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Abstract: Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which
causes many severe acute and chronic infections with high morbidity, and mortality rates as high as
40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired
resistance to many of the available antibiotics. In this review, we review the important acute and
chronic infections caused by this pathogen. We next discuss various animal models which have been
developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next,
we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies
and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to
control P. aeruginosa infections.

Keywords: Pseudomonas aeruginosa; infection; acute infections; chronic infections; cystic fibrosis (CF);
antibiotic resistance; virulence factors; animal modeling

1. Introduction

Charles-Emmanuel Sédillot, a French military physician, was the first to reference an
infection involving Pseudomonas aeruginosa in 1850. Sédillot described how surgical dress-
ings of patients both in the field and hospital beds often became colored with a blue-green
substance having a grape-like sweet odor, which we now know as the diagnostic hallmarks
of P. aeruginosa infections, due to pyocyanin and 2-aminoacetophenone productions, re-
spectively [1]. Thirty years later in 1882, a French pharmacist by the name of Carle Gessard
reported the successful isolation of P. aeruginosa which he initially termed Bacillis pyocyaneus,
in a publication entitled “On the blue and green coloration of bandages” [2,3]. It is not
surprising that the site of the infection these authors described were wound dressings of
surgical incisions given that wounds are preferred niches for P. aeruginosa infection [4–14].
After many taxonomic revisions over the past 100 years, at present, the Pseudomonas aerug-
inosa species is identified on the basis of 16S rRNA and genomic sequence comparisons,
analysis of the cellular fatty acids, virulence factors, and differentiating physiological and
biochemical tests [15–26].

P. aeruginosa is a rod-shaped Gram-negative bacterium of the class γ-proteobacteria
and family Pseudomonadaceae [27]. It is a facultative aerobe that prefers to use oxygen as
the final electron acceptor during aerobic respiration, although it is also capable of anaerobic
respiration using other alternative electron acceptors such as nitrate [28]. P. aeruginosa can
also catabolize a wide-range of organic molecules for nutrients, making it one of the most
biochemically versatile and ubiquitous bacterium found in many environments such as soil,
water, vegetation, and even human skin and oral mucosa [29–31]. The ability P. aeruginosa
to thrive in diverse environments increases P. aeruginosa reservoirs and the possibility for
exposure, leading to higher incidence of infections. P. aeruginosa has been isolated from
locations such as hot tubs, humidifiers, and soil [1,32]. While in hospitals, P. aeruginosa has
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been isolated from respirators, physical therapy pools, sinks, and mops [33,34]. Patients
infected with P. aeruginosa can also act as sources for new infections in hospitals [35].
These large reservoirs in both community and hospital settings allow for significant rates
of infections. Because of its metabolic versatility and an arsenal of virulence factors it
possesses [25], P. aeruginosa is responsible for many serious and life-threatening acute and
chronic infections, particularly in the setting of immunocompromised hosts with mortality
rates reaching as high as 40% [36–39].

P. aeruginosa is a killer of immunocompromised patients, a leading cause of bacteremia
and sepsis in neutropenic cancer patients undergoing chemotherapy, and the number
one cause of hospital-acquired pneumonia and respiratory failure [36–39]. P. aeruginosa
infections are also common in diabetic ulcers, burn wounds, corneal ulcers, and surgical
wounds [4–6,10–14,37]. Chronic infection by P. aeruginosa is a characteristic of individuals
afflicted with cystic fibrosis (CF) and accounts for the pulmonary failure that leads to
death in these individuals [40]. Life-threatening infections with P. aeruginosa are also
becoming increasingly frequent in patients with AIDS [4–6,10–14,37,41–43]. Exacerbating
the challenge with P. aeruginosa infections is this organism’s high intrinsic and acquired
resistance to many current antibiotics [44,45]. Because of this challenge and the severity
of infections caused by P. aeruginosa, it has been placed amongst the priority pathogens,
known as the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), for which new
antimicrobial development is urgently needed according to the World Health Organization
(WHO) and the Center for Disease Control (CDC) [45–47]. In this review, we review the
important acute and chronic infections caused by this pathogen. We provide an overview
of current antibiotic treatments and their failure due to development of antibiotic resistance
in P. aeruginosa. Finally, we discuss various animal models, developed to assess P. aeruginosa
acute and chronic infections, and highlight exciting literature on the development of novel
antibiotic-free strategies to combat P. aeruginosa infections.

2. Pseudomonas aeruginosa Infections

In this section, we discuss the various acute and chronic infections that are caused by
P. aeruginosa (summarized in Table 1).

2.1. Pseudomonas aeruginosa Acute Infections

P. aeruginosa can cause serious acute infections including, respiratory tract infec-
tions [48,49], hospital acquired pneumonia (HAP) and ventilator-associated pneumonia
(VAP) [50,51], keratitis and corneal ulcers in contact lens wearing individuals [52,53], uri-
nary tract infection (UTI), blood stream infections (BSIs) [54–56], osteomyelitis [57,58], and
endocarditis [59,60]. Between 1997–2008, P. aeruginosa was reported to be responsible for
21.8% of the hospital acquired pneumonia (HAP) or the ventilator associated pneumonia
(VAP), second only to Staphylococcus aureus which accounted for 28% [61]. A more recent
report in 2016 also attributed similar HAP and VAP infection rates to P. aeruginosa [62].
In a meta-analysis of 11 studies of VAP cases after post-cardiac surgery, P. aeruginosa was
the causative agent in 23.2%, followed by S. aureus (20.2%) [63]. A prospective study of
adult patients with nosocomial pneumonia involving 75 hospitals in 11 countries between
2008–2009, found P. aeruginosa to be the leading cause of HAP (15.6%) and the second-
leading cause of VAP (25.9%) behind only Acinetobacter spp. (35.6%) [64]. In a meta-analysis
of 50 studies in China between 2010 to 2014, P. aeruginosa was responsible for 19.4% (95%
confidence interval (CI) 17.6–21.2%) of all isolates in VAP and 17.8% (95% CI 14.6–21.6%)
in HAP [65]. P. aeruginosa infections in VAP and HAP can be deadly with mortality rates
ranging between 13% to nearly 50%. In one retrospective study involving 110 patients
with P. aeruginosa VAP from 2008 to 2013 in Intensive Care Unit (ICU) in Italy, the mortality
rate was reported to be 44.5%, the highest amongst all other pathogens [66]. The higher
mortality rates have been associated with the extent of antibiotic resistance of infecting
P. aeruginosa strains (such as multidrug resistance (MDR) clinical isolates) or specific viru-
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lence factors such as the type 3 secretion system (T3SS) in the clinical isolates [66–69]. Other
co-morbidities, such as obesity, diabetes, and age have also been independently associated
with higher mortality rates in VAP and HAP caused by P. aeruginosa [66,70,71].

