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ABSTRACT OF THE DISSERTATION

Functional Analysis of Generalized Linear Models Under Nonlinear Constraints With
Artificial Intelligence and Machine Learning Applications to the Sciences

By

K. P. Chowdhury

Doctor of Philosophy in Management (Focusing on Mathematical Statistics)

University of California, Irvine, 2021

Associate Professor Weining Shen, Chair
Professor Knut Solna

This thesis presents multiple fundamental mathematical contributions to Generalized Linear

Models (GLMs) ubiquitous to the sciences. The methodologies considered are shown to over-

come biased estimates for parameters of interest in the sciences through new mathematical

results and their applications in both nonparametric and parametric settings. The results are

shown to be uniformly better in comparison to existing widely used methods in the sciences.

In extensive simulation studies the methodologies outperform existing Artificial Intelligence

(AI) and Machine Learning (ML) methods in the sciences for all around better Model fits,

Inference and Prediction (MIP) results without losing interpretability of the parameter esti-

mates. This is because the mathematical construction and their accompanying mathematical

foundations ensure that the estimation procedure strongly converges to the parameters of

interest. In the first application, I present a parametric version of the methodology (©

Elsevier and Journal of Informetrics) titled “Functional analysis of generalized linear models

under non-linear constraints with applications to identifying highly-cited papers.” In the

second application, I extend this methodology in an entirely nonparametric setting which

gives equivalent results to the parametric formulation under various circumstances, but may

outperform it as well in others, especially if the underlying Data Generating Process (DGP)

xiii



is asymmetric. Furthermore, I show that the categorical data models on which the method-

ologies are applied can be extended to any GLM, continuous or otherwise, while maintaining

model interpretability and convergence results. In addition, I present a new prediction perfor-

mance diagnostic statistic, called Adjusted ROC Statistic (ARS), which allows us to compare

whether the prediction performance of various models fitted are statistically different. The

nonparametric methodology is then further extended to give a new formulation of the binary

regression framework widely used in the sciences. Through extensive simulation studies I

show that this version of the methodology is more robust than the previous versions dis-

cussed. This general framework is then extended to various AI and ML applications widely

used in the sciences. The entirety of the work also has some important consequences for our

continued discussion on “statistical significance” vs. “scientific significance.” This includes

the need for us to consider the strength of convergence of our methodology in addition to

the subtle connections between Topological Spaces and Measure Spaces. Each of which are

crucial to ensure almost sure convergence of the parameter estimates through the estimation

algorithm presented termed, Latent Adaptive Hierarchical EM Like algorithm or LAHEML.

As such, the results present a significantly expanded and more accurate toolset for Math-

ematicians, Statisticians, Scientists and Decision Makers at all levels for better model fit,

inference and prediction outcomes.
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Chapter 1

Introduction

This dissertation presents several extensions to the current Generalized Linear Model (GLM)

through rigorous mathematical formulations of the underlying preliminaries. The extensions

are applied through nonparametric and parametric applications to binary observed outcomes

as a function of some measured explanatory variables. Such observed phenomena are ubiq-

uitous to the sciences and hence, their multivariate extensions in ordered and unordered

models remain important in modern Artificial Intelligence (AI) and Machine Learning (ML)

settings. Accordingly, any improvement on Model Fit, Inference, and Prediction (MIP)

results for binary outcomes remain relevant for numerous AI and ML applications in the

sciences.

The contributions rely upon various insights on the limitations of the current GLM framework

through pointwise discontinuity of the link function, which relates the observed outcomes

to the mean of a particular model specification. In the presence of such discontinuity, I

show that no estimation approach, whether Frequentist or Bayesian, can ensure that the

underlying restrictions on the link condition is always satisfied for any particular estimation

iteration. Thus, by using the likelihood principle, this limitation is shown to have severe

1



restrictions on the current regression framework, extending straightforwardly to various AI

and ML applications.

In particular, I argue that the presence of such a limitation on the underlying GLM formu-

lation implies that almost sure convergence cannot be asserted for GLMs, such as those in

the exponential family including the Logistic or Probit regressions. As such, the findings

provide a focused reason as to empirical variability in results observed across the sciences

for MIP results. To overcome these subtle but pernicious limitations, I present a new la-

tent variable framework rooted in Real and Functional Analysis that appears to be novel

to the sciences for the parametric formulation in the Bayesian framework, and is entirely

novel for the nonparametric application in either the Bayesian or Frequentist formulation.

The nonparametric application is then further extended to give the most robust functional

specification for any binary outcome model specification through this methodology, beyond

the binary regression specification accepted in the sciences.

Naturally, as the most basic formulation of a categorical outcome model, the methodology

can readily be extended to more complicated AI and ML methods. Accordingly, I then

use the robust parametric and nonparametric approaches to extend current AI and ML

applications of Artificial Neural Networks (ANN), Regression Trees, Regression Forests as

well as for Support Vector Machines (SVM). Finally, these updated model specifications

are then used in real data applications across various disciplines such as Biostatistics and

Physics. Thus, below I outline how the rest of the dissertations is structured.
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1.1 Outline and Specific Contributions

The rest of the dissertation is structured as follows.

Chapter 2 provides the published version of the parametric methodology with minor varia-

tions to that published in Chowdhury (2021a). This paper lays the foundations to overcome

pointwise discontinuity of the Logistic regression functional specification. It maintains much

of the existing latent varible framework as in Albert and Chib (1993), but is shown to give

superior results to it in various settings. The specific highlights are,

1. Robust functional form contains true parameters far more often than popular models.

2. Matches/outperforms widely used regression and Neural Network models.

3. Finds appropriate balance between Model Fit, Inference, and Prediction (MIPs).

4. Introduces new large-sample DGP test; can use to improve A.I. models.

5. For MIS field finds Popularity Parameter to be important for predicting citations.

Chapter 3 presents a continuation and extension of the methodology in Chapter 2 in a

nonparametric setting. It shows that the parametric version of the methodology is nested

within it and further makes the following contributions,

1. It provides rigrous mathematical foundations under which the link condition holding

for each observation can be used to identify the true parameters for any particular

model specification almost surely.

2. It presents a Latent Adaptive Hierarchical EM Like algorithm (LAHEML) that can be

used in a completely nonparametric setting, without violating link function continuity.
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3. The methodology is shown to be superior to the parametric version giving results

superior to it especially if the underlying DGP is asymmetric.

4. Despite being nonparametric it does not lose interpretability of the parameter esti-

mates.

5. It can either match or outperform all other models compared in regards to Inference

and Prediction.

6. It can either match or outperform all other models compared in regards to Model Fit.

7. It can outperform ANN in prediction outcomes in both in-sample and out-of-sample

data without losing interpretability of parameter estimates particularly when the data

size is small. The results are especially relevant for Test Datasets (TeDs).

8. I present a new prediction comparison model evaluation statistic based on Chowdhury

(2019) which is more general and call it Adjusted ROC Statistics (ARS). In addition,

I further give its limiting distribution.

9. The methodology enables us to perform a large-sample asymptotic test to check whether

any parametric distributional assumption, as a function of the estimated �0s, hold! Ac-

cordingly, it is shown to be an extension of Li et al. (2018).

10. Thus, it allows us to check the adequacy of any model assumption on the underlying

categorical outcomes and provides a ready test for statistical divergence.

Chapter 4 is the culmination of the previous two chapters which extends those results to

beyond the binary regression assumptions. Its specific contributions are

1. Provides a robust functional specification for binary GLMs which is far more general

than the existing GLM framework.
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2. In doing so, it can identify the true underlying parameters almost surely even when

the assumptions of the current binary regressions are violated.

3. It nests the model formulations in Chapter 2 and Chapter 3.

4. It can match or outperform all other models compared in regards to Inference and

Prediction.

5. It can match or outperform all other models compared in regards to Model Fit when

the datasets are more unbalanced or smaller.

6. It can match or outperform Neural Networks in prediction outcomes in both in-sample

(TrD) and out-of-sample (TeD) data without losing interpretability of parameter esti-

mates.

Chapter 5 presents more complicated model specifications for the methodologies specified

in Chapter 2, Chapter 3 and Chapter 4. In particular, they are extended to many AI and

ML applications widely recognized for their predictive power across the sciences such as

ANN, Regression Trees, Regression Forests and SVM. In this chapter I further extend the

methodologies to Broad Neural Networks and give an universal approximation theorem for

such Natural Neural Networks (NNN or N3).

Chapter 6 discusses future extensions and gives some further concluding thoughts.
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Chapter 2

Parametric Application
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2.1 Introduction

Binary models are central to scientific inquiry across many different fields including Informet-

rics, Informatics, Scientometrics and Bibliometrics as well as, Statistical, Biomedical, Social

and Physical Sciences. It is particularly important for citation prediction (Wang, Wang,

& Chen, 2019; Abrishami & Aliakbary, 2019). For example, Uddin and Khan (2016) used

regression analyses to understand the impact of keywords on citation counts, and found that

the author-defined keywords were statistically significant in explaining number of citations.

Similarly, Sohrabi and Iraj (2017) used Logistic regression with repetitive keywords in article

abstracts and keyword frequency per journal as independent variables, to show both were

statistically significant in predicting citation counts. Therefore, it remains critical to un-

derstand model fit, inference and prediction MIP(s) performance of these binary regression

models and their robustness for scientific inquiry.

To understand such Bernoulli outcome models, there are multiple statistical and econometric

formulations, such as the “Binary Outcom” (BO) and “Latent Variable Outcome” (LVO)

models. Unfortunately, the underlying assumptions of BO vs. LVO models are distinctly

different, and it is often not clear in the literature as to which approach to take and how

to reconcile any divergence in MIPs. A further complication is presented when the data

are unbalanced (WLOG, more 0’s than 1’s in the Bernoulli outcome case), which is almost

always of practical importance in applied settings. In addition, given the assumptions of

the traditional logistic and Probit formulations, the link function (for example for the Logit

BO model it is the log-odds function) is symmetric for both BO or LVO formulations. This

implies that the probability of success or failure approaches 1 or 0, respectively at the same

rate (see for example Agresty and Kateri 2011), an assumption frequently violated in real

world data applications. Accordingly, it is well established that the parameter estimates in

these models are susceptible to bias and inconsistency (e.g., Simonoff 1998, Abramson et

al. 2000, Maity et al. 2018). This paper introduces a new functional analyses perspective
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applied to Bernoulli outcomes in the familiar regression framework, that seeks to overcome

these inconsistencies.

Broadly, any outcome variable can be modeled as a linear (LM) or as a non-linear (NLM)

model or function of the explanatory variables. Here I broadly refer to these specifications

as Generalized Linear Models (GLM), where we consider

E[Y|X] = c(X)� + ✏. (2.1)

Here the n ⇥ 1 outcome variable Y is related to a n ⇥ (k + 1) set of explanatory variables,

X = (1, X1, ..., Xk), through a continuous, bounded, real valued function c(X) of the same

dimensions. The (k + 1) ⇥ 1 parameters of interest are � = {�1, ..., �k+1}. If c(X) = I(X),

where I() is the identity link function, we have the well known LM widely used in the

sciences. As is customary the expectation of the error term is also assumed to be 0.

I discuss both BO and LVO models in detail in section 3.2. However, for the present dis-

cussion it suffices to state that both models for the Bernoulli outcome case remains relevant

for Artificial Intelligence (AI) and Machine Learning (ML) applications (Li et al. 2018).

This is because they serve as the building blocks for various Multinomial extensions (e.g.,

Allenby and Rossi 1998, Murad et al. 2003). However, their usage appears to be field

specific. For example, Hu et al. (2020) show the efficacy of the Logistic regression in iden-

tifying highly cited papers over four other classification techniques including c4.5, Support

Vector Machine (SVM) and Artificial Neural Networks (ANN). In doing so, they highlight

not only the importance of Journal Impact Factor (JIF) (e.g. Bai et al. 2019, Bornmann

et al. 2014, Tsai 2014) and word embedding techniques (i.e. Zhang et al. 2018) in classify-

ing potentially highly-cited papers, but also of Keyword popularity (KP) measures in both

Marketing and Management Information Systems journals. Similarly, in Econometrics LVO

models has been used to understand behavior of the average individual within a population
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(see Greene 2003 for a summary), for calculating propensity scores for causal interpretation

and program evaluation (see Imbens and Rubin 2015 for an excellent summary), as well as

to understand the degree of heterogeneity through finite and infinite mixture distributions

(Andrews et al. 2002). In Psychology (e.g., Talukder 2008, Hofmans 2017); Experimental

Economics (e.g., Edelman et al. 2017, Hallsworth et al. 2017); Biomedical Sciences, (e.g.,

Zhang et al. 2017, Davison et al. 2017, Mandal 2017) and in the Physical Sciences (e.g.,

Hatlab et al. 2018, Beita-Antero et al. 2018) there is a rich history of both formulations.

Evidently the methodology used is context and field specific, with inferences drawn based

on established, field specific criteria1. Furthermore, even in the presence of AI methods such

as ANN and ML methods such as SVM, since the Logistic regression can give better model

fits, prediction and inference, its application and improvements remain highly relevant for

any classification exercise.

Therefore, this contribution seeks to reconcile some of these incongruities in traditional

widely used Bernoulli outcome models with specific focus on the Logistic regression. Its

contribution is four fold. First, I present a new functional specification which ensures that

traditional i.i.d. regression model assumptions hold for each yi 2 Y (yi is 1 ⇥ 1) and

xi 2 X (xi is (k + 1)⇥ 1) and which corrects for much of these induced biases in regression

parameter estimates in widely used existing models. To ensure comparability to existing

methods, I further ensure that the new specification is isomorphic to existing models if the

data actually support them. Second, to aid in model comparison between the existing and

proposed models, I introduce an asymptotic test for congruence of parameter estimates of

the proposed and existing models. I then present estimation algorithms for the Logistic

regression formulation of the new model in both frequentist and Bayesian frameworks2.
1This is a result of the applicability of the specifications above being relevant to field specific questions.

For example, in Business and Economics one may ask, whether consumers receive more utility from products
they buy, where as in the Biomedical Sciences we may be concerned with whether a particular drug is more
effective than current alternatives.

2I stress however, that as the new formulation becomes a constrained optimization problem it can be
time sensitive for large datasets in the frequentist case.
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As such a new Bayesian Hierarchical estimation methodology is used for simulation and

Scientometric applications. Accordingly, I show the proposed methodology applied in the

Logistic case, requires roughly two-thirds the number of Markov Chain Monte Carlo (MCMC)

iterations for convergence as opposed to existing LVO Bayesian models. It does so while

giving better MIP results compared to existing models (whether existing BO or LVO models

are compared), including AI methods such as Artificial Neural Networks (ANN), in myriads

of circumstances. The results are shown to be robust in general, but are especially relevant

when the assumptions of more traditional models are violated. Finally, I reintroduce an ROC

based predictive statistic ROC-Statistic (RS) (Chowdhury, K. P., 2019) to show the interplay

and importance of MIPs of the new methodology in Informetrics, Informatics, Statistics and

Applied Mathematics in general.

Thus, the remainder of this article is organized as follows. I first discuss the preliminaries

and set up of existing Binary Outcome and Latent Variable Outcome models in section 2.2. I

then discuss under what circumstances they are equivalent. Then I expand on the proposed

methodology and give the proofs for existence and uniqueness of the parameter estimates for

the new functional specifications in Section 2.3 deferring all technical proofs to the appendix.

To specifically apply this model, I consider the Logistic regression specification and then give

estimation procedures in the Bayesian framework in Section 2.4 (the frequentist algorithm is

deferred to Appendix .1.2). To ensure comparability of models, I then present an asymptotic

test that allows us to compare model fit congruence between existing and proposed models

in Section 2.5. This is followed by extensive numerical simulations in Section 2.6 and an

application to classification of highly-cited papers in Section 2.7. This is done using the

Logistic formulation for the proposed model under varying data generating processes (DGPs),

sample sizes and unbalancedness specifications. I then discuss the importance and broad

applicability of the methodology for MIP results in Section 2.8 and finally end with some

concluding thoughts in Section 2.9.
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2.2 Preliminaries

Any Bernoulli outcome regression model with accompanying covariates (Y,X) (defined as

in the introduction in section 2.1) can be modeled using a Binary Outcome (BO) or Latent

Variable (LV) model specification. However, the assumptions under each are meaningfully

different. The Binary Outcome Model has the following assumptions 1-3.

Assumption 2.1. yi 2 Y are independent and Bernoulli distributed such that

yi =

8
>><

>>:

1 with probability p

0 with probability 1� p.

(2.2)

Assumption 2.2. The systematic component of the explanatory variables are considered

fixed.

Assumption 2.3. There is a link function g(µ) = Y that relates the mean of an observation

to the systematic component.

In contrast the LV models have assumptions 4-5.

Assumption 2.4. yi 2 Y are independent and identically distributed observed across some

threshold m 2 R such that there exists another random variable Y⇤ with yi 2 Y and y⇤
i
2 Y⇤

satisfying,

yi =

8
>><

>>:

1 if y⇤
i
> m

0 if y⇤
i
 m.

(2.3)

Assumption 2.5. The systematic component of the explanatory variables are considered

fixed.
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Clearly3 the underlying measure spaces on which the models are defined are distinct. Yet

under both models the decision to be made by the modeler amounts to choosing a distribution

on the error term and deciding which variables to use for the systematic components. Under

the LV model a further distributional specification on Y⇤ must be made. If it is assumed to

be Bernoulli, the two models are indeed identical for the appropriate success probabilities.

Furthermore, it is not difficult to see that though no specific assumption is made on the

link function for LV models, a specification on the error, also known as the probability of

success, leads to a deterministic functional specification of the link function in Assumption

2.3 above.

For example, let P(xi) be the probability of success for the linear Logistic BO model (Luce

1959) for the ith observation. Then,

P(xi) =
exp[�(xi, �)]

(1 + exp[�(xi, �)])
, (2.4)

where �(xi) = �0xi, in LM and � = {�1, ..., �k+1}. Then,

ln{P(xi)/(1�P(xi)))} = �(xi, �). (2.5)

The quantity on the left in (2.5) is the familiar log-odds ratio for the Logit and is the link

function assumed to hold in expectation (average) in Assumptions 2.1–2.3 for i.i.d. yi 2 Y

(for the Probit model Thurstone 1927, P (X) has the Standard Normal formulation). Now

consider the LV model for the Logistic regression, and restrict the threshold m to be 0, and

let the probability of success be the Logistic distribution. Then,

y⇤
i
= �0xi + ✏⇤

i
() P(xi) = Pr(y⇤

i
> m) = F (�✏⇤

i
< �0xi) = F (�0xi), m = 0, (2.6)

3All of these assumptions above are in addition to the Full Rank and Non-Micronumerosity assumptions
for the explanatory variables that accompany these traditional models.
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where F, is the cdf of �✏⇤
i

(and ✏⇤
i

by symmetry). It is well known that if m = 0, a Logistic

distribution assumption on the error gives us the same link function specification under both

BO and LVO models (Cameron and Trivedi 2010).

Evidently, though no assumption is made on the link function specification in LV models,

by construction of GLM the link condition Assumption 2.3 of BO model is identical to LV

model at least in this simple linear regression model. Furthermore, by independence, this link

condition should hold for every observation and not just in expectation as in the traditional

BO model framework. Below I extend this insight to Generalized Linear Models (GLMs),

under any specification of the error term in BO or LV models such that the link condition

holds for every observation.

2.3 Methodology

In this section I lay the groundwork for the viability of the model specification. In order to

retain the current models should the data support them, I propose a more general framework.

In particular, I show that any link function, corresponding to a particular GLM, can be

thought of as coming from a family of link functions. I parameterize this family through two

parameters ↵ and � and show that all existing GLMs correspond to particular values of them.

To ensure identifiability and equivalency to existing models, without loss of generality I focus

the methodology to depend on only one parameter ↵⇤, a function of {↵, �}. Accordingly,

below I first present the generalized link function, followed by an application of it to the

Logit generalized link. To motivate identifiability of this new link function specification, I

first prove under what circumstances uniqueness and existence is guaranteed for the Logit.

From it we may deduce and expand the proof of existence and uniqueness to any GLM in

the discrete outcome case for the model and proceed accordingly4.
4Please note that all non-obvious vectors and matrices are represented using bold notations.
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2.3.1 Generalized Link Function

Consider any link function, g(), that satisfies the regularity conditions (continuous, real

valued and analytic) for any specification of the error distribution, F(), for LV or BO models.

Let �(X, �) = c(X)�, where c is a continuous, bounded, real-valued function of X, the

(n⇥ (k+1)) matrix of covariates or explanatory variables (thus, c(X) is also (n⇥ (k+1))).

Then by construction,

g(P(X)) = �(X, �) = c(X)� () P(X)� g�1(c(X)�) = 0n⇥1. (2.7)

Since we know that (2.7) is not always satisfied for the ith observation, we would like to

ensure that the constraint holds so that we can conditionally estimate � with more accuracy.

Therefore, when it is not satisfied consider,

P(X) = (g�1(c(X))�)↵
⇤ () ↵⇤ = log(P(X))(log((g�1(c(X)�))))�1,↵⇤ 2 Rn. (2.8)

Since for certain link functions (2.8) cannot be uniquely identified, much of the contribution

of this paper relates to how this non-trivial problem can be overcome while maintaining

equivalency to the current framework if the data support them. As an example, the Logit

has the log-odds ratio as the link function, meaning that for uniqueness, we must incorporate

some restrictions on the numerator or the denominator of the odds function. However, such

restrictions can easily diverge from current GLM specifications, and we need a more general

definition of the link function.

Accordingly, let us hypothesize that the actual fitted link for a particular GLM belongs

instead to a family of link functions with parameters {↵, �} (Pregibon 1980) for each obser-
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vation i. The principle assumption is that any fitted link, such as the log-odds for the Logit,

belongs to a family of link functions for different values of {↵, �}. Let us then consider any

GLM in which given an assumption imposed on the probability of success (Logistic, Stan-

dard Normal, Extreme Value Type I etc.), we wish to hypothesize a link function g() such

that for the ith observation the following condition holds,

yi = g(xi, �,↵i, �i) = �(c(xi), �). (2.9)

Critically, through this formulation, for differing parameter values we can induce a symmetric

or asymmetric behavior for a particular link function specification. In particular through an

assumption either on the probability of success or the error term we may hypothesize,

Hypothesized Link : g0(xi, �;↵i, �i) = g(xi, �;↵i = ↵0, �i = �0), (2.10)

for specific values of {↵0, �0}. In reality however, our data may suggest a functional specifi-

cation in the same link family but with different parameters, say {↵⇤
i
, �⇤

i
},

Correct Link : g⇤(xi, �;↵i, �i) = g(xi, �;↵i = ↵⇤
i
, �i = �⇤

i
). (2.11)

Crucially, (2.11) ensures that for some values of this family, the link condition will always

hold with equality for any GLM for every observation of the regression model. To show

existence of this specification, a necessary and sufficient condition is that the family of link

functions is analytic under i.i.d. assumptions. Therefore, the estimation process becomes,

argmin�(Y �c(X)�)d s.t. g⇤(xi, �;↵i, �i) = �(c(xi), �), 8i 2 {1, ..., n}; 1  d < 1, (2.12)

where p represents the appropriate p-norm in Lp(E)5. The proof of this statement can be
5Where for a measureable set E I define Lp(E) to be the collection of measureable functions f for which

|f |p has a finite integral over E.
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found in Theorem 2.5. Since by construction, observations are independent, one can further

impose

E(↵⇤) = E(↵i);E(�
⇤) = E(�i), (2.13)

which follows easily from our identically distributed assumption. Thus,

E[g⇤(xi, �;↵i, �i)] = E[�(c(xi), �)] = E[�(c(X), �)], 8i 2 {1, ..., n}. (2.14)

Therefore, we need only ensure that this assumption holds for each of the ith observations.

To show the importance of this formulation, below I first prove the existence and uniqueness

of (2.11) for the Logistic model, through first a Generalized Odds function and then by

the Generalized Log-Odds function. I then show that in this formulation the Generalized

Logistic Link function is analytic, and therefore, we can approximate the link condition

holding for each observation. From this specific application to the Logistic I then deduce

and prove the existence and uniqueness results for all GLMs. This ensures that the link

constraint can be approximated to hold across all observations, such that the parameters

� can be conditionally estimated in the Bayesian framework or solved through constrained

optimization. The results follow below where a bold notation indicates a vector or matrix

unless already defined accordingly.
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2.3.2 Generalized Odds Function

Consider the following specifications for the Odds function, where Pn⇥1 is the probability of

success and element-wise does not equal either 0 or 1 identically.

g0(µ,↵, �) =
P↵

(1�P)�
. (2.15)

Theorem 2.1. The Generalized Odds function is uniquely identified for some ↵⇤ 2 Rn \

{�1,1},Pn⇥1 /2 {0, 1}n⇥1 s.t.

g0(µ,↵
⇤, �⇤ = 1) = P↵

⇤
(1�P)�1. (2.16)

Proof. To prove that the proposed family of functions can only be identified up to a mono-

tonic transformation for either ↵ or �, but not both for the ith observation consider,

g0(µ,↵i, �i)
(1/�i) =

P↵i/�i

i

(1� Pi)
, (2.17)

where P(xi) = Pi. WLOG hold �i 2 R \ {�1,1, 0} fixed (since element-wise ↵⇤ = ↵

�
6=

±1, � 6= 0 by construction). Since by construction Pi 2 (0, 1),

lim
↵i!1

P↵i/�i

i

(1� Pi)
= 0 and lim

↵i!�1

P↵i/�i

i

(1� Pi)
= 1. (2.18)

Thus, ↵i or �i cannot both be �1 or 1 at the same time. Let us fix �i such that it is not

1, �1 or 0. Then by the arguments preceding ↵i can be 1. However, since such a set
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has lebesgue measure 0, we can safely restrict our attention to

xi such that {Pi : {↵i, �i} /2 {�1 ,1} and �i 6= 0}. (2.19)

Having restricted our attention to the constrained values of {↵i, �i}, let us fix �i. Then by

the density of the rationals in the reals, for any

↵i 2 R \ {�1,1}, (2.20)

if �⇤
i
= 1 there exists an ↵⇤

i
2 R such that ↵⇤

i
= ↵i

�i
. Therefore, the generalized odds function

can be given by,

g0(µ,↵i, �i)
(1/�i) = g0(µ,↵

⇤
i
, �⇤

i
= 1), (2.21)

The n-dimensional result then easily follows under the independence assumption of each

observation as needed.

It is then straight forward to show that a generalized Logistic link family may be defined

through a monotonic transformation of the Generalized Odds function.

Proposition 2.1. There exists a family of link functions given by a monotonic transfor-

mation of the Generalized Odds function, P↵
⇤
(1 � P)�1 such that for {↵⇤ = 1, �⇤ = 1} it

represents the Generalized Logistic Link function for each observation.

To ensure the Generalized Logistic Link function can be approximated through Taylor ap-

proximations, I also show that it is analytic. The rigorous proof of the statement is given in

the Appendix (.1.1), and as a result the model can interpolate values for link conditions even
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when the current GLM framework cannot ({�1,1} can result in the current estimation

processes).

Theorem 2.2. The Generalized Logistic Link function, log(P↵
⇤
(1�P)�1), is Analytic.

This is a sufficient condition for the existence of Taylor approximations and convergence of

regression parameters of interest, conditionally on ↵⇤
i
, for all observations. Thus, it remains

to show that the results above hold for any specification of the Generalized Logistic Link

function with extensions to all GLMs, under the assumptions of the current GLM framework.

The theorems below establishe these results.

Theorem 2.3. There is an unique solution to the link modification problem for the Gen-

eralized Logistic GLM formulation where the link constraint is binding for some ↵⇤ 2 Rn \

{�1,1}, given Pi /2 {0, 1}, xi /2 {0,1,�1} for each i 2 {1, ..., n} and �j /2 {1,�1}

with j 2 {1, ..., (k + 1)}.

A somewhat technical proof of this result is given in the Appendix (.1.1). Using this result,

I provide the foundations for the extension of the specific result to all GLMs below.

Theorem 2.4. There is an unique solution to any link modification problem, where the

link constraint holds with equality in the Generalized Linear Model Framework for some

↵⇤ 2 Rn \ {�1,1}, given Pi /2 {0, 1}, xi /2 {0,1,�1} for each i 2 {1, ..., n} and

�j /2 {1,�1} with j 2 {1, ..., (k + 1)}.

Proof. Consider as before that Pi 6= {0, 1} and |�| < 1. Then if ↵⇤
i

is the unique value

attained by fixing �i for each i,

↵⇤ = log(P (X))(log((g�1(c(X)�))))�1,↵⇤ 2 Rn \ {�1,1}. (2.22)
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Note that ↵⇤ is n⇥ 1. As long as element-wise,

P(X) 6= 0n⇥1 and g�1(c(X)�)) 6= 0n⇥1, (2.23)

(2.22) has a specification and a solution, by the same argument as I had proceeded with

the Generalized Logistic Link. Thus, it remains to show the immediately preceding two

equations do not hold for any i. Note that by construction of a GLM through independence,

E[g(P(X))] = E[(�0c(xi))]. (2.24)

Therefore, a sufficient condition for (2.22) to hold means that (�0c(xi)) 6= 0. Let us conjecture

otherwise and say that this does not hold. Then either c(xi) = 0(k+1)⇥1 or � = 0(k+1)⇥1.

One can safely discard the possibility of c(xi) = 0(k+1)⇥1, since that implies there is no

explanatory variables to understand probability of success, i.e. there does not exist a GLM.

If on the other hand, � = {�j}(k+1)
j=1 = 0(k+1)⇥1, for any j 2 ((k + 1) ⇥ 1), then that implies

the explanatory variables used in the GLM are not adequate to describe a relationship to

the dependent variable, and as such, should not be considered in the regression specification.

Therefore, E[g(P (X))] = (�0c(xi)) 6= 0 under the model preliminaries and assumptions of

GLMs. As such, the existence of the Taylor Approximation to the functional forms under

consideration is implied by the existence of a GLM and its assumptions. Thus, we can

proceed by the intermediate value theorem to show that there exists an unique solution to

the link modification problem for any GLM, as needed.
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Theorem 2.5. For any continuous and bounded specification of a Generalized Linear Model

there exists a solution to argmin�(Y � c(X)�)d s.t. g⇤(xi, �;↵i, �i) = �(c(xi), �), 8i 2

{1, ..., n}; 1  d < 1; {|c(X)|, |�|} < 1.

Proof. To see this6, note that �(c(xi, �)) is continuous by assumption of GLM. Thus,

�(c(xi, �)) is lesbesgue measureable on our domain of choice R \ {1,�1}. Let E ✓

R \ {1,�1}. Then for each continuous and bounded function f in Lp(E) there exists

closed and bounded intervals [a, b]j such that

[n

j=1[a, b]j = E, n 2 {1, 2, ...} (2.25)

where f vanishes outside of E when restricted to [n

j=1[a, b]j. Thus, f vanishes outside of E.

Therefore, each f is the limit of a sequence of piecewise linear, continuous functions which

can be represented by �(c(xi, �)). If F is taken to be the union of all of these approximating

sequences, then F is dense in R \ {�1,1} and the statement follows.

The above results show the theoretical foundations of the methodology are consistent with the

existing GLM framework. However, in many cases no analytical solutions to � as a function of

↵⇤ may exist (for example in the Logistic formulation). Consequently, the convergence to true

population parameters is also a non-trivial problem. Therefore, I now detail an estimation

procedure for the Logistic regression application, in both the frequentist (Appendix [.1.2])

and in a full-probability Bayesian formulation (for BO or LV models), that guarantees the

convergence to true population parameters with very few MCMC iterations7.

6The result follows readily from the continuous, real valued assumptions on the GLM functional specifi-
cation and I follow the standard arguments given in most graduate level Real Analysis books.

7The estimation procedures are further shown to be applicable in any GLM because of the uniqueness of
↵⇤ given Theorem 2.5.
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2.4 Estimation

To illustrate the viability of the proposed model, I apply it to a specific Generalized Lin-

ear Model, the well known Logistic regression. Thus, in this section I present a Bayesian

Hierarchical method to estimate the Logistic regression model under this new proposed

methodology (the frequentist application can be found in the appendix [.1.2]). The exten-

sion of these algorithms to any GLM, follows similarly from the existence and uniqueness

results discussed previously.

