ pL
h
i1, ..., L

h
iMq) and medium- (Lmi “ pL

m
i1, ..., L

m
iMq)

resolution attention loss and the predicted probability of being IPF (p̂i “ pp̂i1, ..., p̂iMq), to

build an RF model that classifies whether a given CT scan is from an IPF subject or a

non-IPF ILD subject. For each scan, the designed MSGA produces a vector of size 1 ˆM

for Lhi , L
m
i , p̂i, respectively, representing the estimated high-, medium attention-based loss

function and the predicted IPF score from the M samples. This is later combined into a

vector of size 1ˆ 3M , in our case, 1ˆ 60, as the input for the RF model, as shown in Figure

3.7.

After the training process of the MSGA is completed, we continue to build an RF-based
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classifier for each hyperparameter selection (λh and λm) and for each fold. At each fold, we

construct an RF using training samples only, not including validation or testing samples.

For simplicity, we fix the hyperparameters during the training of RF for each model: RF

classifier was consistently configured to use 90 decision trees with a maximum depth of 4.

3.2.8 Overall proposed method: MSGA+RF

We propose a two-stage model for scan-level IPF diagnosis.

Stage one (MSGA): for each CT scan i, MSGA provides (1) two estimated attention

maps at a high- and medium- resolutions and (2) three outputs, including the loss function

for high- (Lhi ) and medium- (Lmi ) attention gates, and the binary cross entropy loss for IPF

diagnosis (LDi ). The training process of stage one is end-to-end.

Stage two (RF): after finalizing the MSGA model, we move to the second stage. For

each CT scan, RF takes the features produced by MSGA as input and produces the final

probability of being IPF for each scan.

3.2.9 Explainability measures

Both qualitative and quantitative measures are utilized to examine the explainability of the

developed models.

For qualitative measures, we plot the case-specific estimated attention maps β̂|x from

Figure 3.6.

Certain quantitative measure is needed to evaluate the validity of explainable models.

The intermediate attention gated output, opxq from Figure 3.6, is an elementwise attention

weighted output. We chose opxq to visualize the discrepancy between subjects with IPF and

non-IPF, on a population-level.

After MSGA models were constructed, we further calculated the average opxq map across

the validation samples for IPF (y “ 1) and non-IPF (y “ 0) population for a certain channel c

and model fold f (for a five-fold cross-validation, f “ 0, 1, 2, 3, 4q, shown as Ąopxq
y

c,f . As shown
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in Figure 3.3, the validation samples of the five folds of MSGA models are not overlapping.

We have

Ąopxq
y

c,f “
1

M ˆN val
y

M
ÿ

j“1

Nval
y
ÿ

i“1

opxqh,yij,c,f , (3.10)

where N val
y is the number of validation samples for subjects with IPF (y “ 1) or non-IPF

(y “ 0); opxqh,yij,c,f is the observed opxq map for subject i (with clinical diagnosis y) and

sample j at the high-resolution attention gate (layer h), under channel c and fold f . opxqh is

a four-dimensional tensor with eight channels, opxqh P R64ˆ64ˆ32ˆ8, where channel is shown

as the last dimension. For a specific channel, we have opxqh,yij,c,f P R64ˆ64ˆ32. For example, for

MSGA model 0 that was constructed from fold 0, N val
y“1 “ 56 and N val

y“0 “ 85.

We used the formula below for calculating kurtosis. For a sample of n values ( x1, ..., xn):

kurtosispxq “
1
n

řn
i“1pxi ´ x̄q

4

p 1
n

řn
i“1pxi ´ x̄q

2q2
´ 3. (3.11)

Furthermore, we calculated the kurtosis of the vectorized Ąopxq
y

c,f :

µc,f,y “ kurtosispvecpĄopxq
y

c,f qq, (3.12)

where vecpxq is the vectorization of a tensor x.

To analyze whether IPF and non-IPF subjects have a different kurtosis value of the

marginal opxq map, we built a linear model as follows:

µc,f,y “ β ` αc,f ` γc ` lf ` δy ` εc,f,y, (3.13)

where µc,f,y is the kurtosis of the vectorized opxq among validation samples for channel

c “ 1, 2, ..., 8, fold f “ 0, 1, 2, 3, 4, and disease group y (y “ 1 represents IPF and y “ 0

denotes non-IPF). Both channels and folds are treated as categorical variables. β is an

intercept term, αc,f is the interaction effect of channel c and fold f , γc is the channel effect,

lf is the fold effect, δy is the disease diagnosis term that we are interested in, and εc,f,y is the
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error term with constant variance εc,f,y „ Np0, σ2q.

We conducted hypothesis testing for the regression coefficient for the disease type. Specif-

ically, given all other factors constant, we tested if being IPF decreases the kurtosis of opxq

map, compared with non-IPF (one-side test). That is, we set Non-IPF group py “ 0q as the

reference group, i.e. δy“0 “ 0, and test the following hypothesis:

H0 : δy“1 ě 0;H1 : δy“1 ă 0. (3.14)

3.3 Experiments and results

3.3.1 Model implementation details

For model training, we used Adam optimizer with an initial learning rate of 10´4, followed by

an exponential decay after 20 epochs of decay rate 0.05. The batch size was set to be 5 and

the model trained after 200 epochs was saved for evaluation. The hardware of Tesla V100-

SXM2-32GB and GeForce RTX 2080 Ti and Keras framework were used. Sensitivity analysis

of epoch numbers are included in Figure 3.4 (b). Model performance on the validation set

increases as epochs increase but tends to stabilize after 100 epochs. At the same time,

computational time increases linearly with more epochs. Therefore, we selected epochs=200

to acquire satisfactory model performance and save computational time.

3.3.2 Search ranges for the relative task importance in the loss function

The overall loss function for training MSGA contains three individual loss functions (i.e.

learning three tasks), including one IPF diagnosis loss and two attention-based loss func-

tions, see formula 3.9 for more details. The relative task importance for these three loss

functions is controlled by two pre-specified hyperparameters: λh and λm. In this section,

we provide some empirical evidence on how to determine the search ranges of these two

hyperparameters. In this dissertation, three things should be taken into account when de-

ciding the hyperparameter search ranges: 1. achieve satisfactory IPF diagnosis performance
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(accuracy); 2. achieve satisfactory attention maps estimation (explainability); 3. consider

the observed loss value ranges for three loss functions.

1. Accuracy: achieve satisfactory IPF diagnosis performance

To observe the potential impact of adding an attention module on the performance of

IPF diagnosis, we first designed an one-resolution guided attention model with only one

attention gate [YZC21]. Under this scenario, only the high-resolution attention gate is

incorporated. Similar to MSGA, the overall loss function of one-resolution guided attention

model is composed of both binary cross entropy loss (LD) for IPF diagnosis and attention-

based loss function (LA):

L “ LD ` λLA, (3.15)

where λ is the relative task importance and λ ě 0. Here only the high-resolution atten-

tion gate, which is similar to AG1 in Figure 3.7, is included in the overall design. The

hyperparameter λ is analogous to λh in Formula 3.9.

Receiver operating characteristics (ROC) curves for the IPF diagnosis model on the test

set (70 IPF and 106 non-IPF ILD subjects) with different selections of relative task impor-

tance are reported in Figure 3.8. This suggests that when no guided attention is included

(λ “ 0), IPF diagnosis model can achieve satisfactory AUC performance (AUC=0.972);

when adding more emphasis on the attention modules, i.e. higher values of λ, AUC perfor-

mance can increase up to 0.988; when λ boosts up to 1000, AUC performance decreases to

0.943. This implies that when putting excessive emphasis on estimating attention modules

(in this case, λ “ 1000), model accuracy can be hampered.
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Notes: Under the one attention module scenario, only high-resolution attention gate is included. Therefore,

λ is similar to λh in the MSGA setting (see Formula 3.9 for more details).

Figure 3.8: ROC curves for one attention module under different selection of relative task

importance (λ) [YZC21].

2. Explainability: achieve satisfactory attention maps estimation

We provide the estimated attention maps for one-resolution attention module under dif-

ferent selections of relative task importance (λ) in Figure 3.9, using one randomly selected

IPF subject as an example. By visual examination, a moderate value of relative task im-

portance (λ “ 100) can achieve good explainability by capturing lung parenchyma and

concentrating on the peripheral regions, which is comparable to that of λ “ 1000.
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Figure 3.9: Estimated attention maps for one attention module using an randomly selected

IPF subject under different selection of relative task importance (λ) [YZC21].

3. Consider the observed loss function ranges

The aforementioned discussions on one attention module provide a general guideline on

choosing the hyperparameter λ. Specifically, a reasonable selection of λ, such as λ “ 100,

can achieve good model accuracy and explainability. We further extend the discussion to

two-scale attention module, i.e. MSGA, and examine how the empirical loss function values

change with different selections of hyperparameters.

Under the setting of MSGA, we report the observed ranges of three loss functions (LD, Lh

and Lm) under three hyperparameter selections (a, λh “ 1, λm “ 1, b, λh “ 1, λm “ 100, and

c, λh “ 100, λm “ 1) in Table 3.2. We summarize the 2.5th percentile and 97.5th percentile

of three loss functions in the training and validation samples, respectively, for the last 50

epochs. Only the last 50 epochs (epoch number 151-200) are reported since the values of the
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Table 3.2: Ranges of 95th percentile in the observed loss function values under three hyper-
parameter selections for both training and validation samples.

Training samples in the last 50 epochs
(2.5th percentile, 97.5th percentile)

Validation samples in the last 50 epochs
(2.5th percentile, 97.5th percentile)

a, λh=1,
λm=1

LD (0.046, 0.054) (0.097, 0.103)
Lh (0.008, 0.008) (0.011, 0.011)
Lm (0.007, 0.007) (0.007, 0.007)

b, λh=1,
λm=100

LD (0.106, 0.116) (0.127, 0.132)
Lh (0.007, 0.007) (0.008, 0.008)
Lm (0.003, 0.003) (0.008, 0.008)

c, λh=100,
λm=1

LD (0.070, 0.080) (0.134, 0.146)
Lh (0.006, 0.006) (0.006, 0.006)
Lm (0.006, 0.006) (0.020, 0.021)

Notes: Only one fold of the constructed model is presented in this table. LD is the binary cross entropy
loss for IPF diagnosis, Lh and Lm are the attention-based loss functions at a high- and medium-resolution,
respectively. λh and λm are relative task importance for estimating high- and medium-resolution attentions,
respectively.

loss functions are decreasing and not stabilized during the first 150 epochs, which is common

in training machine learning methods. We provide the curves of three loss functions for

one equal weight scenario (λh “ 1, λm “ 1) in Figure 3.10. As shown in this figure, for all

three loss functions, the observed values from both training samples and validation samples

decrease drastically at the beginning of the training process (first 100 epochs) and stabilize

at a later stage (around last 50 epochs).