P. aeruginosa is also a leading cause of keratitis and corneal ulcers. In a meta-analysis
report, covering publications in PubMed and Google Scholars (until 2016), the prevalence of
P. aeruginosa in bacterial keratitis was shown to range from 6.8 to 55% [72]. In a multicenter
retrospective study in Queensland, Australia between 2005–2015, involving 2176 patients
with positive culture, P. aeruginosa was found to be the most prevalent Gram-negative
pathogen, accounting for 17.7% of all infections [73]. In another multicenter study in
Tehran, Iran, involving 6282 corneal scrapings from keratitis patients tested for infection,
2479 (39.5%) were culture positive and P. aeruginosa was found to be the most common cause
of infection in patients with keratitis, although the Gram-positive Streptococcus pneumonia
was the most prevalent isolated bacterium in keratitis patients older than 50 years [74].
In another study for the assessment of risk factors and the severity of disease in infection
keratitis involving 231 patients, contact lens wear (53; 22%), ocular surface disease (45;
18%), ocular trauma (41; 16%), and prior ocular surgery (28; 11%) were found to be the
major risk factors for infectious keratitis [75]. They also found P. aeruginosa to be the most
prevalent cause of infectious keratitis and its presence was associated with significantly
more severe keratitis [75]. P. aeruginosa keratitis has also been associated with worse
outcomes and significant morbidity (i.e., worse initial visual acuity and size and extent of
stromal involvement) in non-contact lens wearers in the elderly [76].

P. aeruginosa is also the third most common cause of urinary tract infections (UTIs),
accounting for 7–15% reported infections [77,78]. In a study involving UTI in children,
P. aeruginosa infection was associated with significant UTI recurrence, more resistance to
antibiotic therapy, and longer hospitalization [78]. P. aeruginosa is a serious pathogen in
the complicated UTIs, particularly in people with catheters, leading to life-threatening
pyelonephritis [79]. Catheter-associated UTIs (CAUTI) account for nearly a million addi-
tional extra hospital days per year in the USA [80].

Bloodstream infections (BSIs) are amongst the most serious infections, with mortality
rates ranging from 18% to 61% [81,82]. Not surprisingly, P. aeruginosa is also a major cause
of BSIs. Results from a 13-year (2002–2015) prospective cohort study at Duke University
Medical Center indicated significant increased mortality rate associated with BSI caused by
P. aeruginosa as compared to other bacterial pathogens, including Staphylococcus aureus [83].
In the same study, the unadjusted time-to-mortality among patients with P. aeruginosa blood
infection was also found to be significantly shorter than the patients with S. aureus blood-
stream infection. The long-term sequalae of BSIs include very serious and life-threatening
complications, such as elevated risks for venous thromboembolism and myocardial infarc-
tion and stroke [84,85], and neurocognitive disorders [86,87]. The SENTRY Antimicrobial
Surveillance Program recently released a 20-year investigative report on the microbiology
of blood stream infections from more than 264,901 BSI isolates collected from >200 medical
centers in 45 nations between 1997 and 2016 [54]. P. aeruginosa was found to be the 4th
leading cause of BSIs behind S. aureus, E. coli, and K. pneumoniae, accounting for 5.3% of
all infections. Importantly, P. aeruginosa strains had the second highest incidence of MDR
rates (26.3%). Collectively, these data highlight the deleterious impact of P. aeruginosa
acute infections on public health, as has also been acknowledged by the World Health
Organization (WHO) and The Center for Diseases Control (CDC) [45–47].

2.2. Pseudomonas aeruginosa Chronic Infections

Perhaps the most notable chronic infection caused by P. aeruginosa is the lungs of
individuals with Cystic Fibrosis (CF) genetic disorder. P. aeruginosa is the leading cause
of mortality and a major contributor to loss of lung function in people with cystic fibrosis
(CF) [88–90]. The pathology associated with P. aeruginosa chronic infection in CF lung is
in part due to collateral damage caused by infiltrating leukocytes as they unsuccessfully
attempt to clear P. aeruginosa infection from the lungs of these individuals [88,89]. Coloniza-
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tion with P. aeruginosa occurs early in the life of CF patients, either through community or
hospital exposure, and remains chronic throughout their lifespan [91].

Wounds are also highly vulnerable to P. aeruginosa infections. P. aeruginosa is the most
abundant and frequently reported Gram-negative pathogenic bacterium in all chronic
wounds—(wounds that do not heal within 3 months)—including diabetic foot ulcers,
venous leg ulcers, and pressure ulcers [13,92–98]. Moreover, presence of P. aeruginosa
in these wounds correlates with poor prognosis for healing [11–14,99]. P. aeruginosa-
infected wounds have been reported to be significantly larger than wounds containing
other bacteria—including Staphylococcus aureus, which is the most abundant Gram-positive
bacterial pathogen reported in these wounds [11,13,100–102]—suggesting that P. aeruginosa
infection may be more detrimental to the process of tissue repair and wound healing than
other pathogens. Corroborating these reports, P. aeruginosa has been demonstrated to
prevent wound healing and exacerbate tissue damage in cell culture-based in vitro and in
various in vivo animal wound infection models [99,103–106]. In fact, a number of in vitro
and in vivo studies indicate that wound is a preferred niche for P. aeruginosa [4–6,10,106].