2.4.1 Estimation of the Generalized Logistic Link

Given the linear Logistic regression under either the BO or LV models, note that

log

⇢
P↵

⇤

(1�P)

�
= �(c(X), �) () log

⇢
F (�(c(X), �))↵

⇤

(1� F (�(c(X), �)))

�
� �(c(X), �) = 0,

=) ↵⇤ =
�(c(X), �) + log(1� F (�(c(X), �)))

log(F (�(c(X), �)))
. (2.26)

Clearly, there is no analytical solution here for �|↵⇤. However, for any particular value of

�, we can solve for {↵⇤|�, �⇤ = 1} on a grid, through sequential iteration of a hill climbing

algorithm or through Taylor Series approximation. Further, since the solution exists for all

P 2 (0, 1)n⇥1, we can also proceed through MCMC in a Bayesian framework. Of particular

interest is the conditional estimation of �, given the explanatory variables xi such that the

nonlinear link constraint (2.26) holds for every observation.
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As such, the frequentist estimation may be done using parametric assumptions on the con-

ditional distribution of f(↵⇤|�) for each observation in a joint MLE estimation procedure

iteratively or for model checking [2.5] for a particular estimated value of �. Since, solv-

ing n such nonlinear constraints can be computationally expensive, I focus on and detail

a new latent variable, Bayesian Hierarchical estimation procedure that can overcome this

constraint. A frequentist estimation procedure is detailed in the appendix [.1.2] while the

Bayesian formulation is given in Section [2.4.2].

2.4.2 Hierarchical Bayesian Estimation Algorithm for Proposed Lo-

gistic Regression

Because of the constrained optimization nature of the problem, the Bayesian Hierarchical

estimation procedure allows substantial improvements in the correlations between P, ↵⇤ and

�. The central issue revolves around the fact that to have a full probability model we must

specify a distributional assumption for f(↵⇤|�) or f(�|↵⇤). Since the only information at

hand is the expected value of ↵⇤|�, to keep this assumption from being too restrictive, it is

reasonable to specify a distribution for which both the mean and variance may be expressed

as a function of ↵⇤|�. As such, consider a latent variable model similar to that given in

Albert and Chib 1993, where8

y⇤
i
= �(c(xi), �) + ✏⇤

i
, (2.27)

y⇤
i

i.i.d.⇠ Logistic(�(c(xi), �), ⇡
2/3), (2.28)

yi =

8
>><

>>:

1 if y⇤
i
> 0

0 if y⇤
i
 0.

(2.29)

8Please note that fixing the variance parameter is according to the formulation given in Albert and Chib in
1993. However, the current formulation may provide further avenues of research to overcome this constraint
and is left open to be pursued in future research efforts.
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Using an augmented joint posterior distribution, the full probability model can be written

as,

p(�,↵⇤|y) =
Z

y⇤
p(↵⇤, �, y⇤|y) =) p(�|↵⇤, y) / L(X, �)p(↵⇤|�, y)p(�). (2.30)

Therefore, a sequential MCMC algorithm can be set up where by integrating out the sampled

y⇤ values we can draw from the conditional distribution of f(↵⇤|�). Then we can draw from

a suitable proposal density and get estimates of �, by iterating to completion. In particular,

consider

F (✏⇤
i
)
i.i.d.⇠ Logistic(0, ⇡2/3), (2.31)

f(↵⇤
i
|xi, �)

i.i.d.⇠ ✓exp(�✓g(xi, �)), (2.32)

g(xi, �) =
�(c(xi), �) + log(1� F (�(c(xi), �)))

log(F (�(c(xi), �)))
, (2.33)

f(�) ⇠ N(µ0, �
2
0). (2.34)

Thus, for suitable values of the hyper-parameters (section 2.6 and section 2.7) and given

the existence and uniqueness of the functional specification, we can set up an appropriate

MCMC algorithm with a Metropolis Hastings (MH) within Gibbs procedure, as follows.

1. Draw from the truncated Logistic distribution for each observation.

2. Given the realized values of y⇤
i

0s, draw from f(↵⇤
i
|X, �), making any transformations

as necessary.

3. Perform a MH step to accept the current draws of �’s from a suitable proposal distri-

bution, ensuring that the posterior is traversed accordingly to the mode.
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4. Iterate to completion.

It is easy to see that though I have applied the methodology to the Logistic latent variable

formulation, it can be applied to any GLM with a modification to g(c(X), �). This is

guaranteed by the existence and uniqueness results above.

2.5 Asymptotics

One of the more useful outcomes of the proposed model is that it simply adds one extra

parameter to be estimated. Furthermore, since we know E(↵⇤|�) for existing models such as

Logit (↵⇤ = 1), we can use large-sample results under independence through Assumptions

2.1 and 2.4 to test the hypothesis that our model results vary from traditional GLM fits. In

particular, we know for GLM,

E[↵⇤|�] = log(P (X))�1(log((g�1(c(X)�)))). (2.35)

While the X’s are held fixed, ↵̄⇤ is both asymptotically unbiased, consistent and asymptoti-

cally normal by the central limit theorem and i.i.d. assumptions. This is an assertion which

holds as long as � is consistent and asymptotically unbiased. Given ↵̄⇤, we can thus estimate

the asymptotically consistent estimates of the variance of ↵⇤ as well using these facts and

the central limit theorem then we have

↵⇤ ⇠ N(E(↵⇤|�⇤), E(↵⇤ � E(↵⇤|�⇤)|�⇤)2), (2.36)
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ˆ̄↵⇤ asymp.⇠ N

✓P
n

i=1 ↵i

n
,

P
n

i=1(↵i � ↵̄)2

(n� 1)

◆
. (2.37)

�⇤ above represents the optimized estimated value. Thus, we can check our hypothesis that

↵̄⇤ = k, for some k 2 R \ {�1,1, 0} for any particular GLM as follows.

1. Perform a t-test on ↵̄⇤, with the appropriate null hypothesis values, and accept/reject

model fit assumptions (for example H0 : ↵̄⇤ = 1 for the Logit).

2. Thus,

(a) Under rejection, the existing GLM is not adequate given assumptions on the

model specification and the proposed model should be used.

(b) Otherwise, the existing GLM is adequate and it can be used for inference and

prediction (classification) accordingly9 (taking into account comparative MIP per-

formances of the models considered as needed).

This framework can similarly be extended to the likelihood ratio test, under the ap-

propriate null values. For example, for the Logistic specification the null values are

E[↵⇤] = E[�⇤] = 1.

9Note however, that model fit, prediction and inference criteria should be evaluated on a wholistic basis
to arrive at a choosen model even if the null hypothesis is not rejected.
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2.6 Monte Carlo Simulation

In order to validate the robustness of the proposed methodology the Generalized Logistic

Link Function is used in the Bayesian framework for extensive simulation studies on various

DGP’s, both symmetric (Logit and Probit) and asymmetric (Complementary Log-Log). For

this purpose, datasets were generated from the standard normal distribution for different

sample sizes (n = {100, 500, 1000}) for three different models,

Y = Intercept+X1 + (X2)
2, (2.38)

Y = Intercept+X1 + exp(X2), (2.39)

Y = Intercept+ exp(X1) + sin(X2). (2.40)

The different model specifications are needed to understand the performance of the proposed

model when the data are linear, non-linear or a mixed specification in the X’s. All datasets

had 3 parameters to estimate, for the intercept (�1) and for two explanatory or independent

variables drawn from the standard normal ({�2, �3}) with the appropriate transformations

indicated above. Then for fixed and known � values, either a Probit, Logit or a Comple-

mentary Log-Log DGP was used to generate outcomes (dependent variable Y), that varied

in the number of 1’s that were present10. That is, the known � values were used with the

known X’s in a regression model to create the dependent variable Y. Furthermore, some

additional changes were done to make sure that in-sample and out-of-sample simulated data

were comparable in regards to their means.

In particular, the known {x, �} values along with each functional form above (the Probit,

Logit or Complementary Log-Log) can be used to calculate the probability of each obser-
10If the probability calculated under a DGP for a particular observation was greater than the median, it

is considered to be 1.
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vation for each specific model (for example, yi = �1 + �2xi1 + �3(xi2)2), where xij indicates

value of the jth independent variable (j 2 {1, 2}) for the ith row (11,12). Thus, we can con-

sider the calculated Y values along with the generated X’s as the data on which we can fit

our chosen statistical models for each DGP. We can then evaluate the performance of the

proposed model against other popular existing baseline models13.

Finally, another step was done to create datasets which had different numbers of suc-

cesses as opposed to failures14. Thus, the unbalancedness of the data were varied between

{0.1, 0.2, 0.3, 0.4, 0.5}. Here, 0.5 indicates equal number of successes and failures (balanced),

0.4 indicates 10% fewer successes than failures and so forth. This alteration was done for

each of the different sample sizes, for each of the three DGPs of Probit, Logit and Com-

plementary Log-Log, as well as for each of the three models specified (linear, non-linear

or mixed). Thus, for each sample size there are five different unbalanced datasets, each of

which has three parameters or �’s to estimate for each of the three DGPs for each of the

models specified (linear, non-linear or mixed). As such, for each model, there are 45 different

datasets, each with 3 parameters to estimate, for a total of 135 ⇥ 3 = 405 parameters to

estimate, compare and contrast15.

On these synthetic datasets a simple MLE based Logistic, a Bayesian Latent Probit, the

proposed Generalized Logistic model in the Bayesian latent framework, and an MLE based

Penalized Logistic model were run. The final comparisons were based on both in-sample and

out-of-sample (last 20% of each synthetic dataset) data, confidence intervals of estimated
11Naturally, the values achieved from each functional specification of the DGP are necessarily different for

each function.
12Then we may create a success as those observations for which a particular functional form of the DGP

predicted a probability greater than the median.
13This construction means that if the data were generated using a Logistic DGP, then when we fit the

Logistic model to this synthetic data, its model fit and inference results should be better than the other
models fitted to the data.

14As iterated above, if the number of successes and failures in the dataset differ, then the data are
considered to be unbalanced.

15Note also that by construction, we know what the true �’s are, and therefore, can use these true values
to understand the performance of each of the models fitted to each dataset.
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�’s compared to actual �’s, number of MCMC iterations required and Akaike Infomration

Criteria (AIC). Where the AIC is defined as,

2⇥ (-log � likelihood+Number of Parameters)/Number of Observations (2.41)

Evidently, the AIC statistic penalizes those models which are more complex or have more

parameters to estimate16. Consequently, lower AICs are considered better than higher ones

and they can be computed for all models for which a likelihood can be computed. In the

simulation study results below, this is an important criterion for determining the model

which fits the simulated data the best. Note, however, that for inference, standard errors of

each model and the confidence intervals which they give are more important for choosing the

best model. Indeed, these are distinctly different tasks and as such requires the consideration

of the appropriate statistics to measure their effectiveness separately.

A summary of the results below shows the efficiency, robustness and superior model fits of

the proposed methodology, both in-sample and out-of-sample. In almost all circumstances

for the Logit DGP, the Probit DGP or even the asymmetric Complementary Log-Log DGP,

the proposed model out-performs the existing methodologies with respect to at least one of

the comparison criteria AIC, confidence interval or most importantly, the number of times

the confidence intervals contained the true �’s. There are 405 specific �’s to estimate and

compare and the summary based on averages are given below in Table 2.1 and Figure 2.1

for all linear, non-linear and mixed models specified.

The MLE Logistic model fits are extremely poor with multiple confidence interval ranges

being very large. On the other hand, the proposed model has the lowest average AIC both

in-sample and out-of-sample for all DGPs (Figure 2.1). However, most importantly, the

proposed model contained the true parameters 84.20% (341 out of 405 total) of the time, as
16Thus, it naturally considers the Occam’s razor bias in its estimation.
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Table 2.1: Simulation Summary of Model Fits for All DGPs

Bayesian Latent MLE Penalized Proposed
Probit Logistic Logistic Logistic

In-Samp. AIC 1.39 1.37 3.27 1.17
Out-of-Samp AIC 1.57 1.60 3.62 1.27

#�1 in C.I. (max. 135) 99 33 12 97
#�2 in C.I. (max. 135) 79 35 75 116
#�3 in C.I. (max. 135) 109 35 71 128

�1 C.I. Rng. 3.07 1,849.95 7.65 4.76
�2 C.I. Rng. 1.96 279.44 4.54 3.95
�3 C.I. Rng. 2.33 9,174.67 12.14 4.54

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here 0.5
indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 15 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 45 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 135 parameters per DGP
for a total of 405 parameters to be estimated over the entire simulation study. The results are summarized by average over
all simulated datasets. The AIC of the proposed method were on average 21.31% better (1.22 vs. 1.48) for in-sample and
out-of-sample datasets combined, in comparison to the next best model in terms of AIC, the LV existing Bayesian Probit
model. The confidence intervals (C.I.’s) of the proposed model were far more reasonable with a range of about 4.42, as opposed
to a range of only 2.45 for the Bayesian Probit model. As such, the proposed model had 18.82% more of the true parameters
than the Bayesian Probit and almost 331.07% more of the true parameters in its C.I.’s than the MLE Logistic (which is widely
recognized to be the baseline model for binary outcomes). That this was attained in only 8,000 MCMC iterations with a 4,000
burn-in period is even more poignant in regards to the efficiency and robustness of the proposed methodology (as opposed to
12,000 iteration and 6,000 burn-in period for the existing Bayesian Probit).

opposed to 70.86% (287 out of 405) and 39.01% (158 out of 405) of the time for the Bayesian

Probit and Penalized Logistic models, respectively. In fact, this level of coverage is attained

using a smaller confidence interval than the Penalized Logistic, which contained the third

highest number of true �’s in its confidence intervals. The proposed model, in comparison to

the Bayesian Probit, had on average 18.82% (341 vs. 287) more of the true parameters. In

comparison to the Penalized Logistic, the proposed model had on average 54.50% (4.42 vs.

8.11) smaller confidence intervals, while containing 215.82% (341 vs. 158) more of the true

parameters. In comparing to the MLE Logistic, the proposed model had on average 331.07%

(341 vs. 103) more of the true parameters, even if we ignore the unsupportable confidence

intervals for the MLE Logistic due to several extremely poor fits.

Clearly the proposed model has a significant advantage over the existing models compared.

However, the analysis also highlights that it is possible to have a low AIC, as the MLE
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Logistic does for both in-sample and out-of-sample data over the Penalized Logistic, yet

give a confidence interval which does not contain the true parameter. One reason for this

discrepancy which would impact inference most-of-all, could be that many existing models

overfit the data. The proposed model suffers less from this issue. Consequently, not only

does it contain the true parameters more often, it also has uniformly better average AICs in

both in-sample and out-of-sample data. Additionally, this performance level is attained with

far fewer iterations needed than the existing latent Bayesian Probit model for parameter

convergence. A more detailed breakdown along DGP, observation and unbalancedness is

available upon request.

2.7 Empirical Application

In order to apply the theoretical constructs above, I apply the Logistic formulation to the

data from Hu et al. (2020) to understand the importance of author-defined keywords for

articles to be highly-cited in the Management Information Systems (MIS) field. In particular,

I apply it to those articles which they identified as being in the top 25th percentile of citation

counts for all articles considered in the MIS field. This is done for 6 separate years for two

different training dataset sizes. The first of which used 80% of the observations available for

each year while the latter used only 25% of the total data available for training purposes.

Thus, there are 12 specific datasets to compare and contrast. For the MIS field “three top

influential” journals were considered for identifying highly cited papers, Information Systems

Research (ISR), MIS Quarterly (MISQ) and Journal of Management Information Systems

(JMIS) for all papers published between 2009 to 2012. Below I give a summary of how the

data were created.

The preprocessing of the texts occurred based on the title, abstract and keywords from Web

of Science (WOS), creating an “article-term matrix” through Latent Dirichlet Allocation

31



Figure 2.1: Simulation Results Summary For All Three DGPs In-Sample and Out-of-Sample For All Three
Linear and Non-Linear Models Considered.
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Note: The AICs for MLE-Logit and Penalized Logit were 1 for multiple datasets and thus only finite AIC values are graphed
here. Comp. Log-Log refers to Complementary Log-Log, Logistic to Logistic and Probit to the Probit Data Generating
Processes (DGPs). New: Proposed Methodology, Existing: Bayesian Probit, MLE Logit: MLE Logistic Regression, Penalized
Logit: Penalized Logistic Regression. The results are summarized over all observations and unbalanced datasets created,
graphed in order of decreasing unbalancedness (unless 1) for in-sample and out-of-sample datasets. The results are presented
as a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n = {100, 500, 1000}
and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} summarized over the linear, non-linear and mixed models specified. Thus, there
are 135 different datasets to consider with a total of 405 parameters estimated over the entire simulation study. The results
are summarized by average over all simulated datasets according to the amount of unbalancedness in the datasets. Where 0.5
indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth. While in the in-sample
datasets the proposed model in the Hierarchical Bayesian Logistic application had AICs very close to the Penalized Logistic
regression, the out-of-sample AICs for the proposed methodology were almost uniformly better than the existing methods
compared.
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(LDA) on the tokenized texts, to obtain the best keyword candidates17. A standard Parts-

of-Speech tagger was applied to identify nouns (NN), proper nouns (NP) and adjectives (JJ)

to convert each article into a vector listing of these parts-of-speeches18. This was followed

by further dimensionality reduction procedures according to Phan and Nguyen 2008. Thus,

the CDFs of � the keywords within a topic and ✓ the topic within each paper were generated

to yield the article-keyword matrix for each paper, for each of the six years, from one year

after publication to six years after publication for every article in the data. Finally, with the

use of web crawlers and Application Programming Interface (APIs) for ReseachGate, Google

Scholar and Google Trends, each keyword was searched and the popularity measures were

calculated.

The binary dependent variables for each article, for each year considered were classified to

either fall within the top 25th percentile of total citation counts (a success or 1) or not (a

failure or 0) for the year under consideration19. While the original study considered journal,

author and several keyword features, the efficacy of the proposed model meant that in the

current application only journal impact factor (JIF) and one keyword feature (PP) needed

to be considered (according to the best model fit outcomes), while still being consistent with

the original results of the Hu et al. 2020 paper. Thus, for journal features, journal impact

factor (JIF) was the main attribute considered (based on existing well established results in

the field; see for example Bai et al. 2019 and Wang et al. 2019). For the keyword parameters,

five specific measures or variables were considered namely, topic popularity (TP), published

popularity (PP), news popularity (NP), web page popularity (WPP) and video popularity

(VP). Below I elaborate on their computations in greater detail.

Let j 2 {2009, 2010, 2011, 2012, 2013} be the year of publication of an article, let M be the
17The keyword candidates themselves were retrieved from various search engines and I elaborate more on

this shortly.
18These parts-of-speech are considered more indicative of the academic publishing content in the field.
19Thus, the analyses done here is a cross-sectional analyses for the years considered for the MIS field for

an article since its initial publication year.
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number of topics and let N be the number of keywords in each topic obtained from the LDA

analysis mentioned above. Define km,n {m 2 M, n 2 N} as the nth keyword for the mth

topic. Thus, from ResearchGate for each km,n we can obtain the number of questions (qm,n)

related to it. From Google Scholar we can obtain the number of search results (sorted by

year) related to each km,n (which I further denote as pj
m,n

here). Similarly, from Google

Trends for each km,n (specifically using Google News, Google Web Pages and YouTube), we

can also obtain the counts for news popularity (ej
m,n

), web page popularity (wj

m,n
) and video

popularity (vj
m,n

) respectively for each article. Finally, we can define each article in a year

j, by the index i 2 {1, ..., I}, with i defined as the total number of articles in the jth year.

Accordingly, for the jth year the measures can be defined as follows:

TP i

j
=

MX

m=1

NX

n=1

qm,n✓
i

m
�m

n
(2.42)

PP i

j
=

MX

m=1

NX

n=1

pj
m,n

✓i
m
�m

n
(2.43)

NP i

j
=

MX

m=1

NX

n=1

ej
m,n

✓i
m
�m

n
(2.44)

WPP i

j
=

MX

m=1

NX

n=1

wj

m,n
✓i
m
�m

n
(2.45)

V P i

j
=

MX

m=1

NX

n=1

vj
m,n

✓i
m
�m

n
. (2.46)

Therefore, TP is a weighted mean of the numbers of questions from ResearchGate matching

article keywords, PP is a weighted mean of the number of search results of the article

keywords from Google Scholar, NP is a weighted mean of the degree of news popularity

of article keywords from Google Trends, WP is a weighted mean of the degree of web page

popularity of article keywords from Google Trends and VP is a weighted mean of the degree of

video popularity of article keywords from Google Trends all with corresponding probabilities.
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Therefore, the goal is to understand how well JIF and the keyword parameters predict which

article for any given year will be highly-cited20. Accordingly, I use the same AIC statistic as in

the simulation (2.41) to compare model fits across the various models considered. Separately,

to better evaluate prediction or classification performance, there are many accepted statistics

based on the confusion matrix (which is recreated below for convenience). However, for the

current application I use the ROC-Statistic given in Chowdhury 2019.

Table 2.2: Confusion Matrix.

Fitted Model Prediction
Highly-Cited Not Highly-Cited

True Classification in Data Highly-Cited True Positive (TP) False Negative (FN)
Not Highly-Cited False Positive (FP) True Negative (TN)

The statistic is defined as follows,

ROC � Statistic =
FP

TP
, (2.47)

which spans between [0,1), with a lower number indicating better prediction results. As

such, please note that in any model a lower number for AIC and ROC-Statistic indicates a

better model fit or prediction results respectively. They can further be computed for training

and test datasets separately to see how well the in-sample results compare to out-of-sample

results. This is done, because we would like to recreate the performance of in-sample MIP’s

performances to that from other samples from the true populaiton DGP (represented by

the out-of-sample hold-out data). Therefore, the underlying assumptions is that MIP’s

performances based on true population parameters should be more robust and give better

models fits out-of-sample, in addition to having reasonable MIP’s performances in-sample.

Thus, in what follows I apply the proposed methodology to this dataset along with the

Bayesian Probit, MLE Logistic, Penalized Logistic and ANN to understand their model fit,
20Where again an article is considered highly cited if it is in the top 25th percentile of citation counts for

all publications in a particular year and not highly cited otherwise.
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inference and prediction performances based on these criteria. In doing so, I show that the

proposed methodology can be used for both prediction and inference without overfitting the

data, a known weakness of many AI and ML methods such as ANN or SVM. I further show

that unlike in Hu et al. 2020, who find that the best model fits are attained by combining

several keyword parameter variables with other Journal or Author variables a similar predic-

tion results can be attained by not including correlated variables in the model specification.

This implies that for the MIS dataset we need not sacrifice between the prediction, inference

or model fit criteria because the proposed model finds the requisite balance between them

to give generalized results that can outperform widely used AI models such as the ANN.

2.7.1 Classification of Highly Cited Papers

Given the highly correlated nature of the various explanatory variables considered, the final

analysis on the datasets consisted of the following model,

Highly Cited = Intercept+ Journal Impact Factor + Popularity Parameter.

(2.48)

A brief version of the algorithm is given below.

1. Draw from the truncated Logistic distribution for each observation.

2. Given the realized values of y0
i
s draw from f(↵⇤

i
|X, �), performing any transformation

as necessary.

3. Perform an MH step with the t-distribution as the proposal, with 10 degrees of freedom

(WLOG).

4. Iterate to completion, for total draws of 8,000 with 4,000 burn-in samples.
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This was done for both a diffuse prior (normal prior with 0 mean and a variance of 10)

and a more informative prior where the �’s were considered to have positive normal prior

mean of 0.5 and a variance of 10. In addition, the MLE Logistic, Bayesian Latent Probit,

Penalized Logistic and ANN models were also run to compare the robustness of the proposed

procedure. In total the Bayesian Probit was run for 12,000 maximum iterations with 6,000

burn-in period, in contrast, the proposed model was run for only two-thirds the number of

iterations with 4,000 burn-in period.

To showcase the flexibility of the model when the dataset is small and unbalanced, the above

mentioned models were fitted to two separate datasets. The first dataset contained 80% of

the total available observations per year for training the models, and the latter was a smaller

training dataset containing only 25% of the total observations available. A summary of the

ROC-Statistics can be found in Table 2.3 and the AIC based summary is given in Table 2.4.

The estimates with the relevant standard errors can be found in Table 2.5 and Table 2.6.

In the 80% in-sample dataset, the proposed model despite having a higher AIC than the

other models, beat their classification performances uniformly out-of-sample. However, the

out-of-sample classification performance of all the models were very close in this application.

Therefore, given how close the proposed model’s ROC-Statistic is to that of ANN and the

Penalized Logistic, the performances for it can be considered to be essentially equal to them

(or at best slightly better) for this dataset. The results also showcase the need to treat model

fit (AIC) and classification (ROC-Statistic) separately in applications. For example, in the

80% in-sample dataset the average AIC of the proposed model under both prior specifications

were higher than the other models considered, yet it gave classification results superior to

the aforementioned models.

In comparison, in the 25% in-sample data, though the proposed model had the highest

average AIC for the training dataset, it beat the other models in the test dataset on aver-

age by nearly 44.90%. In other words, in regards to model fit, when the dataset is small
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Table 2.3: ROC-Statistic for Management Information System.

Management Information Systems (25%)
Dataset (1) (2) (3) (4) (5) (6)

IS-1 0.51 0.51 0.46 0.20 0.46 0.46
IS-2 0.44 0.41 0.44 0.07 0.44 0.41
IS-3 0.49 0.49 0.49 0.33 0.49 0.49
IS-4 0.48 0.48 0.48 0.04 0.48 0.43
IS-5 0.58 0.52 0.47 0.17 0.52 0.52
IS-6 0.49 0.49 0.44 0.09 0.44 0.49

Mean (IS) 0.50 0.48 0.46 0.15 0.47 0.47
OS-1 0.23 0.19 0.53 0.01 0.62 0.47
OS-2 0.18 0.15 0.35 0.11 0.33 0.24
OS-3 0.11 0.12 0.17 0.14 0.17 0.15
OS-4 0.08 0.09 0.11 0.14 0.11 0.10
OS-5 0.10 0.11 0.21 0.83 0.2 0.17
OS-6 0.05 0.05 0.09 0.01 0.09 0.08

Mean (OS) 0.12 0.12 0.24 0.21 0.25 0.20

Management Information Systems (80%)
(1) (2) (3) (4) (5) (6)
0.25 0.23 0.34 0.01 0.13 0.23
0.15 0.17 0.48 0.08 0.06 0.17
0.26 0.15 0.30 0.00 0.08 0.16
0.24 0.20 0.29 0.04 0.08 0.19
0.20 0.20 0.30 0.01 0.04 0.18
0.14 0.28 0.33 0.08 0.06 0.18
0.21 0.20 0.34 0.04 0.08 0.18
0.09 0.09 0.09 0.05 0.17 0.09
0.11 0.35 0.35 0.18 0.35 0.35
0.00 0.00 0.09 0.16 0.09 0.00
0.19 0.19 0.10 0.05 0.19 0.19
0.19 0.00 0.33 0.46 0.19 0.19
0.10 0.05 0.24 0.05 0.20 0.00
0.11 0.11 0.20 0.16 0.20 0.14

Note: (1): Informative Prior N(0.5, 10); (2) Diffuse Prior N(0, 10); (3): Bayesian Probit (Inform. Prior); (4): Artificial
Neural Network (ANN); (5): MLE Logistic; (6): Penalized Logistic; (IS): In-Sample; (OS): Out-of-Sample. IS-1 (OS-1) to

IS-6 (OS-6): 1 year after publication to 6 years after publication, with IS indicating in-sample and OS indicating
out-of-sample. 25%(80%) implies 25%(80%) of each dataset was kept as in-sample or training data.

Table 2.4: AIC for Management Information Systems for Varying Training Data Size.

Management Information Systems (25%)
Dataset (1) (2) (3) (4) (5) (6)

IS-1 2.20 2.20 1.15 1.09 1.15 1.17
IS-2 2.19 2.19 1.12 0.89 1.12 1.14
IS-3 1.58 1.58 1.1 1.01 1.08 1.10
IS-4 1.61 1.61 1.09 0.8 1.15 1.16
IS-5 2.09 2.09 1.11 0.84 1.19 1.20
IS-6 2.09 2.09 1.12 0.71 1.20 1.21

Mean (IS) 1.96 1.96 1.11 0.89 1.15 1.16
OS-1 1.74 1.74 3.86 1.14 2.97 2.02
OS-2 1.59 1.59 3.16 1.03 3.16 2.09
OS-3 1.37 1.37 1.90 1.55 2.07 1.78
OS-4 1.25 1.25 1.86 1.29 1.75 1.61
OS-5 1.62 1.62 1.68 7.04 1.88 1.66
OS-6 1.53 1.53 2.34 1.39 1.97 1.72

Mean (OS) 1.52 1.52 2.46 2.24 2.30 1.81

Management Information Systems (80%)
(1) (2) (3) (4) (5) (6)
1.64 1.64 1.17 0.91 1.14 1.16
1.42 1.56 1.14 0.90 1.13 1.15
1.31 1.40 1.10 0.86 1.05 1.07
1.28 1.37 1.64 0.88 1.04 1.07
1.47 1.47 1.41 0.93 1.08 1.11
1.39 1.39 1.50 0.93 1.06 1.09
1.42 1.47 1.33 0.90 1.09 1.11
0.96 0.96 0.97 1.41 0.71 0.81
1.06 1.02 0.86 1.12 0.80 0.90
1.26 1.20 0.86 1.08 0.77 0.86
1.00 0.92 1.15 1.10 0.70 0.80
0.93 0.93 1.13 0.99 0.70 0.81
0.95 0.95 1.06 0.86 0.72 0.85
1.03 1.00 1.01 1.09 0.73 0.84

Note: (1): Informative Prior N(0.5, 10); (2) Diffuse Prior N(0, 10); (3): Bayesian Probit (Inform. Prior); (4): Artificial
Neural Network (ANN); (5): MLE Logistic; (6): Penalized Logistic; (IS): In-Sample; (OS): Out-of-Sample. IS-1 (OS-1) to

IS-6 (OS-6): 1 year after publication to 6 years after publication, with IS indicating in-sample and OS indicating
out-of-sample. 25%(80%) implies 25%(80%) of each dataset was kept as in-sample or training data.
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or more unbalanced, in real-world applications the proposed model out-of-sample handily

outperformed all the other models considered including Neural Networks. On average in

out-of-sample data, the proposed model for both specifications had the lowest AIC (1.52 vs.

2.24 for ANN and 2.46 for the Bayesian Probit), and, therefore, it was the best model in

regards to model fit in the more truncated dataset (as hypothesized). In addition, for clas-

sification in this dataset, the proposed model outperformed all other models out-of sample

by 91.67% (0.12 vs. 0.23).

Furthermore, the inference results and the significance outcomes tell a related yet separate

story. While for the 80% training dataset all explanatory variables (other than the Intercept)

are significant at the 0.05 ↵�level, the proposed model uniformly found both the JIF and PP

metrics to be relevant to citation outcomes for all years under consideration. This shows the

versatility of the proposed model since not only does it have uniformly better out-of-sample

prediction results, but it also finds that for the MIS field, both JIF and PP parameters may

be more important than in other fields of the social sciences. However, in the 25% in-sample

data application, the JIF parameter is never found to be significant, yet the PP metric is

always significant and positive. This finding is consistent with Choi et al. 2011, who find

that as the MIS field is more interdisciplinary, there can be rapid changes in its domain

over other fields. As such, it stands to reason that keyword popularity measures such as

PP would be at least as important for such fields as JIF. In addition, the number of years

after publication is also a critical factor in predicting highly-cited papers in the MIS field.

However, unlike in Hu et al. 2020 who find that the fifth and sixth year dataset prediction

performances were better using Journal, Author and Keyword parameters, I find that the

importance of PP and JIF can extend from some where between two to three years after

publication onwards. The conclusion follows from the proposed model’s prediction results

being perfect for identifying highly-cited papers out-of-sample three years after publication,

compared to the prediction performance two years after publication in the 80% in-sample

dataset. In the truncated dataset I also find that prediction performance in the second year
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was almost 78.26% better than the first year. Thus, it seems reasonable to conclude that

the PP parameter can be important for the MIS field somewhere between two to three years

after publication. This seems a reasonable finding since papers based on new ideas can take

two or three years from idea inception, working draft creation, to finally publication after

going through a thorough review process in high JIF journals.

Table 2.5: Summary of Model Fits - Management Information Systems (MIS) for All Years for 80% Training
Dataset.