Empirically, we find that under the equal weight scenario, the observed loss functions of

Lh and Lm across training samples are reasonably close in the last 50 epochs: Lh is close

to 0.008 and Lm is close to 0.007. When we increase λm to emphasize more on estimating

the medium resolution attentions (λh “ 1, λm “ 100 in Table 3.2), the observed medium-

resolution loss decreases from 0.007 to 0.003.
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Notes: Red and blue curves represent training and validation samples, respectively. Only one model fold is

plotted.

Figure 3.10: Loss function curves for binary cross entropy loss (a) and attention-based loss

(b and c) over 200 epochs under an equal weight scenario (λh “ 1 and λm “ 1).

In summary, taking the accuracy, explainability, and loss value ranges into consideration,

we decide to conduct a grid search to select the relative task importance for MSGA: a series

of λh and λm are tested, including 0, 1, 10, 50, 100, 200. The upper bound of 200 is selected

since model accuracy can be hampered with excessive emphasis on attention modules, as

shown in the one-resolution attention model (Figure 3.8). The lower bound of 1 is selected

since the explainability performance can be hindered with a smaller value of λ (Figure 3.9).

We observe that the estimated attention loss functions for high- and medium- resolutions

are similar, under an equal weight scenario (Table 3.2).

3.3.3 MSGA model performance (Validation set performance)

In this section, we report the performance of MSGA using AUC from an ROC analysis

reporting the classifier output at a sample-level.

Table 3.3 summarized the AUC values of MSGA with mean and standard errors (SE)

across folds under the validation set, with different selections of hyperparameters (λh and λm).

Both λh and λm are selected from a range of values: 0, 1, 10, 50, 100, 200. Similar work
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Table 3.3: AUC mean and standard deviation values of MSGA performance on validation
set for various λh and λm (task importance) parameters.

λm

0 1 10 50 100 200

λh

200
0.87

(0.14)
0.98

(0.02)
0.88

(0.21)
0.89

(0.18)
0.87

(0.21)
0.97

(0.02)

100
0.85

(0.20)
0.96

(0.04)
0.86

(0.20)
0.90

(0.10)
0.84

(0.21)
0.97

(0.03)

50
0.83

(0.20)
0.88

(0.09)
0.89

(0.22)
0.84

(0.22)
0.97

(0.01)
0.98

(0.02)

10
0.87

(0.21)
0.92

(0.09)
0.84

(0.17)
0.85

(0.21)
0.99

(0.01)
0.81

(0.23)

1
0.87

(0.18)
0.84

(0.21)
0.95

(0.07)
0.89

(0.08)
0.89

(0.12)
0.76

(0.23)

0
0.93

(0.07)
0.93

(0.07)
0.93

(0.09)
0.86

(0.15)
0.94

(0.04)
0.85

(0.21)

Note: λh and λm are the relative task importance parameters in the overall loss function, repre-
senting high- and medium- resolution attention, respectively. Three top performing combinations
(λh “ 200 and λm “ 1; λh “ 50 and λm “ 200; λh “ 10 and λm “ 100) are in bold font.

which optimizes a multi-objective loss function utilizes hyperparameters within this range

[LWP18, YKK19].

As shown in Table 3.3, without including guided attention by attention-based loss func-

tion (λh “ 0 and λm “ 0), the IPF diagnosis model reached an AUC value of AUC ˘ SE “

0.93 ˘ 0.07. Only incorporating guided high- (λh ą 0 and λm “ 0) or medium-resolution

attention (λh “ 0 and λm ą 0) decreased the performance of IPF diagnosis, compared to

without guided attention in the loss function (λh “ 0 and λm “ 0).

Our proposal, which included both high- and medium- resolution attentions, was able to

reach the highest AUC value (AUC˘SE “ 0.99˘0.01) for all of the experiments, under cer-

tain hyperparameter selections (λh “ 10 and λm “ 100). Notably, model performance is sen-

sitive to the selection of relative task importance. For example, under certain hyperparameter

combinations, i.e. λh “ 1 and λm “ 200, the AUC decreased to AUC±SE=0.76±0.23.
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Table 3.4: AUC mean and standard deviation values of MSGA+RF performance on
validation set for various λh and λm (task importance) parameters.

λm

0 1 10 50 100 200

λh

200
0.95

(0.04)
0.98

(0.01)
0.99
(0.01)

0.97
(0.01)

0.97
(0.04)

0.98
(0.02)

100
0.97

(0.03)
0.98

(0.02)
0.97
(0.03)

0.95
(0.06)

0.96
(0.04)

0.97
(0.02)

50
0.97

(0.03)
0.96

(0.03)
0.97

(0.03)
0.94

(0.05)
0.97

(0.02)
0.98

(0.02)

10
0.95

(0.06)
0.98

(0.02)
0.97

(0.03)
0.95

(0.05)
0.99
(0)

0.96
(0.02)

1
0.99

(0.02)
0.98

(0.02)
0.97

(0.05)
0.94

(0.05)
0.97

(0.03)
0.92

(0.08)

0
0.97

(0.03)
0.98

(0.01)
0.99

(0.01)
0.94

(0.04)
0.95

(0.03)
0.95

(0.06)

Note: λh and λm are the relative task importance parameters in the overall loss function, repre-
senting high- and medium- resolution attention, respectively. Three top performing combinations
based on MSGA (λh “ 200 and λm “ 1; λh “ 50 and λm “ 200; λh “ 10 and λm “ 100) are in
bold font.

3.3.4 MSGA+RF model performance (Validation set performance)

Table 3.4 summarized the model performance using MSGA+RF with mean and SE across

five folds under the validation set, under different selections of hyperparameters (λh and λm).

Top three hyperparameter selections based on MSGA remained one of the best performing

hyperparameter groups for MSGA+RF (average AUC ě 0.98); therefore, these three models

were selected as best performing models and were used as the final models for this task.

3.3.5 Explainability measures

We report the explainability measures using a qualitative approach, by visualizing the es-

timated attention maps on several cases, and a quantitative approach, by calculating the

kurtosis of attention gated output.

1. Qualitative measures: estimated attention maps
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Notes: One representative CT slice (slice number=153; in total 309 slices for this scan) of the pre-processed

image is provided. One processed CT image is plotted at D=33 out of 64. The estimated attention maps

for high- and medium- resolutions are plotted at D=17 out of 32 and D=5 out of 8, respectively. Key CT

features of UIP are highlighted as arrows. The three final models are highlighted as an orange rectangle.

The models that used this scan as validation samples were selected for plotting. For all ten hyperparameter

collections (λh and λm), both MSGA and MSGA+RF successfully classify this scan as IPF (true positives).

Figure 3.11: Pre-processed, processed CT image, and the estimated attention maps under

ten hyperparameter selections (λh and λm) for one randomly sampled IPF subject.

We explored the model explainability by plotting the estimated attention maps at both

high- and medium- resolutions (β̂hij, β̂
m
ij ) using one randomly sampled IPF as an example,

shown in Figure 3.11. We also provided one non-IPF ILD subject in Figure 3.12. We note

that without guided attention models (Figure 3.11 column a), the observed attention maps

are uninformative and lack explainability.

When we provide the guidance from population-level domain knowledge in construct-

ing the overall loss function, the estimated attention maps begin to focus on the lung

parenchyma. Specifically, when the relative task importance is low (Figure 3.11 column

b), the attention maps begin to concentrate on the lungs, but it is not clear. When we add

solely the high-resolution guided attention in the loss function (Figure 3.11 column c and e),

visual examinations indicate that high-resolution attention maps can characterize the lungs,

while the medium-resolution attention maps are less informative. On the other hand, when

only medium-resolution guidance are added (Figure 3.11 column d and f), both high- and

medium- resolution attention maps do not concentrate on the lung parenchyma.
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Finally, when we provide guidance on both high- and medium- resolution attentions with

a considerable relative task importance (Figure 3.11 column g, h, i, and j), the estimated

attention maps become instructive, focus on the lung parenchyma, and suppress irrelevant

background areas. Under certain hyperparameter collection (Figure 3.11 column i and j),

both the estimated attention map and a high- and medium- resolution can focus on peripheral

lungs, which are the key regions for making a correct IPF diagnosis. These highlighted areas

are critical for this task of IPF diagnosis and are incorporated into the training of the deep

learning systems.

Notes: One representative CT slice (slice number=38; in total 62 slices for this scan) of the pre-processed

image is provided. One processed CT image is plotted at D=48. The estimated attention map is plotted

for high- and medium- resolutions at D=25 out of 32 and D=6 out of 8, respectively. The models that used

this scan as validation samples were selected for plotting. For all ten hyperparameter collections (λh and

λm), both MSGA and MSGA+RF successfully classify this scan as non-IPF ILD (true negatives).

Figure 3.12: Pre-processed, processed CT image, and the estimated attention maps under

ten hyperparameter selections (λh and λm) for one randomly sampled non-IPF subject.

2. Quantitative measures: kurtosis results

Using one hyperparameter combination λh “ 200, λm “ 1 and one specific fold (fold=0)

as an example, the calculated kurtosis of the vectorized marginal opxq among validation

samples is reported as below in Table 3.5. There are four types of attention maps voxels: all

voxels from opxq for IPF subjects (“IPF all”, Number of voxels=64 ˆ 64 ˆ 32 “ 131, 072),

all voxels from opxq among non-IPF subjects (“Non-IPF all”, Number of voxles=131, 072),

voxels from peripheral lungs from IPF subjects (“IPF peri”, Number of voxels varies based
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Table 3.5: Kurtosis results using one model at one fold (λh “ 200, λm “ 1, fold 0) as an
example.