2.3. P. aeruginosa Infections in Immunocompromised Patients

P. aeruginosa is one of the most commonly isolated Gram-negative bacterial pathogens
responsible for severe infections in immunocompromised patients, such as HIV/AIDS
patients, neutropenic cancer patients undergoing chemotherapy, or immunosuppressed
hematopoietic stem cell transplantation (HSCT) patients [107–115]. P. aeruginosa has been
reported to be the causative pathogen in 8 to 25% of community acquired pneumonia,
sepsis, and UTIs in HIV patients [43,81,116–120]. The incidence of P. aeruginosa related-
bacteremia was reported to be 10 times greater in patients infected with HIV, due to their
immunocompromised condition [121].

Similarly, P. aeruginosa causes a variety of important infections (e.g., pneumonia, blood
stream infections, UTI, and wound) with high morbidity and mortality rates in patients
suffering from drug-induced neutropenia (reduced neutrophil count), drug-induced quali-
tative neutropenia (defects in neutrophil function), or drug-induced immunosuppressed
patients [115,122,123]. P. aeruginosa infections are reported to be more common in neu-
tropenic patients with malignancy, particularly those with leukemias [124,125]. Over 21%
of bacteremia in patients with acute leukemia were reported to be due to P. aeruginosa
infection [126,127]. P. aeruginosa was also the most common cause of pneumonia in patients
with solid tumors [125].

Solid organ transplant (SOT) recipients are another immunocompromised group that is
highly vulnerable to P. aeruginosa infections (particularly UTI, pneumonia, and bacteremia)
following transplant [128–130]. The primary reason for the vulnerability of this group to
infection is the use of potent immunosuppressive drugs to prevent transplant rejection [131].
The morbidity rates associated with BSIs in SOT recipients have been reported to range
from 4.8–11% in kidney, 8–24% in heart, 8–25.7% in lung, 61–69% in intestinal, and 10–34%
in liver transplant recipients, respectively [132–135]. Moreover, because prophylactic
antibiotics are routinely administered in this group, the infecting pathogens tend to be
highly resistant to antibiotics [128]. A recent prospective study assessed the burden and
timeline of infectious diseases in the first year after solid organ transplantation among SOT
recipients [136]. Out of 2761 SOT recipients, 1520 patients (55%) suffered 3520 episodes of
infections, of which, bacterial infections accounted for 63%. P. aeruginosa was responsible
for 9% of all infections and 23% of P. aeruginosa clinical isolates were MDR. In another
study involving 191 episodes of BSI in SOT recipients, P. aeruginosa accounted for 5.2% of
BSIs [137]. Mortality rates amongst SOT recipients infected with P. aeruginosa was shown to
be between 33–40%, highlighting the significance of P. aeruginosa infection in this cohort of
patients [129,130].

Another immunocompromised patient group that is highly susceptible to P. aeruginosa
infection are the burn patients. Hyperinflammatory cytokine response and hypo innate and
adaptive immunity are the hallmark of immunosuppression following major burn traumas
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in human [138–140]. P. aeruginosa has been reported as the most frequently recovered infec-
tious pathogen in burn units and the clinical isolates display high resistance to antibiotics.
In a recent large study involving 17119 patients at a burn ward in China between 2006 and
2019, S. aureus and P. aeruginosa were the predominant clinical pathogens responsible for
bacterial infections in these patients [141]. It is worth noting that while the rates of S. aureus
infections appeared to remain stable during this study (17.06% in 2006 to 18.54% in 2019);
the rates of P. aeruginosa infections rose from 10.59% in 2006 to 17.68% in 2019, suggesting
an upward trajectory in P. aeruginosa infections among burn patients at least in this burn
unit. In another retrospective study assessing bacteria from wounds, catheters, blood, feces,
urine and sputum of 10,276 hospitalized patients in burn wards between 2007 and 2014
in China; 3005 pathogenic strains were isolated and identified [142]. While S. aureus was
the predominant strain in the beginning, its annual detection rates declined significantly
over these years. In contrast, the annual detection rates of P. aeruginosa increased signif-
icantly during this period. Alarmingly, the detection rate increases in P. aeruginosa were
associated with increased incidence of MDR bacteria in the culture, prompting the authors
to caution against the use of ciprofloxacin, ceftazidime and cefoperazone/sulbactam to
counter the related increase in resistance levels in P. aeruginosa. In another study involving
184 positive cultures from burn patients in burn unit in Iran, 205 different bacterial strains
were isolated and identified, of which P. aeruginosa was the most prevalent, accounting
for 57% of all clinical isolates; followed by Acinetobacter (17%), E. coli (12%), S. aureus (8%)
and other organisms (6%) [143]. Importantly, over 90% of P. aeruginosa isolates displayed
resistance to gentamicin, ceftizoxime, carbenicillin, cephalothin and ceftazidime. P. aerug-
inosa has also been the primary infective agent reported in other studies involving burn
patients [143–147].

Another group of immunocompromised patients who are highly vulnerable to P. aerug-
inosa infection, are the individuals suffering from primary immunodeficiency disorders
(PIDDs). PIDDs is a group of 300 diseases caused by rare genetic disorders, such as Cas-
pase Eight Deficiency State (CEDS), Autoimmune Lymphoproliferative Syndrome (ALPS),
Chronic Granulomatous Disease (CGD), etc. [148–153]. P. aeruginosa has been reported to
cause serious blood infections with high mortality rates in these individuals [149–153].