Variable Proposed Model Proposed Model Penalized Logistic MLE Bayesian Latent Probit
(Diffuse Prior) (Subjective Prior) Estimates Estimates Estimates

Estimates Estimates
MIS-Year 1

Intercept -0.08 (0.10) 0.04 (0.11) -0.13 (0.16) -0.46** (0.18) 0.17*** (0.07)
JIF 1.36*** (0.10) 1.76*** (0.12) 1.03*** (0.17) 1.17*** (0.19) 0.55*** (0.06)
PP 0.41*** (0.11) 1.04*** (0.13) 0.36** (0.17) 0.39** (0.18) 0.16*** (0.05)

Alpha 1.17 (1.31) 1.59 (1.8) 1.00 1.00 NA
MIS-Year 2

Intercept -0.14 (0.11) -0.06 (0.13) -0.06 (0.17) -0.38** (0.18) 0.34 (0.06)
JIF 1.63 *** (0.15) 0.92*** (0.14) 1.00 *** (0.18) 1.14 *** (0.20) 0.59*** (0.05)
PP 0.46*** (0.11) 0.74*** (0.11) 0.53*** (0.19) 0.56*** (0.19) 0.19*** (0.05)

Alpha 1.12 (1.61) 1.24 (1.47) 1.00 1.00 NA
MIS-Year 3

Intercept -0.11 (0.13) -0.42 (0.11) -0.10 (0.18) -0.49** (0.19) 0.24 (0.07)
JIF 1.43*** (0.15) 1.61*** (0.11) 1.25*** (0.19) 1.40*** (0.21) 0.60*** (0.06)
PP 0.56*** (0.10) 0.57*** (0.11) 0.46** (0.19) 0.50** (0.2) 0.09*** (0.05)

Alpha 1.04 (1.9) 1.91 (2.36) 1.00 1.00 NA
MIS-Year 4

Intercept 0.01 (0.1) -0.01 (0.11) 0 (0.18) -0.41** (0.2) 0.14*** (0.07)
JIF 1.66*** (0.13) 1.59*** (0.12) 1.24*** (0.2) 1.42*** (0.22) 0.53*** (0.05)
PP 0.76*** (0.12) 1.06*** (0.10) 0.52** (0.2) 0.55*** (0.21) 0.16*** (0.04)

Alpha 1.05 (1.71) 1.63 (1.81) 1.00 1.00 NA
MIS-Year 5

Intercept 0.06 (0.11) 0.03** (0.08) -0.07 (0.18) -0.44** (0.20) 0.02*** (0.07)
JIF 1.72*** (0.12) 1.77*** (0.10) 1.12*** (0.19) 1.29*** (0.22) 0.56*** (0.06)
PP 0.66*** (0.11) 0.66*** (0.13) 0.50** (0.20) 0.53*** (0.20) 0.17*** (0.05)

Alpha 1.41 (1.48) 1.2 (1.4) 1.00 1.00 NA
Intercept 0.33** (0.11) 0.03 (0.10) 0.04 (0.18) -0.34* (0.20) 0.31*** (0.06)

JIF 1.78*** (0.12) 1.60*** (0.12) 1.14*** (0.19) 1.33*** (0.22) 0.53*** (0.05)
PP 0.72*** (0.10) 0.53*** (0.08) 0.57*** (0.20) 0.61*** (0.21) 0.13*** (0.05)

Alpha 1.41 (2.31) 0.97 (1.18) 1.00 1.00 NA

Note: *** indicates significance at ↵ = 0.01, ** indicates significance at ↵ = 0.05 and * indicates significance at ↵ = 0.10.
Please note ↵ 6= ↵

⇤
n⇥1. ↵ is the significance criteria.
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Table 2.6: Summary of Model Fits - Management Information Systems (MIS) for All Years for 25% Training
Dataset.

Variable Proposed Model Proposed Model Penalized Logistic MLE Bayesian Latent Probit
(Diffuse Prior) (Subjective Prior) Estimates Estimates Estimates

Estimates Estimates
MIS-Year 1

Intercept -2.43 (0.16) -2.86 (0.15) -1.12*** (0.31) -1.50*** (0.43) -0.47 (0.06)
JIF -0.34 (0.14) -0.41 (0.11) -0.62* (0.33) -1.39** (0.7) -0.44 (0.07)
PP 0.67*** (0.12) 0.52*** (0.13) 0.38 (0.31) 0.54 (0.42) 0.08*** (0.06)

Alpha 4.56** (2.62) 4.47* (3) 1.00 1.00 NA
MIS-Year 2

Intercept -1.67 (0.09) -2.17 (0.14) -1.16*** (0.34) -1.53*** (0.45) -0.46 (0.07)
JIF -0.76 (0.14) -0.27 (0.17) -0.70** (0.35) -1.59** (0.76) -0.44 (0.07)
PP 1.12*** (0.16) 0.94*** (0.14) 0.59* (0.33) 0.83* (0.45) 0.20*** (0.05)

Alpha 3.17*** (1.19) 3.51*** (1.66) 1.00 1.00 NA
MIS-Year 3

Intercept -2.51 (0.10) -1.92 (0.11) -1.26*** (0.33) -1.27*** (0.41) -0.56 (0.06)
JIF 0.50 (0.20) 0.29 (0.17) -0.23 (0.32) -0.55 (0.69) -0.17 (0.07)
PP 0.96*** (0.17) 0.89*** (0.16) 0.71** (0.33) 1.04** (0.46) 0.20*** (0.05)

Alpha 4.19* (2.72) 3.64** (2.12) 1.00 1.00 NA
MIS-Year 4

Intercept -1.78 (0.16) -1.63 (0.14) -1.07*** (0.33) -1.05*** (0.40) -0.40 (0.08)
JIF 0.03 (0.21) 0.60 (0.17) -0.13 (0.32) -0.30 (0.68) -0.08 (0.07)
PP 0.96*** (0.15) 1.22*** (0.12) 0.75** (0.33) 1.01** (0.42) 0.21*** (0.05)

Alpha 3.94*** (1.65) 3.34** (1.82) 1.00 1.00 NA
MIS-Year 5

Intercept -1.78 (0.15) -1.73 (0.14) -1.08*** (0.32) -1.12*** (0.38) -0.49 (0.05)
JIF -0.08 (0.2) -0.06 (0.18) -0.21 (0.32) -0.47 (0.67) -0.29 (0.08)
PP 0.81*** (0.13) 0.77*** (0.14) 0.40 (0.32) 0.60 (0.46) 0.12*** (0.06)

Alpha 4.03* (2.52) 4.07*** (1.87) 1.00 1.00 NA
MIS- Year 6

Intercept -1.18 (0.12) -1.78 (0.19) -1.06*** (0.32) -1.11*** (0.38) -0.56 (0.06)
JIF -0.33 (0.17) -0.01 (0.17) -0.23 (0.32) -0.53 (0.68) -0.23 (0.07)
PP 0.54** (0.17) 0.63*** (0.14) 0.42 (0.32) 0.63 (0.45) 0.18*** (0.05)

Alpha 3.24*** (1.59) 3.89* (2.45) 1.00 1.00 NA

Note: *** indicates significance at ↵ = 0.01, ** indicates significance at ↵ = 0.05 and * indicates significance at ↵ = 0.10.
Please note ↵ 6= ↵

⇤
n⇥1. ↵ is the significance criteria.
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2.8 Discussion

The simulation results are indicative of the efficacy of the methodology even when the as-

sumptions of the GLM model specifications are not violated, in the presence of unbalanced

data. However, the most noteworthy result was that the model contained nearly 84.20%

of the true parameters while having the lowest AIC’s among all the models. Consequently,

the proposed model does not overfit the data, while maintaining accuracy and numerical

consistency, even when the sample size is small, and does so with far shorter confidence

intervals than widely used existing methodologies compared. That this level of performance

was attained using only two-thirds the number of iterations of the Bayesian Probit is further

testament to its applicability to a multitude of scientific contexts.

The results for different training data size applications to identify highly-cited papers is also

informative. In regards to the MIS dataset which kept 80%21 of all data as training, the

results among the methodologies are largely consistent, with both JIF and PP parameters

being significant. The proposed methodology also finds both the JIF and PP parameters to

be significant for every year. This indicates that in general for the MIS field both PP and JIF

are very good predictors of whether a paper will be highly-cited. In addition, the use of the

methodology yields interesting results in terms of when Keyword popularity measures, such

as PP, are more predictive of highly-cited papers. In the 80% in-sample training dataset for

the diffuse prior application, the prediction results are worse for articles considered after only

one or two years of publication. However, from the third to sixth years, the ROC-Statistics

are on average 366.67% better than the first two years. This clearly indicates that both JIF

and PP are more significant in predicting which articles are more likely to be highly-cited

somewhere between two to three years after publication and beyond, a result which is novel

to the field.
21Year-1: 251 observations, Year 2: 233 observations, Year 3: 240 observations, Year 4: 224 observations,

Year 5: 223 observations, Year 6; 219 observations.
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The efficacy of the proposed model is evident here, since it outperforms all models, even

more widely used AI and ML applications such as ANN, in multiple in-sample and out-of-

sample datasets in regards to model fit (AIC), as well as prediction (ROC-Statistic). Since

it is generally recognized that such AI and ML methods give better model fit and prediction

results, and only on rare occasions would they be outperformed by more traditional method-

ologies, it is one of the more interesting findings to consider here. As such, the results show

that this assumption does not necessarily have to hold given a particular model specification

considered and may indeed be the opposite! Therefore, the proposed methodology gives the

empirical researcher a better baseline against which the performance of AI and ML methods

can be compared and contrasted and improved upon as needed.

One of the more important applications of the proposed methodology is when the data size

is small or the data is unbalanced. For the truncated data, the proposed model outperforms

all models on average, out-of-sample in regards to prediction/classification (Table 2.3) and

model fit (Table 2.4) including ANN. The out-of-sample AICs are 61.84% better than the

Bayesian Probit (1.52 vs. 2.46) and 47.37% better than ANN (1.52 vs. 2.24), with roughly

two-thirds the number of iterations needed for convergence as the Bayesian Probit. This

illustrates the versatility and robustness of the methodology as it outperforms existing widely

used methods including the ANN, on both model fit (AIC) and prediction (ROC-Statistic) for

the test dataset. Further, this performance is attained while maintaining interpretability of

its parameters while needing fewer iterations than the existing Bayesian Probit. In addition,

the methodology is demonstrated to have robust confidence intervals which contain the

true parameters more often in the simulation study. These results were attained with very

general assumptions on the hyperparameters and can likely be further improved as needed

by considering different specifications in the estimation process.

In fact, the proposed methodology has definite advantages over all the methods compared

and contrasted in regards to inference. This conclusion, in the case of the Bayesian Probit,
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MLE Logistic and Penalized Logistic is apparent from the simulation results. However,

they are reinforced by the empirical application as the standard errors of the parameters

of the proposed method are not as large as the MLE methods or indeed as small as the

Bayesian Probit. As such, it produces more realistic confidence intervals than these models

in the empirical application, which is more likely to contain the unknown true parameter22.

Thus, overall the proposed model outperforms all methods in regards to both model fit and

classification in the smaller training dataset example out-of-sample. It further matches (or

slightly improves) the best performing models for classification in the larger training dataset

application and has more robust confidence intervals as demonstrated in the simulation

studies. As such, its usefulness becomes even more apparent when the data are unbalanced

or smaller as theorized.

However, it should be noted that the goal of the methodology proposed is not to replace

existing AI and ML methods, but rather to guide their application in a more focused way for

better model fit and prediction. As an example, consider (as is the norm in empirical appli-

cations) the MLE Logistic as the baseline model used to compare against other AI methods

such as ANN. If we relied on this and not consider the proposed methodology as a baseline,

we may stop our analysis as being adequate in a cursory application of an ANN model. Yet

the ANN application can be improved by considering other specifications of hidden layers

(here a maximum of two hidden layers with two neurons per layer were considered), for better

model fits and prediction. This is a task which in general has infinitely many specifications

of the ANN model to consider. Yet, by using the proposed methodology, we can improve the

baseline against which these AI and ML models can be compared to further improve statis-

tical and scientific conclusions beyond that possible by only considering the MLE Logistic

regression as the baseline. Consequently, the proposed model is a better baseline model for

comparison and should therefore lead to better scientific conclusions regarding questions of
22In comparison to ANN, all the other methods, including the proposed methodology, have better inter-

pretability of model parameters, and ANN, therefore, is naturally less useful for inference.
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importance to Informetrics, Informatics or the sciences in general. Furthermore, even if after

many specifications of existing AI and ML methods, they outperform the proposed model

in regards to model fit and/or classification, it does not suffer from a lack of interpretability

of the parameter estimates. This is especially important since its confidence intervals are

more robust than existing non-AI or ML methods. As such the researcher may decide to use

it even if it is outperformed in regards to AIC (model fit) or ROC-Statistic (classification

or prediction) for inference purposes. Accordingly, it finds a balance between AI, ML and

non-AI or non-ML methods to provide a valuable tool for the analyst in addition to being a

better baseline model for comparison.

One of the more useful results of the model is the ability to compare the ↵⇤ values to

benchmark DGPs such as the Logistic. In the truncated MIS dataset, the large sample test

on ↵⇤ rejected the dataset coming from a Logistic DGP. Therefore, it is one of the reasons why

both the AIC and ROC-Statistic were lower (and therefore better) for the proposed method

in that application in comparision to the MLE Logistic methods. Yet in the 80% in-sample

MIS data, ↵⇤ failed to reject the DGP being Logistic. Therefore, the excellent classification

results out-of-sample for this dataset for both the MLE and Penalized Logistic are entirely

complementary and consistent with the proposed methodology. Please note that in the Hu

et. al. 2020 paper, the Logistic regression gave the best classification performance for this

dataset. Accordingly, the findings of the proposed method and the application results here

are entirely consistent with existing findings in the literature. This then provides further

validation of the proposed methodology as being complementary to existing non-AI and

non-ML methods widely used in the sciences.

In addition, given the advantage of the model in regards to both inference and classifica-

tion in out-of-sample data and model fits for certain datasets, it leaves little doubt that the

methodology outperforms the other methods in the empirical applications overall here (while

giving similar results to existing methods if the data support them). In particular, the results
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highlight the distinction between model fit (AIC), inference (p-value/significance/confidence

intervals/scientific significance) and classification/prediction that should be carefully consid-

ered by every scientist using statistical methods. It is particularly important to recognize

that it is possible for a model to outperform another on any one of these criteria while un-

derperforming in the other(s). This can be through (among others) overfitting or having

outliers in the data. For example, a particular model can have a lower AIC, in-sample or

out-of-sample, yet have poor classification and/or inferential results, when the estimates and

standard errors of the model are used for scientific interpretation or inference.

Therefore, in application the proposed model finds the appropriate balance between these

model evaluation criteria without overfitting the data. Consequently, in regards to scientific

applicability it seems to have demonstrable advantages over existing widely used methods

compared here that can further guide AI and ML applications. Evidently, the proposed

model’s ability to identify such differences, under varying realizations of the underlying

stochastic processes, under minimal assumptions, makes it ideal to inform decision making

and answer scientific questions. As such, if we were to consider the multinomial or non-

parametric extensions of this baseline construct, then it also, through better all around model

fit, inference and classification, should be able to add to the current scientific framework.

However, these results are left open to be pursued in future efforts.

In fact the ↵⇤ values and the accompanying test can be even more informative to the re-

searcher for AI and ML applications such as ANN. This is because, as in most AI and ML

applications, there is a need for functional specification in the estimation process. If ↵⇤

rejects the null that the data came from a Logistic DGP, one can then specify a different

functional form for estimating ANN. In doing so, the researcher can then focus on optimiz-

ing model fit and prediction with respect to the number of hidden layers and/or neurons

specified in each layer. As such, the methodology can be used in a number of complementary

ways as a baseline to improve answers to scientific questions of interest to the researcher.
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Evidently, while it is possible that in a particular dataset existing neural network and machine

learning techniques (SVM) can outperform the proposed methodology, it is also possible that

the proposed methodology can outperform existing AI and ML methods (Hu et al. 2020).

As such, few models can be claimed to be superior without further contextual comparison of

the dataset and application. However, it is crucial to point out that by changing the input

criteria, any particular model may outperform another (the classic issue of data mining,

p-hacking etc.). The true robustness of a particular method, therefore, should depend on

the results attained in simulation and real-world applications without any such changes

to the inputs. Furthermore, this should be done under completely diffuse assumptions for

general robustness checks. The results attained above were consistent with this philosophy of

scientific inquiry. As such the results point to the viability and robustness of the methodology

under a wide array of applications23.

In addition, the proposed model nests the Box-Cox transformation (Guerrero and Johnson

1982), as the Bayesian implementation ensures congruency to the MLE result of the pa-

per under particular prior specifications. More specifically, if we specify a non-informative

prior then the proposed model is similar to the MLE method on which the convergence and

uniqueness of the Box-Cox transformation results mentioned above rely. However, the pro-

posed method is more general in the sense that if we were to specify an informative prior,

as we have done above with the subjective and diffuse priors of N(0.5, 10) and N(0, 10)

respectively, then existence and uniqueness results follow both from Theorem 4 as well as

Irreducibility24 and Ergodocity25 of the MCMC implementation above for any link modifica-

tion problem. These conditions are easily satisfied under i.i.d. assumptions. It is important

to also highlight that while the application of the methodology is through the Logistic link
23Furthermore, such applications can be done either on a standalone basis or for comparison purposes to

better train AI and ML methods as well.
24A stochastic process that is Irreducible can visit all neighborhoods in the appropriate � � algebra with

positive probability (Fouque et al. 2007).
25A stochastic process is Ergodic if the average of a function of the process goes to the ensemble average

as time grows large ([Ibid]).
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modification problem, it can equally be applied to any generalized linear model in the pres-

ence of the appropriate link modification. Consequently, the Box-Cox transformation [Ibid]

is a specific version of the generalized framework presented here and is, therefore, nested

within it!

While the convergence of the functional forms and their proofs provide solid foundations,

it also must be acknowledged that no simulation result can be thought of as a proof in

general. Though this is never the purpose of a simulation study alone, there is room here

for further empirical verification of the results portrayed. However, as the simulation is done

over both linear, non-linear and mixed model specifications, it provides a more complete

picture than perhaps performing it on only one type of data. Nevertheless, the results are

still dependent on the created covariates. However, since in GLM it is customary to consider

the X’s as fixed, it seems reasonable that this will be less of an issue here than in other model

specifications. As an example, the empirical test was done on a relatively small dataset of the

MIS field. Thus, it would be interesting to compare the results to other such datasets both in

Informatics, Informetrics and more broadly in the sciences. Naturally, further applications

of the methodology to varied datasets of different sizes and complexities in diverse fields are

necessary to better understand its efficacy26. Furthermore, as with any numerical procedure,

the convergence of the proposed methodology can also vary based on a multitude of criteria

depending on the data. Though, this is the case for any numerical estimation process, and,

therefore, other than for relatively rare boundary conditions it seems unlikely to change the

conclusions above.

There are many extensions of this model which are left open for future researchers. For

example, in terms of time series analysis, the efficacy of the model must be ascertained.

Furthermore, there are numerous ordered and unordered multinomial models in the pres-

ence of heterogeneity and varying scientific phenomena, which need to be extended in this
26The author hopes to make general statitical packages available to the greater scientific community to

apply the methodology.
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framework and are left as open questions to be answered. There are also multiple AI ap-

plications as well for the methodology, from image recognition to understanding behavior

of algorithms under varying input criteria. Given the excellent inference and classification

results, and the fact that this was attained even in the presence of very few iterations, there

is also much potential for the method to be used in large data contexts. Yet, another open

area of research is to consider the groupings of ↵⇤
i
’s as representative of the various types of

groups in the data, and thus can be thought of as a means of understanding the behavior

within each sub-group as well.

One of the more useful results is that the findings are robust to when there are fewer choices

or the frequency of success is low in a dataset. This is especially relevant for Informetrics

and the physical, biomedical and social sciences. For example, one rarely sees the same

number of articles being highly-cited as those that are not, or a dataset which has exactly

the same number of agents choosing an alternative as those not choosing an alternative.

Thus, the proposed method provides a reasonable step forward in modeling efforts under

these scenarios, with natural extensions to today’s large datasets.

2.9 Conclusion

In summary, the proposed methodology for Generalized Linear Models, and for the Gener-

alized Logistic Link estimation procedure in particular, is seen to give equal or better model

fit, inference and classification/prediction results, to existing methodologies when the as-

sumptions of the model are relevant and the link condition is satisfied. Yet the methodology

can give much better model fits, inference and prediction results especially for out-of-sample

data when the traditional assumptions for GLMs are violated, even in comparison to AI and

ML methods such as the ANN. Therefore, it is shown to be more flexible to violations of

the assumptions on the error distribution, in both simulation and real-world applications.
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Consequently, it is more robust, with better classification and inference outcomes compared

to existing methodologies and can be used to understand relationships between scientific

variables of interest far more scientifically. As such, it provides an expanded tool-set with

which scientists, statisticians, mathematicians, analysts, researchers and managers can hone

their correlational or causal understandings between variables. Furthermore, the results hold

even in large data settings, where estimation can proceed with small sample sizes over each

MCMC iteration, even in the presence of low frequency of successes observed in the data.

However, as with any new methodology, the efficacy of the model still has much room for

verification empirically in other contexts and is left up to future applications to the greater

scientific community.
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Chapter 3

Nonparametric Application
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3.1 Introduction

As mentioned earlier, binary outcome models continue to be relevant for Artificial Intelli-

gence (AI) and Machine Learning (ML) applications (see for example, Li et al. (2018); Hu

et al. (2020); Chowdhury (2021a)), as they serve as the building blocks for various Multi-

nomial extensions (e.g,. Allenby and Rossi (1998); Murad et al. (2003)). The type of usage

whether latent variable (LV) or binary outcome (BO) is field specific. For example, in Econo-

metrics LV models have been used to understand behavior of the average individual within

a population (see Greene (2003) for a summary), for calculating propensity scores for causal

interpretation and program evaluation (see Imbens and Rubin (2015) for an excellent sum-

mary), and also to understand heterogeneity through finite and infinite mixture distributions

(Andrews et al. (2002)). In Psychology (Hofmans (2017)), Experimental Economics (Edel-

man et al. (2017)), Biomedical Sciences (Zhang et al. (2017)), and in the Physical Sciences

(Hattab et al. (2018)) there is a extensive history of each formulation.

From Chapter 2, since the underlying assumptions of BO vs. LV models are distinctly

different, it is difficult to reconcile divergence in model fit, inference or prediction (MIP)

performance between them. Further complexities arise if the data is unbalanced as then

the assumptions of Logistic or Probit models need not hold. Thus unsurprisingly, it is well

established that the parameter estimates in these models, in either BO or LV models are

susceptible to bias and inconsistency, (e.g., Simonoff (1998), Abramson et al. (2000), Maity

et al. (2018)). To overcome some of these issues, (Chowdhury (2021a)) presented a para-

metric extension of the current Genralized Linear Model (GLM) framework. The work had

multiple contributions. Applied in the Logistic formulation Chapter 2 showed that it can

give equivalent performance to existing GLMs such as the Logit if the data supported their

assumptions, but could give better MIP results if they were violated. The methodology also

showed that it can give results better or equivalent to popular Artificial Intelligence (AI)

methods such as Artificial Neural Network (ANN) under a wide range of circumstances with-
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out loss of interpretability of parameter estimates. In addition, the methodology introduced

a large-sample diagnostic test which could be used to improve existing AI methods. As such,

the work presented a better baseline against which popular AI and machine learning (ML)

methods could be compared with better coverage probabilities than existing widely used

methodologies such as the maximum likelihood (mle) Logistic regression.

Further, the functional specification was shown to be highly flexible, since the link condition

automatically adjusts to violations of the link constraint. This is because the link constraint

is imposed to hold conditionally for all observations. However, the underlying probability of

success in its formulation was assumed to be parametric in design. Thus, despite a flexible

link function, the estimation of the model when the distribution on the underlying latent

error differs from the parametric specification can potentially lead to minor techinicalities.

As such, this paper adds to this parametric version presented in Chowdhury (2021a) using

a nonparametric application which is shown to have certain advantages under focused ap-

plications. Though the parametric version remains relevant for inference, especially if the

underlying DGP is symmetric, the nonparametric application is shown to improve upon it

for classification purposes in training datasets and can outperform it in test datasets if the

underlying DGP is asymmetric. The simulation studies also paint a more nuanced picture

of when the parametric or nonparametric versions are more (or less) useful in comparison to

existing AI, ML models or GLMs.

Thus, this chapter presents six meaningful extensions of the extant literature that spans all

three aspects of MIP. In particular, for convergence results, in simulation studies I show

that the convergence of the nonparametric application takes longer if the underlying DGP

is asymmetric but has very similar performance to the parametric setting if the DGP is

symmetric. For prediction, if the DGP is symmetric it can outperform the parametric

version for training datasets but has very similar prediction performances in test datasets to

the existing parametric version. Furthermore, for symmetric DGPs it has largely equivalent

53



or at best nominally better inference performance to the parametric methodology. However,

if the data are asymmetric it has better overall prediction and inference performance to

the existing parametric version. To better comprare classification performance among the

various methodologies considered, I also introduce a new ROC-Statistic based statistical test

(Chowdhury (2019)). This large-sample test allows for comparison of model performance to

understand if the model results are statistically different. In addition, in one of the more

useful applications of the methodology, through a separate large-sample test we can test

whether any particular parametric assumption on the DGP actually fit the observed data,

without any a priori assumption on the DGP itself. As such I show it to be an extension of Liu

and Zhang (2018) in understanding model diagnostics for categorical data analysis. In what

follows we first present the mathematical foundations of the methodology in Section 3.2, I

then perform extensive simulation studies in Section 3.3 followed by multiple applications of

the methodology to real-world datasets in Section 3.4. I then discuss the findings in Section

3.5 and finally end with some concluding thoughts in Section 3.6.

3.2 Methodology

Following the notation of Agresti (2003) we have that a GLM expands ordinary regressions

to nonnormal response distributions and modeling functions. It is identified by three com-

ponents, the random component for the response y, a systematic component that outlines

how the explanatory variables are related to the random components, and a link function.

The link function specifies how a function of E(y) relates to the systematic component.

The random components of y are considered independent and identically distributed (i.i.d.).

Henceforth, uppercase letters indicate matrices and bolded letters indicate vectors. Thus,

consider a n ⇥ 1 outcome variable y which is related to a n ⇥ (k + 1) set of explanatory

variables, X = (1,x1, ...,xk), with xk and 1 each n ⇥ 1, through a continuous, bounded,
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real valued function c(X) of the same dimensions, namely n⇥ (k+1). The usual (k+1)⇥ 1

parameters of interest are � = {�0, ..., �k}, where each {�k} can be a vector.

In particular, in the one dimensional classical formulation if we have a sample of size n,

{(y1,x1), ..., (yn,xn)} = {(yi,xi)}ni=1, from the exponential family its pdf can be written as,

f(yi; �i) = a(�i)b(yi)exp[yiq(�i)]. (3.1)

The values of �
i

varies as a function of the explanatory variables and q(�) is called the

natural parameter. While a GLM is usually considered to be linear in both the explanatory

variables and �, for example ⌘i =
P

ij
�jxij

1 we may expand the systematic components to

encompass a much broader array of functions and linear spaces in the random parameters

model where,

�i = {�
i0, ...,�ik

}. (3.2)

In particular, we may define,

⌘i =
X

j

�
ij
c(xij). (3.3)

Consequently, this model formulation may be thought of as a basis expansion on the usual

regular topology and naturally subsumes the traditional formulation over the random pa-

rameter �i. Thus, a link function may be defined as

g(µi) = �0
i
c(xi). (3.4)

In order to retain the current models should the data support them, I follow the more

general framework as in Chowdhury (2021a). For completeness, I restate the latent variable
1Further, if g(µi) = q(�i), we call it the canonical link function.
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formulation as considered in (Albert and Chib (1993)) here. Let y⇤ be a latent or unobserved

continuous random variable. Then an index function model for binary outcome gives the

GLM,

y⇤ = c(X)� + ✏, (3.5)

where

yi =

8
>><

>>:

1 if y⇤
i
� 0,

0 if y⇤
i
< 0,

(3.6)

with the threshold 0 being a normalization. The two approaches have their strengths and

weaknesses, and the purpose of this contribution is to better align the advantages of both

models in a rigorous fashion using some of the findings of Chowdhury (2021a). For example,

Albert and Chib [Ibid] clearly point out that in the binary regression case in the Frequentist

interpretation any observed error can only take two values, either 1 or 0. On the other

hand, in the latent variable formulation the existence of such an unobserved variable y⇤ is

not guaranteed in the current formulation. The reasoning why the application still holds

especially in the symmetric DGP case is due to Tanner and Wong (1987) as in Albert and

Chib [Ibid], y⇤ is integrated out. In making such an assumption it is also necessary to fix

the variance of the latent distribution for identification purposes. An approach which under

most circumstances would be considered restrictive.

The proposed methodology has two main goals. It first seeks of a way to incoporate the

strengths of both the latent variable and the binary regression in a mathematically rigorous

form. Secondly, it seeks to overcome restrictive assumptions on the latent distribution such

as having a constant variance or assuming a particular distribution on the probability of

success. Below I first outline how the two methodologies may be combined. Then I outline
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a different methodology for the latent variable formulation using signed measures which has

distinct advantages over the current latent variable formulation. I then show how both of

these methodologies can be combined in a unified framework.

3.2.1 Equivalency of Binomial Regression and Latent Variable For-

mulations

To see the equivalency of the models, first note that by construction of the binary regression,

E(y|X) = F (y = 1|X) = p(X), (3.7)

where F is a prespecified cdf under the binary regression case. Going forward, for nota-

tional simplicity I will suppress the express dependence of p on X unless otherwise stated.

Accordingly, this induces a pmf of,

f(yi|xi) = pyi
i
(1� pi)

(1�yi). (3.8)

Clearly, symmetry and the cutoff of 0 are important for the equivalency of the binomial

regression and its latent variable application. Let F ⇤ denote the symmetric cdf of the latent

variable, and F the cdf of the binomial regression model, then if we consider the random

parameter formulation we have,

p
i
= F (x0

i�i
) = F ⇤[y⇤

i
> 0] = F ⇤[�✏i < x0

i�i
] = F ⇤[✏i < x0

i�i
] = F ⇤[x0

i�i
]. (3.9)

Of course, if we set the latent variable and the binomial regression probability of successes

to be the same we get pointwise equivalency between the two models under the assumptions

above. Further, under i.i.d. assumptions, for the binomial regression WLOG for k  n
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successes,

L(X|y,�) =
nY

i=1

F (yi,xi,�)
yi(1� F (yi,xi,�))

1�yi , (3.10)

where we can interchange the LV and BO model distributions if the assumptions on the

latent variable and its existence actually hold.

Indeed, if the assumptions above are not true regarding the latent variable formulation

the congruency between the two models become less clear since the errors for the binomial

regression case again can only take the values of 0 or 1 in the Frequentist formulation. As

an example, if the latent variable distribution is not symmetric it is entirely possible that,

pi = F (x0
i�i

) 6= F ⇤[�✏i < x0
i�i

], (3.11)

given the observed data, and therefore equivalency is necessarily lost.

As such, a more flexible latent variable formulation is needed to ensure that equivalency

holds. Accordingly, consider a more flexible methodology using a general functional analysis

rooted perspective. For its application note that by construction,

E(yi) = F (x0
i�i

), (3.12)

which is consistent only if the specification of F is the true distribution function for the

probability of success. This is under most circumstances, unknown. On the other hand,

regardless of the assumed distribution for the latent probability of success, even if it is

assumed to be the same as that assumed for F, asymmetry or unbalancedness in the data

may imply (3.11). Therefore, it is reasonable to expect different model fit, prediction and

inference result from each. Unsurprisingly, therefore this is exactly what is seen in application

throughout the sciences. Yet there are multiple virtues of the Bayesian approach to binary
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and polychotomous data as illustrated in Albert and Chib (1993). Chief among these are the

continuous nature of the latent error and the ability to use a data augmentation approach

as in Tanner and Wong (1987).

One of the principle contribution of the current work is in detailing how to utilize these

virtues while still overcoming the identifiability concerns addressed. In particular, not only

do we wish to fit a more flexible nonparametric distribution on the latent probability of

success, but we also want to allow its distributional parameters to be free from artificial

constraints, such as the need to fix its variance for identification of these same parameters.

In addition, we would like to implement such a methodology so that it is equivalent in some

manner to the true known data likelihood, namely binomial under i.i.d. assumptions.

Accordingly, note that if due to reasons above (3.11) occurs we may consider a pointwise

transformation such as,

(F ⇤[�✏i < x0
i�i

])↵
⇤
= E(yi) = F (x0

i�i
). (3.13)

With such a transformation, which holds pointwise for some ↵⇤ 2 R \ {�1,1}, we may

specify a fully nonparametric distribution on the latent probability of success while main-

taining pointwise equivalency to the underlying binary model. This relationship should hold

whether the true latent distribution is symmetric or asymmetric. In the asymmetric case we

need not then ensure that the cutoff for a probability of success is some particular prefixed

support point such as 0, but rather may let this cutoff be based on a probability as a function

of the observed data. As such, if we are able to specify such a distribution nonparametri-

cally we can ensure even without any artificial preconceived restrictions on the distributional

parameters that pointwise, the probabilities of successes match.