Channel
Voxel types Compare results

IPF all IPF peri Non-IPF all Non-IPF peri IPF all ă Non-IPF all IPF peri ă Non-IPF peri
0 0.72 -0.05 2.70 1.03 True True
1 -0.50 -0.80 0.15 -0.60 True True
2 2.29 0.88 9.59 5.23 True True
3 10.14 5.99 16.00 9.52 True True
4 1.49 0.47 4.50 2.23 True True
5 0.77 -0.05 -0.16 -1.00 False False
6 6.20 5.78 12.30 7.83 True True
7 -0.41 -0.96 0.50 -0.60 True True

Table 3.6: Hypothesis testing for the covariates of clinical diagnosis (δy“1) in influencing
kurtosis of opxq

Model Voxel type Estimates (SE) P value
λh “ 50, λm “ 200 all voxels -0.62 (0.15) ă 0.001

peripheral -0.48 (0.11) ă 0.001
λh “ 200, λm “ 1 all voxels -0.90 (0.44) 0.02

peripheral -0.47 (0.27) 0.05
λh “ 10, λm “ 100 all voxels 0.44 (0.48) 0.82

peripheral 0.08 (0.30) 0.61

on lung segmentation results), and voxels from peripheral lungs from Non-IPF subjects

(“Non-IPF peri”).

For this specific model fold (λh “ 200, λm “ 1, fold 0), we observe that for seven out of

eight channels, kurtosis of the average of opxq among IPF subjects is less than that of non-

IPF subjects, for both all voxels and peripheral lungs only. We provide a systemic statistical

analysis across all models and all folds below.

For each of the top three hyperparameter combination (λh and λm), we constructed two

linear models, one for all voxels and the other for peripheral voxels. The estimated δ̂y“0, its

corresponding standard errors (SE), and one-sided P value is reported in Table 3.6. Due to

the violation of normality assumption, we also used box-cox transformations and applied log

transformations on the shifted kurtosis, as shown in the Table 3.7.
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Table 3.7: After a log transformation on the shifted kurtosis: Hypothesis testing for
the covariates of clinical diagnosis (δy“1) in influencing kurtosis of opxq

Model Voxel type Estimates (SE) P value
λh “ 50, λm “ 200 all voxels -0.48 (0.13) ă 0.001

peripheral -0.11 (0.09) 0.13
λh “ 200, λm “ 1 all voxels -0.41 (0.16) 0.007

peripheral 0.02 (0.19) 0.55
λh “ 10, λm “ 100 all voxels 0.30 (0.19) 0.94

peripheral 0.28 (0.18) 0.93

3.3.6 Test set performance

Based on the validation set performance and the estimated attention maps, we applied the

three best performing models to the holdout test set (N=176). The three best performing

models (i.e. (1) λh “ 200 and λm “ 1; (2) λh “ 50 and λm “ 200;(3) λh “ 10 and λm “ 100)

received an AUC value of AUC˘SE “ 0.987˘0.007, 0.975˘0.011, 0.980˘0.018, respectively

on the holdout test set.

3.4 Discussions and conclusions

In this chapter, we presented a two-stage model for automated IPF diagnosis among subjects

with ILD based on axial chest high-resolution CT images. The model combines a multi-scale

guided attention network, MSGA, for explainability and a random forest, RF, model for

enhancing accuracy in the final decision. This network is generally suitable for weakly

supervised tasks, with only scan-level labels available. Several advantages can be addressed

using MSGA+RF. Firstly, population-level domain knowledge from the prior studies is more

accessible, whereas acquiring well-labeled fine-scale medical imaging data is time-consuming

and labor-intensive. Guided with population-level domain knowledge at various resolution

scales, we can accomplish satisfactory model performance only using the clinical information

of IPF diagnosis in subjects with ILD. Secondly, using attention models at various resolution

scales increase model explainability, which is a crucial step for building trust in the medical

imaging domain.
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Explainability: Over the past decade, there has been extensive discussions regarding

enhancing the explainability for deep learning-based systems, especially in clinical settings

[LGL20]. Building explainable deep learning models can increase model trust and it is a

critical step for model diagnostics. Saliency maps [SZ14], class activation mapping [ZKL16]

are effective post-hoc methods for visualizing deep learning models; attention mechanisms,

on the other hand, can encourage the network focus on specific areas of interests (in our

case, lung parenchyma) in a trainable and end-to-end manner.

Accuracy: To boost model performance, a traditional machine learning tend to increase

a model accuracy by adding model features in a classifier [HTF09]. We borrowed a similar

idea here by adding RF classifiers using the features sets learned from the estimated loss

function of learning from MSGA, as the final decision stage. This is necessary since we note

that results on the validation set are sensitive to the selection of relative task importance

(i.e. λh and λm). For example, in Table I, among 6ˆ 6 “ 36 hyperparameter combinations,

7 out of 36 combinations have a mean AUC less than 0.85 using stratified five-fold cross

validation on the validation sets. However, after adding the RF classifier, as results shown

in Table II, all of 36 combinations have a mean AUC greater than 0.92. Therefore, in

our example, having a two-stage model increases the model robustness against the changes

regarding relative task importance. We hypothesize that this phenomenon is due to the fact

that RF further leverages the information from the attention-based loss functions to make a

more reliable patient-level diagnosis. We provide more detailed explanations using variable

importance plots in Supplementary C.1.

A good model accuracy does not guarantee satisfactory model explainability on the vali-

dation set, and vice versa. For example, based on our explorations, when λh “ 0 and λm “ 0,

the model lacks explainability, but can perform well on the validation set (AUC ˘ SE “

0.93 ˘ 0.07). It is of research interests to compare the generalizability to new prospective

studies between unexplainable models (for example, λh “ 0 and λm “ 0) and explainable

ones.

We designed a two-stage model that combines explainability achieved by a deep learning

approach, MSGA, and accuracy by a machine learning technique, RF. Strengthened by the

76



combined benefit of transparent model decision process and boosted diagnostic performance,

the proposed method serves as an important step for clinical applications.

Certain limitations exist in this work: (1) the current MSGA setup requires population-

level domain knowledge acquired from previous studies; (2) only volumetric CT scans with

consistent slice spacing were included in the training and testing sets, which limited the

applicability of this trained model to other non-volumetric CT scans; (3) the selections of

relative task importance (λh and λm) requires extensive computational time and resources;

(4) although some research works demonstrated the superior generalizability of attention

models to unseen datasets [JLL18], the evaluation of our proposed model to independent

datasets is underway and is out of scope of this project.

In this chapter, we have demonstrated that MSGA+RF is one promising method for

both enhancing explainability and increasing in the performance of model for the task of

automated IPF diagnosis using CT images only. Future work includes examining the trained

MSGA+RF on independent test set and prospective studies.
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CHAPTER 4

Robustness tests: Evaluate the model robustness

under different CT imaging protocals

4.1 Background

There has been a surge of work in enhancing the explainability and interpretability of machine

learning methods. The definitions of these terms may be slightly different from multiple

papers. In this dissertation, we borrow the concept defined in [MSM18]:

Explanations: “An explanation is the collection of features of the interpretable domain,

that have contributed for a given example to produce a decision” [MSM18]. Explanations are

(or can be rescaled to) the same size as the input and can provide certain scores suggesting the

extent of contributions for each feature. In this dissertation, Grad-CAM plots in project I and

the estimated attention maps in project II both belong to the category of explanations. They

both provide a score for each (training or testing) case indicating the level of contributions

to the model decision process (i.e. IPF diagnosis).

Interpretations: “An interpretation is the mapping of an abstract concept (e.g. a

predicted class) into a domain that the human can make sense of” [MSM18]. In this disser-

tation, we focus on post-hoc interpretations, which aim to extract information from learned

models [Lip18]. Specifically, our method for providing post-hoc interpretations is similar

to the subcategory of “explanation by example” discussed in the paper [Lip18], which is a

mechanism that can provide other examples which are most similar to the given example,

from the model perspective. In this chapter, we describe a method that provides the model

with similar images and therefore produces post-hoc explanations on how model diagnosis
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results change with a different set of imaging protocols.

Deep learning (DL) has prospered in the field of medical imaging in recent years, among

various tasks, including diagnosis, segmentation, detection, etc [AKB19, LYM19, RFB15].

Many state-of-the-art DL algorithms were reported to perform on par with experienced radi-

ologists [LFK19]. Traditional machine learning approaches, including DL methods, usually

assume that the training data should be representative of the testing data. However, in clin-

ical practice, it is often unrealistic to have testing cases that follow the same distributions as

that of the training scenarios at all times. When deploying a DL-based system into clinical

practice, many imaging acquisition factors are subject to change according to the specific

sites, protocols, or the preference of specific practitioners, including slice thickness, effective

mAs, patient positions, etc.

This phenomenon is known as dataset shift, which occurs when the joint distribution

between the inputs (in our case, CT images) and the outputs (in our case, the clinical

diagnosis of IPF versus non-IPF) differs between the training and testing cases [QSS09].

Due to this reason, many researchers have reported the lack of generalizability in the DL

models in clinical settings, which is the decrease in model performance when deploying a well-

trained model to an external test set [ZBL18, PAM19, WLZ20]. However, few research efforts

have quantitatively analyzed the factors that lead to this decrease in model performance.

Recently, Badgeley et al. examined patient data and hospital process features and suggested

that these variables were the main source that contributed to the success of a deep leaning

model, other than patients’ imaging features [BZO19]. Therefore, we extended this line of

research to evaluate the robustness of the developed model using available CT scans that

were acquired under different sets imaging protocols. We applied statistical methods to

analyze the factors that may lead to this inconsistency in the model performance, using the

IPF diagnosis task as an example.

Consistent with Project I and II, the major scientific question of this line of research is to

distinguish IPF from non-IPF among ILD subjects based on chest CT scans. This project, in

particular, focuses on assessing the robustness of several constructed IPF diagnosis models

on different CT technical parameters.
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In this chapter, we evaluate the robustness of three pretrained and high performing DL-

based IPF diagnosis model under different sets of imaging protocols. We included one 2D

DL model (project I) that uses ResNet-50 as its backbone structure [YZG21] and two 3D DL

models (project II) that use multi-scale guided attention models [YZC21]. These two 3D DL

models performed equally well on the validation cases (sensitivity = 0.97 for both models),

but was trained with different hyperparameters that controlled the relative task importance

for estimating attention maps.

According to the study protocol, we have acquired some CT scans where the same patient

was scanned multiple times in different patient positions (i.e. both feet first supine and feet

first prone) and the image dataset may have different protocols (lower dose for feet first

prone than for feet first supine) and have multiple reconstructions (1 mm and 5 mm for

the same scan). Selected imaging protocols include effective tube current-time product

(known as “effective mAs”, which is related to scanner reported dose and patient absorbed

dose), reconstruction kernels, slice thickness, patient positions, manufacture model name,

and clinical diagnosis.

To leverage this information, we compare the performance of paired CT series acquired

on the same patient under the model construction stage (reference conditions) and the model

evaluation stage (evaluation conditions). Statistical methods are used to analyze the factors

that are associated with this change in model diagnosis results.