3. P. aeruginosa Infection Animal Models

In this section, we review the animal models which have been developed to study
various infections caused by P. aeruginosa and assess the effectiveness of conventional and
emerging therapies against this pathogen (summarized in Table 1).

3.1. Acute and Chronic Pneumonia Infection Models

Animal models have been extremely useful in advancing our understanding of
P. aeruginosa pathogenesis and for the development and the therapeutic assessment of
new antibiotics or novel biologicals to control this pathogen. Although most studies involv-
ing P. aeruginosa infections rely on mouse or rat models due to the cost and availability of
reagents, larger animal modeling is also performed usually to fulfill the requirement by
organizations—such as Food and Drug Administration (FDA)—to evaluate the efficacy and
the safety profiles of new investigative biologics in two animal models that approximate
human responses with respect to the condition under investigation [154]. As was discussed
above, P. aeruginosa is an important bacterial pathogen in acute and chronic pneumonia,
including the ventilated-associated pneumonia (VAP) and hospital acquired pneumonia
(HAP). The first animal model of chronic pulmonary infection was a rat model in which
P. aeruginosa infection was initiated by intratracheal inoculation of P. aeruginosa bacteria
enmeshed in agar beads [155]. In this chronic model of infection, P. aeruginosa was detected
during the 35 days of observation. Importantly, infected lungs in these rats exhibited
lesions resembling those seen in lung tissues of humans with acute or chronic P. aeruginosa
pneumonia, including the presence of goblet-cell hyperplasia, focal areas of necrosis, and
acute and chronic inflammatory infiltrate [155]. Since then, various similar animal models
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(in mouse, rat, rabbit, porcine, dog, cat, etc.) of P. aeruginosa infections for acute and chronic
pneumonia (including VAP and HAP) have also been described, albeit with modifications
in the P. aeruginosa strain, initial inoculum levels, and in the rout of P. aeruginosa delivery
into animal [156–161].

3.2. Urinary Tract and Kidney Infection Models

P. aeruginosa also causes urinary tract and kidney infections as discussed above. The
initial animal models to assess UTI caused by P. aeruginosa involved intravenous injec-
tion of P. aeruginosa into mice [162,163]. In these systemic infection models, large doses
(close to lethal doses) of P. aeruginosa—were needed to establish infection in the urinary
tract and kidney. However, the high rate of mortality, due to systemic infection, made
these murine models impractical [162,163]. To overcome this difficulty, artificial manipu-
lations, (e.g., administration of bromoethylamine hydrobromide or ferric sorbitol citrate),
were used to make kidneys in animals more susceptible to P. aeruginosa colonization and
growth [164,165]. However, these artificial means made the interpretation of the data
unreliable [166]. These limitations then led to the development of methods (e.g., surgical
implantation of glass beads laden with P. aeruginosa, or transvesical ureteral catheteriza-
tion) to directly deliver P. aeruginosa into the rat kidney in order to cause infection in this
organ [167–169]. At present, urinary tract and kidney infection models frequently instill
bacteria into the bladder using a catheter, based on the UTI protocol that was developed
for Uropathogenic Escherichia coli (UPEC) by Hung et al. [170,171].

3.3. Blood Stream and Systemic Infection Models

Different approaches have been used to cause blood and systemic infection in animals
with P. aeruginosa. For example, intravenous (i.v.), intraperitoneal (i.p.), or tail vein injections
have been used as technical means to cause systemic infection with P. aeruginosa [172–174].
P. aeruginosa has also been delivered retro-orbitally to cause systemic infection and sep-
sis [175]. P. aeruginosa systemic infection has been shown to increase pro-inflammatory
cytokines both in the blood and tissues, leading to other morbidities such as septic arthritis
and gallbladder damage [172,176,177].

3.4. Keratitis and Corneal Ulcers Infection Models

As this was discussed above, keratitis and corneal ulcer infections are relatively rare
but they are very serious medical conditions requiring urgent medical care because of the
possibility that they can lead to vision loss in the affected eye(s). In the murine models
for corneal ulcer, 2–3 parallel scratches (~1 mm) are usually made by sterile 25-gauge
needle on the cornea of anesthetized animal prior to bacterial inoculation [178–181]. Ani-
mal models have been informative in showing the potency of antimicrobial activities in
human tear [178]; in establishing the crucial roles for IL-16 pro-inflammatory cytokine and
cathelicidin antimicrobial peptide in corneal defenses against P. aeruginosa [179,180]; and in
demonstrating the therapeutic potential of the broad host range bacteriophage KPP12 in
P. aeruginosa clearance and corneal healing [181].

3.5. Endocarditis Infection Models

Animal models of S. aureus infective endocarditis (IE) [182,183], are commonly used
to investigate the underlying pathogenesis, disease progression, potential diagnostic ap-
proaches, and therapeutic treatment for endocarditis caused by P. aeruginosa [184]; Rab-
bits [185,186]. These models are based on surgical valve trauma followed by intravenous
injection of bacteria within 10–24 h following the surgical valve trauma. In a rabbit model
of endocarditis, with sterile right ventricular cardiac vegetations, Archer et al. demon-
strated 78% mortality within 3 weeks, following P. aeruginosa infection [185]. In a follow-up
study, the same group demonstrated that 14-day treatment with high dose gentamycin
(7.5 mg/kg) and carbenicillin (400 mg/kg) was significantly more effective than either
therapy alone, resulting in 64% sterilization of cardiac vegetations in this rabbit model of
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P. aeruginosa endocarditis [186]. In a rat model of P. aeruginosa endocarditis, Oechslin et al.
demonstrated that a combination of systemic vancomycin and phage therapy was highly
effective against P. aeruginosa endocarditis [184].