Further note that beyond the pointwise convergence of the binary regression and latent

variable probability of success in an observed sample we would like to say more about the
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equivalency of these two models overall in terms of the likelihood. That is to say that

since pointwise convergence by iteself certainly does not guarantee strong or almost sure

convergence, one would like to relate these two models in a more concrete way. In fact, it

is clear that under the two specifications the likelihoods for the latent variable and that for

the binary outcome models are not necessarily the same. Yet note that the link condition as

expressed above in (3.13) ensures that the probability of successes are pointwise convergent

for both models. Accordingly, if we define L(�|y) as the likelihood w.r.t. the observed

data and L(�|y⇤) as the likelihood w.r.t. the latent outcomes then by Birnbaum’s Theorem

(Casella and Berger (2002), Theorem 6.3.6) we may write,

L(�|y) = c(y,y⇤)L(�|y⇤), (3.14)

for some constant c(y,y⇤). While the mathematical results follow below, intuitively this

seems a very reasonable condition since y⇤ is a function of y through both xi and �. In

fact, that such a relationship should hold for any two experiments or sample observations

that claim to explain the same underlying stochastic process is also entirely logical. Thus,

in the Bayesian formulation it straightforwardly follows that the posterior distribution of �,

should satisfy p(�|y⇤) / p(�|y). As such, we must have that the inferences drawn from such

a combination of the binary and latent formulations should be identical.

Note however, that while Birnbaum’s Theorem ensures the inferences drawn are identical

under the two likelihoods, model fit and prediction results need not be identical at all. To

ensure the existence and uniqueness of the latent variable specification, it is necessary to go

further to ensure the equivalency of the two models. For this purpose, we need to consider

a signed measure.

Thus, in what follows I lay the groundwork for the viability of the model specifications. To

ensure identifiability and equivalency to existing models, without loss of generality I focus the
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nonparametric methodology to depend on only one parameter ↵⇤, such that the generalized

link condition holds for each observation. Below I first discuss the methodology and then

introduce a new (to the best of the author’s knowledge) statistic called Adjusted ROC-

Statistic (ARS) for classification in categorical models. I then discuss how the methodology

can be used for model diagnostics for any parametric assumption on the underlying DGP

such as Logistic or normal specifications. Then I expand on the nonparametric methodology

and give the necessary proofs.

3.2.2 Discussion on Existence and Uniqueness of Signed Measure

To begin our discussion consider the usual Logistic regression for the binary specification

when we specify

F (xi,�) = (1 + exp(xi�)
�1)�1. (3.15)

In this formulation we get the Logit link function as the familiar log-odds ratio,

log

✓
F (y, X,�)

1� F (y, X,�)

◆
= �(X,�) = c(X)�, (3.16)

where following Chowdhury (2021a) � is a continuous, bounded function of the explana-

tory variables in the GLM framework. In the nonparametric setting this condition need

not hold if F, the probability of success is not the Logistic distribution. If the underlying

probability of success does not follow a Logistic distribution this formulation should not

hold. Furthermore, the underlying probability of success and its distribution is something

that is inherently unknown and as before is a function of the observed X’s. In fact, even

assuming a nonparametric distribution on pi is insufficient to ensure almost sure conver-

gence. Furthermore, simply assuming a nonparametric distribution is also not enough to

ensure equivalency between a binary regression framework and its latent variable specifica-
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tion (Proposition 3.5). These insights follow straightforwardly from the convergence in Law

or distribution of the nonparametric distribution to the true distribution. This is because

convergence in distribution of a nonparametric estimator is of course not enough to ensure

convergence in probability or almost surely. Thus, ensuring almost sure convergence utiliz-

ing the current latent variable framework requires a more robust formulation. To facilitate

this we must impose a measure theoretic construct on the latent variable formulation. In

particular, we must consider signed measures (which can take both positive and negative

values) over the link constraint support on �(X,�).

Thus, consider any measure space (X0,M0, ⌫0) and a restriction of the ��algebra M0 to

⌃ ✓ M0 such that the link condition holds for the linear space X ✓ X0. Then the results

below show that (X,⌃, ⌫) is also a measure space where ⌫ is the restriction of ⌫0 to ⌃.

In particular, note that by Skohorod we may define a random variable �(X,�), such that

(�(X,�),⌃) is also a measureable space. As such consider a signed measure ⌫ on {⇣ 2

�(X,�)} for any given � and define A = {y⇤ 2 ⇣ : �(X,�) = y⇤ � } and B = {y⇤ 2

⇣ : �(X,�) = y⇤ < }, where  2 (0, 1) thus A \ B = ;. Further let A and B, be a

Hahn Decoposition of ⇣, for which A is positive w.r.t. ⌫ and B is negative w.r.t. ⌫. Define,

⌫+(E) = ⌫(E \ A) and ⌫�(E) = �⌫(E \ B) for some arbitrary E 2 ⇣. Then by using the

Hahn Decomposition Theorem as well as the Jordan Decomposition Theorems we have,

⌫ = ⌫+ � ⌫�, (3.17)

with the mutually singular measures {⌫+,⌫�} unique. Thus, there exists a ⌧ ⇤ such that

element wise,

⌫(xi,�)
⌧ ⇤ = �(xi,�) and ⌧ 2 R\ {-1,1}, (3.18)

holds for each observation. The existence of such a measure and two positive measure
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{⌫+, ⌫�}, are guaranteed by the construction of the link function condition in (3.13) and will

be discussed in greater detail in the mathematical results below. For the current purpose,

note that the uniqueness of the positive measures allows us an extremely useful way to ensure

the link condition holds pointwise for each observation. Specifically, we know that if the

probability of success is given by a nonparametric distribution F̂ (xi,�) then the probability

of failure can be given by 1� F̂ (xi,�). Thus, if ⌫+ = F̂ (xi,�), then ⌫� = (1� F̂ (xi,�)).

Since the labels of success or failure are arbitrary, the above formulation can easily be

reversed if the probability of failure is considered as a success and as such the link function

formulation with ⌫+ = (1 � F̂ (xi,�)) would also be valid if a probability measure exists

that can represent ⌫ in such a way.

For the present discussion let us proceed under the assertion that such a probability measure

exists (please see the mathematical results section for rigorous proofs of this assertion and

other relevant results). Then it must be that such a measure exists and that it is unique.

Then using Skohorod one may easily define a nonparametric distribution F̂ (X,�) such that

F̂ (A) =
R
A
⌫+ and F̂ (B) = 1 �

R
A
⌫+ =

R
B
⌫�, which may or may not be symmetric by

construction and therefore the probabilities of successes and failures need not necessarily

approach 1 or 0 at the same rate. Therefore, the link function is also not necessarily sym-

metric by construction, and is dependent on the observed data, as it should be. As such,

the methodology encompasses the existing latent variable formulations if the data support

them.

To illustrate the methodology, let us continue with the Logistic regression example and note

that if �(xi,�) � 0,

log

✓
F (y,xi,�)

1� F (y,xi,�)

◆
= �(xi,�) = F̂ (xi,�)

↵⇤
, (3.19)

holds for some ↵⇤ pointwise. Therefore, the link modification is valid for any binary latent
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variable formulation. If �(xi,�) < 0 the indicies of success or failure can be reversed such

that 3.19 again can hold for every observation. In fact, this allows for a more flexible latent

formulation since we do not have to assume a particular probability of success for F such as

the Logistic. Nor do we have to fix the variance parameter of a parametric distribution such

as the Logistic for identification purposes.

Thus, the preceding discussion shows how Birnbaum’s Theorem and the Jordan Decomposi-

tion Theorems can be used to relate the binary regression and any latent variable formulation

and extend the current latent variable formulations accordingly. Below I now expand on for-

mal mathematical proofs that verify the assertions above. First I give the results that lay

the mathematical foundations of this new methodology which ensures equivalency between

the two formulations, and also ensures the unique identification of the true but unknown

distribution of the probability of success.

3.2.3 Mathematical Results

Below, I first present some relevant definitions and then present the mathematical founda-

tions for the discussions above. For a discussion on when the latent variable and binomial

regression formulations are equivalent, I refer the reader to Chapter 4. For the current

formulation I assume that the formulations are equivalent with any differences elaborated

accordingly in the results. While the circumstances, under which the equivalency is lost is

more general, the mathematical foundations below give a more general functional analysis

perspective on the Bayesian Hierarchical formulation which ensures almost sure convergence

if the formulations are equivalent. Thus, I take the results of the previous chapter and the

first two sections of the current chapter to present a more coherent framework that unifies

the methodologies in a mathematically rigorous way.
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3.2.3.1 Definitions

The following definitions can be found in any graduate level measure theory book and are

restated for completeness.

Definition 3.1. A signed measure ⌫0 on a measureable space (X0,M0) is defined as a real-

valued function ⌫0 : M0 ! [�1,1] such that

1. ⌫0 attains at most one of the values 1 or �1.

2. ⌫0(;) = 0.

3. Finite and countable additivity holds for disjoint measureable sets and all measureable

sets respectively.

It is well established from analytic theory that the restriction of a measure space to a subset

of the measureable space is also measureable. However, for the current GLM construction

we want to focus on a particular subset, that of the link function. Note that from previous

discussions we know that by construction a link function relates the systematic components

to the mean of an observation in a specified manner,

⌘i = �(xi,�). (3.20)

The novelty of this methodology is in considering a signed measure over the � � algebra

defined on the support of the link function.
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3.2.3.2 Mathematical Foundations of the Proposed Methodology

Accordingly, first note that the restriction of a measure space to a subspace of the � �

algebra is itself a measure space. For the purpose at hand we seek to restrict our attention

to the subspace of the sample space that ensures that the link condition holds pointwise.

Thus, consider the measure space (X,⌃0, ⌫0) restricted to a subspace of X for which the

link condition holds for any particular �. Then from elementary analysis we know that

(X,⌃0|�(X,�) = ⌃, ⌫0|�(X,�) = ⌫) is also a measure space. The results below outline this in a

more rigorous way.

Proposition 3.1. For the measureable space (�(X,�),⌃) There exists a signed measure ⌫

such that,

y⇤ =

8
>><

>>:

1 if � � 0

0 if � < 0,

(3.21)

where WLOG � 2 [�1,1).

Proof. Let us first consider the finite case. Note that by construction of the latent variable

formulation, the measure of success is given by

E[y⇤|X] = ⌫(X,�) = c(X)� = �(X,�). (3.22)

But �(X,�) 2 R \ {�1,1}, and thus ⌫(X,�) /2 {�1,1}. Therefore, ⌫ may be finite

and the measureable space (�(X,�),⌃) may be represented as a Bounded Finitely Additive

measure space.

It remains to show then that ⌫ may also be � � finite. Note that �(X,�) is a bounded
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continuous functional specification. Note, WLOG

{X,� : �(X,�) < c} for any c 2 R \ {1} (3.23)

is a measureable set. But R can be expressed as countable unions of measureable sets for

each Ek. Thus, �(x,�) ✓ [1
k=1Ek s.t. x 2 X 2 Ek given �. But from the preceding

discussion ⌫(Ek) < 1, through the link constraint holding for each observation. Therefore,

lim
n!1

⌫(Ek) ! �1, where �(X,�) < 0. (3.24)

Therefore the measureable space (�(X,�),⌃) may also be ��finite, as needed.

Now WLOG let S+ be a collection of subsets of � 2 [0,1) and S� be a collection of subsets

of � 2 [�1, 0) and consider a ��finite measure space. Since ⌫(S+) � 0 and ⌫(S�) < 0, we

have S+ [ S� = R \ {�1,1} and S+ \ S� = ;. Thus, (S+, S�) is a Hahn Decomposition

of R \ {�1,1}.

We have thus established existence.

Above and for the remainder of this manuscript for notational simplicity I employ � to rep-

resent �(X,�). The preceding proposition established the existence result. The forthcoming

proposition establishes the uniqueness of this construction for the finite case.

Proposition 3.2. For the measureable space (�,⌃) there exists an unique decompostion of

the signed, finite measure ⌫ as a function of two positive measures ⌫+ and ⌫� such that,

⌫ = ⌫+ � ⌫� where, (3.25)

y⇤
i
=

8
>><

>>:

1 if � � 0

0 if � < 0,

(3.26)
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and � 2 (�1,1).

Proof. As before, let S+ be a countable collection of subsets of � 2 [0,1) with S+ ✓ �|�0

and S� be a countable collection of subsets of � 2 (�1, 0) with S� ✓ �|<0. Since ⌫(S+) � 0

and ⌫(S�) < 0, we have S+ [ S� = R \ {�1,1} and S+ \ S� = ;. Thus, (S+, S�) is a

Hahn Decomposition of R \ {�1,1} and further define,

⌫+ = ⌫(E \ S+), and ⌫� = �⌫(E \ S�), for E 2 ⌃. (3.27)

Thus, ⌫+(S�) = ⌫�(S+) = 0 and the positive measures are mutually singular. Therefore,

by the Jordan Decomposition Theorem the pairs {⌫+, ⌫�} are unique.

Proposition 3.3. Let (�,⌃, ⌫) be a measure space as above and ⌫ a finite signed measure

on it. Then,

|⌫̄|(⌃) = ⌫̄+(S+) + ⌫̄�(S�) (3.28)

is a probability measure, where {⌫̄+, ⌫̄�} are positive measures and S+ is positive, but S� is

negative w.r.t. the signed measure ⌫.

Proof. First note that since by construction ⌫ is finite, we must have that both ⌫+ and

⌫� must also be finite. Further ⌃ is a semiring, and thus using the Caratheodory-Hahn

Theorem, we know there exists a µ : ⌃ ! [0,1). Then the Caratheodory measure defined

as |⌫̄| = ⌫̄+(S+)+⌫̄�(S�) induced by µ is an extension of µ and |⌫̄| is an unique extension and

it is a finite measure. The statement of the proposition then is a straightforward consequence.

Before going to the proof of the next result we need another consequence of an infinite

measure space with some collection of measureable sets which are finite.
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Theorem 3.1. Let (X,⌃, µ) be any measure space with {Ek}1k=1 ✓ A ⇢ ⌃ a collection of

measureable sets for which µ(A) = 1. Then there exists some Ej where j is a countable

collection of some k, such that

µ([jEj) < 1. (3.29)

Proof. Case I: Let A consist of singleton sets of infinite measure.

Then there is nothing to prove as

µ([n

i=1Ai ⇠ Aj 6=i) < 1, (3.30)

where Aj indicate the collection of singleton sets of infinite measure.

Case II: Let A be dense in ⌃. We seek to find a countable collection of measureable sets

that have finite measure while satisfying the condition of the theorem.

By construction,

1X

k=1

µ(Ek)  1. (3.31)

Choose a number mik 2 R \ {1,1}, such that

Eik = x 2 A : µ(Eik < 1/mik). (3.32)

Then by the finite additivity and countable monotonicity of a measure, there exists a disjoint

collection of sets, Eik ⇢ Ek, such that there exists an enumeration of Eik to the natural
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numbers where the following condition holds,

µ ([n \ik�n Eik) =
nX

i=1

µ(Eik)  1. (3.33)

Further, we know by Borel-Cantelli there exists measureable sets Ejk ⇢ Ek such that

µ(\n [jk�n Ejk) = 1. (3.34)

Thus, there exists a disjoint countable collection of measureable sets in A such that µ([n

jk=1Ejk) =

1. Therefore, there exists a set Ek with measure 1. Now by assumption µ(A) = 1, therefore

there exists some n2 and n3 belonging to the naturals such that,

µ
�
([n2

k=1Ek) [1
n3�n2

(A ⇠ ([n2
k=1Ek))

�
 µ(A). (3.35)

Take n2 ! 1 to get by finite additivity of measure that,

lim
n2!1

X

n2

µ(Ek) +
X

n3�n2

(A ⇠ ([n2
k=1Ek))  1, (3.36)

thus,

lim
n2!1

X

n2

µ(Ek) ! 1. (3.37)

But k was arbitrary, and therefore denote by C = [j

k=1Ek ⇢ A to get

lim
(k!j)

µ(C) ! 1 =) µ(C ⇠ A) < 1, (3.38)
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as needed.

The existence of this result will be important in dealing with signed measures, which can

take one of the nonfinite values which is not ��finite. Therefore, utilizing this result we

can now prove one of the more important results and corollaries of Theorem 3.1, which can

be important for the construction of finite or ��finite measure spaces for all GLMs. It is

detailed below.

Proposition 3.4. Let (�,⌃) be a measureble space with µ a measure which is neither finite

or � � finite such that ⌫(⌃) = 1 and let (�,⌃, |⌫̄|) be a � � finite measure space. Then

if the signed measure ⌫ takes one of the values of {�1,1} then either y = 1 or y = 0 for

every observation w.r.t. the � � finite measure.

Proof. By definition the signed measure does not take both values of �1 or 1, and the

labels of y = 1 and y = 0 are arbitrary. Thus, WLOG let µ = �1 over S� where S� is

defined as before. Further, note that ⌫+ must be a finite measure and ⌫� a ��finite measure.

Choose ✏ and define,

E+
n
= {y 2 ⌃|⌫+

k
(y) > (1� ✏)�+(y) 8 k � n}, (3.39)

and its complement

Ec

n
= {y 2 ⌃|⌫�

z
(y) > (1� ✏)��(y) 8 z � t}, (3.40)

where �+ is a simple approximation of ⌫+ and �� is a simple approximation to ⌫� w.r.t.

the signed measure ⌫. Let us define M+ > 0 then to be the maximum over all values of

{�+,��}. Choose an index N = max{N+, N�} where N+ is s.t. ⌫+(S+ ⇠ E+
n
) < ✏ for all

n1 � N+ and N� is chosen s.t. ⌫�(S� ⇠ Ec

n
) < ✏ for all n2 � N�. Then by additivity over
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domains of integrals, linearity and monotonicity and using Fatou’s Lemma, we may define,

|⌫̄|  lim inf

P
n

i=1 ⌫
�(Ec

i
)R

S� ��
n
d⌫

+ lim inf

P
n

i=1 ⌫
+(E+

i
)R

S+ �+
n
d⌫

. (3.41)

Thus by Theorem 3.1 we have,

|⌫̄|  0 + lim inf

P
n

i=1 ⌫
+(E+

i
)R

S+ �+
n
d⌫

. (3.42)

But |⌫| 2 [0,1] by definition and ⌫+ 2 [0,1) by construction. Thus,

|⌫̄| � 0 + lim sup

P
n

i=1 ⌫
+(E+

i
)R

S+ �+
n
d⌫

. (3.43)

Therefore,

|⌫̄| =
P

n

i=1 ⌫
+(E+

i
)R

S+ �+
n
d⌫

 1. (3.44)

Since
R
S+ �+

n
d⌫ < 1 (3.44) is well defined and the assertion follows.

This result has some very important consequences on the usual regression analysis widely

used in the sciences. For example, we may now consider a finite measure such that for a

measureable set E 2 ⌃,

|⌫̄| = |⌫|�E\S+ , where �E\S+ =

8
>><

>>:

1 if E 2 S+

0 o.w.

(3.45)
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The usefulness of the result follows from the unique Jordan Decomposition of a signed

measure. If f is a Lebesgue integrable function then existing results from analysis can

be used through the translation invariance property of the measure, to find the unique

functional specification as demonstrated in a forthcoming corollary.

The astute reader no doubt realizes that in the case that the signed measure takes one of the

{�1,1} values, over a measure space which is neither finite nor � � finite, then we may

have information loss. The resulting reformulation to the restricted measure space given in

Theorem 3.1 and Proposition 3.4, can be overcome to address this information loss concern,

and the following proposition addresses this. To that end, let us define the following.

Definition 3.2. For p any real-valued function defined on a linear space X, we say it is

positive homogeneous if

p(ax) = ap(x), (3.46)

for all a > 0 for every x in X.

Definition 3.3. For p any real-valued function defined on a linear space X, we say it is

subadditive if

p(x+ y)  p(x) + p(y), (3.47)

for every x and y in X.

These definitions can be used with the Hahn-Banach Theorem to define a linear functional

over all integrable functions in Lp(�,⌃, |⌫̄|) with 1  p < 1.

Proposition 3.5. Consider a Hahn-Decomposition of the measure space (�,⌃, ⌫) into {S+, S�}

as defined before, where the signed-measure ⌫ WLOG takes the value of �1 but is not

��finite. Then there exists a linear functional L which extends any measure ⌫+ over S+ to
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all of Lp(Q, |⌫̄|), with |⌫̄| as in Proposition 3.4, and Q is the measureable space (�,⌃) with

1  p < 1.

Proof. This is a consequence of the Hahn-Banach Theorem. First note let f be a non-

negative function on Lp restricted to S+. Let  be a Simple Function on � the subspace of

Lp(X|S+ ,⌃, |⌫̄|). Let f be any bounded, continuous function on the subspace � of X. Thus,

from elementary measure theory we know by the simple approximation theorem that there

exists a sequence  n such that,

| n � f |p  2p.|f |p on � for all n. (3.48)

Further by construction |f |p is integrable so by Lebesgue Dominated Convergence we know

that { n} converges. Therefore the simple functions are dense and subadditive for the metric

induced by the norm on Lp. That { n} is positively homogeneous is straightforward and

thus, the result is asserted without proof here.

Therefore, by the Hahn-Banach Theorem we have that there exists a linear functional L

such that,

L(�)  { n}(�), (3.49)

and further that it can be extended to all of X with the same norm.

Using these results then we have some useful existing results from Real Analysis which can

be restated for the specific purpose at hand. They are detailed below.
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Corollary 3.1. Let (�,⌃, |⌫̄|) be a ��finite measure space, where ¯|⌫| is defined as in propo-

sition 3.4. Let {fn} be a sequence of bounded Lebesgue measureable functions finite a.e. that

converges p.w. a.e. on the set E 2 ⌃ \ S� to f which is also finite a.e. on E. Then,

{fn} ! f, (3.50)

in measure.

Proof. Note that by construction |⌫̄| < 1. Therefore, the result follows from elementary

analysis since using Egoroff’s Theorem the sequence of functions {fn} is uniformly integrable.

Then an use of the Vitalli Convergence theorem for Lebesgue Integrable functions proves the

theorem. The uniqueness of this measure follows from the Hahn Decomposition Theorem.

Corollary 3.2. Let (�,⌃, |⌫|) be a ��finite measure space, where |⌫| is defined as in propo-

sition 3.3. Let {fn} be a sequence of bounded Lebesgue measureable functions finite a.e. that

converges p.w. a.e. on the set E 2 ⌃ to f which is also finite a.e. on E. Then,

{fn} ! f, (3.51)

in measure.

Proof. Note that by construction |⌫| < 1. Therefore, the result follows from Corollary 3.1

straightforwardly.

While convergence in probability is useful, below I show a stronger result in Theorem 3.3.

Furthermore, these results have several nonintuitive applications to non-binary analysis and

the remarks below highlight some of them.
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Remark 3.1. First, note that the decomposition above is unique, and as such the existence of

a latent variable implies the existence an unique pair of positive measures that can represent

it, and vice versa.

Remark 3.2. If the signed measure takes one of the values of {�1,1} but is not ��finite,

we may represent any continuous generalized linear model in one of the outcomes with possibly

a linear transformation that ensures all observed (y,x) as a function of � are positive or

negative (WLOG). As such the traditional regression formulation can similarly be improved

using the link-constraint condition holding for each observation!

Remark 3.3. That a ��finite signed measure can be extended to a complete measure space

(�,⌃, ⌫) with ⌫ a restriction of the outermeasure on ⌃ follows from elementary analysis

results. In addition, while the traditional formulation assumes a symmetric distribution

around the mean (for example N(�, 1)), the current formulation allows far more flexibility.

This is because, instead of fixing the variance of an unimodal symmetric distriution we may

instead fix the value based on a probability as a function of �. As such, the latent variable

formulation can take a symmetric or asymmetric distributional form around 0, and thus the

probabilities of success do not necessarily have to approach either 0 or 1 at the same rate.

Remark 3.4. That a finite signed measure can be extended to a complete measure space

(�,⌃, |⌫|) with |⌫| a restriction of the outermeasure on ⌃ follows from elementary analysis

results. In addition, while the traditional formulation assumes a symmetric distribution

around the mean (for example N(�, 1)), the current formulation allows far more flexibility.

This is because, instead of fixing the variance of an unimodal symmetric distriution we may

instead fix the value based on a probability as a function of �. As such, the latent variable

formulation can take a symmetric or asymmetric distributional form around 0, and thus the

probabilities of success do not necessarily have to approach either 0 or 1 at the same rate.

In the forthcoming, I elaborate on the convergence properties of an estimation methodology

for the binary outcome case. The extension to the continuous GLM formulation are also
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briefly discussed. However, first I give some foundational results for the uniqueness of the

link constraint.

Theorem 3.2. Let (�,⌃) be a measureable space. Then there is an unique solution to any

link modification problem, where the link constraint holds with equality in the Generalized

Linear Model Framework for some ↵⇤ 2 R \ {�1,1}, given F̂i /2 {0, 1}, X /2 {0,1,�1}

element wise for each i 2 {1, ..., n} and �
j
/2 {1,�1} with j 2 {1, ..., (k + 1)}.

Proof. Case I: (�,⌃, |⌫|) is a finite measure space with |⌫| finitely additive and countably

monotone.

First note that by construction,

{|⌫|,�(x, �)} < 1 =) |⌫|↵⇤
= �(x, �), (3.52)

holds for some ↵⇤ 2 R \ {�1,1} by the density of the reals since,

||⌫|| = sup
nX

i=1

|⌫|(Ei) < 1. (3.53)

Thus, ||⌫|| is of bounded variation and |⌫| may be represented as the difference of two

monotonic functions. As such, there exists a function g 2 R \ {�1,1} such that

g|⌫| = |⌫|[I] = F̂ (3.54)

where I is any countable collection of measureable sets covering R \ {�1,1}. Such a

covering exists from the compactness of the support on |⌫| and the assertion follows.

Case II: (�,⌃, ⌫) is a signed measure space.

Subcase A: ⌫ is finite a.e. on ⌃.
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In this case we are back at Case I above and the results hold.

Subcase B: ⌫ is not finite a.e. on ⌃.

Consider the Caratheodory-Hahn extension to the measuareable space (�,⌃, |⌫̄|). From

Proposition 3.3 and Proposition 3.4, we know such an extension exists for � lebesgue mea-

sureable. Consequently, using the results of Case I again we arrive at the desired conclusion.

I now discuss the almost sure convergence property of this methodology.

Theorem 3.3. Given ↵⇤ 2 R \ {�1,1}, and F̂i /2 {0, 1}, X /2 {0,1,�1} elementwise

for each i 2 {1, ..., n} and �
j

/2 {1,�1} with j 2 {1, ..., (J + 1)} subject to the link

constraint holding for each observation,

�̂
a.s.��! �. (3.55)

Proof. Consider an MCMC framework and the folllowing cases below.

Case I: Let (�,⌃, ⌫) be a finite measure space with ⌫ a signed measure.

First note that the link condition holding for each observation implies following Kass and

Steffey (1989) we may write for the appropriate measureable space (�,⌃, |⌫|),

p(y⇤,↵⇤, �|y) / p(y|�)f(y⇤|↵⇤, �, y)f(↵⇤|�)f(�) (3.56)

as the posterior distribution. Therefore,

p(�|y) /
Z

y⇤

Z

↵⇤
p(y|�)f(y⇤|↵⇤, �, y)f(↵⇤|�)f(�). (3.57)
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Then2 considering all observations we may write,

p(�̂(j)|y) / fn
⇣
�(�̂(j))|y(j)⇤,↵(j)⇤

⌘
. (3.58)

For brevity I denote fn
⇣
�(�̂(j))|y(j)⇤,↵(j)⇤

⌘
as f j

n
going forward. Let T be an integral trans-

form such that,

Tp(y|�)f(y⇤|↵⇤, �)f(↵⇤|�)f(�) = p(�|y) /
Z

y⇤

Z

↵⇤
p(y|�)f(y⇤|↵⇤, �)f(↵⇤|�)f(�). (3.59)

Clearly, T is a bounded linear operator in L1 by construction (the Lp case will be considered

shortly) and define,

f (j+1)
n

= (Tf (j)
n

)(�(j)). (3.60)

Then, define

Xk = {� : g(j)
n

= |f (j+1)
n

� (Tf (j)
n

)(�(j))| > k}. (3.61)

I claim g(j)n is an uniformly integrable sequence of functions w.r.t. |⌫| over ⌃. It is clear that

by construction |⌫| is finite over ⌃. Thus, we may choose a natural number N such that if

k � N we have,

|⌫|([1
k=N

Ek) <
1

N
, (3.62)

for each k. Let Ñ be the maximum of these indicies such that for all k (3.62) holds. Further

by the continuity of the measure we may choose a disjoint collection of such sets. Let g(j)
nk

be the restriction of g(j)n to Ek. We know it is finite over Ek, so by the simple approximation
2Following Tanner and Wong (1987) I assume that {y⇤,↵⇤} both have compact support as the case for

discrete support can be proved similarly.
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lemma there is a simple function g(j)
nk

such that,

Z

Ek

g(j)
n

�
Z

Ek

g(j)
nk

< ✏/2. (3.63)

But g(j)n � g(j)
nk

� 0 thus,

Z

⌃

g(j)
n

�
Z

⌃

g(j)
nk


1X

k=1

Z

Ek

|g(j)
n

�
Z

Ek

g(j)
nk
|  Ñ |⌫|(⌃) + ✏/2. (3.64)

By letting |⌫|(⌃) = ✏/(2Ñ) we get our desired result. Thus, g(j)n is uniformly integrable.

Further, by contruction the link condition holding for each observation implies g(j)n

p.w.��! |⌫|

for each j. Therefore, by the Vitali Convergence Theorem we have,

lim
j!1

g(j)
n

= p(�|y). (3.65)

Thus, we are done.

This result has some ready extensions to the Lp spaces and the result below highlights one

of those results.

Corollary 3.3. Under the conditions of Theorem 3.3 we have that for 1  p < 1,

{gn}
a.s.��! p(�|y). (3.66)

Proof. This result follows from the Vitali Lp Convergence Criterion, from uniform integra-

bility and finiteness.

One of the more useful results of the methodology is that the latent variable nonparametric
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distributional assumptions do not need any restrictions on the variance parameter. The next

corollary puts this in more concrete terms. Thus, we can assert the following regarding the

variance of the nonparametric latent variable formulation.

Corollary 3.4. Given ↵⇤ 2 R \ {�1,1}, and X /2 {0,1,�1} for each i 2 {1, ..., n} and

�
j
/2 {1,�1} with j 2 {1, ..., (k + 1)}, the variance of the latent variable distribution y⇤

need not be fixed for identification subject to the link constraint holding for each observation.

Proof. The result follows naturally from the a.s. convergence property of �. Since the Hahn

Decomposition is unique, a.s. convergence implies that the variance cannot be fixed for all

p.w. convergent sequences of g(j)n while guaranteeing uniqueness of the mutually singular

measures.

3.2.4 Nonparametric Latent Adaptive Hierarchical EM Like (LA-

HEML) Algorithm

The methodology described above is extremely versatile as pointwise convergence is ensured

through the link constraint holding for each observation, which in concert with a data aug-

mentation framework in the latent Bayesian formulation can be used with MCMC to give

almost sure convergence, under very general conditions. Accordingly, I refer to the methodol-

ogy as a Latent Hierarchical Adaptive EM Like Algorithm (LAHEML), which is nevertheless

more general than the EM algorithm. It further has the advantage of being able to be used

for both model selection and MIP comparisons concurrently. However, the estimation pro-

cess can be rather involved. Therefore, this section outlines detailed general algorithms, one

in the unpenalized case and the other for the penalized model selection application for a

particular model formulation in the regression framework. Thus, below I first outline the

unpenalized algorithm in 3.2.4.1, and the penalized version is outlined in 3.2.4.2.
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3.2.4.1 Unpenalized Application of LAHEML

A particular model formulation of the nonparametric methodology in the usual linear re-

gression framework is given below.

1. Please note, the posterior is given by

p(�|x) /
Z

y⇤

Z

↵⇤
L(y⇤,x|�)g(↵⇤|�)f(�), (3.67)

thus, perform an MH step to optimize the posterior for the current value (jth value)

of �(j).