4.2 Materials and methods

4.2.1 Datasets

Figure 4.1 provides an overview of the study design. We define the entire study as two

phases: the model construction stage and the model evaluation stage, where the latter one

is the research focus of the project.
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Notes: Model discrepancy measure yij “ 0 if the reference condition i and evaluation condition j received

conflicting model predicting results; yij “ 1 if both CT series received consistent predictive results. *N=8

(2%) CT scans that are 3-5 mm thick were included as reference conditions due to CT series naming styles.

Figure 4.1: Overview of the study design for robustness tests. A, inclusion and exclusion

criteria for the construction of reference conditions and evaluation conditions. B, an exam-

ple of two pairs of CT series constructed using one reference condition and two evaluation

conditions collected from one patient.

At the model construction stage, one CT series per patient was used to build the IPF

diagnosis model. If the patient had more than one CT scans, then the first available total

lung capacity scans was selected. In total, there were 389 IPF patients (defined as “positives”

in this project) and 700 non-IPF ILD patients (defined as “negatives”) included, which were

retrospectively obtained from five multi-center studies. Notably, for one non-IPF ILD cohort,

according to the protocol, one subject was scanned and/or reconstructed under multiple
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conditions. We thereby devised the inclusion and exclusion criteria, as shown in Figure 4.1

A, to select and use one CT series per subject for the model construction stage and utilize

the remaining CT series to evaluate the model robustness, which is referred to as model

evaluation stage.

We defined the CT series that were included in the model construction stage and model

evaluation stage for this non-IPF ILD cohort as reference conditions and evaluation condi-

tions, respectively. In detail, there are 343 subjects (343 CT series) included in the reference

conditions; of these same 343 subjects, there are an additional 759 CT series included in the

evaluation conditions. Among these 343 non-IPF ILD subjects, there are four subtypes of

ILD subjects, including 122 (35.6%) rheumatoid arthritis (RAILD), 91 (26.5%) hypersensi-

tivity pneumonitis (HP), 80 (23.3%) systemic sclerosis (SSc-ILD), and 50 (14.6%) Sjögren’s

syndrome (SjS-ILD). For 3D model training and testing, we added one additional criterion

to exclude CT scans without consistent z-spacing (N=72 scans were excluded). Due to this

reason, the number of paired evaluation CT series in the 3D models (n=530 CT series) is

also lower than that of 2D models (n=759 CT series).

To evaluate the model performance of the constructed model under varying CT imaging

protocols and determine the possible factors that may cause this discrepancy, we constructed

n=759 “paired CT series” from N=343 patients between the reference and evaluation condi-

tions, for 2D models. In more detail, N=64 patients (18.7%) have only one CT pair, N=170

subjects (49.6%) have two CT pairs, N=86 subjects (25.1%) have three CT pairs, N=18 sub-

jects (5.2%) have four CT pairs, and N=5 subjects (1.5%) have five CT pairs. Specifically, for

each patient, we constructed paired CT series (denoted as ij) between its reference condition

i and each of the evaluation condition j “ 1, 2, . . . , ni, where ni is the number of evaluation

conditions matched with the reference condition i. Suppose one patient has one reference

CT series (denoted as i “ 1) and two evaluation CT series (denoted as j “ 1, 2), then two

paired CT series should be constructed i “ 1, j “ 1 and i “ 1, j “ 2, as shown in Figure 4.1

B. Since the research interest is to determine whether similar predictive performance could

be achieved under reference and evaluation conditions, the change of model predictive result

for the pair ij is used as the dichotomous outcome measure yij, where yij “ 1 and 0 if this
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CT pair ij gets different or identical predictive result for the reference condition i and the

evaluation condition j, respectively.

CT scans of one patient visit, including one reference CT series and three evaluation CT

series, are provided in Figure 4.2. We also provide the corresponding reconstruction kernel,

slice thickness, effective mAs at this slice, the average effective mAs across the scan, and

patient positions in Table 4.1. Notably, reference condition (a), evaluation condition (b)

and (c) were collected from one scan, but were reconstructed differently according to the

slice thickness, leading to a visible difference. Evaluation condition (d) was collected from

the same subject on the same date, but with a different patient position and effective mAs.

For example, as shown in Figure 4.2, evaluation condition (d), which was scanned under

an effective mAs of 104 mAs at this CT slice, contained more noise, especially outside of

the lung parenchyma, compared to that of other three CT slices, which were scanned under

a dose of 113-114 mAs. Therefore, the distinctions between the reference conditions and

evaluation conditions are often visible and we sought to examine whether the constructed

DL models can remain robust under these variations.

Figure 4.2: CT scans of a typical patient evaluated under four conditions, including a refer-

ence condition (a) and three evaluation conditions (b, c, and d). Detailed imaging protocols

are provided in Table 4.1.

83



Table 4.1: CT technical information of CT scans of a typical patient evaluated under four
conditions.

Reference
condition (a)

Evaluation
condition (b)

Evaluation
condition (c)

Evaluation
condition (d)

Reconstruction kernel B60f B50f B50f B60s
Slice thickness (mm) 1 3 5 1

Effective mAs at this slice 113 114 114 97
Average effective mAs

for this scan
127 127 127 104

Patient position Supine Supine Supine Prone

4.2.2 Model construction stage: DL-based algorithms

Three models were developed, including one 2D-based model (project I) and two 3D-based

models (project II). For 2D models, ResNet-50 [HZR16] with pre-trained model weights from

ImageNet [DDS09] were utilized as the backbone DL-based algorithm for the IPF diagnosis

task. For each CT scan, we randomly sampled a fixed number (we empirically chose 20) of

triplets and used one triplet as a training or testing sample, where each triplet was composed

of three CT slices collected from the top, middle, and bottom of both lungs. We provide

some sample triplets images in Figure 2.2 from Project I. The predicted result for each CT

scan was decided by the majority voting of all of the sampled triplets. In our case, since

we sampled 20 triplets per scan, if more than ten triplets were predicted as IPF, then we

classified this scan as an IPF patient.

For 3D models, we used multi-scale guided attention networks with residual building

blocks [YZC21]. 3D attention models were utilized since attention models have been known

for its ability to capture the regions of interest (in our case, lung parenchyma) and increase

model generalizability to unseen domains [JLL18].

For both 2D and 3D models, stratified five-fold cross validation was used during this

process, where all subjects were randomly separated into five subsets, while fixing the pro-

portion of IPF versus non-IPF subjects for each subset. At each fold, four subsets of data

were used to train the model and the remaining one was used to test the model. The re-

sults were reported based on the test fold. The hardware of GeForce RTX 2080 Ti, Tesla
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Table 4.2: Summary of the technical and clinical parameters for the reference and evaluation
conditions.

2D models 3D models
Reference
conditions

Evaluation
conditions

Reference
conditions

Evaluation
conditions

Number of patients (N),
number of CT series (n)

N=343
n=343

N=343
n=759

N=271
n=271

N=271
n=530

Manufacturer models

Siemens
Sensation 16
(53.4%),
Siemens
Definition
(46.6%)

Siemens
Definition
(57.2%),
Siemens
Sensation 16
(42.8%)

Siemens
Sensation 16
(53.5%),
Siemens
Definition
(46.5%)

Siemens
Definition
(55.1%),
Siemens
Sensation 16
(44.9%)

Slice thickness (mm)
1„2 (97.7%),
5 (2.0%),
3 (0.3%)

5 (48.9%),
1„2 (32.7%),
3 (18.4%)

1„2 (97.4%),
5 (2.2),
3 (0.4)

5 (49.6%),
1„2 (30.2%),
3 (20.2%)

Reconstruction kernels

B60f and B60s
(76.4%),
B70f (17.2%),
Iterative (4.1%),
B50f (2.3%)

B50f (59.4%),
B60f and B60s
(28.2%),
Iterative (6.2%),
B70f (6.2%)

B60f and B60s
(73.1%),
B70f (19.2%),
Iterative (5.2%),
B50f (2.6%)

B50f (66.6%),
B60f and B60s
(27.7%),
B70f (5.7%)

Patient positions
Supine (69.7%),
Prone (30.3%)

Supine (83.4%),
Prone (16.6%)

Supine (86.3%),
Prone (13.7%)

Supine (77.2%),
Prone (22.8%)

Average effective mAs
per scan (mean ˘
standard errors)

93.6 ± 23.7 95.5 ± 25.1 94.4 ± 24.4 93.5 ± 24.1

Clinical disease
diagnosis

RAILD (35.6%),
HP (26.5%),
SSc-ILD (23.3%),
SjS-ILD (14.6%)

RAILD (32.0%),
HP (29.6%),
SSc-ILD (24.0%),
SjS-ILD (14.4%)

RAILD (37.3%),
HP (26.6%),
SSc-ILD (21.4%),
SjS-ILD (14.8%)

RAILD (32.6%),
HP (29.2%),
SSc-ILD (23.2%),
SjS-ILD (14.9%)

Note: ILD, interstitial lung disease; RAILD, rheumatoid arthritis-associated ILD; HP, hypersen-
sitivity pneumonitis; SSc-ILD, Systemic sclerosis-associated ILD; SjS-ILD, Sjögren’s syndrome-
associated ILD.

V100-SXM2-32GB and Keras framework was used.

4.2.3 Technical and clinical parameters

Both reference conditions and evaluation conditions contained a heterogeneous set of tech-

nical and clinical parameters, including CT manufacturer model name, slice thicknesses,

reconstruction kernels, patient positions, effective mAs, clinical diagnoses, etc. Technical

parameters were extracted from the DICOM header files for each CT series. Table 4.2

summarizes the different technical and clinical parameters in the reference and evaluation

conditions, for both 2D and 3D models.
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4.2.4 Statistical analysis

As noted before, a dichotomous outcome measure yij is used to evaluate the predictive

performance consistency, where yij “ 1 and 0 if this CT pair ij gets different or identical

predictive result for the reference condition i and the evaluation condition j, respectively.

Generalized linear mixed effects models (GLMM) with a logit link function were utilized

to determine the contributing factors that influenced the dichotomous outcome measure yij

using the lme4 package of the R Software [BMB18]. Due to the hierarchical nature of the

dataset, i.e. multiple CT pairs may be collected from the same patient, the independent sam-

ple assumption is violated. Therefore, GLMM, instead of generalized linear models (GLM),

was chosen for this research to account for the hierarchical data structure. Several covariates

were included as the fixed effects, including reconstruction kernels, slice thicknesses, patient

positions, manufacturer model names, clinical diagnosis, average effective mAs in the eval-

uation condition, and mean effective mAs between the reference and evaluation condition.