3.6. Wound and Surgical Site Infection Models

Skin is a formidable barrier against invading pathogens, including P. aeruginosa [187].
As an opportunistic pathogen, P. aeruginosa cannot colonize or cause infection in the skin of
normal animal unless this barrier is breached by injury [4–6,10]. Therefore, animal wound
and surgical site models of infections for P. aeruginosa (and other pathogens) usually involve
full or partial thickness excisional wounding, or addition of bacteria directly to implants
or stents before or after their insertion into animals [7,9,188–195]. In the settings of injury,
P. aeruginosa can efficiently colonize and cause infection [11–14,196]. In a recent study,
P. aeruginosa was shown to thrive in wound environment, (in a mouse model of wound
infection), by dampening the host innate immune responses in wound tissue via inhibition
of the NLRC4 inflammasome mediated by its most conserved virulence factor, ExoT [7].

Chronic wounds are particularly vulnerable to P. aeruginosa infection [100,197,198]. In
a recent study involving db/db type 2 diabetic mouse, it was shown that impairment in
the formyl peptide chemokine receptors (FPR) in diabetic neutrophils results in a delay in
neutrophil response, rendering diabetic wounds vulnerable to colonization and infection
by P. aeruginosa [8]. Macrophage response has also been shown to be delayed in db/db
diabetic wounds, due to dysregulation in IL-10 expression and signaling [199,200], further
dampening innate immune responses and diabetic wound’s ability to prevent P. aeruginosa
infection [9]. In other studies, P. aeruginosa has been demonstrated to several other virulence
factors (e.g., biofilm, type 3 secretion system (T3SS), pyocyanin, extracellular proteases, and
Exotoxin A) to prevent wound healing and exacerbate tissue damage [99,103–106,201,202].
In a burn wound model of infection, P. aeruginosa infection was shown to lead to bacteremia
in a manner that was dependent on superoxide response regulator (soxR) expression and
function in P. aeruginosa [203]. In another report, quorum sensing (QS) was shown to be
involved in biofilm maturation and P. aeruginosa colonization and pathogenesis a pressure
ulcer infection model in rat [204].

3.7. Immunocompromised Infection Models

As was discussed above, immunocompromised people are highly vulnerable to in-
fection with P. aeruginosa. Not surprisingly, animal models have been developed to assess
the impact of P. aeruginosa infection in immunocompromised hosts. For example, Takase
et al. demonstrated that P. aeruginosa infection in the calf muscle of immunocompro-
mised mice, (generated by cyclophosphamide), caused high mortality in these mice, in
a manner that was mediated by pyoverdine and pyochelin siderophore production in
P. aeruginosa [205]. In another study, P. aeruginosa was shown to induce death within
46 to 59 h in a leukopenic immunosuppressed mouse model [206]. Similarly, Mahmoud
et al. demonstrated that wounds in the neutropenic immunocompromised C57BL/6 mice
are vulnerable to P. aeruginosa enhanced infection [188]. In another study, P. aeruginosa
infection was proved to be highly lethal in an immunosuppressed guinea pig model of
pneumonia [207].

3.8. Cystic Fibrosis Infection Animal Models

Cystic Fibrosis (CF) is a genetic disorder caused by null mutations in the cystic fibro-
sis transmembrane conductance regulator (CFTR) gene, which encodes for the chloride
channel [208–210]. Not surprisingly, different transgenic animal species, (i.e., mice, rats,
rabbits, ferrets, pigs, and sheep), harboring similar mutations in the CFTR gene have been
constructed to model various CF pathologies [211–216]. In one report, endobronchial
infection with a mucoid P. aeruginosa strain was shown to elicit production of TNF-α, MIP-
2, and KC/N51 inflammatory cytokines in bronchoalveolar lavage fluid and cause 80%
mortality in CF mice (harboring the S489X mutation of the CFTR gene), thus phenocopy-
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ing some of the CF hallmark pathologies observed in human [217]. Corroborating these
studies, van Heeckeren et. al., demonstrated that infection with P. aeruginosa resulted in
significantly higher mortality rates, weight loss, higher lung pathology scores, and higher
inflammatory mediator and neutrophil levels in the lungs of CF mice as compared to
wildtype littermates [218]. However, murine models do not completely develop human
CF disease severity in the pancreas, lung, intestine, liver, and other organs [219,220], thus
necessitating the need for the development of larger animal models for CF, such as newborn
pigs and ferrets [214–216,219,221]. For example, CF pigs were demonstrated to develop
airway inflammation, mucus accumulation, and impaired bacterial clearance [222]. CF pig
lungs contained multiple bacterial species, suggesting impaired immune defenses against
bacteria [222].

4. Current Treatments for P. aeruginosa Infections

Here, we provide an overview of conventional antibiotic treatments for P. aerugi-
nosa infections. Full description on these therapies can be found in the guidelines from
the Infectious Diseases Society of America (IDSA) [223,224]. Regardless of the antibiotic
agent(s) administered, patients infected with P. aeruginosa should be closely monitored as
P. aeruginosa can rapidly acquire additional resistance mechanisms while exposed to antibi-
otic therapy as discussed in Section 4 below and discussed previously [44]. A summary
of the antibiotic treatments, their limitations, and the mechanisms of resistance to these
antibiotics can be found in Table 2.