2. To draw from the latent variable y⇤ instead of running a parametric normal or Logistic

regression on the latent variable, I propose a nonparametric regression, such that,

E(yi|xi = x) = m(x). (3.68)

From which we get the distribution of y(j)⇤ by

F̂ (y(j)⇤|y,x,�(j�1)) =
kX

x=�k

P
n

i=1 1(|xi � x|�(j�1)  h)yiP
n

i=1 1(|xi � x|�(j�1)  h)
, (3.69)

and drawing from {X,� : X�(j) 2 (�1,
R
F̂ (y⇤|y, X) = ] } if yi = 0 and from

{X,� : X� 2 (
R
F̂ (y⇤|y, X) = ,1) } if yi = 1 to get y(j)⇤

i
for each observation

(y(j)⇤). Of course, the binary values for yi create no issues as the distribution of failure

probabilities is simply the success probabilities subtracted from 1. Further, we can also

use continuous kernel estimates here.

3. Thus, we can compute a similar nonparametric continuous distribution on ✏(j)⇤ =

y(j)⇤ �X�(j) to get the current draws of the probability of success.
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4. We can then compute the numerical estimates of ↵(j)⇤, making any transformations as

necessary for the link condition as discussed above in

⇣
F̂ (✏(j)⇤|y(j)⇤, X,�(j))

⌘↵(j)⇤

= X�(j), (3.70)

by solving

✓⇣
F̂ (✏(j)⇤|y(j)⇤, X,�(j))

⌘↵(j)⇤

�X�(j)

◆d

= 0, (3.71)

for some d 2 {1, 2, ...}.

5. Compute the nonparametric density estimate of

ĝ(↵(j)⇤|y(j)⇤, X,�(j)) =
kX

⌧=�k

P
n

i=1 1(|↵
(j)
i

� ⌧ |  h)
P

n

i=1 1(↵
(j)
i

� ⌧  h)
(3.72)

where {⌧} 2 R \ {�1,1}. Or we can do a kernel density estimation here as well for

ĝ(↵(j)⇤|y(j)⇤, X,�(j)).

6. Now we can treat ↵(j)⇤ as a latent variable itself and can randomly draw from it if

y = 1 such that ĝ(↵(j+1)⇤|y(j)⇤, X,�(j)) �  and from ĝ(↵(j+1)⇤|y(j)⇤, X,�(j)) <  if

y = 0 for every observation to get our estimates of ↵(j+1)⇤ for the next iteration.

7. Go to step 1, repeat and iterate to convergence.

The construct above ensures that {�(j)} converges to its true distributions given the data y.

Since ↵⇤ is a function of �, the convergence results hold for its distribution as well. The bias

of the nonparametric density estimates are corrected by ensuring the link condition holds

for each observation.

It is worthwhile to consider that the cutoff points of  2 (0, 1) a probability, can also be

a parameter to be estimated here. Since the Jordan decomposition remains valid, such a
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model specification of the methodology should be especially relevant for asymmetric DGPs.

This is pursued in the nonparametric simulation datasets, where the cutoff was based on the

observed distributions of successes and failures and not necessarily fixed at the median for

f(↵⇤|�,y⇤,y). The results of the simulation studies can be found in 3.3.

3.2.4.2 Penalized Application of LAHEML

For a penalized application I consider The Bayesian Adaptive Lasso as in Leng et al. (2014).

This penalized version of the methodology is contingent on a different prior specification

than described above. The prior is given by,

⇡(�|�2) =
pY

k=1

�k

2
p
�2

e�k|�k|/
p
�2
. (3.73)

For the current application we can move forward with either a Hierarchical formulation or

an empirical bayes application as given in Leng et al. [Ibid] and I follow a Hierarchical

methodology accordingly. This is because it also requires the estimation of the prior hyper-

parameters on the shrinkage parameters, which can no longer be considered uninformative.

Leng et al. (2014) consider a gamma prior on the �k’s and I also follow this same formulation.

Thus, the prior on the shrinkage parameters can be given by

⇡(�2
k
) =

�r

�(r)
(�2

k
)r�1e���

2
k . (3.74)

Further note that Lehmann and Casella (2006), point to the parameters deeper in the hierar-

chy having less of an impact on the estimation process. As such, for the present application

I set the � and r hyperparameters both equal to some small number such as 0.1. Accordingly

the penalized estimation algorithm is given below.
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1. Please note, the posterior is given by

p(�|x) /
Z

y⇤

Z

↵⇤
L(y⇤,x|�)g(↵⇤|�)f(�), (3.75)

thus, perform an MH step to optimize the posterior for the current value (jth value)

of �(j).

2. To draw from the latent variable y⇤ instead of running a parametric normal or Logistic

regression on the latent variable, I propose a nonparametric regression, such that,

E(yi|xi = x) = m(x). (3.76)

From which we get the distribution of y(j)⇤ by

F̂ (y(j)⇤|y,x,�(j�1)) =
kX

x=�k

P
n

i=1 1(|xi � x|�(j�1)  h)yiP
n

i=1 1(|xi � x|�(j�1)  h)
, (3.77)

and drawing from {X,� : X�(j) 2 (�1,
R
F̂ (y⇤|y, X) = ] } if yi = 0 and from

{X,� : X� 2 (
R
F̂ (y⇤|y, X) = ,1) } if yi = 1 to get y(j)⇤

i
for each observation

(y(j)⇤). Of course, the binary values for yi create no issues as the distribution of failure

probabilities is simply the success probabilities subtracted from 1. Further, we can also

use continuous kernel estimates here.

3. Thus, we can compute a similar nonparametric continuous distribution on ✏(j)⇤ =

y(j)⇤ �X�(j) to get the current draws of the probability of success.

4. We can then compute the numerical estimates of ↵(j)⇤, making any transformations as

necessary for the link condition as discussed above in

⇣
F̂ (✏(j)⇤|y(j)⇤, X,�(j))

⌘↵(j)⇤

= X�(j), (3.78)
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by solving

✓⇣
F̂ (✏(j)⇤|y(j)⇤, X,�(j))

⌘↵(j)⇤

�X�(j)

◆d

= 0, (3.79)

for some d 2 {1, 2, ...}.

5. Compute the nonparametric density estimate of

ĝ(↵(j)⇤|y(j)⇤, X,�(j)) =
kX

⌧=�k

P
n

i=1 1(|↵
(j)
i

� ⌧ |  h)
P

n

i=1 1(↵
(j)
i

� ⌧  h)
(3.80)

where {⌧} 2 R \ {�1,1}. Or we can do a kernel density estimation here as well for

ĝ(↵(j)⇤|y(j)⇤, X,�(j)).

6. Now we can treat ↵(j)⇤ as a latent variable itself and can randomly draw from it if

y = 1 such that ĝ(↵(j+1)⇤|y(j)⇤, X,�(j)) �  and from ĝ(↵(j+1)⇤|y(j)⇤, X,�(j)) <  if

y = 0 for every observation to get our estimates of ↵(j+1)⇤ for the next iteration.

7. Perform an MH step to compute the value of

(�(j+1)
k

|↵(j+1)⇤,�(j+1),y(j)⇤), (3.81)

from a suitable candidate density such as the t-distribution with 10 degrees of freedom.

8. Go to step 1, repeat and iterate to convergence.
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3.2.5 Asymptotic Model Diagnostics

One of the more useful outcomes of the proposed model in both the nonparametric and

parametric implementations is that it simply adds one extra parameter to be estimated. In

the parametric case, since we know E(↵⇤|�) for existing models such as the Logit (↵⇤ = 1

in the parametric case), we can use large-sample results under i.i.d. assumptions to test

the hypothesis that our model results vary from traditional GLM model fits. Indeed the

nonparametric methodology is even more useful in this regard. Consider that if y = 1 we

have the specified link condition implies,

F (�|y) = �(X,�). (3.82)

This implies that if we parametrically assume a distribution for F̂ (which we know converges

to the true F) such as the Logistic or Probit distribution and input the estimated �̂’s into

the functional specification and calculate the divergence of F̂ (�̂|y) from 3.82. For example,

we may compute the value of ↵⇤, say ↵̄⇤ that minimizes,

⇣
F̂ (�|y)↵⇤ � �(X,�)

⌘
. (3.83)

In particular, we know for GLM, if the convergence has occured to the true distribution

then ↵⇤ should equal 1. While the X’s are held fixed, ↵̄⇤ is both unbiased, consistent and

asymptotically normal by the central limit theorem and i.i.d. assumptions, as long as �̂ is

consistent and asymptotically unbiased. The accompanying proofs ensure that this is the

case. Accordingly, given ↵̄⇤, we can thus estimate the aymptotically unbiased and consistent

estimates of the variance of ↵⇤ as well to get,

↵⇤ ⇠ N(1, E(E(↵⇤|�⇤)� 1|�⇤)2), (3.84)
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=) ˆ̄↵⇤ asymp.⇠ N

✓
1,

P
n

i=1(↵i � 1)2

n� 1

◆
. (3.85)

�⇤ above represents the optimized estimated value. Thus, we can check our hypothesis that

↵̄⇤ = 1 for any particular parametric specification on the probability of success.

1. Perform a t-test on ˆ̄↵⇤, with the appropriate null hypothesis values, and accept/reject

model fit assumptions.

2. Thus,

(a) Under rejection, the existing GLM is not adequate given assumptions on the

model specification and the proposed model should be used.

(b) Otherwise, the existing GLM is adequate and it can be used for model fit, infer-

ence and prediction (classification) accordingly3.

This framework can similarly be extended to the likelihood ratio test, under the ap-

propriate null values.

3Note however, that model fit, prediction and inference criteria should be evaluated on a wholistic basis
to arrive at a choosen model even if the null hypothesis is not rejected.
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3.2.6 Asymptotic Distribution of Adjusted ROC-Statistic

In order to analyze adequacy of classification performance, there are many existing statis-

tics such as the Receiver-Operating Curve. Here I consider Adjusted ROC-Statistic (ARS)

instead, based on Chowdhury (2019), as not only does it allow for interpretable estimates, it

also has well known closed form large sample distributions. This allows at least two advan-

tages over existing statistics. First, ARS can be represented as a simple interpretable ratio of

observed classification outcomes, without the need for a likelihood. Second, the classification

performance of any two models can be tested to see if they differ statistically. Therefore,

the mathematician can employ bootstrap or other methods to compare the performance

difference between models. To aid in the discussion, the confusion matrix is reproduced

below.

Table 3.1: Confusion Matrix.

Fitted Model Prediction
Success Failure

True Classification in Data Success True Positive (TP, n11) False Negative (FN, n10)
Failure False Positive (FP, n01) True Negative (TN, n00)

Further let, G = Ground True, S(t) = Fitted Prediction Subject to Some Parameter t, D =

Entire Dataset, then we may define the following quantities.

True Positive =
|S(t)

T
G|

|G| , (3.86)

True Negative =
|¬S(t)

T
¬G|

|¬G| , (3.87)

False Positive =
|S(t)�G|
|D �G| , (3.88)

False Negative =
|¬S(t)�G|

|G| . (3.89)

Then,
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ARS =

|S(t)�G|
|D�G| + |¬S(t)�G|

|G|
|S(t)

T
G|

|G| + |¬S(t)
T

¬G|
|¬G|

(3.90)

or simply the ratio of incorrectly identified vs. correctly identified elements according to the

model fitted. Define,

A = {x : Fitted Model Correctly Identifies Observed Sample}. (3.91)

B = {x : Fitted Model Incorrectly Identifies Observed Sample}. (3.92)

Then from elementary probability theory, where, the entire sample space, S = {A, B} and

P (A) + P (B) = P (S) = 1. (3.93)

Then remarkably,

P (ARS) = P

✓
P (B)

1� P (B)

◆
(3.94)

is nothing but the odds ratio of the probability of incorrectly identifying observed sam-

ple divided by probability of correctly identifying the observed sample! This then has an

asymptotic distribution (Bland, Martin J. et al. 2020) given by

log(ARS) ⇠ N(log(Oddsratio), �2), where � =

r
1

n11
+

1

n10
+

1

n01
+

1

n00
(3.95)
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where nij = counts within each cell in table 3.2.6 . Note here that it is entirely plausible

that one or more of the cells will be 0. Thus, to avoid dividing by 0, I recommend including

some small ✏ 6= 0 for inference. Another approach could be to impose each cell being at least

1 for identifiability.

3.2.6.1 Inference

Clearly, ARS 2 [0,1). Then using a slight aberration of the usual hypothesis testing

procedure, let

H0 = Incorrect and correct identification are equally likely.

HA = Incorrect and correct identification are not equally likely.

If incorrect and correct identification are equally likely, then the test statistic becomes,

p
n log(ARS)

�
) ⇠ N(0, 1). (3.96)

This framework can be used in a two sample t-test as well to compare any two models fitted

to the data. With multiple models, the test can be expanded accordingly. As an example,

when the variances for the log-odds attained for ARS for two different samples are assumed

to be the same we can do a pooled t-test,

Test Statistic =
̄1 � ̄2q

1
n1

+ 1
n2

q
(n1�1)s21+(n2�1)s22

n1+n2�2

, (3.97)

where the subscripts indicate each estimate under the relevant model specifications. If the

91



two models are deemed to be dependent in some manner a matched pair test can be similarly

done above. Furthermore, multiple models can be compared using the Wald test.

3.2.6.2 A Likelihood Ratio Based Test Statistic

Since the Wald test has a number of weaknesses (see for example, King and Goh 2002), I

also detail a likelihood ratio test based on ARS in this section. Suppose that an asymptotic

test is determined to be unsuitable by the mathematician. Consider first that for any model

fitted to binary data, we must specify a cutoff point, such that if the fitted probability is

greater than this value, the fitted outcome is ŷi = 1 and 0 otherwise. Therefore, our model

is in fact, a function of not only our chosen functional form F(.), but also this cutoff. Let

this cutoff be  (usually held at 0.5 as is customary according to the literature Greene 2003).

Then for all distributions, symmetric or otherwise,

Pr(yi = 1|xi,�,) = 1� F (�x0
i
�) s.t. {1� F (�x0

i
�) � }. (3.98)

Thus,

Pr(yi = 1|xi,, 1� F (�x0
i
�) � ) =

1�
R1
{x:��x⇤()} F (�x0

i
⇥ �)dx

(1� F (�X⇤()�))
. (3.99)

Under this general formulation using LAHEML  can be chosen by the scientist based on

how they want to prioritize Type-I or Type-II error. Thus, if the null is: H0 : �̂ = �0 a
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likelihood ratio statistic (LRT) can be given by,

�̃ =
L(�̂0|X)

L(�̂|X)
. (3.100)

Here �̃ represents the likelihood-ratio statistic and should not be confused with the link

constraint condition.

3.2.7 Semiparametric Estimation of ARS

A fairly simple semi-parametric estimation procedure of the asymptotic distribution of ARS

can also be given using bootstrap. A tentative algorithm for this is given below.

• Draw randomized �̂ from estimated �s.

• Recalculate the bias corrected ARS.

• Find the bootstrapped distribution of ARS.

• Calculate the 95% credible interval of the bias corrected bootstrapped distribution of

ARS.

• Calculate ARS on a holdout set using estimated �̂.

• If calculated ARS on the holdout set does lie in the 95% credible interval, reject the

null that the observed values and the fitted probabilities are independent.
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3.3 Monte Carlo Simulation

In order to validate the methodology and the mathematical results, extensive simulation

studies were done for both the penalized and unpenalized versions. In particular, to validate

the robustness of the Proposed Nonparametric methodology a Bayesian framework is used for

the simulation studies on various DGP’s, both symmetric (Logit and Probit) and asymmetric

(Complementary Log-Log). For this purpose, datasets were generated from the standard

normal distribution for different sample sizes

(n = {100, 500, 1000, 2000}) and models,

y = Intercept+X1 +X2, (3.101)

y = Intercept+X1 + exp(X2), (3.102)

y = Intercept+ exp(X1) + sin(X2). (3.103)

The different model specifications are needed to understand the performance of the proposed

model when the data are linear, non-linear, or a mixed specification in the X’s. All datasets

had 3 parameters to estimate, for the intercept (�1) and for two explanatory or independent

variables drawn from the standard normal ({�2, �3}), with the appropriate transformations

indicated above. Then for known � values, a Probit, Logit, or a Complementary Log-Log

DGP was used to generate outcomes (dependent variable y) which varied in the number of

1’s that were present.

In particular, the known {X,�} values along with each functional form above can be used

to calculate the probability of each observation for each specific model. Thus, we can con-

sider the calculated y values along with the generated X’s as the data on which we can fit

our chosen statistical models for each DGP. We may then evaluate the performance of the
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proposed model against other popular existing baseline models.

Finally, another step was done to create datasets which had different numbers of suc-

cesses as opposed to failures. Thus, the unbalancedness of the data were varied between

{0.1, 0.2, 0.3, 0.4, 0.5}. Here, 0.5 indicates equal number of successes and failures (balanced),

0.4 indicates 10% fewer successes than failures and so forth. Accordingly, for each sample

size there are five different unbalanced datasets, each of which has three parameters or �’s

to estimate for each of the three DGPs for each of the models specified (linear, non-linear or

mixed). As such, for each sample size, there are 60 different datasets, each with 3 parameters

to estimate, for a total of 180⇥ 3 = 540 parameters to estimate, compare and contrast4.

The results are extremely encouraging for both the penalized and unpenalized applications.

The Proposed Nonparametric methodology not only outperforms existing models (including

the Proposed Parametric methodology) in inference, but also in classification in regards to

ARS. Indeed, the classification results even outperform ANN, on average over all of the many

different datasets considered. The results below also show that the near perfect coverage

results were attained with a smaller confidence interval than the Penalized Logistic. Two

separate simulation runs were done, one in an unpenalized and the other in a penalized

formulation. The summaries are given below.

3.3.1 Unpenalized Application Results

In this section I first consider the unpenalized results, and the summaries can be found in

Table 3.2, Table 3.3, and Table 3.4 below. The unpenalized application almost uniformly

contained the true parameters more often, and thus had better coverage. It was able to attain

this by having confidence interval ranges which were smaller than the Penalized Logistic,

which had the worst coverage performance among the methods compared here. The Proposed
4Note also that by construction, we know what the true �’s are, and therefore, can use these true values

to understand the performance of each of the models fitted to each dataset.
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Nonparametric application in comparison to the Proposed (Parametric) Logistic, Bayesian

Probit and Neural Net methods, uniformly outperformed them. It did so without considering

functional specifications which lack scientific interpretability as in Neural Networks. This

is because deeper networks with more complex basis expansions can lead to scientifically

uninterpretable models, at the cost of better classification outcomes.

Accordingly, for Neural Net, since not all model specification and layers could always be

fitted, a range of between two to five layers were considered with two neurons in each layer.

While a more complicated model could have been used for comparison, the same could be said

for the Proposed Nonparametric and Proposed Logistic methods as well. As such, following

Chowdhury (2021a) to keep model performance comparable, more complicated model formu-

lations were not deemed appropriate for the NN. In addition, Logistic and Penalized Logistic

formulations were not considered for the classification performance comparison given that

Chowdhury [Ibid] and Chowdhury (2021d) show that they are outperformed by the other

methodologies compared.

Table 3.2: Simulation Coverage (in Percentage) Summary for Proposed Unpenalized DGPs (at 1% Signifi-
cance Level)

Proposed Prop. Bayesian Penalized
Nonpara. Para. Probit Logistic

LGR Covr. (NL) 98.33% 95.00% 83.33% 51.67%
PR Covr. (NL) 100.00% 95.00% 75.00% 46.67%

Comp. Lg. Covr. (NL) 100.00% 93.33% 80.00% 56.67%
LGR Covr. (Mx.) 98.33% 91.67% 71.67% 61.11%
PR Covr. (Mx.) 100.00% 95.00% 75.00% 25.00%

Comp. Lg. Covr. (Mx.) 100.00% 96.67% 81.67% 20.00%
LGR Covr. (L) 100.00% 96.67% 85.00% 63.33%
PR Covr. (L) 98.33% 96.67% 80.00% 66.67%

Comp. Lg. Covr. (L) 98.33% 96.67% 81.67% 66.67%

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here
0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters per DGP
for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average over all
simulated datasets.
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Table 3.3: Simulation Confidence Interval Range Summary for All DGPs (at 1% Significance Level)

Penalized Proposed Proposed Bayesian
Logistic Nonpara Logistic Probit

LGR Covr. (NL) 6.47 5.66 5.37 2.00
PR Covr. (NL) 7.44 5.42 5.20 1.77

Comp. Lg. Covr. (NL) 7.77 5.65 4.89 1.88
LGR Covr. (Mx.) 7.66 5.75 5.40 2.07
PR Covr. (Mx.) 3.94 5.64 5.12 1.87

Comp. Lg. Covr. (Mx.) 2.27 6.12 4.93 1.84
LGR Covr. (L) 7.12 5.90 4.73 1.75
PR Covr. (L) 7.45 5.77 5.15 1.92

Comp. Lg. Covr. (L) 6.96 5.73 4.81 1.66

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here
0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters per DGP
for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average over all
simulated datasets.

Table 3.4: Simulation Summary of ARS for All DGPs

Proposed Proposed Bayesian Neural
Nonpara. Logistic Probit Net

Non-Linear 0.07 0.22 0.21 0.19
Mixed 0.11 0.22 0.22 0.22
Linear 0.08 0.19 0.23 0.20

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here
0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters per DGP
for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average over all
simulated datasets.
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3.3.2 Penalized Application Results

For the penalized application all aspects of the unpenalized version were retained with the

addition of an extra explanatory variable drawn at random from the standard normal dis-

tribution. All other aspects of the simulation including the number of different models,

observation numbers and unbalancedness criteria were all kept consistent for comparison

across the penalized and unpenalized versions.

The results were again extremely encouraging, and consistent with the results from the pre-

vious Section. They can be found below in Table 3.5, Table 3.6, and Table 3.7. The Proposed

Penalized Nonparametric methodology not only outperforms existing models (including the

parametric methodology) in inference, but also in classification in regards to ARS. Indeed,

the classification results even outperforms the unpenalized application and Neural Net, on

average over all of the many different datasets considered. The inference results below again

show that the near perfect coverage results were attained with smaller confidence intervals

than the Penalized Logistic. The other aspects of the simulation from the unpenalized case

in regard to Neural Net model specification were kept the same. However, in the current

application, since an extra nuisance variable was considered, the Penalized Logistic model

was also considered for comparison.

In summary, the results are indicative of the efficiency of the methodology and the math-

ematical results. The Proposed Nonparametric application contained the true parameters

more often than the parametric application, which in turn was more efficient than the other

existing methodologies. It did so while having smaller confidence intervals than the Penalized

Logistic application. This same superior performance also extended to classification. While

the Proposed Parametric application and the existing Bayesian Latent Probit gave classi-

fication accuracy similar to Neural Nets, the Proposed Nonparametric applications almost

uniformly outperformed all other methodologies on average and were statistically significant
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Table 3.5: Penalized Simulation Coverage Summary All DGPs (at 1% Significance Level)

Unpenalized Penalized Prop. Bayesian Penalized
Nonpara. Nonpara. Para. Probit Logistic

LGR Covr. (NL) 100.00% 100.00% 98.75% 92.50% 70.00%
PR Covr. (NL) 100.00% 98.68% 97.37% 84.21% 65.79%

Comp. Lg. Covr. (NL) 100.00% 98.75% 98.75% 81.25% 65.00%
LGR Covr. (Mx.) 100.00% 100.00% 100.00% 81.94% 70.83%
PR Covr. (Mx.) 97.22% 97.22% 94.44% 81.94% 70.83%

Comp. Lg. Covr. (Mx.) 100.00% 100.00% 96.67% 81.67% 72.06%
LGR Covr. (L) 98.75% 100.00% 100.00% 88.75% 75.00%
PR Covr. (L) 96.25% 95.00% 97.50% 80.00% 73.75%

Comp. Lg. Covr. (L) 100.00% 100.00% 100.00% 87.50% 75.00%

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here
0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters per DGP
for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average over all
simulated datasets.

Table 3.6: Penalized Simulation Confidence Interval Summary for All DGPs (at 1% Significance Level)

Unpenalized Penalized Proposed Bayesian Penalized
Nonpara. Nonpara. Logistic Probit Logistic

LGR Covr. (NL) 5.96 5.77 5.52 1.87 5.64
PR Covr. (NL) 6.04 5.60 4.93 1.99 5.81

Comp. Lg. Covr. (NL) 5.88 5.43 5.63 2.03 6.18
LGR Covr. (Mx.) 5.64 5.87 5.67 1.80 6.22
PR Covr. (Mx.) 5.67 5.78 5.22 1.97 6.03

Comp. Lg. Covr. (Mx.) 5.97 5.44 5.44 1.97 6.07
LGR Covr. (L) 5.74 5.66 5.67 1.78 6.25
PR Covr. (L) 5.53 5.15 4.86 1.96 6.32

Comp. Lg. Covr. (L) 5.74 5.97 5.60 1.94 6.46

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here
0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters per DGP
for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average over all
simulated datasets.

in the outperformance. Using these encouraging results I now apply the methodology to

real-world dataset applications below and compare its performance to Random Forests, and

deep neural networks.
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Table 3.7: Summary of ARS for All DGPs Compared

Unpenalized Penalized Proposed Bayesian Neural
Nonpara. Nonpara Logistic Probit Net

Non-Linear 0.07 0.07 0.23 0.25 0.16
Mixed 0.17 0.07 0.23 0.27 0.21
Linear 0.08 0.05 0.19 0.23 0.21

Note: This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample sizes of n =
{100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models fitted (here
0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each DGP there
are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60 different
datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters per DGP
for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average over all
simulated datasets.

3.4 Empirical Application

I make several empirical applications of the methodology discussed above. The first ap-

plication is a biomedical one, where we seek to identify intoxicated individuals, based on

phone accelerometer data, and the second is an application to identify exotic particles in

high-energy Physics. They are detailed below.

3.4.1 Detecting Heavy Drinking Events Using Smartphone Data

To illustrate the efficacy of the model, we apply a simple model specification using its almost

sure convergence property, to detect heavy drinking events using smartphone accelerometer

data in Killian et al. (2019). Given the time series nature of the data the authors identified

heavy drinking events within a four second window of their measured variable of Transdermal

Alcohol Content (TAC) after various smoothing analyses on the accelerometer data. Their

best classifier was a Random Forest with about 77.50% accuracy. A similar analysis was

done on a far simpler model of TAC readings against the accelerometer reading predictors,
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for all subject’s phone placement in 3D space, for the x, y and z axes,

TAC = Intercept+ x� axis reading + y � axis reading + z � axis reading. (3.104)

TAC here was simply set to 1 if the measurement was over 0.08 and 0 otherwise. The

same four second time window of accelerometer readings were used in the analysis with the

assumption that the TAC readings were unlikely to change in such a small time interval.

The results were extremely encouraging, with TeD (20% of the data) ARS classification

accuracy of nearly 100.00%, with just 1, 000 iterations and 500 burn-in period, using some

of the methodological contributions in Chowdhury (2021b) and Chowdhury (2021d) (the

relevant plots can be found below in Figure 3.1 and Figure 3.2). In fact, the strength of
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Figure 3.1: Sample Heavy Drinking Event Data
Sample Space Exploration Plot for Nonparametric
Methodology.
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Figure 3.2: Sample Heavy Drinking Event Data
Histogram of Parameters for Nonparametric Method-
ology.

the methodology may also allow us to perform model fit and model selection at the same

time! To illustrate, a penalized methodology was applied using Adaptive Bayesian Lasso
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Figure 3.3: Sample Heavy Drinking Event Data
Sample Space Exploration Plot for Nonparametric
Penalized Methodology.
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Figure 3.4: Sample Heavy Drinking Event Data
Histogram of Parameters for Nonparametric Penalized
Methodology.

(Leng et al. (2014)) in a Hierarchical framework on the same dataset. Contrary to the

accepted norm that we cannot perform model fit and model selection at the same time, the

TeD had perfect predictive accuracy (the relevant plots for the methodology are given in

Figure 3.3 and Figure 3.4). However, it did have a slightly worse predictive performance

in TrD (0.34 vs. 0.30). These new findings are “significant” in that they challenge and

extend our discussion on scientific and statistical significance considerably. Accordingly, in

the forthcoming discussion section I detail more of these advantages and disadvantages.

Table 3.8: Heavy Drinking Event Detection ARS Summary

Unpenalized Unpenalized Penalized Penalized
Nonpara. (TrD) Nonpara. (TeD) Nonpara. (TrD) Nonpara. (TeD)

ARS 0.30 0.00 0.34 0.00

Note: Unpenalized Nonpara. (TrD) is the unpenalized application on the training data, and Unpenalized Nonpara. (TeD) is
the unpenalized application on the test data (80% of the observations). Penalized Nonpara. (TrD) is the penalized application
on the training data, and Penalized Nonpara. (TeD) is the penalized application on the test data (20% of the observations).
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One further advantage of the methodology is that it allows us the ability to perform inference

as the almost sure convergence of the parameter estimates retain their interpretability in the

current model. Those results can be found in Table 3.9 below. The results bring to mind the

image of a heavily intoxicated individuals trying to walk. The nature of the measured data

for the Z-axis implies that the Proposed Nonparametric, the Penalized Nonparametric and

the Proposed Parametric versions all find only the Z-axis as significant in explaining heavy

drinking events. On the other hand the Bayesian Probit finds the Y-axis to be significant.

The MLE Logistic and Penalized Logistic both indicated all variables to be significant. Thus,

looking simply at the significance criteria, it is not clear which of the methodologies should

be relied upon.

However, when we compare the model fits for the various methodologies, the nonparametric

applications stand out as clear winners. The Proposed Nonparametric application had the

lowest TeD AIC at 0.94. The next best model fit was for the Proposed Nonparametric Penal-

ized (.95) application with Proposed Parametric Logistic (.97) coming in third in this regard.

Accordingly, it is clear that in regards to MIPs the Proposed Nonparametric methodologies

have a clear advantage in this application over the other existing methods compared.
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Table 3.9: Intoxication Dataset Parameter Summary for All Relevant Methodologies

Methodology Predictor Estimates CI-Low CI-High

(1)

Intercept 0.24⇤⇤ 0.01 0.47
X-axis 0.02 -0.22 0.25
Y-axis 0.03 -0.19 0.25
Z-axis -0.54⇤⇤ -0.83 -0.26

(2)

Intercept 0.22 -0.03 0.48
X-axis -0.07 -0.31 0.17
Y-axis 0.21 -0.04 0.46
Z-axis -0.82⇤⇤ -1.05 -0.59

(3)

Intercept -0.13 -0.3 0.05
X-axis 0.01 -0.19 0.2
Y-axis 0.07 -0.13 0.27
Z-axis -0.21⇤⇤ -0.37 -0.05

(4)

Intercept -0.01 -0.14 0.11
X-axis -0.12 -0.32 0.08
Y-axis 0.24⇤⇤ 0.06 0.43
Z-axis -0.02 -0.15 0.10

(5)

Intercept -0.87⇤⇤⇤ -0.9 -0.85
X-axis -0.04⇤ -0.09 0
Y-axis 0.17⇤⇤⇤ 0.11 0.23
Z-axis 0.00⇤⇤⇤ 0.00 0.00

(6)

Intercept -0.87⇤⇤⇤ -0.9 -0.84
X-axis -0.04⇤ -0.11 0.02
Y-axis 0.17⇤⇤⇤ 0.09 0.25
Z-axis 0.00⇤⇤⇤ 0.00 0.00

Note: (1) Nonprametric, (2) Penalized Nonparametric, (3) Parametric, (4) Existing Bayesian, (5) MLE Logistic, (6) Penalized
Logistic.
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3.4.2 Exotic Particle Detection Using Particle Accelerator Data

In order to see the applicability of the methodology across other scientific fields, I now

apply the methodology to the identification of high-energy particles in Physics (Baldi et al.

(2014)). There are 28 feature sets in the paper, of which the first 21 features are kinematic

properties measured by detectors in the particle accelerator, and the last 7 are high-level

features derived from the first 21 to discriminate between the two classes. The classes of

0 and 1 refer to noise and signal, respectively. In addition, the model also incorporates an

intercept.

Signal/Noise = Intercept+
28X

i=1

Featurei. (3.105)

For more information on the actual feature sets I refer the reader to the original paper, and

here keep the discussion brief. Further note that, as the last seven features were nonlinear

functions of the first 21, the specification remained valid, as inference is not the specific goal

here. Given the far larger data size, over the Biostatistics application, I ran LAHEML for

5, 000 iterations with 2, 500 burn-in period. The convergence plots, along with the histograms

of each parameter may be found below in Figure 3.5, Figure 3.6, Figure 3.7, and Figure

3.8. The penalized and unpenalized estimation formulations were identical to that for the

Intoxication application for Biostatistics. Again, the classification outcomes were extremely

encouraging, and can be found in Table 3.10 below.

Table 3.10: Signal/Noise Detection Summary of ARS for Nonparametric Application to Exotic Particle
Detection Data.