The odds of observing conflicting predictive results between reference and evaluation con-

ditions were predicted using a pre-specified baseline category: evaluation conditions with

reconstruction kernel at B50f, 1-2 mm CT slices, prone positions, with CT model of Siemens

Sensation 16, and a clinical diagnosis of hypersensitivity pneumonitis (HP). We also included

a patient level random intercept, which represents the patient-level influence on the paired

CT series that is not captured by the fixed effects.

For each CT pair ij, we calculated the differences regarding the mean effective mAs,

∆Eij , which is the difference between the average effective mAs in the reference condition

i (Ēi), and the average effective mAs in the evaluation condition j (Ēj):

∆Eij ´ Ēi ´ Ēj. (4.1)

We standardized ∆Eij to have a mean of zero and standard deviation of one, using

Ć∆Eij “
∆Eij ´meanijp∆Eijq

SDijp∆Eijq
, (4.2)

86



Table 4.3: Specificity for the reference and evaluation conditions, calculated from all three
models.

2D model 3D model-1 3D model-2
Reference conditions: 0.99 0.97 0.97

Sensitivity (# of CT series that are correctly
classified as non-IPF / total # of CT series)

(340/343) (263/271) (264/271)

Evaluation conditions: 0.90 *** 0.94 *** 0.84 ***
Sensitivity (# of CT series that are correctly
classified as non-IPF / total # of CT series)

(681/759) (498/530) (445/530)

Note: One sample test of proportions were conducted for each model between the reference and
evaluation conditions, *** means P ă 0.001.

where mean(x) and SD(x) calculates the mean and standard deviation for a vector x, re-

spectively.

For 2D models (n “ 759 CT pairs), the estimated mean and standard deviation of ∆Eij

are 0.54 and 18.23, respectively. For 3D models (n “ 530 CT pairs), the estimated mean

and standard deviation of ∆Eij are -2.33 and 14.57, respectively.

4.3 Results

4.3.1 Overall model performance

Since both reference conditions and evaluation conditions were collected from one non-IPF

ILD cohort, which were considered as negatives in this example, we only calculated specificity

as our statistical measure (without sensitivity). Specificity is defined as the number of CT

series that are correctly predicted as non-IPF (true negatives) divided by the total number

of non-IPF CT series (negatives). Table 4.3 provides the specificity calculated for both

reference and evaluation conditions, for three models.

For all three models, specificity decreased to some extent when applying to the evaluation

conditions: 2D model reduced from 0.99 to 0.90; 3D model-1 decreased from 0.97 to 0.94; 3D

model-2 declined from 0.97 to 0.84. We conducted one sample test of proportions, for each

model, between the reference and evaluation conditions. For all three models, proportion

tests suggested that the probability of correctly classify one series was different among the
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reference and evaluation conditions (all P ă 0.001).

4.3.2 Factors influencing predictive results consistency

Table 4.4 provides the GLMM results, including the adjusted odds ratio (OR), 95% con-

fidence intervals (CI), and P values for six types of technical and clinical parameters: re-

construction kernels, slice thickness, patient positions, manufacturer model name, clinical

diagnosis, and effective mAs.

Table 4.4 shows that two types of variables are not significant (P ą 0.05) in contributing

to the inconsistent predictive results between the reference and evaluation conditions based

on the GLMM analysis, for all three models: reconstruction kernels and patient positions.

Specifically, for 3D model-1, there are no significant factors that lead to inconsistent model

performance between reference and evaluation conditions (all factors P ą 0.10). Among

the other two models (2D model and 3D model-2), systemic sclerosis-associated ILD (SSc-

ILD) group lowers the probability of getting conflicting results between the reference and

evaluation conditions, as compared with the reference group (hypersensitivity pneumonitis,

HP; P=0.03 for 2D model and P=0.05 for 3D model-2). Additionally, for 3D model-2, slice

thickness (3mm) (P “ 0.04), manufacturer model name of Siemens Definition (P “ 0.05),

Sjögren’s syndrome-associated ILD (SjS-ILD, P “ 0.03), and the standardized difference

of mAs between reference and evaluation conditions (P “ 0.02) are flagged as significant

factors that are associated with model discrepancy.

4.4 Discussions and conclusions

DL approaches have long been criticized for their unexplainable and black box nature. It is

often questionable what information do DL methods use when making predictions. Previous

research demonstrated that DL algorithms may inexplicably leverage patient, scanner, or

center information in the diagnosis process [BZO19]. If this is the case, then the developed

DL model may work deceptively well in the data distribution that is similar to the training

cases by levering irrelevant information, but fail to generalize to other scanners and hospital
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Table 4.4: GLMM logistic analysis results.
2D Model
(n=759 CT pairs)

3D Model-1
(n=530 CT pairs)

3D Model-2
(n=530 CT pairs)

Adjusted OR
(95% CI)

P value
Adjusted OR
(95% CI)

P value
Adjusted OR
(95% CI)

P value

Reconstruction kernels
B50f (ref) 1.00 1.00 1.00

B60f or B60s
0.81
(0.09, 7.46)

0.85
2.41
(0.06, 95.06)

0.64
0.42
(0.01, 13.67)

0.62

B70f
0.77
(0.04, 14.62)

0.86
2.28
(0.03, 200.42)

0.72
56(0.72,
4284)

0.07

Iterative
1.27
(0.26, 6.14)

0.77 NA NA NA NA

Slice thickness (mm)
1-2 (ref) 1.00 1.00 1.00

3
8.05
(0.71, 91.12)

0.09
8.25
(0.12, 563.23)

0.33
116 (1.25,
10743)

0.04 *

5
5.19
(0.54, 49.56)

0.15
1.67
(0.03, 87.28)

0.80
27 (0.36,
2068)

0.14

Patient positions
Prone (reference
category)

1.00 1.00 1.00

Supine
2.01
(0.30, 13.59)

0.47
0.12
(0.01, 1.93)

0.14
0.12
(0.01, 1.82)

0.13

Manufacturer model name
Siemens Sensation
16 (ref)

1.00 1.00 1.00

Siemens Definition
1.32
(0.38, 4.59)

0.67
1.40
(0.25, 8.00)

0.71
4.44
(1.02, 19.38)

0.05 *

Clinical diagnosis
HP (ref) 1.00 1.00 1.00

RAILD
0.93
(0.22, 3.82)

0.91
1.92
(0.28, 13.14)

0.51
0.35
(0.07, 1.64)

0.18

SjS-ILD
0.82
(0.15, 4.62)

0.82
3.00
(0.35, 25.88)

0.32
0.09
(0.01, 0.75)

0.03 *

SSc-ILD
0.13
(0.02, 0.81)

0.03 *
0.45
(0.05, 4.33)

0.49
0.18
(0.03, 1.03)

0.05 *

Effective mAs

Ć∆Eij
1.07
(0.60, 1.89)

0.82
1.05
(0.58, 1.89)

0.88
2.08
(1.11, 3.92)

0.02 *

Note: * means P ă 0.05. Adjusted odds ratio (OR) and 95% confidence intervals (CIs) for the probability of receiving
conflicting results between the reference and evaluation conditions. RAILD: rheumatoid arthritis-associated ILD; HP:
hypersensitivity pneumonitis; SSc-ILD: Systemic sclerosis-associated ILD; SjS-ILD: Sjögren’s syndrome-associated ILD.
The results for iterative reconstruction kernels are listed as NA (Not available) for 3D models since there are no iterative

reconstructions for 3D models among evaluation conditions. Č∆Eij : Normalized mean difference in effective mAs between
reference and evaluation condition.
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centers, etc.

In this article, we discussed a post-hoc evaluation method to assess the impact of a series

of technical and clinical parameters on the diagnostic accuracy of several well-trained IPF

diagnosis models. We used one 2D DL model and two 3D attention-based DL models, where

two 3D models were constructed under with different hyperparameter selections. Attention-

based models were utilized due to its ability to concentrate on the specific regions of interest

provided by domain-specific knowledge and its capability to handle domain shifts [JLL18].

For all three models, the sensitivity decreased to some extent when applying to the evaluation

sets: 2D model achieved a high specificity of 0.99 among reference conditions, but specificity

decreased to 0.90 when testing on evaluation conditions (one sample proportion test, P ă

0.001); 3D model-1 decreased from 0.97 to 0.94 (one sample proportion test, P ă 0.001);

and 3D model -2 dropped from 0.97 to 0.83 (P ă 0.001).

To further analyze the variables that lead to the model specificity, Table 4.4 shows that

there are no clinical and technical factors that are associated with the model diagnostic

discrepancy in 3D model-1 when applying to the evaluation conditions (P ą 0.1 for all

factors), indicating that this model can stay relatively robust when testing on the evaluation

conditions. The clinical diagnosis of SSc-ILD is a leading significant factor (P “ 0.03 and

P “ 0.05) that is associated with reducing model discrepancy, for two out of three models.

Among these three models, 3D model-2 is the one that flagged the most number of factors,

including slice thickness, manufacturer model name, clinical diagnosis, and effective mAs,

causing concerns when applying to different test sets.

Several limitations in this study merit considerations, including unmeasured confounding

and the retrospective nature of this study. Firstly, there may exist unmeasured confounding

in the statistical analysis due to the data anonymization process, such as patient weights.

Unmeasured confounding are caused by the failure to include the factors that are associated

with the outcome (in our case, model predictive discrepancy) and independent variables (in

our case, imaging protocols-based covariates). For example, patient weight/size may be one

important unmeasured confounding that is not included in the GLMM. Specifically, modern

scanners use an automatic exposure control system called Tube Current Modulation (TCM)
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that adapts the scanner output to patient size and the attenuation differences in different

parts of the body [MBK06, LGY08]. As a result, larger patients require higher CT scanner

output (higher effective tube current time product) that smaller patients using the same CT

scanner settings; therefore, in clinical practice, the reported effective mAs is influenced by

the patient’s size. Due to the lack of patient weight information, our model does not contain

patient size information and thus is unable to conclude that whether patient size has an

association with the effective mAs level or the model predictive discrepancy. Secondly, due

to the retrospective nature of this study, the main purpose of this research is to observe

and analyze the possible factors that lead to the model performance decrease, while we

cannot systematically design experiments to test out hypotheses. Future work includes

conducting prospective studies to holistically evaluate model inconsistency under different

variable settings.