4.1. β-Lactam Antibiotics (Alone and Combination Therapies)

β-lactam antibiotics generally are bactericidal antibiotics that destroy bacterial pathogens
by disrupting their peptidoglycan cell wall via covalent binding to essential penicillin-binding
proteins (PBPs) in bacteria [225]. Non-carbapenem β-lactam antibiotics (e.g., ceftazidime, ce-
fepime, piperacillin-tazobactam, aztreonam, etc.) are the preferred first line of therapy where
P. aeruginosa clinical isolate tests susceptible to these antibiotics [223,224]. The rational for
their use is their clinical effectiveness using empiric regimes with fixed doses, their high po-
tency and efficacy against a wide therapeutic range, and the low cytotoxicity and side-effects
associated with their use [226,227]. Ceftazidime may be considered a preferred first-line β-
lactam therapy because its use has been associated with the lowest risk of resistance while on
therapy [228]. Carbapenems are a class broad spectrum β-lactam antibiotics broad spectrum
of activity that are recommended to treat infections caused by bacteria, including P. aeruginosa,
resistant to traditional β-lactams or fluoroquinolones (discussed below) [224,229].

Cefiderocol is a novel injectable cephalosporin which was approved by FDA in
2019 for the treatment of complicated UTIs [230]. It is also a preferred option for the
treatment of uncomplicated and difficult-to-treat (DTR) cystitis caused by P. aeruginosa
infection [223,224,231,232]. Cefiderocol has been shown to be more potent than both
ceftazidime-avibactam and meropenem against all resistance phenotypes of Pseudomonas
aeruginosa because of its unique siderophore-like property (which enhances its entry into
the bacterial periplasmic space [233]) and because of its high stability to a variety of β-
lactamases, including AmpC and extended-spectrum β-lactamases (ESBLs) [234,235].

More novel β-lactam combination antibiotic regiments (e.g., ceftazidime/avibactam,
ceftolozane/tazobactam, imipenem/cilastatin/relebactam, etc.) are also used but only as al-
ternative options for MDR or extensively-drug resistant (XDR) P. aeruginosa strains [223,224].
By definition, the MDR strains display acquired resistance to at least one agent in three
antimicrobial categories, whereas the XDR strains show susceptibility to antibiotics in 2 or
fewer categories and display resistance to at least one agent in the rest of available antibi-
otic categories [236,237]. Ceftazidime, (a third-generation broad-spectrum cephalosporin
antibiotic [238]) is also used in combination with avibactam (a synthetic non–β-lactam,
β-lactamase inhibitor which inactivates β-lactamase targets via covalent acylation [239]),
and has shown to be highly effective against MDR and XDR P. aeruginosa strains (>90%
effectiveness) [240,241]. However, P. aeruginosa strains resistant to ceftazidime/avibactam
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have been reported and are on the rise, adding to the challenges associated with P. aerugi-
nosa therapeutics [242,243]. Ceftolozane, (a semi-synthetic broad-spectrum fifth-generation
cephalosporin β-Lactam antibiotic [244]), in combination with tazobactam, (an irreversible
β-lactamase inhibitor) [245], has been shown to be effective against most MDR and XDR
resistant P. aeruginosa strains [245,246]. Not surprisingly, resistance to this combination
therapy in P. aeruginosa has also been reported [247,248]. Combination therapy, imipenem
(a β-lactam antibiotic belonging to the carbapenem subgroup [249]), cilastatin (an in-
hibitor of imipenem-degrading human renal dehydropeptidase and bacterial metallo-
β−lactamase [250,251]), and relebactam (an inhibitor of β-lactamases [252]); has been
recently approved in the USA and Europe, and shown to be highly effective for the treat-
ment of complicated urinary tract infections including pyelonephritis, complicated intra-
abdominal infections, and hospital-acquired bacterial pneumonia caused by MDR and XDR
Gram-negative bacterial pathogens including P. aeruginosa [253–255]. Antibiotic resistance
in P. aeruginosa will be discussed in the next section.

4.2. Fluoroquinolones

Fluoroquinolones (e.g., ciprofloxacin and levofloxacin) are broad-spectrum antibi-
otics that destroy bacteria by inhibiting DNA gyrase and topoisomerase IV (essential
enzymes for DNA synthesis in bacteria) [256]. Fluoroquinolones are also recommended
for the first line of treatment in acute otitis externa or skin and soft tissue infections and
complicated UTI caused by P. aeruginosa strains that are found to be susceptible to these
agents [223,224,257–260]. Limitations with the use of fluoroquinolones include rapid de-
velopment of resistance in bacteria [261] and the sensitivity of fluoroquinolones to acidic
conditions, which adversely affect their cell uptake [262,263], although recently developed
novel fluoroquinolones (i.e., delafloxacin) show improved cellular uptake and maintain
their antibacterial activities in acidic conditions [263].

4.3. Eravacycline (Tetracyclin)

Generally, tetracycline antibiotics are not very effective against P. aeruginosa infections
and may even enhance its virulence by stimulating its T3SS virulence function [264].
However, eravacycline (a novel fully synthetic fluorocycline) is different in that it exhibits
potent activity against a broad spectrum of clinically relevant Gram-positive and Gram-
negative aerobic and anaerobic bacteria, including P. aeruginosa, and has been recently
approved in several countries for the treatment of complicated intra-abdominal infections
in adult patients [265–267]. It owes its potency to 2 modifications in the tetracyclic D ring
at position C7 (fluorine atom addition) and C9 (pyrrolidinoacetamo group addition) [268],
which allow it to be effective even in pathogens that express tetracycline-specific efflux and
ribosomal protection mechanisms in clinical isolates [269]. Like all tetracyclines, it exerts
its antimicrobial activities by inhibiting protein synthesis machinery in bacteria through its
interaction with the 30S (and to a lesser extent 50S) ribosomal subunits [266].