Unpenalized Unpenalized Penalized Penalized
Nonpara. (TrD) Nonpara. (TeD) Nonpara. (TrD) Nonpara. (TeD)

ARS 0.36 0.06 0.44 0.14

Note: Unpenalized Nonpara. (TrD) is the unpenalized application on the training data, and Unpenalized Nonpara. (TeD) is
the unpenalized application on the test data (last 500,000 observations). Penalized Nonpara. (TrD) is the penalized application
on the training data, and Penalized Nonpara. (TeD) is the penalized application on the test data (last 500,000 observations).
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The unpenalized application was especially good for the Test Dataset (TeD), with the penal-

ized version also giving excellent results in TeD, that appear to be an improvement on the

initial publication. On average the unpenalized version idetified the correct Signal to Noise

almost 79.23%, of the time, but in TeD it had an accuracy of almost 94.00%! Accordingly,

the efficacy of the model is readily apparent in this application. The penalized application

for this dataset did not have better results for the same number of iterations. However, since

both formulations were only run for 5,000 iterations it seems plausible that the same pattern

seen in the Biostatistics application may also be present here. This is because the penalized

version is expected take longer to converge given the extra complexity of the estimation

process.
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Figure 3.5: Unpenalized Convergence Plots of Nonparametric Application to Exotic Particle Detection Data.
Note: The first plot in the upper left corner represents the intercept (X1). All other plots are sequential from left to right as
presented in Baldi et al. (2014).
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Figure 3.6: Unpenalized Histograms of Nonparametric Application to Exotic Particle Detection Data.
Note: The first plot in the upper left corner represents the intercept (X1). All other plots are sequential from left to right as
presented in Baldi et al. (2014).

108



0 1000 2500

−4
0

4
Convergence of X1

Support

X1

0 1000 2500

−4
0

4

Convergence of X2

Support
X2

0 1000 2500

−4
0

4

Convergence of X3

Support

X3

0 1000 2500

−8
−2

4

Convergence of X4

Support

X4

0 1000 2500

−4
0

4

Convergence of X5

Support

X5

0 1000 2500

−6
0

4

Convergence of X6

Support

X6

0 1000 2500

−5
0

5
10

Convergence of X7

Support

X7

0 1000 2500

−6
0

4

Convergence of X8

Support
X8

0 1000 2500

−6
0

4

Convergence of X9

Support

X9

0 1000 2500

−4
0

4

Convergence of X10

Support

X1
0

0 1000 2500

−4
2

6

Convergence of X11

Support

X1
1

0 1000 2500

−4
0

4

Convergence of X12

Support

X1
2

0 1000 2500

−4
0

4

Convergence of X13

Support

X1
3

0 1000 2500

−6
0

4

Convergence of X14

Support
X1
4

0 1000 2500

−6
0

4

Convergence of X15

Support

X1
5

0 1000 2500

−4
0

4

Convergence of X16

Support

X1
6

0 1000 2500

−5
0

5

Convergence of X17

Support

X1
7

0 1000 2500

−4
0

4

Convergence of X18

Support

X1
8

0 1000 2500

−6
0

4

Convergence of X19

Support

X1
9

0 1000 2500

−6
0

4

Convergence of X20

Support

X2
0

0 1000 2500

−4
0

4

Convergence of X21

Support

X2
1

0 1000 2500

−4
2

6

Convergence of X22

Support

X2
2

0 1000 2500

−4
0

4

Convergence of X23

Support

X2
3

0 1000 2500

−6
0

4

Convergence of X24

Support

X2
4

0 1000 2500

−4
0

4

Convergence of X25

Support

X2
5

0 1000 2500

−6
0

4

Convergence of X26

Support

X2
6

0 1000 2500

−4
0

4

Convergence of X27

Support

X2
7

0 1000 2500

−4
0

4

Convergence of X28

Support

X2
8

0 1000 2500

−8
−2

4

Convergence of X29

Support

X2
9

Figure 3.7: Penalized Convergence Plots of Nonparametric Application to Exotic Particle Detection Data.
Note: The first plot in the upper left corner represents the intercept (X1). All other plots are sequential from left to right as
presented in Baldi et al. (2014).
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Figure 3.8: Penalized Histograms of Nonparametric Application to Exotic Particle Detection Data.
Note: The first plot in the upper left corner represents the intercept (X1). All other plots are sequential from left to right as
presented in Baldi et al. (2014).
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3.5 Discussion

The simulation results are extremely encouraging, because of the variety of datasets on which

the different models are compared. Indeed the results validate the theorems and mathemat-

ical findings on which they are based. The Proposed Nonparametric method contained the

true parameters nearly always with just 5,000 MCMC iterations, even without fixing the

variance parameter as is done in existing widely used latent variable formulations. This

level of coverage was attained with a smaller confidence interval than the Penalized Logistic

regression. Furthermore, the methodology, even in a very simple formulation, easily outper-

formed ANN for classification, with the difference being statistically significant on average

between the two models. Since the interpretation of the parameters remain tractable in the

proposed model as opposed to ANN, it further highlights the usefulness of the methodology

for myriads of scientific applications.

The application to the real-world datasets also gave extremely encouraging results, yielding

deeper insights beyond just the efficiency of the methodology itself. The most apparent of

these is that the methodology gives classification results which are 27.10% better than Ran-

dom Forests for the biomedical dataset, with 94.00% accuracy for the high-energy application

in TeD. In addition, the methodology also showed potential for performing model fit and

model selection at the same time. The Bayesian Adaptive Lassso application gave results

even better than the unpenalized version in the biomedical application, since its classification

results were 28.03% better than the Random Forest application for the dataset. However,

for the high-energy particle application this was not the case, with the unpenalized version

outperforming the penalized application in both TeD and TrD. This may be explained by the

small number of iterations performed, as the extra complexity of the penalized formulation

usually requires more iterations.

This highlights the importance of convergence concepts as well as the underlying topological
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spaces on which they are applied. Stronger convergence coupled with the ability to run it

on a stronger topology such as L1, means that even simple models can outperform, more

complex models on weaker topologies. Further that this may be done without losing scien-

tific interpretability of the parameter estimates. The ability to compare and contrast the

suitability of model fits, for any of the infinitely many parametric distributional assump-

tions also adds another layer of applicability and usefulness to the methodology across the

sciences.

The mathematical results also add to our continuing discussion on the importance of sta-

tistical “significance” as it relates to scientific significance. They point to the importance of

methodologies that have strong convergence of the parameter estimates on stronger topolog-

ical spaces over weaker convergence concepts (such as convergence in probability or conver-

gence in distribution) on weaker topological spaces. As such, when inference is of interest,

we may proceed using the methodology using simpler and more interpretable models. On

the other hand, when classification and/or model fit are the goals, the methodology can be

used in conjunction with the many excellent AI and ML models, on stronger topological

spaces, for better results accordingly. Therefore, our analytic exercise becomes an attempt

to find the best model, using the robust methodology, over finding the significant parameter

per se. To be precise, since most models are wrong, but some are useful, the statistical goal

can instead focus on robust methodologies, applied in sequentially more complex models, as

needed, that rely on scientific interpretability of the model specification. If inference is not

the primary goal, then we may improve on the many existing excellent AI and ML methods

on stronger topological spaces, to get equivalent yet interpretable results, or in many cases

better results as well. This approach gives us a more robust way to correlate scientific and

statistical significance concepts to truly give the “Best of Both Worlds.” Therefore, there are

many possible extensions of the methodology to AI and ML applications across the sciences

such as to Neural Networks and Support Vector Machines. However, these concepts require

a deeper analysis of the connection between measure spaces and topological spaces, and as
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such are left for future efforts.

As with any new methodology, however, its true usefulness to the sciences can only be ascer-

tained with broad applications across the sciences, using datasets of varied characteristics.

While the mathematical results give solid foundations and explanations for the excellent

results, nevertheless, we must be vigilant in its application and estimation. That is, the

methodology is extremely versatile in its ability to converge to the true parameter, but this

does not preclude the other aspects of good data analysis such as checking for outliers or

ensuring the predictors are not correlated with each other etc., especially if inference is the

primary goal. However, the simulation results along with the real-world data application

outcomes show much potential for the proposed methodology, and further verification is left

as an open question to the greater scientific community to explore.

3.6 Conclusion

In conclusion, the mathematical foundations and simulation results show the proposed

methodology makes notable contributions to widely used methodologies in the sciences.

It retains parameter interpretability in a nonparametric setting, while reducing identifiabil-

ity concerns with near perfect coverage probabilities with smaller confidence intervals than

widely used methods. As such, it shows much potential for future real-world data applica-

tions. Accordingly, it represents a useful tool for mathematicians, statisticians and scientists

to positvely contribute to our continuing conversation on the role of statistical significance

and scientific significance and their interplay to answer scientific questions.
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Chapter 4

An Unifying Framework
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4.1 Introduction

The preceding results point to the need for a more general framework that can ensure identifi-

ability of both the probability of success and the probability of failure uniquely. Evidently, in

the Bayesian latent variable formulation pointwise convergence is not guaranteed even under

very strong parametric assumptions on the probability of success across the two method-

ologies. Accordingly, let the probability of successes be F and F ⇤ for binary regression and

latent variable formulations respectively, which are necessarily unknown. Further note that

since in the Bayesian implementation the error can take continuous values, we have the abil-

ity to also uniquely identify the probability of failure, and denote it here as F ⇤
0 using the link

constraint. Thus, the following discussion will make clear that the link constraint holding

for each observation is an absolutely crucial component for almost sure convergence to hold.

This assertion is true no matter the estimation technique involved such as Tanner and Wong

(1987) or MLE since the characteristics of the underlying imposed topology are crucial for a

properly defined linear operator on the relevant abelian group. These assertions are further

elaborated below.

4.2 Mathematical Results for an Unifying Framework

In the following I present the importance of the link condition holding for each observa-

tion and state some general results as to how it extends the current GLM framework very

broadly. To be precise, I first prove under what circumstance there is equivalency of the

current binary and latent variable formulations. Then to present a more unified framework

I present some minimal topological definitions which will be needed for the remainder of the

Section. I then give results which illuminate why the current GLM framework cannot give

convergence results which are almost sure. In the impossibility theorem I show the necessary
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and sufficient conditions needed for almost sure convergence, and also tie in the results to

the previous contributions across all chapters. Finally, I present the unified methodology in

a mathematically rigorous manner.

4.2.1 Nonequivalency of Current Binomial and Latent Variable Method-

ologies

To see that the current latent variable and the binary formulations need not give equivalent

results, we need to consider multiple criteria. The first of these have already been alluded

to before. In particular, note that since asymmetric and symmetric DGPs induce different

constraints on the latent probability of success, it can be used to give us our first result.

Proposition 4.1. Let F be a distribution for the Bernoulli probability of success and F ⇤ the

distribution for the latent probability of success. Then a necessary condition for equivalence

of the Binary Regression and Latent Variable specifications is that F = F ⇤.

Proof. First note that from before in the symmetric case,

pi = F (x0
i�i) = F ⇤[y⇤

i
> 0] = F ⇤[�✏i < x0

i�i] = F ⇤[✏i < x0
i�i] = F ⇤[x0

i�i]. (4.1)

Assume the assumption of the proposition does not hold. Then,

F ⇤[�✏i < x0
i�i] 6= F ⇤[✏ < x0

i�i], (4.2)

and we have by definition

pi = F (x0
i�i). (4.3)
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Let �i be given, further we know by construction xi are considered fixed. Then,

pi = F (x0
i�i) 6= F ⇤[✏ < xi�i], (4.4)

a contradiction to our hypothesis. The conclusion of the result then follows straightforwardly.

The above result seems rather intuitive, since almost always the true distribution of success

is unknown. However, it is more difficult to see that indeed the convergence is not even

guaranteed pointwise between the two methodologies even if the true distribution of the

probability of success is somehow known and assumed to be the same for both the binary

and latent variable formulations. To see this first note that the probability of success in the

binary case is given by F (xi
0�i) and it is assumed that the probability of failure is given by

1 � F (xi
0�i), which appears to be a reasonable conclusion. Yet the above results and the

uniqueness of the Jordan Decomposition implies that this relationship need not hold even

pointwise for the latent formulation!

To see this perhaps an example would be the best tool at present. Consider the following

sample points over � = {�2,�1, 0, 1, 2}. WLOG assume the Hahn Decomposition exists

such that the signed measure ⌫ is finite. Further, that in the following latent specification

we have the two unique measures give the following values,

⌫+ = {0, 0.25, 0.35}, (4.5)

⌫� = {0.25, 0.4}. (4.6)

Then if F̄1 and F̄0 are the unnormalized measures with subscripts indicating the relevant
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Bernoulli outcomes we have,

|⌫̄| = 1

2

�
F̄1 + F̄0

�
, (4.7)

is a probability measure. Consider the sample points for {-0.25, 0.25}. We have,

|⌫̄|(�0.25) = 0.19 6= 1� |⌫|(0.25) ⇡ 0.29, (4.8)

A surprising result indeed! This leads us to our next result.

Proposition 4.2. The binary regression and latent variable formulations are equivalent if

and only if c1⌫+ = h(F ⇤) = F and c2⌫� = 1 � F = (1 � h(F ⇤)) a.e. on the measureable

space (�,⌃) and h is a monotonic function of F ⇤ with {c1, c2} 2 R \ {�1,1}.

Proof. For the backward direction let, c1 = c2 = 1 and F = F ⇤ but 1 � F 6= 1 � F ⇤.

Then the statement clearly does not hold. Since then if ⌫+ = 1 � ⌫�, we have the binary

regression assumptions may hold for the Jordan Decomposition of the signed measures, yet

the latent variable formulation does not equal it even pointwise. Thus, the backward negation

is immediate.

For the forward direction, now assume F = h(F ⇤) and 1�F = 1�h(F ⇤) a.e. on the relevant

measureable space. Then,

L(yi|xi,�i
) = Fi(1� Fi), (4.9)

L(y⇤
i
|xi,�i) = h(F ⇤

i ). (4.10)

=) F / h(F ⇤) and 1� F = 1� h(F ⇤) (4.11)

=) L(yi|xi,�i) / L(y⇤
i
|xi,�i

) since h(F ⇤) / F pointwise. (4.12)
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Since the signed measure ⌫ can be decomposed into finite measures by proposition 3.3 and

3.4, using Birnbaum’s Theorem and the likelihood principle, we would arrive at the same

inference for each methodology. The statement then is verified.

The results are striking to this mathematician and gives several far reaching consequences.

It states that the two methodologies need not be equivalent even under the assumption that

F = F ⇤, even without assuming any measure theoretic applications. We must consider

the probability of success and failure to be two separate measures for unique identifiability

to hold. It further illuminates that no matter the estimation technique involved, simply

assuming MLE results is not enough for congruence between the two models even in large

samples, a finding readily validated in numerous empirical applications across the sciences

(see for example Chowdhury (2021a) and Chapter 2 for a more detailed discussion).

In fact, the result gives rise to several other relevant questions as to when the assumptions

on the existing frameworks can and cannot be supported. The results below highlight these

considerations.

4.2.2 Topological Definitions

To facilitate this discussion the following definitions are asserted and may be found in almost

any graduate level Topology book.

Definition 4.1. A linear space X is an abelian group with group operation addition, such

that for a real number ↵ and u 2 X and {↵, �} 2 R a scalar product ↵.u 2 X and the

following properties hold,

• (↵ + �).u = ↵.u+ �.u.

• ↵.(u+v) = ↵.u+ ↵.v; v 2 X.
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• (↵.�).u = ↵.(�.u) and 1.u = u.

The addition and scalar multiplications are defined pointwise on all of X . On this space we

may define a norm ||.|| as if u,v 2 X and ↵ 2 R then ||u|| = 0, if and only if u = 0,

||u+v||  ||u||+ ||v|| and ||↵u|| = |↵|||u||.

For two normed linear spaces we may define a linear operator as follows.

Definition 4.2. Let X and Y be linear spaces. A mapping T : X ! Y is called a linear

operator if for each u,v 2 X and real numbers ↵ and �,

T (↵u+ �v) = ↵T (u) + �T (v). (4.13)

In addition to the elementary definitions above I will work on a particular type of linear

space the Banach spaces, and define it accordingly below.

Definition 4.3. A Banach space is a complete normed linear space.

To be complete we need one more topological concept, that of the Hausdorff Separation

property.

Definition 4.4. A topological space equipped with the Hausdorff Separation Property implies

that any two points on the topological space can be separated by disjoint sets.

These definitions now provide the tools needed to understand under what circumstances the

existing latent and binary regression frameworks are equivalent. The result below highlights

this specification.
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Proposition 4.3. Let X be a compact Hausdorff space, and Y a compact subspace on which

the link condition holds. Then under the assumptions of Proposition 3.4, the existing La-

tent Variable and Binary Regression frameworks are equivalent if and only if the underlying

probability of success (failure) is symmetric around the origin.

Proof. Case I: Assume that the assumptions of Proposition 3.4 holds. Then using Theorem

3.1, Proposition 3.4 and Proposition 3.5 we have that ⌫+ can be extended to all of X through

a linear functional L on which

L(X )  ⌫+(X ). (4.14)

Then from elementary functional analysis (Lax (2002)) we know that for C(X ) the space

of continuous real-valued functions normed by the maximum norm every bounded linear

functional L on X and f 2 C(X ) we have that,

L(f) =
Z

X
f⌫+(dx), (4.15)

where ⌫+ belongs to C 0, the space of all finite signed measures. Consider the measure space

(X,⌃, |⌫̂|) as in Proposition 3.4. Then,

|L| = 1. (4.16)

But by Hahn-Banach we can extend this linear functional to all of X , and therefore, define

⌫� = F ⇤
0 = 1�

Z

X
f⌫+(dx), (4.17)

to get the desired assertion.
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Conversely, now assume that (4.17) holds. Then again by Hahn-Banach we have that there

exists a linear funtional L1 : X ! Y such that

|L1| = 1, (4.18)

and,

⌫+ = F ⇤ = 1�
Z

X
f⌫�(dx). (4.19)

Thus, it remains to prove the necessity of symmetry around the origin.

But this specification makes clear the circumstances under which we can assume a symmetric

distribution for the probability of success for the existing latent variable or binary regression

framework, when,

⌫� = F ⇤
0 = 1�

Z

X
f⌫+(dx) = ⌫+ = F ⇤ = 1�

Z

X
f⌫�(dx). (4.20)

Thus, we are done.

Case II: Now assume that that the conditions of Proposition 3.3 holds. This scenario is

considerably more convenient to deal with. Consider the case that

|⌫+| = |⌫�|. (4.21)

Then again using Hahn-Banach we may extend a linear functional

L2 : X ! Y , (4.22)
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such that (4.20) holds. Thus, we are done.

Therefore, the circumstances under which such an assumption is justified would under most

circumstances be considered extremely restrictive and unlikely to represent the underlying

stochastic process! Yet this mathematical formulation and line of reasoning provides even

further striking results regarding the impossibility of almost sure convergence in any GLM

framework for the existing specification. These results are summarized below.

4.2.3 The Impossibility of Almost Sure Convergence in the Current

Framework

To show that the existing GLM framework does not guarantee almost sure convergence

in general for any estimation technique it is necessary for us to consider linear operators

between linear spaces relevant to both the underlying systematic component and for the link

function. The following lemma puts this into more concrete terms.

Lemma 4.1. Let X be a finite dimensional linear space and consider Y as the linear subspace

on ⌘ = g(µ) = �, as defined before as the link condition that ties the systematic component

to the mean. Then there exists no unbounded linear operator T such that

T : X ! Y (4.23)

is continuous.

Proof. First note that, by construction X is a finite dimensional linear space. Then for

� 2 Rn, n < 1, �(X ,�) 2 Y ⇢ X is a linear subspace of X . Further by construction

of a GLM we know that T : X ! Y must exist. Furthermore, by construction this linear
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operator must be unique for any given �. Assume, T is unbounded. Then, for any u 2 X ,

||T (u)|| � M ||u||, 8 u 2 X . (4.24)

By definition, un ! u then pointwise convergence implies {T (un)} ! T (u). Suppose T is

continuous. WLOG consider ✏ = 1 at u = 0. Then we should be able to pick a � such that

||T (u) � T (0)|| < 1 with ||u|| < �. But by assumption T is unbounded. Thus, there exists

no M � 0 such that

||T (u)|| < M ||u||, 8 u 2 X . (4.25)

Therefore, no such � exists since no such M exists with � = (M ||u||)�1. Therefore, T is not

continuous as needed.

The above results are instructive. It is not possible to find a continuous linear operator

between the sample space and the link function if the link function can be either infinite

dimensional with respect to the strong topology or it takes nonfinite values. Even if we

assume the observed explanatory variables are a finite sample from a finite dimensional

space, perhaps we may disregard the infinite dimensional case, but we cannot disregard

any undefined values taken by such a linear operator, as this implies the operator is not

continuous. If the operator is not continuous, many well known convergence results fail to

hold regardless of whether Bayesian or Frequentist estimation methodology is used. Indeed

this further implies that the results of Tanner and Wong (1987) need not be continuous as

there may exist a linear operator which need not be bounded. Consequently, in Albert and

Chib (1993) we need not have unique convergence to the mean regardless of the MCMC

method used to identify the posterior even if the observed data coincide with the strong

assumptions mentioned previously.

Further note that in Chapter 3 I discussed that equivalency between the binomial and latent
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variable regression specification relies on the likelihood principle. That is, the two likelihoods

must be proportional to each other for the almost sure convergence to hold between them.

Accordingly, consider the Logistic link function,

ln

✓
pi

1� pi

◆
= �i. (4.26)

As discussed in Chapter 2 the link function is indeed not bounded as

{pi} ! 1 =) ln

✓
pi

1� pi

◆
! 1. (4.27)

Therefore, there can be no continuous linear operator between the sample space and the link

field equipped with either the normal or hausdorff topology. The statement of the result

above is actually rather more innocuous than perhaps its implications may initially indicate.

Consider the following corollary as a direct implication of the results above.

Corollary 4.1. Let X and Y be as in Lemma 4.1. Then the Logistic and Probit formulations

are equivalent in the sense of Birnbaum for any continuous or discrete GLM formulation.

Proof. To see this rather surprising result first note the existence of a latent variable

formulation is guaranteed by Proposition 3.3 and Proposition 3.4. Further note that in

Proposition 3.5 I showed that a monotonic transformation of ⌫+ and ⌫� such that

⌫+ = h(F ⇤) = F and (4.28)

⌫� = 1� h(F ⇤) = 1� F, (4.29)

would result in the same inference using Birnbaum’s Theorem. Consider a simple application
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using the density functions of the Logistic,

f1(y, X,�1, �1) =
exp(�[y �X.�1]/�

2
1)

(1 + exp(�[y �X.�1]/�
2
1))

2 ,
(4.30)

and that of the normal density,

f2(y, X,�, �) =
1p
2⇡�2

exp(�[y �X.�]/�2). (4.31)

Thus, if � = �1 the two exponential densities are proportional to each other, with an adequate

monotonic transformation and without the imposition of a link constraint should give similar

inference results in large samples under i.i.d. assumption even if the model fit and prediction

results differ. Since the current Latent Variable framework imposes fixing the variance of

the latent distribution for identification purposes, we may readily apply the constraint that

�1 = �. But the Bayesian and Frequentist formulations are identical under prior restrictions

using existing latent variable framework. Therefore, the statement of the corollary must hold

in either formulation. Thus, the assertion of the corollary then readily follows.

Indeed the result is validated across the sciences where (see for example Albert and Chib

(1993), Cameron and Trivedi (2010)) they state each model’s parameters appear to be a

constant multiple of the other. Specifically, �
Logit

⇡ 1.6�
Probit

and seem to apply quite well

in empirical applications. This then gives one of the more poignant results of this work.

Corollary 4.2. Let X and Y be as in Lemma 4.1. Then pointwise convergence is not

guaranteed for any F ⇤ = F , and the linear functional

T : X ! Y , (4.32)

and the statement holds whether we use a Bayesian or Frequentist formulation.
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Proof. Under the conditions of Lemma 4.1 we have that no continuous linear functional

exists between the sample space X and Y , for any sequence {c(X)�} ! � 2 Y , if for some

n, ⌫+(�) = 1 or ⌫�(�) = �1. Therefore, by Proposition 3.3 and Proposition 3.4 using

Corollary 4.1 we have that no continuous functional exists such that pointwise T : X ! Y

holds.

Furthermore, by Proposition 3.4 we know that a latent variable formulation in the discrete

case can be extended to the continuous case. Therefore, the statement of the result holds

for any GLM.

Observe, that this result is independent of the linear functional used and therefore it is

independent of whether a Bayesian or Frequentist operator is used in the estimation process.

This result seems rather strong, since continuous regressions are run everyday in virtually

all scientific fields without identifiability concerns always apparent. However, note that the

issue is more pernicious than may appear. The issue becomes apparent when the probability

of success or failure is exactly equal to 1. This necessitates the �’s to be numerically large for

the link condition to hold explicitly, even if not considered in the estimation process. This

in turn can result in non-convergence. This is often dealt with in practice, by throwing away

a particular observation that may be causing estimation issues. While such an approach

can lead to convergence to some parameter, it is not clear why such a parameter should

be equivalent to the true likelihood under Birnbaum’s theorem. In fact, the mathematical

results state that they should not be. Another approach often taken is to start from multiple

starting points to get the best model fit results. However, even this approach does not

guarante convergence to the true parameter even pointwise, since there are infinitely many

models and starting points that can be considered. Therefore, the need for a more rigorous

functional analysis approach that is applicable across the sciences seems clear. Accordingly,

in Chapter 2 I ensured that almost sure convergence can be achieved without facing the issues
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of an unbounded, discontinuous linear functional pointwise for some functional specification

of �(X,�). In Chapter 3, I presented a methodology which ensured that if the latent

and binary formulations are equivalent, then we may assure almost sure convergence of the

parameters. In the current formulation, using some of the results of the previous chapters,

and some of the insights presented above, I present a methodology which ensures convergence

to the unique measure using Jordan Decomposition as in Chapter 3 but in a far more general

framework, for any continuous, bounded link specfication subject to the link constraint

holding for each observation.

4.2.4 An Unified Almost Sure Convergence Methodology

The preceding chapters have through rigorous mathematical arguments laid the foundations

for almost sure convergence to the true parameters of interest under the binary regression

framework. They have done so by harnessing the advantages of both the latent variable and

binomial regression case to overcome their respective disadvantages. Specifically, we know

that the binary error can only take one of two values, either 0 or 1. On the other hand, for

the latent variable formulation we know the error can be continuous. In the nonparametric

section I set the mathematical foundations for the completely new robust methodology using

the Jordan Decomposition Theorem for a signed measure. Those results showed it to be

superior to existing methods with improvements to the parametric version under various

settings. However, it still ensured for equivalency to the binomial regression framework that

⌫� = 1 � F ⇤ = 1 � F . However, in the examples above I argued that this condition need

not hold at all even if F ⇤ = F . Therefore, in this section I outline a methodology where we

may relax this restrictive constraint.
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Accordingly, consider a likelihood function as follows,

L(X|�) = c(⌫+(�))(k)(⌫�(�))(n�k), c 2 R, k =
nX

i=1

yi. (4.33)

Note that such a likelihood function can be supported anytime we have independence between

the two sample spaces over the cutoff point of 0. The framework of Kass and Steffey (1989)

ensures that this can be done as an extension of the methodology presented in Chpater

3. As in the nonparametric case, the current formulation also allows for this cutoff to

be based on a normalized posterior probability such as the median. Using the ability to

run the estimation algorithm over the proportional posterior then allows us to extend the

nonparametric methodology in a more robust formulation.

In particular, note that the above formulation in (4.33) is justifiable anytime the formulations

discussed in Chapter 2 and Chapter 3 are valid. We know by Kass and Steffey (1989), these

formulations can be supported anytime there are unobserved variables that may impact the

outcome of interest. Since by necessity observed X are not infinite dimensional, we see that

the formulation is valid and viable, in addition to the discussions of Chapter 2 and Chapter

3. Therefore the link condition holding pointwise now takes the following formulation,

(⌫+)↵
⇤
1 = �|S+(X,�), (4.34)

(⌫�)↵
⇤
2 = �|S�(X,�). (4.35)

This general framework then requires a substantially more intricate proof to guarantee almost

sure convergence of LAHEML extended to all measure spaces whether finite or ��finite. To

see this the theorems below make this formulation clear in a mathematically rigorous way.

In doing so it adds to some well-known results in Real Analysis and Pure Mathematics.
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Theorem 4.1. Let (X,⌃, ⌫) be a finite measure space, with ⌫ finite a.e. Then under Latent

Adaptive Hierarchical EM Like Formulations in Frequentist or Bayesian framework,

�̂
a.s.��! � (4.36)

in Lp(X, ⌫), where 1  p  1 and p = 1 represents the essentially bounded case.

Proof. Consider Theorem 3.2, where almost sure convergence was asserted for ⌫ finite or

finite a.e. on X. Thus, the case for 1  p < 1, is immediate. It remains then to show the

case for p = 1. Thus, as in Theorem 3.3, let

fn(�(�̂
(j))|y(j),↵(j)⇤) := f j

n
. (4.37)

Let {fn} be the sequence of functions on X for all j. Then {fn} is bounded and finite by

construction for each i 2 {1, 2, ..., nj}, where [i=1E
j

i
are the respective disjoint covering sets.

Let ✏ > 0, then there exists a � > 0 for E 2 ⌃ such that,

if ⌫(E) < � then

Z

E

|fn| < ✏, (4.38)

follows straightforwardly from finiteness over E. Therefore, by Dunford-Pettis Theorem

(Royden and Fitzpatrick (2010)), fn is weakly compact. Thus, by the Kantorovich Repre-

sentation Theorem, there exists a linear functional,

T⌫ : L1(X, ⌫) =

Z

X

f d⌫ ! R, (4.39)

where T is an isometric isomorphism of (X,⌃, ⌫) on to the dual of L1(X, ⌫) (Ibid). Thus,

we are done.
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Theorem 4.2. Let X be a locally compact and Hausdorff topological space such that (X,⌃, ⌫)

is a ��finite measure space. Then under Latent Adaptive Hierarchical EM Like Formulations

in Frequentist or Bayesian framework,

�̂
a.s.��! � (4.40)

in Lp(X, ⌫), where p 2 {1, ...,1}, where p = 1 represents the essentially bounded case.

Proof. Consider the space of functions on X, L which are essentially bounded such that,

there exists some M � 0 with

|f |  M a.e. on X. (4.41)

Then there exists a linear functional such that 0  |f |  1. Following existing set up

(Royden and Fitzpatrick (2010)) for LP spaces, define LP (X, ⌫) to be the collection of

[L] 2 L, as the collection of extended real valued functions on X, which are finite a.e. on X.

Thus, integrability implies measureability for all f 2 L. That LP is a banach space is well

extablished and it is stated without proof going forward.

Accordingly, consider the dual of X, X⇤. By Alaoglu’s Theorem the unit ball on X⇤ is weak-*

compact. Let

B̄⇤(1) = { k 2 X⇤ : | k �  |  1}. (4.42)

Fix �k > 0, then by Alaoglu there are finitely many  0
i
s s.t. 0  i  1,

| i �  k| < �k, (4.43)
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for some x 2 X such that we may define sets of the form

Xk = {x, xnk
2 X : | k(xnk

)�  (x)| < 1

2nk

}. (4.44)

Further note that X is ��finite such that there exists disjoint open sets with X = [n

k=1Ek,

where E1 = {!} [ X ⇠ [n

k=2Ek, with ! the one point Alexandroff compactification of E1.

Now each Ek is endowed with the subspace topology from X. Let ⇤k be a dense subset of

(�1, 1), and define on Ek a normally ascending collection of open subsets Oo
�k

of Ek with

�k 2 ⇤k. Let fk : Ek ! R, with fk = 1 on Ek ⇠ [�2⇤O
o
�k

, and otherwise setting

fk(x) = inf{�k 2 ⇤ : xn 2 Oo
�k
}. (4.45)

Then

fk : Ek ! [�1, 1], (4.46)

is continuous.