Conclusions: Our preliminary findings showed that when applying three high-performing

IPF diagnosis models to CT series collected under different imaging protocols, specificity de-

creased for all three models. We further demonstrated that clinical diagnosis is a key factor

that leads to the lack of robustness for two out of three models. Our work indicated that

care should be taken when training and deploying DL models into clinical practice.
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CHAPTER 5

Discussions and conclusions

We discussed two challenges in this IPF diagnosis task, which are also frequently observed in

other deep learning applications in the medical imaging tasks. One challenge is the weakly

supervised nature of this task where the ground truth labels are coarse (such as scan-

level), but not fine-scale levels as desired (such as voxel-level). Weakly supervised tasks

are usually more efficient with respect to the data collection process, but pose significant

challenges to constructing machine learning models since coarse-scale labels contain limited

information. The other challenge is that deep learning models are often criticized for lacking

explainability since deep learning methods utilize complicated functions which are hard to

explain or understand.

Our proposals to address these challenges are to (1) leverage domain-specific knowledge

from previous studies, which is more accessible than fine-scale annotations, to guide the

learning of the model; (2) implement post-hoc explanation methods and attention mecha-

nisms to enhance the extent of explainability. Specifically, in project I, domain knowledge is

used to judiciously weigh different CT slices. Post-hoc visualizations are utilized to tackle

the second challenge. With respect to project II, including domain knowledge provides extra

guidance to the network and increases model accuracy and explainability.

We first discuss the design differences between project I and project II in Section 5.1.

Cautionary notes of the dissertation are provided in Section 5.2.

5.1 Compare project I and project II

We summarize the major design differences of project I and project II in Table 5.1.
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Convolutions: Projects I and II employed 2D convolutions and 3D convolutions, respec-

tively. We provided a schematic that shows the differences between these two convolutions

in Figure 1.1. Specifically, 2D convolutions capture information from the axial CT plane,

whereas 3D convolutions exploit spatial information across the lungs.

Input dimensions: Since project I uses 2D convolutions, by default, it takes three

CT slices (i.e. one CT triplet) with dimension 224 ˆ 224 ˆ 3 as one training or testing

input to feed into the state-of-art deep learning architectures, including ResNet-50, VGG16,

DenseNet-121, and MobileNet. On the contrary, project II leverages 3D convolutions and

takes one sampled CT volume of dimension 128ˆ 128ˆ 64 as a training or testing input for

MSGA.

DK: With respect to the use of domain knowledge, IPF progression and IPF quantifica-

tion map were used in project I and project II, respectively. For project I, IPF progression

information and an optimality criterion were used to weigh the CT triplets differently during

the training of the model. For project II, IPF quantification map was incorporated in the

construction of the model using attention mechanisms.

Explainability: In project I, we used Grad-CAM to visualize the important regions for

models to make the decisions, which is a post-hoc explanation method. Based on the design

of project I, Grad-CAM can provide only a two-dimensional image for each triplet. Take

ResNet-50 as an example, Grad-CAM plots for one triplet are two 7ˆ7 matrices, one for the

IPF class and the other for the non-IPF class. The evaluation of Grad-CAM plots depends

on the visual examinations of the selected cases. Notably, two-dimensional Grad-CAM plots

are hard to trace back to the highlighted regions in the corresponding CT triplets.

For project II, attention models were employed to visualize the significant areas for the

diagnosis task. Both a qualitative measure (visual examination of attention maps) and a

quantitative measure (kurtosis) were used to measure the explainability. Attention mecha-

nisms are included in the overall loss function and impact the training of the model in an

end-to-end manner. These produced attention maps are three-dimensional and the attention

gated output is four-dimensional. Compared with that of project I, these three-dimensional
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Table 5.1: Major design differences between project I and project II. DK: domain knowledge.
Project I Project II

Convolutions 2D-CNN 3D-CNN
DK IPF progression IPF quantification map

How DK is incorporated
End-to-end,

weigh CT triplets
End-to-end,

Attention mechanisms

Explainability measures
Qualitative, Grad-CAM

Both qualitative (attention maps)
and quantitative (kurtosis)

Post-hoc evaluations Impacts the training

Grad-CAM:
Two-dimensional

Attention maps:
Three-dimensional;

Attention-gated output:
four-dimensional

attention maps are more informative, contrary to the two-dimension Grad-CAM plots.

5.2 Cautionary notes

We present several cautionary notes in this dissertation: (1) in clinical practice, IPF diagnosis

involves the process of excluding subjects with known causes of ILD, such as occupational

environmental exposures, as well as the evaluation of HRCT patterns of UIP [RRM18].

Both project I and project II do not include the clinical history evaluation and UIP pattern

examination, which is our innovative attempt to build an efficient diagnosis paradigm, but

more clinical validations are needed. (2) both models developed in project I and project II

have not yet been validated using prospective clinical trials. We understand that the process

of developing a successful and clinically applicable automated diagnosis tool may take years

to accomplish. We hope that the methodology discussed in this dissertation can shed light

on the process of future model development and improvement.
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APPENDIX A

Supplementary files for Introduction

An example of image processing is provided in Figure A.1. More details of each step was

discussed in Section 1.3.3. During the image processing steps, the dimension of this CT scan

reduced from 512ˆ 512ˆ 62 to 128ˆ 128ˆ 64.

Figure A.1: An example of image processing. One of the final bootstrapped samples is

highlighted with red rectangles. The dimension of each intermediate image is displayed

under the figure.
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APPENDIX B

Supplementary files for Project I

B.1 CT acquisition and image reconstruction conditions of the

five studies.

Table B.1: CT acquisition and image reconstruction conditions of the five studies.

Study Slice thickness Patient positions Manufacturers
Reconstruction

kernels

Pixel spacing

(mm)

Image

resolution

Percentage

of volumetric

scans (%)

1 1, 1.25mm: 98.4% HFP: 73.1% SEIMENS: 39.6%
B45f, BONE,

D, STANDARD,

etc.

0.72 ˘ 0.08 (512,512): 97.7% 97.5

Other: 1.6% FFP: 20.0% GE: 39.2%

HFS: 5.7% Philips: 12.7%

FFS: 1.2% TOSHIBA: 8.2%

2 1mm: 100% FFS: 99.3%
SIEMENS: 100%

B45f, Br49d,

B31f, etc.

0.64 ˘ 0.06 (512,512): 100% 100

HFS: 0.7%

3 1, 1.25mm: 96.6% FFS: 71.0% SEIMENS: 93.3%
B60f, B70f,

B60s, BONE, etc.

0.63 ˘ 0.05 (512,512): 100% 87.7

Other: 3.4% FFP: 26.1% GE: 6.2%

HFS: 0.9% Other: 0.5%

4 1mm: 97.5% FFS: 91.4% Philips: 65.4%

D, B60f, YC,

YA, FC55, L, etc.

0.60 ˘ 0.05 (512,512): 100% 97.5

Other: 2.5% HFS: 8.6% SIEMENS: 27.2%

TOSHIBA: 3.7%

GE: 3.7%

5 2.5mm: 40.6% FFS: 91.2% GE: 71.8%
LUNG,

STANDARD,

FC56, L, etc.

0.62 ˘ 0.07 (512,512): 96.4% 97.6

1, 1.25mm: 38.2% HFS: 7.1% TOSHIBA: 13.5%

2mm: 17.1% FFP: 1.8% SIEMENS: 9.4%

Other: 4.1% Philips: 5.3%

Note: This information was retrieved from DICOM (digital imaging and communications in

medicine) image header files. HFP: head first prone, FFP: feet first prone, HFS: head first supine,

FFS: feet first supine. Reconstruction kernels are sorted by frequency of elements in descending

order.
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B.2 Model construction for the pilot study

Previous study contains the axial chest CT scans of 122 clinically-diagnosed IPF patients.

The number of available CT slices per scan is 300 ± 92. The total number of available chest

slices is 36,603. After an in-house automatic lung segmentation and denoising procedure, we

record the number of segmented lung area pixels on a slice level. For all segmented lung area

pixels, we predict the likelihood of progression using a machine learning technique. 1 Since

the response variable (the percentage of progressive lung pixels) is not normally distributed,

we consider generalized linear models (GLM). For each lung CT slice index t, we have 4 key

variables: the number of predicted progressive lung area pixels (rt), the number of lung area

pixels (ot), the true progressive rate (pt) and the log-odds of the true progressive rate (θt)

and the model is given by

rt „ Binomialpot, ptq, (B.1)

θt “ logp
pt

1´ pt
q, (B.2)

where t=1,. . . , 36,603 in our study. We assume that the log-odds of the true progressive

rate can be adequately modeled by a logistic model with a linear predictor given by either

a cubic or quartic polynomial or a fractional polynomial in the explanatory variable SSPt

representing the standardized slice positions (SSPs). Fitting the model with polynomial

terms is straightforward, and for fitting the fractional polynomial models, we used the mfp

package in R version 3.4.0. Supplementary Table B.2 shows the expression and estimated

parameters of best fitted cubic, quartic polynomials, and fractional polynomial (FP) models.

FP model is selected as the best-fitting model since it achieved the smallest AIC score.

Furthermore, Davidson-MacKinnon J tests [DM81] were used to assess the validity of

model fitting in the presence of one alternative model. The principle of J test is straight-

forward: if one model includes the correct set of variables, then adding new regressors

from another model should not be statistically significant. In our case, for example, sup-
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pose the cubic model can correctly characterize the underlying distribution with its regres-

sors (i.e. SSPt, SSP
2
t , SSP 3

t ), then adding new terms from the FP model (for example,

logpSSPt`0.1q) should not contribute to the model performance. The derivation of J test is

based on asymptotic theory and the results are reported to be misleading when the sample

size is small [DM04].

We used J tests to compare each of the two models: FP and cubic; FP and quartic; cubic

and quartic. Results from J tests suggest that each of the two models are statistically different

(P ă 0.001 for all comparisons), except that for the FP model, adding the regressors from

the quartic model do not change the model performance (P “ 0.26). We used the function

jtest from the R package lmtest to conduct all J tests [HZF15].

Figure B.1 provides a visual description of the fits for the three models and the true

median curve displays the percentages of progressive pixels versus the SSPs. From the

figure, we conclude that the selected fractional polynomial provides the best fit.
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Notes: The gray area represents the range of 2.5th percentile and 97.5th percentile of the true curve and

the two dotted vertical lines at SSP = 0.10 and 0.90 represent the noticeable boundary effects.