4.4. Aminoglycosides

Aminoglycosides (e.g., gentamycin, amikacin, tobramycin) are broad-spectrum bacte-
ricidal antibiotics that destroy bacterial pathogens by targeting the 30S subunit of bacterial
ribosomes, thus inhibiting protein synthesis [270]. They are also routinely prescribed
against P. aeruginosa infections. A meta-analysis of publications until 2018 found that a
single intravenous dose of aminoglycosides was highly effective (94.5 ± 4.3%) for uncom-
plicated cystitis with the recurrence-free and cure rate of >73%, with minimal toxicity [271].
In a large phase III clinical trial, plazomicin (a next-generation semisynthetic aminoglyco-
side) was shown to be noninferior to meropenem in the treatment of complicated urinary
tract infections, even against Gram-negative pathogens, (including P. aeruginosa) with
aminoglycoside-modifying enzymes that impart resistance to most aminoglycosides [272].
Other reports have confirmed the effectiveness of plazomicin against hard-to-treat resistant
Gram-negative pathogens [273]. In another randomized trial involving seven U.S. centers
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for the treatment of cystic fibrosis, the short-term aerosol administration of a high dose
of tobramycin in patients with clinically stable cystic fibrosis was shown to significantly
increase lung function (as assessed by forced expiratory volume, forced vital capacity, and
forced expiratory flow at the midportion of the vital capacity), and decrease the density of
P. aeruginosa in sputum by a factor of 100, without any ototoxicity nor nephrotoxicity [274].
Although, nebulized amikacin/fosfomycin was shown to be ineffective in improving clini-
cal outcomes in pneumonia in 3 clinical trials, despite reducing bacterial burden in these
patient cohorts [275–277].

4.5. Polymyxins (Colistin, Polymyxin B)

Therapeutic use of polymyxins as one of the last lines of therapy against MDR/XDR
P. aeruginosa infections have skyrocketed during the past decade [278,279]. Polymyxins kill
Gram-negative bacterial pathogens by disrupting their membrane via targeting the Lipid A
moiety of the lipopolysaccharide (LPS) in the outer membrane of these bacteria [280]. Ther-
apeutic use of polymyxins has been associated with relatively higher toxicity side-effects,
(e.g., nephrotoxicity and neurotoxicity), as compared to other antimicrobials [281,282],
thus dosing and the treatment protocol should be carefully designed to reduce these side-
effects [283]. IDSA recommends polymyxin B (over colistin) in combination with the
β-lactam and β-lactamase inhibitor for the treatment of non-urinary tract infections, if no
aminoglycoside is effective against P. aeruginosa isolate in vitro [223,224]. The rational for
this recommendation is that polymyxin B is not administered as a prodrug and therefore
can achieve more reliable plasma concentrations than colistin which is administered as a
prodrug and it converts to its active form in the urinary tract [284]. For precisely the same
reason, colistin (not polymyxin B) monotherapy has been recommended as an alternate
consideration for treating urinary tract infections caused by MDR/XDR P. aeruginosa [279],
although IDSA also warns that clinicians should remain cognizant of the associated risk of
nephrotoxicity in these patients [223,224].

5. Antibiotic Resistance in P. aeruginosa

The rate of antimicrobial resistance among P. aeruginosa clinical isolates has climbed
sharply over the past 5 decades worldwide [285–288]. P. aeruginosa clinical isolates fre-
quently exhibit resistance to various classes of antibiotics including β-lactams, aminoglyco-
sides, fluoroquinolones, and even polymyxins with strains isolated from the Intensive Care
Units (ICUs) demonstrating the highest incidence of resistance to these antibiotics [289–291].
A retrospective 10-year study reported a 10% increase in antibiotic resistance rates in
P. aeruginosa clinical isolates in ICU within a decade [292]. Another study investigated
the profile of antimicrobial resistance of Gram-negative bacteria in blood cultures in a
university-affiliated hospital in China and found resistance rate to carbapenem among
blood culture isolates of P. aeruginosa to increase significantly from 2004–2011 [293]. Of
note, between 2000–2010, consumption of antibiotics (particularly carbapenems) increased
by nearly 35% in China [294], thus establishing a direct correlation between antibiotic use
and the emergence of antibiotic resistance in P. aeruginosa clinical isolates. Additionally,
the incidence and the rate of infections with the multidrug resistant (MDR) P. aeruginosa
strains—(resistant to at least one antibiotic in 3 or more antibiotic classes)—have been
steadily rising over the past 20 years [286,295–298], as a direct consequence of increased
antibiotic consumption [294]. A meta-analysis report assessing the clinical and economic
impacts of hospital-acquired resistance and MDR P. aeruginosa infections between the years
2000 to 2013, indicated a greater than 2-fold increased risk of mortality in patients infected
with MDR P. aeruginosa strains and a 24% increased risk of mortality in patients infected
with resistant P. aeruginosa strains as compared to patients infected with antibiotic suscepti-
ble P. aeruginosa strains [297]. Not surprisingly, the same study found longer hospital stay
and increased cost associated with resistant and MDR P. aeruginosa infections as compared
to susceptible P. aeruginosa and control patients. Corroborating these data, an international
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multicenter retrospective study in 2015 reported significant increased association between
mortality in nosocomial pneumonia and MDR P. aeruginosa infections [299].

Another frightening concern is the emergence of extensively drug resistant (XDR)
P. aeruginosa infections among HAIs. XDR P. aeruginosa strains are defined as the strains
that remain susceptible to only one or two classes of anti-Pseudomonas drugs and show
resistance to at least 1 antibiotic in the other antibiotic groups [300,301]. A retrospective
study of a cohort of adult, hospitalized patients with P. aeruginosa in Thailand reported
that 22% of P. aeruginosa infections were due to XDR strains, resulting in significantly
higher mortality [302]. Another prospective study involving 1915 ICU patients between
2014–2015 in India reported 47.7% of P. aeruginosa infections to be due to MDR and XDR
P. aeruginosa strains [303]. Recently, a nosocomial outbreak of P. aeruginosa infection with
XDR strains was reported among ICU patients subjected to aromatherapy in Austria, which
was successfully addressed through the implementation of restriction of oil sharing among
patients [304]. A systemic review and meta-analysis of 54 articles between 2000 and 2016
reported prior use of antibiotics and prior hospital or ICU stay as the most significant risk
factors for nosocomial infections with MDR and XDR P. aeruginosa strains [305].