Thus, for each Ek we may define a normally ascending collection of diadic rationals such

that,

Ek ✓ Oo
�1

[Oo
�2
...Oo

�nk

✓ Ōo
�1

[ Ōo
�2
... ¯Oo

�nk

, (4.47)

for some nk 2 N . Consider the collection of functions on

L|Oo
�1

[Oo
�2

...O
o
�nk

, (4.48)

and consider the product topology on it. Then by the Tychenoff Product Theorem, it is also

compact.
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Take a sequence {xnk
} 2 Ek such that {xnk

} ! x 2 Ek ✓ X. Then fk({xnk
}) is discontinu-

ous at most at countably many points. Thus, consider a sequence of functions fnk
on (4.48)

and diagonalize it such that for some nk, the neighborhood for (4.44) for 1
2nk

is not contin-

uous. Take nk+1 > nk. Continue this process untill it terminates to get an unique sequence

of possibly disjoint normally ascending collection of open sets O⇤o
�k2⇤k

. If the construction

is disjoint, we have identified a collection of disjoint open sets that cover Ek. If not use the

fact that X is Hausdorff and locally compact such that,

Enk=j = Ek ⇠ [j�1
nk=1Enk

=) Ek = [j

nk=1Enk
, (4.49)

is a disjoint collection of open sets. Since f is finite a.e. on X, it is also finite a.e. on Ek,

and therefore the diagonalization process is valid for each Ek.

Therefore, by construction the restriction of the measure space (X,⌃, ⌫) to

(X|\�k
O⇤o

�k2⇤k

,⌃|\�k
O⇤o

�k2⇤k

, ⌫|\�k
O⇤o

�k2⇤k

), (4.50)

is also a measure space, since by construction ⌫(Oo
1) < 1. Moreover it is finite and by

compactness, a finitely additive measure space. Since by the continuity of measure,

⌫(Ek) 
X

�k2⇤k

⌫(Ōo
�k2⇤k

) < 1. (4.51)

Thus, using Theorem 4.1 we have that Ek may be covered by a countable collection of

open sets Oo
�k2⇤k

, whose closure Ōo
�k2⇤k

contains Ek, with the closure being compact and

Hausdorff with respect to the weak-* topology on it, and the restricted measure space on it

is bounded and finitely additive. Thus, we may define a linear operator,

T⌫|[�k
Oo
�k2⇤k

(fk) !
Z

[�k
O

o
�k2⇤k

fk d⌫Oo
�k2⇤k

for all f2L1(Ek,⌫|[�k
Oo
�k2⇤k

). (4.52)
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Then, T is an isometric isomorphism of the normed linear space

(X|[�k
O⇤o

�k2⇤k

,⌃|[�k
O⇤o

�k2⇤k

, ⌫|[�k
O⇤o

�k2⇤k

), on to L1(Ek, ⌫|[�k
O

o
�k2⇤k

), by the Kantorovich Rep-

resentation Theorem. Using Theorem 3.3 and Dunford-Petis for each �k > 0 we may define

an ✏k such that there exists an Mk > 0 with nk > Nk 2 N ,

Z

{x2Ek:fk(x)�Mk}
|fk| < ✏k, for all nk > Nk 2 N . (4.53)

But,

⌫(Ek)  ⌫([j(nk)
nk=1O

o
�k2⇤k

) < 1, (4.54)

thus by Borel-Cantelli note that for each nk, by the countable monotonicity of ⌫|Oo
�k2⇤k

,

lim
nk!1

⌫
�
[1

�k=nk
Oo

�k2⇤k

�
< 1, (4.55)

thus all but finitely many of the x0s 2 [1
�k=nk

Oo
�k2⇤k

belong to finitely many of the Oo
�k

0s.

Then by Egoroff we may choose an nk > Nk, such that there exists a collection of subsets

Enk
of Ek such that fnk

! fk uniformly on Enk
but ⌫(Ek ⇠ Enk

) < ✏k.

Thus we may write,

��
Z

X

fd⌫ �
Z

[1
k=1Ek

fk
�� <

��
Z

X

fd⌫ �
Z

[�k
O

o
�k2⇤k

fk
��+

��
Z

[Enk

fk �
X

Enk

T⌫|[�k
Oo
�k2⇤k

(fk)
��+
��
X

Enk

T⌫|[�k
Oo
�k2⇤k

(fk)�
Z

[1
k=1Ek

fk
��

Taking the limit of Ek(�k) ! 1 as �k ! 1 gives us then,

��
Z

X

fd⌫ �
Z

[1
k=1Ek

fk
�� < 3✏k, (4.56)

134



take �k such that ✏k < 1/3, answers the ✏ challenge. Thus strong convergence immediately

implies that we may define a sequence of random variables Xnk
from Enk

onto [0, 1) such

that,

⌫

 
lim
n!1

[n

nk=1

��⌫�1Xnk
� ⌫�1

Z

X|Ek

f d⌫
��
!



⌫

 
lim
n!1

[n

nk=1⌫
�1
��Xnk

�
Z

X|Ek

f d⌫
��
!



⌫
⇣
lim
n!1

[n

nk=1⌫
�1
��Xnk

� (X|Ek
)
��
⌘


 
lim
n!1

nX

nk=1

⌫|Ek

��Enk
� Enk

\Oo
�k2⇤k

��
!
. (4.57)

Therefore, take NK̄ = max(Nk) over all k such that if nk = n(�k) > NK̄ we get

⌫

 
lim
n!1

[n

nk=1

��⌫�1
k

Xnk
� ⌫�1

Z

X|Ek

f d⌫
��
!

= lim
n(�k)!1

X

nk

1

2nk

! 1. (4.58)

Thus, we are done.

Remark 4.1. The result has some important consequences for probabilistic models, since an

application of LAHEML ensures almost sure convergence for all integrable functions over the

sample space.
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4.3 Monte Carlo Simulations

In order to validate the robustness of the proposed unified methodology a Bayesian framework

is used for extensive simulation studies, penalized and unpenalized, on various DGP’s, both

symmetric (Logit and Probit) and asymmetric (Complementary Log-Log). For this purpose,

datasets were generated from the standard normal distribution as before, for different sample

sizes (n = {100, 500, 1000, 2000}) and models,

y = Intercept+X1 +X2, (4.59)

y = Intercept+X1 + exp(X2), (4.60)

y = Intercept+ exp(X1) + sin(X2). (4.61)

All datasets as before, had 3 parameters to estimate, for the intercept (�1) and for two

explanatory or independent variables drawn from the standard normal ({�2, �3}) with the

appropriate transformations indicated above. Then for known � values, a Probit, Logit or a

Complementary Log-Log DGP was used to generate outcomes (dependent variable y), that

varied in the number of 1’s that were present.

In particular, the known {X,�} values along with each functional form above can be used to

calculate the probability of each observation for each specific model. Thus, we can consider

the calculated y values along with the generated X’s as the data on which we can fit our

chosen statistical models for each DGP. Finally, another step was done to create datasets

which had different numbers of successes as opposed to failures. Thus, the unbalancedness

of the data were varied between {0.1, 0.2, 0.3, 0.4, 0.5}. Here, 0.5 indicates equal number

of successes and failures (balanced), 0.4 indicates 10% fewer successes than failures and so

forth. Accordingly, for each sample size there are five different unbalanced datasets, each of
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which has three parameters or �’s to estimate for each of the three DGPs for each of the

models specified (linear, non-linear or mixed). As such, for each model, there are 60 different

datasets, each with 3 parameters to estimate, for a total of 180 ⇥ 3 = 540 parameters to

estimate, compare and contrast. The penalized results are summarized below.

Table 4.1: Simulation Coverage in Percentage Summary All DGPs (at 1% Significance Level, Reported in
Percentage)

Prop. Prop. Prop. Prop. Prop. Bayesian Pen.
N NU NP NPU Log. Probit Logit

LGR Covr. (NL) 97.37 100.00 98.68 98.68 97.37 77.63 68.42
PR Covr. (NL) 98.33 98.33 96.67 98.33 95.00 70.00 53.33

Comp. Lg. Covr. (NL) 98.75 100.00 98.75 100.00 100.00 88.75 72.50
LGR Covr. (Mx.) 100.00 100.00 100.00 100.00 100.00 83.33 75.00
PR Covr. (Mx.) 100.00 100.00 100.00 98.68 100.00 89.47 69.74

Comp. Lg. Covr. (Mx.) 98.75 100.00 98.75 98.75 98.75 90.00 69.74
LGR Covr. (L) 98.68 98.68 100.00 98.68 100.00 81.58 73.68
PR Covr. (L) 97.50 97.50 98.75 96.25 95.00 88.75 75.00

Comp. Lg. Covr. (L) 100.00 100.00 100.00 98.75 100.00 86.25 73.75

Note: Prop. N., indicates Proposed Nonpenalized, Prop. NU., indicates Proposed Nonpenalized Unified method, Prop. NP.,
indicates Proposed Penalized, Prop. NPU., indicates Proposed Penalized Unified method, Prop. Log., indicates Parametric
Logistic of Chowdhury (2021a), Bayesian Probit indicates the Bayesian Latent Probit, and Pen. Logit indicates the maximum
likelihood Penalized Logistic regression. This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log),
run over sample sizes of n = {100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear
and mixed models fitted (here 0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so
forth). For each DGP there are 20 different datasets to consider for each of the linear, mixed and non-linear models considered
for a total of 60 different datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180
parameters per DGP for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized
by average over all simulated datasets.
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Table 4.2: Simulation Confidence Interval Range for All DGPs (at 1% Significance Level)

Prop. Prop. Prop. Prop. Prop. Bayesian Pen.
N NU NP NPU Log. Probit Logit

LGR Covr. (NL) 6.01 5.76 5.85 5.43 5.58 1.79 5.40
PR Covr. (NL) 5.92 6.10 5.46 5.60 5.15 2.07 5.22

Comp. Lg. Covr. (NL) 5.64 5.69 5.53 5.29 5.58 1.90 5.58
LGR Covr. (Mx.) 6.47 5.67 5.37 6.19 5.67 2.20 6.52
PR Covr. (Mx.) 5.95 5.75 5.29 5.46 5.40 2.13 6.01

Comp. Lg. Covr. (Mx.) 6.1 5.46 5.74 5.74 5.34 2.03 5.24
LGR Covr. (L) 5.71 5.65 5.67 5.73 5.61 1.86 6.13
PR Covr. (L) 5.74 5.43 5.49 5.60 5.42 2.01 6.45

Comp. Lg. Covr. (L) 5.92 5.58 5.60 5.49 5.36 1.87 6.25

Note: Prop. N., indicates Proposed Nonpenalized, Prop. NU., indicates Proposed Nonpenalized Unified method, Prop. NP.,
indicates Proposed Penalized, Prop. NPU., indicates Proposed Penalized Unified method, Prop. Log., indicates Parametric
Logistic of Chowdhury (2021a), Bayesian Probit indicates the Bayesian Latent Probit, and Pen. Logit indicates the maximum
likelihood Penalized Logistic regression. This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log),
run over sample sizes of n = {100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear
and mixed models fitted (here 0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so
forth). For each DGP there are 20 different datasets to consider for each of the linear, mixed and non-linear models considered
for a total of 60 different datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180
parameters per DGP for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized
by average over all simulated datasets.

Table 4.3: Simulation Summary of ARS for All DGPs

Prop. Prop. Prop. Prop. Prop. Bayesian Neural
N NU NP NPU Log. Probit Net

Non-Linear 0.07 0.10 0.07 0.05 0.23 0.25 0.16
Mixed 0.17 0.05 0.07 0.07 0.23 0.27 0.21
Linear 0.08 0.07 0.05 0.05 0.19 0.23 0.21

Note: Prop. N., indicates Proposed Nonpenalized, Prop. NU., indicates Proposed Nonpenalized Unified method, Prop. NP.,
indicates Proposed Penalized, Prop. NPU., indicates Proposed Penalized Unified method, Prop. Log., indicates Proposed
Logistic, Bayesian Probit indicates the Bayesian Latent Probit, and Pen. Logit indicates the maximimum likelihood Penalized
Logistic regression. This is a summary over all three DGPs (Logistic, Probit and Complementary Log-Log), run over sample
sizes of n = {100, 500, 1000, 2000} and unbalancedness of {0.1, 0.2, 0.3, 0.4, 0.5} for all linear, non-linear and mixed models
fitted (here 0.5 indicates equal number of 1’s and 0’s (balanced), 0.4 indicates 10% fewer 1’s than 0’s and so forth). For each
DGP there are 20 different datasets to consider for each of the linear, mixed and non-linear models considered for a total of 60
different datasets per DGP. For each dataset there are three parameters of interest or �’s. In total there are 180 parameters
per DGP for a total of 540 parameters to be estimated over the entire simulation study. The results are summarized by average
over all simulated datasets.
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4.4 Empirical Application

To compare and contrast the methodology with those presented in the previous chapters,

I apply it to various datasets below. The datasets include the Intoxication dataset as well

as the Higgs dataset used in Chapter 3, in addition to the Challenger space shuttle disaster

dataset of 1986. Below more detailed explanations are given for these datasets avoiding

duplication where possible.

4.4.1 Detecting Heavy Drinking Events Using Smartphone Data

To detect heavy drinking events using smartphone accelerometer data in Killian et al. (2019)

as in Chapter 3, I run the unified methodology in a penalized and unpenalized setting as in

Chapter 3. For completeness note that the authors identified heavy drinking events within

a four second window of their measured variable of Transdermal Alcohol Content (TAC)

on smartphone accelerometer data. Their best classifier was a Random Forest with about

77.50% accuracy. A similar analysis was done on a far simpler model of TAC readings against

the accelerometer readings as predictors, for all subject’s phone placement in 3D space, for

the x, y and z axes,

TAC = Intercept+ x� axis reading + y � axis reading + z � axis reading. (4.62)

TAC here was set to 1 if the measurement was over 0.08 and 0 otherwise as in Chapter 3.

The same four second time window of accelerometer readings were used in the analysis with

the assumption that the TAC readings were unlikely to change in such a small time interval.

Please recall the results were extremely encouraging for the application in Chapter 3, with

perfect TeD (20% of the data) ARS classification accuracy, with 1, 000 iterations and 500

burn-in period. The penalized application also had perfect classification accuracy in TeD,
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which seemed to directly contradict the conventional wishdom of the need to perform model

selection and inference separately. These seemingly excellent results would suggest that the

data align well with the nonunified methodology. Nevertheless, an application of the current

methodology showed it to be equally effective again with only 1, 000 iterations.

In particular, in the current application all methodologies were run for 1, 000 iterations as

in Chapter 3, and below I present the convergence and histogram plots in Figure 4.1, Figure

4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8 for both the

unified and nonunified methodologies. The results tell a fascinating story regarding
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Figure 4.1: Heavy Drinking Event Data Sample
Space Exploration Plot for Nonparametric Unified
Methodology.
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Figure 4.2: Heavy Drinking Event Data Histogram
of Parameters for Nonparametric Unified Methodol-
ogy.

MIPs. The TeD classification results for the nonunified methodology were excellent, with

perfect identification. For the TrD, however, the results were less effective with around

70.00% accuracy. This trend though was largely consistent with the results from the unified

methodology also giving perfect classification in TeD with the TrD classification results
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Figure 4.3: Heavy Drinking Event Data Sample
Space Exploration Plot for Nonparametric
Penalized Unified Methodology.
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Figure 4.4: Heavy Drinking Event Data Histogram
of Parameters for Nonparametric Penalized Unified
Methodology.
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Figure 4.5: Heavy Drinking Event Data Sample
Space Exploration Plot for Nonparametric
Methodology.
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Figure 4.6: Heavy Drinking Event Data Histogram
of Parameters for Nonparametric Methodology.
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Figure 4.7: Heavy Drinking Event Data Sample
Space Exploration Plot for Nonparametric Penalized
Methodology.

Histogram of Intercept

Support

In
te
rc
ep
t

−4 −2 0 2 4

0
50

10
0

15
0

Histogram of X−Axis

Support

X−
Ax
is

−4 −2 0 2 4

0
50

10
0

15
0

Histogram of Y−Axis

Support

Y−
Ax
is

−6 −4 −2 0 2 4 6

0
50

10
0

15
0

Histogram of Z−Axis

Support

Z−
Ax
is

−4 −2 0 2 4

0
50

10
0

15
0

20
0

Figure 4.8: Heavy Drinking Event Data Histogram
of Parameters for Nonparametric Penalized Methodol-
ogy.

slightly worse, though not significantly so. In regards to inference, the results were largely

Table 4.4: Intoxication Dataset Summary of ARS for
All Relevant Methodologies

Methodology TrD TeD
Unified Penalized 0.21 0.06

Penalized Nonparametric 0.34 0.00
Nonparametric 0.30 0.00

Unified Nonparametric 0.24 0.00
Parametric 0.68 0.76

Existing Bayes 0.77 0.66
MLE Logistic 0.91 0.90

Penalized Logistic 0.91 0.90

Table 4.5: Intoxication Dataset Summary of AIC for
All Relevant Methodologies

Methodology TrD TeD
Unified Penalized 1.32 0.22

Penalized Nonparametric 3.16 0.95
Nonparametric 3.13 0.94

Unified Nonparametric 1.77 1.07
Parametric 1.31 0.97

Existing Bayes 1.83 1.18
MLE Logistic 1.21 1.00

Penalized Logistic 1.21 1.00

identical, thus providing further verification for the applicability of the Likelihood Principle,

for both the unified and nonunified nonparametric cases. This is a direct result of the

linear operators in both methodologies being continuous, as defined from the sample space
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Table 4.6: Intoxication Dataset Parameter Summary for All Relevant Methodologies

Predictor Estimates CI-Low CI-High Methodology
Intercept 0.24⇤⇤ 0.01 0.47 (1)
X-axis 0.02 -0.22 0.25 (1)
Y-axis 0.03 -0.19 0.25 (1)
Z-axis -0.54⇤⇤ -0.83 -0.26 (1)

Intercept -0.06⇤⇤ -0.11 -0.01 (2)
X-axis -0.01 -0.05 0.04 (2)
Y-axis 0.17⇤⇤ 0.13 0.21 (2)
Z-axis -0.08⇤⇤ -0.13 -0.02 (2)

Intercept 0.22 -0.03 0.48 (3)
X-axis -0.07 -0.31 0.17 (3)
Y-axis 0.21 -0.04 0.46 (3)
Z-axis -0.82⇤⇤ -1.05 -0.59 (3)

Intercept 0.17 -0.07 0.42 (4)
X-axis -0.02 -0.27 0.23 (4)
Y-axis 0.16 -0.06 0.38 (4)
Z-axis 0.02 -0.2 0.24 (4)

Intercept -0.13 -0.3 0.05 (5)
X-axis 0.01 -0.19 0.2 (5)
Y-axis 0.07 -0.13 0.27 (5)
Z-axis -0.21⇤⇤ -0.37 -0.05 (5)

Intercept -0.01 -0.14 0.11 (6)
X-axis -0.12 -0.32 0.08 (6)
Y-axis 0.24⇤⇤ 0.06 0.43 (6)
Z-axis -0.02 -0.15 0.1 (6)

Intercept -0.87⇤⇤⇤ -0.9 -0.85 (7)
X-axis -0.04⇤ -0.09 0 (7)
Y-axis 0.17⇤⇤⇤ 0.11 0.23 (7)
Z-axis 0.00⇤⇤⇤ 0.00 0.00 (7)

Intercept -0.87⇤⇤⇤ -0.9 -0.84 (8)
X-axis -0.04⇤ -0.11 0.02 (8)
Y-axis 0.17⇤⇤⇤ 0.09 0.25 (8)
Z-axis 0.00⇤⇤⇤ 0.00 0.00 (8)

Note: (1) Nonprametric, (2) Unified Nonparametric, (3) Penalized Nonparametric, (4) Unified Penalized Nonparametric, (5)
Parametric, (6) Existing Bayesian, (7) MLE Logistic, (8) Penalized Logistic.

to the link subspace. However, the proposed methodology has significant advantages over

the nonunified case in terms of model fit. That is considering the median �s, with the

Binomial Likelihood (LAHEML integrates out the probability of success so the original

143



data likelihood is used here), the unified methodology was nearly 2.4 times better in the

TrD and almost 4.3 times as good in the TrD for the Proposed Unified Nonparametric

methodology over the Proposed Nonparametric methodology. The results are also consistent

for the penalized applications. These results are entirely consistent with the underlying

mathematical foundations, and I discuss them more in the forthcoming Section 4.5. Please

further note that the goal here is to compare the unified and nonunifed applications and not

the other models per se1.

1The Bayesian Latent Probit was run for 5, 000 iterations whereas the Proposed Parametric Logistic was
run for only 1, 000 iterations here. Please refer to Chowdhury (2021a) for a more in depth comparison of
those models.
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4.4.2 Exotic Particle Detection Using Particle Accelerator Data

The second application of the methodology was for identifying high-energy particles in

Physics (Baldi et al. (2014)) as in Chapter 3. Recall that there are 28 feature sets in the

paper, with the first 21 features the kinematic properties measured by detectors in particle

accelerators. The last 7 high-level features were derived from the first 21 to discriminate

between the two classes. Therefore, inference is not the primary purpose for this applica-

tion. The classes to be identified is either 0 and 1, and refer to noise and signal respectively

before. For completeness, the model specification is restated below.

Signal/Noise = Intercept+
28X

i=1

Featurei. (4.63)

As before, for more information on the actual feature sets I refer the reader to the original

paper. Given the large datasize, for these applications, LAHEML was run for only 1, 000

iterations with 500 burn-in period. The convergence plots, along with the histograms of

each parameter may be found in Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12, Figure

4.13, Figure 4.14, Figure 4.15 and Figure 4.16. The penalized and unpenalized estimation

formulations were identical to that for the Intoxication application for Biostatistics. As such,

the classification outcomes were extremely encouraging, and can be found in Table 4.7. The

AICs can be found in Table 4.8.

Table 4.7: Higgs Dataset Parameter Summary for All
Relevant Methodologies

Methodology TrD TeD
Unified Penalized 0.41 0.18

Penalized Nonparametric 0.48 0.19
Nonparametric 0.51 0.19

Unified Nonparametric 0.53 0.16
Parametric 0.77 0.77

Existing Bayes 0.67 0.67
MLE Logistic 0.58 0.58

Table 4.8: Higgs Dataset Summary of AIC for All Rel-
evant Methodologies

Methodology TrD TeD
Unified Penalized 3.68 1.48

Penalized Nonparametric 4.11 1.65
Nonparametric 3.83 1.57

Unified Nonparametric 3.51 1.36
Parametric 1.36 1.36

Existing Bayes 0.83 0.75
MLE Logistic 1.28 1.28

145



0 200 400

−2
2

Convergence of X1

Support

X1

0 200 400

−2
2

Convergence of X2

Support

X2

0 200 400

−4
0

4

Convergence of X3

Support

X3

0 200 400

−4
0

4

Convergence of X4

Support

X4

0 200 400

−4
0

2

Convergence of X5

Support

X5

0 200 400

−4
0

4

Convergence of X6

Support

X6

0 200 400

−4
0

4

Convergence of X7

Support

X7

0 200 400

−4
0

4

Convergence of X8

Support

X8

0 200 400

−4
0

4

Convergence of X9

Support

X9

0 200 400

−2
2

Convergence of X10

Support

X1
0

0 200 400

−4
0

Convergence of X11

Support

X1
1

0 200 400

−4
0

Convergence of X12

Support

X1
2

0 200 400

−4
0

4
Convergence of X13

Support

X1
3

0 200 400

−2
2

Convergence of X14

Support

X1
4

0 200 400

−2
2

Convergence of X15

Support

X1
5

0 200 400

−4
0

4

Convergence of X16

Support

X1
6

0 200 400

−4
0

Convergence of X17

Support

X1
7

0 200 400

−3
0

2
4

Convergence of X18

Support

X1
8

0 200 400

−4
0

4
Convergence of X19

Support

X1
9

0 200 400

−4
0

4

Convergence of X20

Support
X2
0

0 200 400

−3
0

2

Convergence of X21

Support

X2
1

0 200 400

−4
0

4

Convergence of X22

Support

X2
2

0 200 400

−4
0

4

Convergence of X23

Support

X2
3

0 200 400

−3
0

2

Convergence of X24

Support

X2
4

0 200 400

−2
2

6
Convergence of X25

Support

X2
5

0 200 400

−3
0

2

Convergence of X26

Support

X2
6

0 200 400

−4
−1

2

Convergence of X27

Support

X2
7

0 200 400

−4
0

2

Convergence of X28

Support

X2
8

0 200 400

−4
0

Convergence of X29

Support

X2
9

Figure 4.9: Exotic Particle Detection Data Sample Space Exploration Plot for Nonparametric Unified
Methodology.

Given the small number of iterations one would expect that these MIP results can be further

improved for the unified applications for penalized or unpenalized cases. However, even in
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Figure 4.10: Exotic Particle Detection Data Histogram of Parameters for Nonparametric Unified Methodol-
ogy.

147



0 200 400

−2
2

Convergence of X1

Support

X1

0 200 400

−4
0

4

Convergence of X2

Support

X2

0 200 400

−4
0

Convergence of X3

Support

X3

0 200 400

−4
−1

2

Convergence of X4

Support

X4

0 200 400

−3
0

2

Convergence of X5

Support

X5

0 200 400

−4
0

4

Convergence of X6

Support

X6

0 200 400

−3
0

2

Convergence of X7

Support

X7

0 200 400

−6
0

4

Convergence of X8

Support

X8

0 200 400

−3
0

2

Convergence of X9

Support

X9

0 200 400

−2
2

Convergence of X10

Support

X1
0

0 200 400

−3
0

2
4

Convergence of X11

Support

X1
1

0 200 400

−4
0

4

Convergence of X12

Support

X1
2

0 200 400

−2
2

Convergence of X13

Support

X1
3

0 200 400

−3
0

2

Convergence of X14

Support

X1
4

0 200 400

−3
0

2

Convergence of X15

Support

X1
5

0 200 400

−4
0

2

Convergence of X16

Support

X1
6

0 200 400

−4
0

4

Convergence of X17

Support

X1
7

0 200 400

−3
0

2

Convergence of X18

Support

X1
8

0 200 400

−2
2

Convergence of X19

Support

X1
9

0 200 400

−4
0

4

Convergence of X20

Support
X2
0

0 200 400

−3
0

2

Convergence of X21

Support

X2
1

0 200 400

−4
0

4

Convergence of X22

Support

X2
2

0 200 400

−4
0

2

Convergence of X23

Support

X2
3

0 200 400

−4
0

4

Convergence of X24

Support

X2
4

0 200 400

−4
0

4
Convergence of X25

Support

X2
5

0 200 400

−4
0

4

Convergence of X26

Support

X2
6

0 200 400

−2
2

Convergence of X27

Support

X2
7

0 200 400

−2
2

Convergence of X28

Support

X2
8

0 200 400

−4
0

4

Convergence of X29

Support

X2
9

Figure 4.11: Exotic Particle Detection Data Sample Space Exploration Plot for Nonparametric Penalized
Unified Methodology.

this small number of iterations, the Unified Penalized and Unified Nonparametric method-

ologies outperformed their nounified counterparts in TeDs for both ARS and AIC. Thus, it
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Figure 4.12: Exotic Particle Detection Data Histogram of Parameters for Nonparametric Penalized Unified
Methodology.
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Figure 4.13: Exotic Particle Detection Data Sample Space Exploration Plot for Nonparametric Methodology.

seems reasonable to surmize that with the same number of iterations the unified methodolo-
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Figure 4.14: Exotic Particle Detection Data Histogram of Parameters for Nonparametric Methodology.
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Figure 4.15: Exotic Particle Detection Data Sample Space Exploration Plot for Nonparametric Penalized
Methodology.

gies would outperform the results of the nonunified applications in Chapter 32. As before,
2Again the Bayesian Latent Probit was run for 5, 000 iterations, while the Proposed Parametric application
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Figure 4.16: Exotic Particle Detection Data Histogram of Parameters for Nonparametric Penalized Method-
ology.
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the goal here is not to compare the performances of the published parametric versions, but

rather the Proposed Unified Nonparametric and Proposed Nonparametric versions in both

the penalized and unpenalized applications. As such, I discuss these findings along with

their mathematical implications more broadly in Section 4.5.

4.4.3 Challenger Disaster

The final application of the methodology is for the Challenger disaster. This dataset holds

a special place in my memory, as it was the first dataset on which I saw categorical models,

applied. In fact, that model was the Logistic, which the Chapters preceding this, and of

course this one as well, improves in regads to MIPs. Thus, it seems fitting to end with an

application on this dataset that started my initial curiosity into such models. To give some

background information, note that the Challenger Space Shuttle explosion occured in 1986

due to the failure of an O-ring, a component on the rocket. It is now widely recognized

that the material this component is made of, is susceptible to stress especially when the

outside temperature is low. There are certain engineering reasons for this, which are not

important for the current discussion presently, and I refer the reader to Draper (1995) for

further discussions on this. In addition, unlike in other papers that use the same dataset (see

for example Draper (1995)) I change the task of interest slightly here, from understanding

the number of O-rings under thermal stress to understanding the probability of an O-ring

experiencing thermal stress as a function of the outside temperature and a variable called

leak-check pressure. Thus, the model may be given as,

O�ring Under Stress = Intercept + Temp. + Log(
p
Leak � Check Pressure). (4.64)

To understand the probability that an O-ring will experience thermal distress at a temper-

was run for only 1, 000 iterations. Thus, the results here are not directly comparable to those in Chapter 2.
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ature of 31 degrees Farenhite, an analysis was done on the O-rings experiencing thermal

distress for the 23 shuttle launches prior to the Challenger disaster3. Thus, I seek to ex-

trapolate the probability of stress, and therefore failure of an O-ring as a function of this

temperature. Though the dataset is extremely small, the TrD consisted of the first 18 ob-

servations and TeD comprised of the rest.

The results are interesting in that all models compared gave perfect TeD classification.

However, the unified methods outperformed the Nonparametric Penalized application in

TrD and matched the Nonparametric application in TrD. In regards to AIC, however, the

Nonparametric Penalized application had the best TeD result, but the unified methodologies

again outperformed the nonunified methods on average over both TrD and TeD combined.

Once again, as for the other dataset applications, the main goal here is to compare the

unified and nonunified methodologies, and as such the comparisons for other methodologies

are not explicitly considered, though the results are consistent with previous findings for

these applications as well. Note that as before the Parametric Logistic is run for only

1, 000 iterations but the Bayesian Latent Probit is run for 5, 000 iterations, as such, these

results are not directly comparable. I refer the reader to Chowdhury (2021a) for more

discussions on this. Finally, in regards to inference, each of the unified methodologies were

consistent in finding both temperature and pressure as significant, but not the intercepts. In

contrast, the Proposed Nonparametric methodology found the intercept as significant as well

as temperature and pressure, but the Proposed Penalized Nonparametric methodology found

all except the intercept as significant. Accordingly, the results of the unified methodologies

are again more consistent than the other models compared. More discussions on this and its

implications are given in the next section 4.5.

3The launch temperature on the day of the Challenger disaster was 31 degrees Farenhite.
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Figure 4.17: Sample Challenger Sample Space
Exploration Plot for Nonparametric Methodology.
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Figure 4.18: Sample Challenger Histogram of Param-
eters for Nonparametric Methodology.
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Figure 4.19: Sample Challenger Sample Space
Exploration Plot for Nonparametric Penalized
Methodology.
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Figure 4.20: Sample Challenger Histogram of Param-
eters for Nonparametric Penalized Methodology.
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Figure 4.21: Challenger Sample Space
Exploration Plot for Nonparametric Unified
Methodology.
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Figure 4.22: Challenger Histogram of Parameters for
Nonparametric Unified Methodology.
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Figure 4.23: Challenger Sample Space
Exploration Plot for Nonparametric Penalized
Unified Methodology.
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Figure 4.24: Challenger Histogram of Parameters for
Nonparametric Penalized Unified Methodology.
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Table 4.9: Challenger Dataset Summary of ARS for
All Relevant Methodologies

Methodology TrD TeD
Unified Penalized 0.00 0.00

Penalized Nonparametric 0.33 0.00
Nonparametric 0.00 0.00

Unified Nonparametric 0.00 0.00
Parametric 0.34 0.00

Existing Bayes 0.41 0.00
MLE Logistic 0.41 0.00

Penalized Logistic 0.41 0.00

Table 4.10: Challenger Dataset Summary of AIC for
All Relevant Methodologies

Methodology TrD TeD
Unified Penalized 0.96 1.25

Penalized Nonparametric 3.16 0.95
Nonparametric 2.20 1.42

Unified Nonparametric 1.02 1.25
Parametric 1.43 2.41

Existing Bayes 2.63 2.57
MLE Logistic 1.09 2.06

Penalized Logistic 1.24 2.50

Table 4.11: Challenger Dataset Parameter Summary for All Relevant Methodologies

Predictor Estimates CI-Low CI-High Methodology
Intercept 0.11 -0.3 0.52 (1)

Temperature -0.4⇤⇤ -0.73 -0.08 (1)
Pressure -0.49⇤⇤ -0.81 -0.18 (1)
Intercept -0.06⇤⇤ -0.12 -0.01 (2)

Temperature -0.54⇤⇤ -0.59 -0.5 (2)
Pressure 0.34⇤⇤ 0.28 0.40 (2)
Intercept -0.15 -0.48 0.18 (3)

Temperature -0.55⇤⇤ -0.86 -0.24 (3)
Pressure 0.42⇤⇤ 0.05 0.79 (3)
Intercept 0.06 -0.09 0.21 (4)

Temperature -0.45 ⇤⇤ -0.60 -0.31 (4)
Pressure 0.48⇤⇤ 0.3 0.65 (4)
Intercept -0.27⇤⇤ -0.42 -0.12 (5)

Temperature -0.45⇤⇤ -0.62 -0.28 (5)
Pressure -0.35⇤⇤ -0.49 -0.21 (5)
Intercept -1.52⇤⇤ -1.64 -1.4 (6)

Temperature -0.63⇤⇤ -0.66 -0.59 (6)
Pressure 0.67⇤⇤ 0.60 0.74 (6)
Intercept -4.5 -14.57 5.56 (7)

Temperature -1.97⇤ -4.31 0.38 (7)
Pressure 1.35 -2.86 5.56 (7)
Intercept -3.65 -17.89 7.2 (8)

Temperature -1.24⇤⇤ -5.09 0.2 (8)
Pressure 1.11 -3.71 6.76 (8)

Note: (1) Nonprametric, (2) Unified Nonparametric, (3) Penalized Nonparametric, (4) Unified Penalized Nonpara-
metric, (5) Parametric, (6) Existing Bayesian (7) MLE Logistic (8) Penalized Logistic.
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4.5 Discussion

The results above are noteworthy in several contexts, including for Model Fit, Inference, and

Prediction. Thus in the forthwith I will expand on the importance of these findings for our

understanding of how statistical significance is related to scientific significance. However,

before discussing these topics I would first like to highlight some of the mathematical results

that allow us to make these conclusions that have broad impact across the sciences.