Figure B.1: The true median curve in blue shows the percentage of progressive pixels versus

standardized slice position (SSP). The other colored curves are the best fits to the overall

population trends from the other three models.
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Table B.2: Model fitting performance: three pre-selected models and their corresponding

estimated parameters and Akaike information criterion (AIC). FP: fractional polynomial.

FP achieves the least AIC score and is highlighted in bold fonts.

Model Expression Estimated parameters AIC

FP θt “ β0 ` β1pSSPt ` 0.1q´2 ` β2logpSSPt ` 0.1q ` εt

β̂0 “ ´0.04

β̂1 “ 0.03

β̂2 “ 1.05

5372743

Cubic θt “ β0 ` β1SSPt ` β2SSP
2
t ` β3SSP

3
t ` εt

β̂0 “ ´0.80

β̂1 “ ´1.47

β̂2 “ 5.91

β̂3 “ ´3.70

5435168

Quartic θt “ β0 ` β1SSPt ` β2SSP
2
t ` β3SSP

3
t ` β4SSP

4
t ` εt

β̂0 “ ´0.51

β̂1 “ ´5.58

β̂2 “ 22.98

β̂3 “ ´30.38

β̂4 “ 13.93

5413504

B.3 D-optimal design under generalized linear models (GLM) set-

ting

Since 2D-CNN architectures are used for this task, we explore a three-point design with equal

weights. Each such design Zij is equally weighted at the three sampled lung CT ordered

standardized slice position zijk (in ascending order), k “ 1, 2, 3, i is the subject index and

j is the triplet index. For simplicity, we omit the subscript i and j in this section. The

triplet contains the three slices sampled from the top, middle, and bottom of the lungs

respectively; this means that their positions satisfy the constraints: 0.1 ď zij1 ă 0.37,

0.37 ď zij2 ă 0.64,and 0.64 ď zij3 ă 0.9. Let y be the 3ˆ1 vector of observed percentages of

progressive lung area pixels at these three lung CT positions and, let µ be its mean vector

of size 3 ˆ 1 with each component between 0 and 1. The statistical model in matrix form
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can be written in two parts:

Epyq “ µ and logp
µ

1´ µ
q “ Fβ, (B.3)

with the interpretation that the equations are interpreted row-wise. The matrix F is the

3 ˆ 3 loading matrix for the standardized slice positions and β is the 3 ˆ 1 vector of un-

known parameters. As an illustration, consider the case when we have the selected fractional

polynomial with

F “

¨

˚

˚

˚

˝

fpz1q
T

fpz2q
T

fpz3q
T

˛

‹

‹

‹

‚

, β “

¨

˚

˚

˚

˝

β0

β1

β2,

˛

‹

‹

‹

‚

and fpzjq
T “

´

1, pzj ` 0.1q´2, logpzj ` 0.1q
¯

are functions of the standardized slice

positions zj, j “ 1, 2, 3. The D-optimality criterion focuses on the determinant of the infor-

mation matrix, which is defined by the negative of the expectation of the second derivatives

of the total log likelihood function with respect to the model parameters. More specifically,

if Z is a n-point design, the D-criterion is defined by DpZq “ |F TWlF |, where the weight

matrix Wl is a diagonal matrix of size n ˆ n, with diagonal elements wj “ µ̂jp1 ´ µ̂jq,

where µ̂j “
exppfpzjq

T β̂q

1`exppfpzjqT β̂q
. D-optimal design maximizes DpZq over all possible designs and a

minimally-supported D-optimal design maximizes DpZq over all 3-point designs. Supporting

Table B.2 shows the estimated parameters β̂ for the three selected models.

For example, for the one specific triplet (triplet 1) provided in Figure 2.4 (b), based

on the standardized slice positions, we have ẑ1 “ 0.34, ẑ2 “ 0.63, ẑ3 “ 0.67, and DpẐq “

|F̂ T ŴlF̂ | “ 1.19ˆ10´4, where the calculation of F̂ and Ŵl for this specific triplet is provided:

F̂ “

¨

˚

˚

˚

˝

1 pẑ1 ` 0.1q´2 logpẑ1 ` 0.1q

1 pẑ2 ` 0.1q´2 logpẑ2 ` 0.1q

1 pẑ3 ` 0.1q´2 logpẑ3 ` 0.1q

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1 5.17 ´0.82

1 1.88 ´0.31

1 1.69 ´0.26

˛

‹

‹

‹

‚
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and Ŵl =

¨

˚

˚

˚

˝

0.22 00

0 0.24 0

0 0 0.25

˛

‹

‹

‹

‚

. Here |F̂ T ŴlF̂ | denotes the determinant of the matrix

F̂ T ŴlF̂ .

B.4 Visualization of D-criterion values

To better visualize the relationship between lung CT positions and their corresponding D-

criterion values, we plot the distribution of D-criterion values while fixing one CT position

pz1, z2, z3q at a time. As discussed before, each triplet contains three slices which are sampled

one from each zone (see Figure 2 (a)). Fixing one slice at the midpoint of that zone, we then

evenly sample 20 slices from the other two zones, and calculate the D-criterion values for a

total of 400 (=20 × 20) triplet combinations for each subplot, as shown in Figure B.2.
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Figure B.2: Distributions of D-criterion values while fixing z1, z2, and z3 one at a time,

respectively.

Figure B.2 shows a general trend that when we fix one slice, the D-criterion values of

neighboring slices are smaller. This is consistent with the common knowledge that when

two CT slices are closer, they offer less meaningful medical information than two distant

slices. Therefore, the triplet with two slices closer to each other should be assigned with

less weight in the training of deep learning systems. This also justifies our assumption that

using triplets collected from three separate zones can, to some extent, avoid sampling slices

that are adjacent to each other. This suggests that optimal design ideas can provide a better

sampling strategy.
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B.5 Sensitivity analysis results

Sensitivity analysis results of scenario 1, 2, 3 are presented in the Table B.3, B.4, and B.5,

respectively.

B.6 Model generalizability testing

Generalizability is defined as the model performance on unseen test scenarios. For example,

deploying a developed model on CT images acquired under a new institution, protocols,

patient cohort, etc. The evaluation of generalizability is a key factor for the successful

deployment of deep learning models in healthcare settings.

In order to evaluate our model generalizability to an unseen scenario, we add the following

experiments by selecting one study at a time as the holdout set. These tests are constructed

to evaluate if the constructed model is able to achieve good inference for CT images acquired

from a new institution, i.e. the holdout set. Experimental design and model accuracy in the

holdout study are provided in Supplementary Table B.6. For example, under experiment

number 1, we use all IPF patients and non-IPF patients from study 4 and study 5 to

construct a new IPF diagnosis model. Afterwards, we evaluate the model performance

under another holdout study (i.e. study 3 in this case), which has not been included in the

model construction stage. Due to the sample size limitation of IPF patients, we did not

conduct the experiment using study 1 as the holdout study.

According to the results in Supplementary Table B.6, except for the experiment number

3, other experiments can successfully classify more than 90% of patients in the holdout study

(accuracies greater than 90%). Experiment number 3, which uses study 5 as the holdout

study, only achieves an average accuracy of 0.73. This may due to the fact that study 5 has

61.8% of CT scans that are greater than 1.25mm, while CT scans collected from all four other

studies only have less than 5%. Under this scenario, the deep learning model constructed

using thin (1-1.25mm) CT scans does not generalize well to thicker (greater than 1.25) CT

scans in the holdout study. Other studies have also reported this lack of generalizability in
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Table B.3: Study-wise model performance and overall model performance with an adaptive
selection of triplets per scan.

Sensitivity Specificity
Overall model performance

(IPF patients) (Non-IPF ILD patients)
Model
(Loss

function)

Study
1

Study
2

Study
3

Study
4

Study
5

Sensitivity Specificity Accuracy

Baseline
CNN (CE)

0.94
(0.03)

0.86
(0.08)

0.93
(0.06)

0.95
(0.03)

0.88
(0.05)

0.91
(0.03)

0.92
(0.04)

0.92
(0.02)

Baseline
CNN (DK)

0.86
(0.16)

0.81
(0.21)

0.84
(0.16)

0.84
(0.14)

0.78
(0.17)

0.84
(0.17)

0.82
(0.15)

0.83
(0.06)

MobileNet
(CE)

0.98
(0.01)

0.97
(0.04)

0.99
(0.01)

0.99
(0.03)

0.96
(0.03)

0.98
(0.01)

0.98
(0.01)

0.98
(0.01)

MobileNet
(DK)

0.99
(0.02)

0.92
(0.06)

0.98
(0.02)

1
(0)

0.95
(0.04)

0.97
(0.02)

0.98
(0.02)

0.97
(0.01)

VGG16
(CE)

0.98
(0.02)

0.97
(0.03)

0.99
(0.02)

1
(0)

0.98
(0.02)

0.98
(0.01)

0.99
(0.01)

0.98
(0.01)

VGG16
(DK)

0.98
(0.02)

0.96
(0.03)

0.99
(0.01)

1
(0)

0.98
(0.02)

0.97
(0.01)

0.99
(0.01)

0.98
(0.01)

ResNet-50
(CE)

0.98
(0.01)

0.89
(0.08)

0.93
(0.13)

0.87
(0.25)

0.91
(0.11)

0.95
(0.03)

0.91
(0.14)

0.93
(0.08)

ResNet-50
(DK)

0.97
(0.02)

0.86
(0.06)

0.97
(0.02)

0.99
(0.02)

0.96
(0.02)

0.94
(0.02)

0.97
(0.02)

0.96
(0.01)

DenseNet-
121 (CE)

0.96
(0.04)

0.84
(0.22)

0.99
(0.01)

1
(0)

0.97
(0.03)

0.92
(0.08)

0.99
(0.01)

0.96
(0.03)

DenseNet-
121 (DK)

0.88
(0.20)

0.77
(0.31)

0.98
(0.02)

0.99
(0.03)

0.98
(0.02)

0.84
(0.24)

0.98
(0.02)

0.93
(0.09)

Note: Mean and standard deviations shown in brackets are calculated across the results from each
testing fold. CE: cross entropy loss without domain knowledge-enhanced loss function; DK: domain
knowledge-enhanced loss function. Statistically significant results (P ă 0.017) are highlighted in
bold font. The significance cutoff 0.017 is decided by Bonferroni correction for multiple testing,
which is dividing the pre-specified significance level 0.05 by the number of tests (3, including the
overall sensitivity, specificity, and accuracy) for each model.
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Table B.4: Study-wise model performance and overall model performance by adding a re-
sampling step during the preprocessing procedure.

Sensitivity Specificity
Overall model performance

(IPF patients) (Non-IPF ILD patients)
Model
(Loss

function)

Study
1

Study
2

Study
3

Study
4

Study
5

Sensitivity Specificity Accuracy

Baseline
CNN (CE)

0.89
(0.05)

0.81
(0.08)

0.96
(0.03)

0.95
(0.04)

0.92
(0.04)

0.86
(0.05)

0.95
(0.02)

0.91
(0.01)

Baseline
CNN (DK)

0.88
(0.03)

0.82
(0.11)

0.96
(0.03)

0.96
(0.03)

0.93
(0.03)

0.86
(0.04)

0.95
(0.01)

0.92
(0.01)

MobileNet
(CE)

0.98
(0.01)

0.96
(0.03)

1
(0)

1
(0)

0.97
(0.03)

0.98
(0.01)

0.99
(0.01)

0.98
(0)

MobileNet
(DK)

0.99
(0.01)

0.98
(0.03)

0.97
(0.04)

1
(0)

0.97
(0.03)

0.99
(0)

0.98
(0.03)

0.98
(0.01)

VGG16
(CE)

0.98
(0.02)

0.95
(0.04)

1
(0)

1
(0)

0.98
(0.02)

0.97
(0.01)

0.99
(0.01)

0.98
(0)

VGG16
(DK)

0.98
(0.01)

0.96
(0.03)

1
(0)

1
(0)

0.98
(0.02)

0.98
(0.01)

0.99
(0.01)

0.99
(0)

ResNet-50
(CE)

0.98
(0.01)

0.90
(0.07)

0.99
(0.01)

0.97
(0.03)

0.97
(0.02)

0.95
(0.02)

0.98
(0.01)

0.97
(0.01)

ResNet-50
(DK)

0.97
(0.01)

0.88
(0.11)

0.98
(0.01)

0.94
(0.09)

0.95
(0.01)

0.95
(0.03)

0.97
(0.01)

0.96
(0.02)

DenseNet-
121 (CE)

0.98
(0.01)

0.91
(0.06)

0.98
(0.03)

0.99
(0.03)

0.97
(0.02)

0.96
(0.01)

0.98
(0.02)

0.97
(0.01)

DenseNet-
121 (DK)

0.97
(0.03)

0.88
(0.11)

0.99
(0.01)

1
(0)

0.97
(0.02)

0.94
(0.03)

0.98
(0.01)

0.97
(0.01)

Note: Mean and standard deviations shown in brackets are calculated across the results from each
testing fold. CE: cross entropy loss without domain knowledge-enhanced loss function; DK: domain
knowledge-enhanced loss function. No statistically significant results (P ă 0.017) were identified
in this table.
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Table B.5: Study-wise model performance and overall model performance using triplets
collected from lower zones only.

Sensitivity Specificity
Overall model performance

(IPF patients) (Non-IPF ILD patients)
Model
(Loss

function)

Study
1

Study
2

Study
3

Study
4

Study
5

Sensitivity Specificity Accuracy

Baseline
CNN (CE)

0.9
(0.05)

0.86
(0.06)

0.96
(0.05)

0.97
(0.06)

0.96
(0.02)

0.89
(0.04)

0.96
(0.04)

0.93
(0.02)

Baseline
CNN (DK)

0.89
(0.06)

0.86
(0.07)

0.96
(0.02)

0.87
(0.04)

0.93
(0.06)

0.88
(0.06)

0.94
(0.03)

0.91
(0.01)

MobileNet
(CE)

0.99
(0.01)

0.94
(0.04)

0.99
(0.01)

1
(0)

0.98
(0.02)

0.97
(0.02)

0.99
(0.01)

0.98
(0.01)

MobileNet
(DK)

0.98
(0.01)

0.98
(0.02)

0.99
(0.01)

1
(0)

0.97
(0.03)

0.98
(0.01)

0.98
(0.01)

0.98
(0.01)

VGG16
(CE)

0.98
(0.01)

0.93
(0.05)

0.99
(0.01)

1
(0)

0.98
(0.02)

0.96
(0.02)

0.99
(0.01)

0.98
(0.01)

VGG16
(DK)

0.97
(0.01)

0.95
(0.03)

0.99
(0.01)

1
(0)

0.99
(0.02)

0.97
(0.02)

0.99
(0.01)

0.98
(0.01)

ResNet-50
(CE)

0.96
(0.03)

0.89
(0.01)

0.96
(0.02)

0.96
(0.03)

0.96
(0.03)

0.94
(0.03)

0.96
(0.02)

0.95
(0.02)

ResNet-50
(DK)

0.97
(0.03)

0.81
(0.16)

0.98
(0.01)

0.94
(0.04)

0.95
(0.04)

0.92
(0.06)

0.96
(0.02)

0.95
(0.02)

DenseNet-
121 (CE)

0.97
(0.02)

0.83
(0.13)

0.99
(0.01)

1
(0)

0.97
(0.03)

0.93
(0.05)

0.99
(0.01)

0.96
(0.02)

DenseNet-
121 (DK)

0.93
(0.11)

0.77
(0.19)

0.98
(0.01)

0.95
(0.04)

0.97
(0.02)

0.88
(0.14)

0.97
(0.02)

0.93
(0.05)

Note: Mean and standard deviations shown in brackets are calculated across the results from each
testing fold. CE: cross entropy loss without domain knowledge-enhanced loss function; DK: domain
knowledge-enhanced loss function. Statistically significant results (P ă 0.017) are highlighted in
bold font.
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Table B.6: Experimental setup and results for model generalizability testing by using one
study at a time as the holdout test study.

Experiment
number

IPF
cohorts

Non-IPF
cohorts

Holdout
study

Model (Loss
function)

Model accuracy in the
holdout study (standard

deviation)
1 1 & 2 4 & 5 3 MobileNet (CE) 0.93 (0.03)
1 1 & 2 4 & 5 3 MobileNet (DK) 0.93 (0.03)
2 1 & 2 3 & 5 4 MobileNet (CE) 0.97 (0.03)
2 1 & 2 3 & 5 4 MobileNet (DK) 0.95 (0.07)
3 1 & 2 3 & 4 5 MobileNet (CE) 0.73 (0.17)
3 1 & 2 3 & 4 5 MobileNet (DK) 0.73 (0.16)
4 1 3, 4 & 5 2 MobileNet (CE) 0.99 (0.01)
4 1 3, 4 & 5 2 MobileNet (DK) 0.99 (0.01)

Note: Mean and standard deviations shown in brackets are calculated across the results from each
fold, based on five-fold cross validation. CE: cross entropy loss without domain knowledge-enhanced
loss function; DK: domain knowledge-enhanced loss function.

CT texture features caused by variations in CT slice thicknesses [CKL15].
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APPENDIX C

Supplementary files for project II

C.1 Random forest (RF) analysis

We calculated and plotted the variable importance for the constructed RF using the nor-

malized total reduction of Gini impurity brought by each feature.

We provide a series of boxplots representing the variable importance analysis for the

constructed RF, as shown in Figure C.1. For each RF, the variables come from the concate-

nated MSGA output collected from all M number of CT samples, where M “ 20 in our work.

Furthermore, the learned features from MSGA (a vector of size 1 ˆ 3M) can be separated

into three types: p̂i (size 1 ˆM), Lhi (size 1 ˆM), and Lmi (size 1 ˆM), where p̂i, L
h
i , L

m
i

represent the predicted probability of being IPF at the last layer of MSGA, attention-based

loss function at a high- and medium- resolution for subject i, respectively. Each boxplot

shows the variability across the variable importance for these M variables.

Validation set performance (AUC for each fold) under MSGA and MSGA+RF is reported

in Supplementary Table C.1.
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Notes: M is the number of samples produced for each CT scan, where we select M “ 20 in this work. We

separate the learned features from MSGA (a vector of size 1ˆ 3M) into three types: p̂i (size 1ˆM), Lh
i

(size 1ˆM), and Lm
i (size 1ˆM), where p̂i, L

h
i , Lm

i represent the predicted probability of being IPF at

the last layer of MSGA, attention-based loss function at a high- and medium- resolution, respectively. Each

boxplot shows the variability across the variable importance for these M variables.

Figure C.1: Variable importance plots under the RF model using three hyperparameter

settings as illustrative examples (a, λh “ 10 and λm “ 100; b, λh “ 200 and λm “ 1; c,

λh “ 1 and λm “ 200). Variable importance is plotted for each fold.

The histogram of the estimated attention-based loss functions among all training samples

using one fold model as an example are plotted in Figure C.1. The figure shows a clear
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Table C.1: Validation set performance (AUC for each fold) of both MSGA and MSGA+RF
under three hyperparameter collections, including a, λh “ 10 and λm “ 100; b,
λh “ 200 and λm “ 1; c, λh “ 1 and λm “ 200.

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

λh λm
AUC
of
MSGA

AUC
of
MSGA
+RF

AUC
of
MSGA

AUC
of
MSGA
+RF

AUC
of
MSGA

AUC
of
MSGA
+RF

AUC
of
MSGA

AUC
of
MSGA
+RF

AUC
of
MSGA

AUC
of
MSGA
+RF

(a) 10 100 0.983 0.995 0.986 0.987 0.999 0.986 0.986 0.989 0.980 0.984
(b) 200 1 0.999 0.984 0.967 0.985 0.987 0.974 0.944 0.967 0.993 0.971
(c) 1 200 0.513 0.943 0.949 0.977 0.985 0.982 0.831 0.920 0.500 0.804

distinction between IPF and non-IPF subjects regarding the estimated attention-based loss

functions for both high- (a) and medium (b) resolutions. This provides an explanation why,

for this fold, adding an RF classifier can greatly improve the model performance for the

validation set (AUC from 0.513 to 0.943).

Figure C.2: Histogram of the estimated attention-based loss function at high- (a, Lhi ) and

medium- resolution (b, Lmi ) when λh “ 1 and λm “ 200, at fold 0, among all training

samples.

Visual examination of the variable importance illustrated that when MSGA perfor-

mance was satisfactory (we provided two examples here: λh “ 10 and λm “ 100; λh “

200 and λm “ 1), RF mostly leveraged information from the predicted probability of being

IPF produced at the last layer of MSGA (p̂i), with minimal information borrowed from the

estimated attention-based loss (including Lhi and Lmi ).When MSGA performance was not
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satisfactory (for example, λh “ 1 and λm “ 200), RF took the estimated attention loss into

consideration with large variable importance, especially for fold 0 and fold 4.
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