One of the most important results of this formulation is that the formulation ensures that

mathematically a linear operator exists between the Hausdorff space and the link field. The

claim is significant in that as sample size increases, in the current framework we cannot

guarantee that the estimation process, whether Bayesian or Frequentist, will be bounded

for all observations. Thus, though this occurs at the unbounded points in the Hausdorff

space, we cannot assert that this occurrence will have measure 0. However, the formulation

presented here ensures, under measure theoretic foundations, using novel analytic results,

that the estimation process will be continuous. Moreover, it assures that such a linear

operator will strongly converge to the true parameters. LAHEML therefore ensures that as

a function of the model specification and the observed Xs, convergence of the parameters of

interest will be almost sure. This is an expansive result which many existing convergence

methodologies cannot claim, because in their estimation the assertion may be violated. This

has some rather strong implications for our continuing discussion on statistical significance

and its relation to scienctific significance, and I will expand on this more below.

Another surprising result is that though the formulation may seem categorcal in nature,

the results of Chapter 3 ensure that as the number of observations increase it can also be

applicable to continuous outcome models. The mathematical results of Chapter 4 reinforce

those results. Thus, as almost sure convergence results are for general functional forms, they

are also valid and applicable for continuous outcome data. As such, the methodologies pre-
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sented above overcome one of the principle shortcomings of mathematical model estimations

present in the sciences for many decades.

Indeed, in many ways the formulation is not intuitive at first glance. Since, it would seem

counterintuitive to use a signed measure to estimate functional forms over �� algebras that

are a function of probability distributions. Yet the locally compact Hausdorff formulation

ensures the most general topological circumstances under which such a construction remains

valid. In fact, it is easy to see that in existing latent variable formulations, in the absence of

continuity of the linear operator, the conditions for convergence do not hold in Tanner and

Wong (1987). This is because, in such a case the underlying functional specifications are not

equicontinuous. Thus, it is nested within the present formulation and its implementation

through LAHEML.

Evidently, the use of a measure theoretic approach rooted in functional and real analysis thus

have demonstrable advantages over the existing formulations. This is because, through it,

we may consider the Lp(X, ⌫) spaces for 1  p  1, where as before p = 1 is the essentially

bounded case. As we saw in the proof of almost sure convergence above, using the locally

compact Hausdorff property we are able to show that there exists a linear operator on the

Lp spaces, which are also Banach spaces which are an isometric isomorphism to the space of

bounded finitely additive signed measures. As such, we are able to apply the methodology

on stronger Banach Spaces such as Lp=1 which contains the set of functions in the other

Lp spaces. Consequently, it readily allows more flexibility in the potential functions that

we may use to optimize over. On the other hand, positive finiteness almost everywhere,

in conjunction with a locally compact Hausdorff property, implies that we may identify an

unique signed measure using Riesz-Moarkov for every linear functional. Thus, LAHEML

uses these existence and uniqueness properties to identify the unique linear operator that

is a function of this unique signed-measure, thus explaining the excellent results above.

Accordingly, above I extend Riesz-Markov Theorem to the general Lp spaces for all 1 
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p  1, a result which appears to be new in this formulation in analysis, and it certainly is

unique to Mathematical Statistics in a latent variable formulation especially in the Bayesian

formulation.

Furthermore, this formulation has another remarkable property which goes beyond the in-

dependent and identically distributed model formulations which are the cornerstone of the

sciences. To see this first note that through the use of Kass and Steffey (1989) we know that

observations in LAHEML can be thought of as conditionally independent. Further note that

in the unified formulation we showed that the sample space may be separated into countable

unions of disjoint sets, over which we may define a subspace, such that a bounded finitely

additive measure space exists over it. But a finitely additive measure may easily be converted

to a distribution, and thus, for each disjoint set we may and do define a separate distribution.

Consequently, these distributions need not be identical at all! Whether or not they are will

depend on the extension of measure spaces through Hahn-Banach on the entire �� algebra.

Yet the proofs of the existence, uniqueness, and almost sure convergence results are not

dependent on any particular distributional assumptions, identical or otherwise! Thus, this

most general of formulations require our data to be neither independent nor identical!

Of course, as with any model specification, our characterization of the underlying phe-

nomenon is a function of the observed Xs. In addition, there may be circumstances under

which the assumptions in Kass and Steffey (1989) may not hold either. In such a case, there

are a multitude of other methodologies which can be used in conjunction with the proposed

methodologies accordingly. Regardless, the usefulness of the methodology and its general

construction shows much potential for broad applicability across the science, including for

MIPs.

Hopefully, it is clear that one of the chief contributions of this research is the realization

that just because a model outperforms another in regards one of the MIPs, it does not imply

that it will outperform it in another. Indeed, there are numerous examples above where

161



the opposite is true. What then can we glean from these findings, in light of the discussion

on the virtues of the methodologies above? Firstly, we saw that it need not be the case

that we perform model fit and model selection separately in all cases. For example, we

saw in the Intoxication dataset that the Unified Penalized methodology had the best AIC

of all the methods compared. In the Challenger dataset it also had the best overall model

fit. Furthermore, this level of performance was achieved without any noticeable drop in

prediction performance, since it was close to the best methods in this regard. In regards

to inference as well, the results for the Unified Penalized methodology remained consistent

especially for the Challenger dataset, where it found both temperature and pressure to be

significant.

In considering the other methodologies, we can also see that the unified versions uniformly

outperformed the nonunified versions, especially in Prediction, and did so again without

sacrificing interpretability of the parameter estimates. The mathematical results above pro-

vide solid foundations for these results. However, broadly we may think of the nonunified

versions as a specific versions of the unified methodology. Thus, the methodology is able to

identify the correct parameters, whether the underlying DGP is symmetric or asymmetric,

and in either case does not impose the link function approaching 1 or 0 at the same rate.

Furthermore, it has many of the virtues of the nonunified version of Chapter 3, such as not

needing to hold the variance constant and having continuous errors as well. Many of the same

large-sample tests discussed there can also be applied to this formulation. However, now we

may choose to apply the tests separately over the Hahn decomposition sets or together to

see which methodology gives the best desired result.

In fact, the findings regarding significance of the nonparametric methodology is also rele-

vant here and demand some further discussion. That is, the ability to perform MIPs using

stronger topological spaces imply that we no longer need to sacrifice one mathematical goal

for another. This is because a larger space of functions allow us a broader range of possible
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candidates against which we may optimize our parameters of interest as a function of the Xs.

In so doing a scientifically interpretable linear operator may outperform complex learning

algorithms without sacrifing interpretability of parameter estimates. Since the parameters

converge almost surely as a function of the Xs and the model specification, significance then

no longer needs to be a 0-1 answer (ironically). Thus, we may use stronger convergence

properties, on stronger topologies to sequentially make a model specification more complex

as needed. If, on the other, hand inference is not an immediate goal, we may use these same

robust properties of the methodologies with existing excellent AI and ML methodologies to

give equivalent or better results. While these extensions are not pursued currently here, I

allude to some of them in the forthcoming chapter.

One of the principle contributions of this research is in the insights it provides on the interplay

of statistical significance and scientific significance. Focusing solely on large sample results

with finite sample sizes can lead to bias and inconsistency of the parameter estimates in

general. However, the results highlight that even in large samples the convergence strength of

the methodology is crucial to scientfically rely on statistical inferential results in a robust way.

In particular, almost sure convergence in concert with the underlying measure space on which

the inferential results are considered is crucial for scientific significance beyond just statistical

significance. To be precise, many Machine Learning (ML) and Artificial Intelligence (AI)

algorithms and computational packages which can implement them often, though not always,

sacrifice interpretability for Model Fit and Prediction. Occam’s Razor is perhaps the most

well known addage that comes to mind in such contexts, since the more complex we make

our model, the harder it is for us to interpret its results. Consider for example, AI and ML

methods such as Neural Networks (NN) or Support Vector Machines (SVM). The former may

contain multiple hidden layers based on basis expansions of functions that defy any scientific

foundation for its existence and the latter suffers from the same predicament depending on

the various assumptions used in the model specification. In particular, say we want to predict

the heights of certain individuals, and implement a model with sin(log(abs(temperature of
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a certain lake in antarctica))) such that it perfectly classifies each individual in the Training

Data (TrD). Then inspite of such good Model Fit or Prediction (MP) results in the TrD, it

is hard to find a reasonable scientific explanation as to why in the general population such

a model would predict height well.

Thus, it is reasonable to expect that model variables should be correlated in some scientific

manner, which goes beyond just prediction in TrDs, as TeD results and interpretability may

be equally important. Therefore, solely relying on one of the many information criteria for

TrDs, such as Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC),

does not necessarily guarantee better prediction results for TeDs. This is a fact relevant

even if the underlying assumptions of the model specification on the TrD remains true for

the TeD, since the presence of unknown latent relationships may become apparent only for

the TeD, but not the TrD. Existing learning algorithms, Supervised or Unsupervised, can

overcome some of these weaknesses, yet they may suffer from interpretability and overfitting

beyond MP results, since the underlying calculations may be Blackboxes without scientifi-

cally relevant functional interpretations.

On the other hand, using scientifically interpretable models by itself does not always guar-

antee the best MP results for TrDs or TeDs either. This is because the existing explanatory

variables in the sample may be insufficient to capture the functional specification at all sam-

ple points leading to interpretable parameter estimates, yet poor MP results for TeDs. A

fact which is also relevant for the methodologies presented here. This is because all such

models are a function of the observed Xs.

Therefore, conventional wisdom generally recognizes that the goal of the analysis should

decide the type of methodology that should be used. So if one cares about classification,

then we may use one of the many excellent existing AI or ML algorithms separately if

interpretability is the goal, we may instead use a simpler functional specification. Yet the

connection between MIP for any model considered should provide a more coherent framework
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for comparison across diffent model and estimation processes considered. Therefore, it would

be ideal to go beyond just the Likelihood Principle or information specific criteria, relying

on asymptotic results, which themselves are reliant on large samples, to have methodologies

that optimize MIP results on all dimensions.

The issues regarding scientific and statistical significance is of course multifaceted depending

invariably on the explanatory variables present, measurement issues, scientfic question of

interest, in addition to the mathematical assumptions made in the model specification. Yet

an often overlooked criteria is the convergence properties of the methodologies used in model

estimations. Since clearly we cannot have an infinite number of sample points, large sample

results may be susceptible to both the sample size as well as the estimation procedure (please

see Chowdhury (2021a) for further discussion on the parameter bias that may result from

this exclusion). Thus, it should not be surprising that violations of the assumptions on which

our model is built may give poor MIP results. Unfortunately, Blackbox learning algorithms

can do the job for us only partially without prespecified restrictions on the model due to

lack of interpretability.

The proposed methodologies through the use of LAHEML, overcomes these existing short-

comings and gives consistent results subject to the model specified and converges to the true

parameters under general circumstances. This way the model parameters will converge to the

best possible value given the data and the particular model specified. Thus, if the parameters

converge to the true values for the model and the model is a priori known, interpretability

can be asserted in a rigorous mathematical manner. In so doing, we may also maximize the

MP criteria, as a function of the particular model specified and the observed data, without

needing to learn it explicitly in some mysterious unobservable way sacrificing interpretability

in the process. If the MP results are not deemed to be adequate, the Mathematician can

then consider more complex models, perhaps one with interaction terms as opposed to only

polynomials of lower orders. As the data change or are updated the model would remain
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interpretable, being updated to be more complex, but in a known and interpretable way.

As an example, many scientific models are based on convergence in distribution or conver-

gence in probability, on underlying topological spaces which are “weaker.” Thus, it suffices

to state that conclusions drawn from weaker topological spaces, even if strong convergence

is asserted, are only partially informative in comparison to a methodology that asserts al-

most sure convergence on a stronger topological space. Therefore, the scientific conclusions

and inference that we may draw from a methodology that relies on such properties should

accordingly be better as well.

Indeed, this work shows that the conventional wisdom of treating Classification and Inference

as separate tasks may not always be necessary. This is because an interpretable model using

the right methodology with stronger convergence properties applied to stronger topological

spaces can give equivalent or better results than Blackbox AI and ML methods in many

circumstances. However, that is not to say that existing methods cannot be used, especially

when the scientific question does not require Inference or Prediction at the same time per

se. However, if Inference and interpretability are goals, especially when applications of them

in the methodologies presented may give similar results to existing AI and ML models, good

modeling philosophy should require that they be used first.

Such a philosophy has a long and illustrious history from Aristotle to Occam’s Razor in the

sciences. Afterall, if we we believe in the saying that all models are wrong, but some are

useful, must we not then rely on robust methodologies with strong mathematical foundations

over reliance on overly complex models? In essence, it highlights that relying on MP criteria

to improve Inference and Prediction (IP) may be jointly achievable at the same time under

specific mathematical preliminaries, in the constructions presented here. That is, a scien-

tifically interpretable model with robust topological foundations with strong convergence

properties can be extremely useful for classification without losing inferential characteristics

for the proposed methodologies. On the other hand, a simple model applied without these
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robust methodologies can lead to the wrong conclusions over existing AI and ML methods,

though possibly at the cost of interpretability.

So what then should be the modeling philosophy to go beyond relying on p-values for the

sciences? Well unfortunately, there is still much we have to learn. However, we may still

be able to say some interesting things given the methodological contributions here. Chief

among these is that relying solely on AIC or BIC or other Model Fit criteria might give an

incomplete picture, if the data do not conform to the subtle mathematical assumptions of a

model. Afterall, there are an infinite number of models one can run on a dataset, therefore,

relying solely on minimizing model fit criteria can be just a little time consuming. Relying

solely on Prediction criteria can also lead us down the “Rabbit Hole” since the performance

on TrD and TeD need to be considered carefully. In either case, relying on performance

criteria for any one category of modeling objectives does not guarantee that the results will

be scientifically interpretable, even if the p-values are small for a predictor or the confidence

intervals are amenable to claiming significance.

Therefore, the mathematical results here suggest that a scientifically interpretable model

may have excellent predictive capabilities without sacrificing model fit or inference. How-

ever, in order to apply such a model, one must consider the convergence properties of the

estimation procedure and certain subtle connections between topological spaces and mea-

sure spaces. What is important is to note that almost sure estimation methodologies such as

LAHEML used in conjunction with stronger topological spaces may give excellent predictive

results without sacrificing interpretability of parameter estimates. These results highlight

a modeling exercise to be tied to the model specification, and not necessarily entirely de-

pendent on large-sample results or Blackbox learning processes. Therefore, use of LAHEML

in scientifically interpretable models can be a first step, which may be sequentially made

more complex as necessary irrespective of the statistical goals. Furthermore, if MP is the

desired goal, existing AI and ML models may accordingly be improved with these more ro-
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bust methodologies that have strong convergence properties on stronger topological spaces,

since intepretability would no longer be a constraint. In all such cases, methodologies that

ensure almost sure convergence is to be preferred over methodologies with other convergence

properties. In addition, all such models should be preferred when applied to stronger topo-

logical spaces in conjunction with almost sure convergence, to give truly “The Best of Both

Worlds!”

4.6 Conclusion

In summary, this chapter presents the most generalized form of the methodologies. It has

all the advantages of the previous methodologies and also expands on others. It therefore

provides the ideal foundation on which to build any number of supervised or unsupervised

methodologies in either the Frequentist or Bayesian formulation. As such, it provides further

insights into our continuing discussion on the interplay of scientific significance and statistical

significance broadly across scientific fields.
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Chapter 5

Artificial Intelligence and Machine

Learning Applications: An Overview
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5.1 Applications to Artificial Intelligence and Machine

Learning

The above methodologies have provided the complete mathematical foundations for extend-

ing many existing AI and ML methods without difficulty. Since it will not be possible to give

a complete discussion on every single method possible, I broadly discuss some of the more

well known applications in the sciences. Accordingly, consider when inference is not a focus

of our mathematical modeling. Then we may extend the Latent Adaptive Hierarchical EM

Like (LAHEML) methodology in learning algorithms in both supervised and unsupervised

applications. Since the methodologies can be extended in either the Parametric, Nonpara-

metric, or the Unified Framework, unless otherwise stated it should be understood that the

extensions can be applied in either formulations. Accordingly, I first consider Supervised

Learning models below and then discuss how they may be extended to various unsupervised

applications.

5.1.1 Supervised Learning

At present I use the terminology Supervised Learning more broadly than perhaps generally

recognized. In particular, the predictor variables are referred to as the independent variables

(IV) as customary, however, supervised in the current sense means that the functional spec-

ification is known a priori for the relationship of the IVs to the Dependent Variables (DVs)

of interest. Thus supervised in the present context implies we know specifically what the

functional relationship is between the DV and the IV for at least one stage of the model

specification. The application to NN in Section 5.1.1.3 will make this distinction clearer.

However, I begin with discussion on a few other distinctive models.
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5.1.1.1 Regression Splines

Regression splines can be seen as a special application of the methodologies above when

we (pre)specify a particular number of cutoff points. Since any locally compact Hausdorff

space may be separated into locally compact subspaces, any regression spline design can be

approximated by the methodologies above.

5.1.1.2 Regression Trees

Since the methodology can be applied to any regression framework, it can also be easily

applied in the construction of Regression Trees at the baseline level. All other parts of

existing formulations may remain the same.

5.1.1.3 Artificial Neural Networks

Consider a K-class classification problem with one hidden-layer between input and classifi-

cation layers. Then a parametric version of the results from previous chapters and using the

notation from Hastie et al. (2009) can be given in the following formulation,

Zm = �(↵0m + ↵T

m
X),m = 1, ...,M, (5.1)

Tk = �T

k
Z, k = 1, ..., K, (5.2)

fk(X) = gk(T ). (5.3)

For the parametric version we may assume the � is the Logistic formulation with gk(T ) being

the multilogit formulation. Where the present model differs of course is the link condition

needing to hold for each observation as before from Chapter [2], with the linear functional
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being continuous according to the discussion in Chapter 5].

The nonparametric formulation can be given by using the results of Chapter [3] and Chapter

[4]. A particular model can be given as,

Zm = ⌫(↵0m + ↵T

m
X),m = 1, ...,M, (5.4)

Tk = �T

k
Z, k = 1, ..., K, (5.5)

fk(X) = gk(T ) =
⌫Tk

P
K

l=1 ⌫
Tl

. (5.6)

Of course, other layers can be added similarly as needed, therefore, Deep-Broad Neural

Networks can be formulated accordingly without much difficulty as well. A version of this

work can be found in Chowdhury (2021c). In fact, the work shows that while arbitrarily deep

networks may approximate any function of the X’s arbitrarily closely, that broad networks

can estimate any function arbitrarily closely as well. This then gives us our next theoretical

result.

Theorem 5.1. Under the conditions of Theorem 4.2, a Broad Neural Network (BNN)

can approximate any function of the observed variables arbitrarily closely as the sample size

increases.

Proof. This is a direct consequence of the results of Theorem 4.2. Note that Theorem

4.2 shows that there exists an unique linear operator from the sample space to the link

field such that it is a function of an unique signed measure ⌫. Accordingly, given a linear

operator which is itself a function of this unique signed measure, almost sure convergence

of the operator is guarateed by the results of Theorem 4.2. The statement of the Theorem

then readily follows.
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I call such a framework the Natural Neural Network (NNN or N3). This is because most

scientific applications are rooted in the real numbers, which are locally compact. Thus, the

results above may be applied generally to all such models. Accordingly, even a single layered

neural network can identify any function arbitrarily closely given enough derived features.

As such, this formulation has ready extensions to many unsupervised learning applications,

some which are discussed below in Section 5.1.2.

5.1.2 Unsupervised Learning

Here also there are many excellent existing methodologies in the literature. The foundational

nature of the methodologies presented above, however, ensures that they can be easily applied

to them as well. Accordingly, I give a brief discussion of it below.

5.1.2.1 Regression Forests

First note that even the most basic application of the methodology was able to outperform

Random Forests as we saw in Chapter 3. Therefore, it seems a reasonable conclusion that

when a Random Forest is applied using this methodology we will get improved results over

existing methodologies.

5.1.2.2 Support Vector Machines (SVM)

For SVM, the application is again straightforward since the Kernel application in SVM may

be adapted to the Neural Network example given above in Section 5.1.1.3.
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5.2 Discussion

The literature on AI and ML applications of methodologies on Hilbert spaces is extensive.

The contribution of the current methodologies and the foundational mathematical results

allow us to apply them to general Banach spaces. However, since LAHEML may be applied

on stronger topological spaces through Theorem 4.2 and Theorem 5.1, these excellent existing

methodologies can therefore also be used in this framework to potentially improve MIP

results accordingly.

The existence of an unique signed measure which may be used in conjunction with Theorem

4.2, to find unique linear operators that estimate our parameters of interest almost surely

guarantees these assertions. As such, the potential applications and extension of LAHEML

through these results to the numerous AI and ML methodologies are extensive. Accord-

ingly, it is not possible to discuss all such extensions presently. However, the discussion

above, though brief on some well known and popular methods, provides a baseline on which

many such extensions can be based. I now conclude with some further discussions on these

extensions in the final chapter.
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Chapter 6

Future Research Direction and

Concluding Thoughts
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6.1 Future Research Directions

This thesis has provided a general framework under which mathematical models may be

estimated with almost sure convergence of the parameter estimates on stronger topological

spaces. Given its foundational nature, it has many possible applications across the sciences

beyond those discussed in the previous chapters. This includes but is not limited to Causal

Inference, Genetic Epidemiology, and Instrumental Variables to name just a few. In essence,

anywhere a linear operator may be applied, LAHEML can be adapted accordingly in a

particular model formulation. Therefore, the work presented here shows the potential to be

widely applicable across many scientific fields and mathematical or statistical exercises.

6.2 Concluding Thoughts

In conclusion, the work highlights the importance of the link condition holding for all obser-

vations, generally for mathematical and statistical models. In particular, through LAHEML

such pointwise convergence can be used to ensure almost sure convergence of the parameter

estimates. A fact which may further be used to show convergence on stronger topological

spaces. Accordingly, these findings show how such estimation processes are subtly connected

to particular measure spaces through the use of signed measures. This in turn ensures that

the likelihood principle holds generally for our models of choice. As such, this has profound

consequences for our understanding of the interplay of “statistical significance” and “scientific

significance,” with deep mathematical connections.

In particular, it highlights the importance of the topological spaces on which we consider

“statistical significance.” In addition, it also points out the importance of the strength of

convergence concepts on our ability to make inferential conclusions which are mathematically,

logically, and scientifically accurate. Therefore, overall the methodologies presented and their
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foundations based on Real Analysis, Functional Analysis, and Mathematical Statistics have

broad implications for mathematical models across varied domains.

As such, it is hoped that the work here will help future scientists make scientific conclusions

based on statistical models which are more aligned with mathematical realities. Which as

a direct consequence should continue to push our understanding of the world around us in

an interpretable and more scientific way as well. Therefore, it is my hope that the work

presented here will help answer scientific questions of relevance through LAHEML and its

extensions in a more mathematically precise way than has been possible before.
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.1 Appendix

.1.1 Appendix A: Technical Proofs of Theorems, Propositions and

Corollaries

Theorem 2: The Generalized Logistic Link function, log(P↵
⇤
(1�P)�1) is Analytic.

Proof Let Pi = P(�xi). I first proceed to show that P↵i

i
is analytic.

Consider P↵i

i
and fix Pi. Note by definition Pi 2 [0, 1], and let us restrict Pi 2 (0, 1) for the

remainder of this proof, excluding Pi 2 {0, 1}, sets of measure 0. Consider further a compact

set k = [a⇤, a⇤] 2 {0} [ R+ = K and a Taylor series approximation at ↵̄i 2 (a⇤, a⇤) is given

by

f(Pi,↵i) = f(↵i) = P↵i

i
= P ↵̄i

i
+ ln(Pi)P

↵̄i

i
(↵i � ↵̄i) +

ln(Pi)2 ⇥ P ↵̄i

i

2!
(↵i � ↵̄i)

2 + ...

(1)

Then expand lnPi in another taylor series expansion around 1 to get

ln Pi = (� � 1)� 1

2
(� � 1)2 +

1

3
(� � 1)3 � 1

4
(� � 1)4 + Error, (2)

where � belongs to some neighborhood of 1. Let �⇤ be the optimized value for (2). Define

⌘(�⇤) as this functional value. Then (1) becomes

f(↵i) = P ↵̄i

i
+ ⌘(�⇤)P ↵̄i

i
(↵� ↵̄i) + ⌘(�⇤)2P ↵̄i(i� ↵̄i)

2 + ...

+⌘(�⇤)n�1P ↵̄i(↵i � ↵̄i)
n�1 + ⌘(�⇤)nP ↵̄i(↵� ↵̄i)

n,
(3)
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Let

an = |d
nf(Pi,↵i)

d↵n

i

| = |⌘(�
⇤)nP ↵̄i

i
(↵i � ↵̄i)n

n!
|, (4)

and consider the series

1X

n=0

an. (5)

In particular, consider the ratio test such that

n ! 1an+1

an
= |n ! 1⌘(�⇤)P ↵̄i

i
(↵i � ↵̄i)

n
|, (6)

Note that for any fixed Pi 2 (0, 1) and 8↵̄i 2 [0,1), and ↵̄i 6= 1,

P ↵̄i

i
2 [0, 1]. (7)

Thus,

⌘(�⇤)P ↵̄i

i
 ⌘(�), (8)

=) n ! 1⌘(�⇤)P ↵̄i

i
(↵i � ↵̄i)

n
 n ! 1⌘(�⇤)(↵i � ↵̄i)

n
. (9)
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Consider, 8↵̄i 2 (�1, 0], then we have

=) n ! 1⌘(�⇤)P ↵̄i

i
(↵i � ↵̄i)

n
� n ! 1⌘(�⇤)(↵i � ↵̄i)

n
. (10)

Therefore, 9 ↵⇤
i
2 R, and ↵̄i 6= �1, such that,

=) n ! 1⌘(�⇤)P ↵̄i

i
(↵i � ↵⇤

i
)

n
= n ! 1⌘(�⇤)(↵i � ↵⇤

i
)

n
. (11)

But ⌘(�⇤)(↵i � ↵⇤
i
) is fixed. Therefore,

n ! 1⌘(�⇤)(↵i � ↵⇤
i
)

n
! 0. (12)

Therefore, P ↵̄i

i
is analytic for every ↵̄i 2 R\{�1,1} and in particular for every ↵̄i 2 [a⇤, a⇤].

Thus, an is bounded and in particular an ! 0. It then readily follows that P ↵̄i

i
is analytic

and its Taylor Series approximation exists for each ↵̄i 2 R since R is the union of a family of

open sets from elementary analysis and we do not consider the extended real number line.

This leads to an extension to (1� Pi)� as follows, (1� Pi)�i is also analytic. The result can

be achieved by letting P̃i = (1� Pi). Then, 8Pi 2 (0, 1) proceeding as before the statement

follows. It remains to show then that

P↵

i i

(1� Pi)�i
(13)

is also analytic. However, this is established, since the ratio of two analytic functions is

itself analytic. See for example, any introductory complex analysis book. Consequently, the

proposed function, is real, analytic and therefore, continuous on the proposed domain for

every observation i 2 {1, ..., n}. Further since log(.), is a monotonic function, the monotonic
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transformation of an analytic function, the odds-ratio, is also analytic, and the result is

established for each i. Further, by the independence assumption of GLM the n-dimensional

result readily follows.

Theorem 3 There is an unique solution to the link modification problem for the Generalized

Logistic GLM formulation where the link constraint is binding for some ↵⇤ 2 Rn \{�1,1},

given Pi /2 {0, 1}, xi /2 {0,1,�1} for each i 2 {1, ..., n} and �j /2 {1,�1} with

j 2 {(1, ...(k + 1))}.

Proof Let Pi = P(�xi) and consider as before that Pi 6= {0, 1} and finite �j for each

j 2 {(1, ...(k + 1))}, then

log

(
P

↵
⇤
i

i

(1� Pi)

)
= �0c(xi) () log

(
P

↵
⇤
i

i

(1� Pi)

)
� �0c(xi) = 0, (14)

8Pi 2 (0, 1), the left hand side is finite, and the function itself is analytic on the reals.

Therefore, 9Mi > �0xi such that

log

(
P

↵
⇤
i

i

(1� Pi)

)
�Mi < 0, (15)

and 9M 0
i
< �0xi such that

log

(
P

↵
⇤
i

i

(1� Pi)

)
�M 0

i
> 0. (16)
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Therefore, given Pi and � finite, by the Intermediate Value Theorem 9 {↵⇤
i
, �⇤

i
= 1} such

that

log

(
P

↵
⇤
i

i

(1� Pi)

)
� �0c(xi) = 0, (17)

and ↵⇤
i

is unique.

Let M1 = supi Mi and M2 = infi M 0
i

taken over all i. We know this exists since the

functional specifications are bounded and real valued.

Then,

log

(
P

↵
⇤
i

i

(1� Pi)

)
�M1i < 0, (18)

and 9M 0
i
< �0xi such that

log

(
P

↵
⇤
i

i

(1� Pi)

)
�M2i > 0. (19)

Therefore, by the intermediate value theorem for each i the Generalized Logistic GLM for-

mulation holds with ready extension to the n-dimensional case as needed.

Proposition 1: There exists a family of link functions given by a monotonic transformation

of the Generalized Odds function, P↵
⇤
(1�P)�1 such that for (↵⇤ = 1, �⇤ = 1) it represents

the Generalized Logistic Link function for each observation.
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Proof Let �(�0c(xi)) =
e
�
0c(xi)

1+e
�0c(xi)

= Pr(yi = 1|c(xi), �) = Pi. Then consider,

Pi

1� Pi

=

e
�
0c(xi)

1+e
�0c(xi)

1� e
�0c(xi)

1+e
�0c(xi)

= e�
0c(xi) =) log

⇢
Pi

1� Pi

�
= �0c(xi), (20)

Thus, let ↵i = �i = 1 in (13),

=) g0(µ,↵i = 1, �i = 1) =
Pi

1� Pi

=) log

⇢
Pi

1� Pi

�
= log(g0(Pi, 1, 1)), (21)

The n-dimensional result easily follows from independence.
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.1.2 Frequentist Estimation Algorithm for Proposed Logistic Re-

gression

With the regularity assumptions either in BOM or LVOM, let us consider an estimation

process for equation (25) of the text. As this is now a constrained optimization problem, the

estimation can proceed as follows.

1. For each observation estimate � using the relevant first order condition using a suitable

hill climbing algorithm through Maximum Likelihood Estimation (MLE) subject to the

link condition holding for each observation.

2. If the link condition does not exist due to analytical or numerical inconsistency either

perform a Taylor approximation for log(Pi|xi, �,↵⇤
i
) to solve for each ↵⇤

i
or solve for

each ↵⇤
i

on a grid.

3. Get estimates of (�̄⇤,↵̄⇤) under i.i.d. assumption.

It is clear that in the BOM or LVOM specification the estimation procedure above is valid

for any GLM.
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