The emergence of multi-drug resistant P. aeruginosa poses even more serious threat in
immunocompromised patients and complicates treatment options for these patients [306,307].
A retrospective study involving 7386 clinical specimens collected from HIV patients, reported
increasing antibiotic resistance rates to aztreonam, cefepime, levofloxacin, meropenem,
piperacillin, piperacillin-tazobactam, ticarcillin, and tobramycin in P. aeruginosa clinical
isolates in this patient cohort [308]. Similar to HIV patients, in a 10-year study involving
149 solid organ transplant recipients, 43% of P. aeruginosa clinical isolates from transplant
recipients were reported to be MDR [309].

6. The Mechanisms of Antibiotic Resistance

The mechanisms of antibiotic resistance in P. aeruginosa have been reviewed exten-
sively elsewhere [310–313]. In brief, resistance to antibiotics in P. aeruginosa is multifactorial
involving various intrinsic (inherent) and extrinsic (acquired) mechanisms. The intrinsic
mechanisms of antibiotic resistance in P. aeruginosa include: (i) expression of porin molecules
(e.g., OprF) that are considerably more restrictive to antibiotics entry into P. aeruginosa as
compared to other Gram-negative bacteria such as E. coli [314,315]; (ii) reduction in the
expression of outer-membrane porins, which further renders bacterial cell wall less perme-
able to antibiotics [313,316]; (iii) expression of various efflux pumps (e.g., MexAB-OprM,
MexCD-OprJ, MexEF-OprN, and MexXY-OprM), which impart resistance to β-lactams,
fluoroquinolones, and aminoglycosides by pumping out these antibiotics thus reducing
their effective concentrations in P. aeruginosa cytosol [313,317–319]; (iv) biofilm produc-
tion which imparts resistance to antibiotics through various mechanisms—(discussed
in [320–324])—including (a) biofilm-specific protection against oxidative stress induced by
bactericidal antibiotics, (b) biofilm-specific expression of efflux pumps; (c) the protection
provided by matrix polysaccharides through chemical interactions between the chemical
functional groups in biofilm and antibiotics, thus limiting their accessibility to biofilm
bacteria, and (d) the reduced metabolic state of biofilm bacteria; (v) emergence of persister
and antibiotic tolerant phenotypes—(due to metabolic slowdown, oxygen limitations, and
stress conditions)—that substantially increases resistance to antibiotics in otherwise sensi-
tive bacteria, particularly in chronic infections [325–329]; (vi) mutations and polymorphism
in the gene targets of antibiotics which reduce drug/target interactions, such as, quinolone
resistance due to mutation in DNA Gyrase gene [330–332].

The extrinsic mechanisms of antibiotic resistance include acquisition of resistance
genes through horizontal gene transfer (HGT) mechanisms, such as transformation, trans-
duction, conjugation, transposons, outer membrane vesicles (OMVs), and insertion el-
ements [333,334]). These resistance genes can inactivate antibiotics by hydrolysis, such
as metallo or extended spectrum β-lactamases; or by changing antibiotics through struc-
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tural modifications, such as aminoglycoside modifying enzymes (e.g., acetyltransferases,
nucleotidyltransferase, and phosphotransferases) [289,335].

7. Emerging Therapies to Combat P. aeruginosa Infections

As discussed above, antibiotics are routinely prescribed for the treatment of P. aeruginosa
infections. While antibiotics have saved numerous lives over the past 9 decades, their use is
not without its problems. First, the widespread use of antibiotics has led to an explosion
of antibiotic resistance [336–338]. Second, currently, there is no antibiotic in the market
that is effective against all bacterial pathogens, therefore, choosing the right antibiotic for
prophylaxis use is crucial [339]. The choice of prophylaxis antibiotic is empirical in that it is
based on the most probable cause of infection [340,341]. Prophylaxis antibiotics could fail if
the patient encounters a different pathogen or a pathogen that is resistant to the adminis-
tered antibiotic [342]. Third, antibiotics have many undesirable and dangerous side-effects;
including nephrotoxicity, ototoxicity, hepatotoxicity, acute renal failure, and dysbiosis in the
gut microbiota which itself has been associated with obesity, diabetes, and immunological
and neurological diseases such as Parkinson disease [343–345]. Forth, prophylactic antibiotic
use is associated with increased risk of infection with Clostridium difficile which is one of the
deadliest causes of nosocomial infections, costing approximately $1.5 billion annually in
USA alone [346–349]. Fifth, antibiotic use has been shown to interfere with healing processes
at surgical sites [350]. In this section, we discuss the antibiotic-free strategies that are gaining
tractions in dealing with P. aeruginosa infections and possible limitations associated with
them (summarized in Table 3).

7.1. Immune System-Based Approaches against P. aeruginosa Infections

Innate immune system possesses powerful cellular, (e.g., neutrophils and macrophages),
and humoral (e.g., antimicrobial peptides and complement), components that destroy
pathogens via many mechanisms; such as phagocytosis, bursts of reactive oxygen and
nitrogen species (ROS and RNS), antimicrobial peptides (AMPs) and complement-mediated
direct microbial killing via membrane attack complex (MAC), and indirect microbial killing
through opsonization and phagocytosis, and neutrophil extracellular trap (NET) [351–355].
Below, we discuss the two main immune system-based approaches to control infection.

7.1.1. Antimicrobial Peptides (AMPs)-Based Approaches against Bacterial Infections

AMPs are natural peptide-based antibiotics which are expressed by almost all life
forms, including humans [356]. Generally, AMPs destroy pathogens by attacking and
permeabilizing their membranes but there are some AMPs that kill their targets via differ-
ent mechanisms such as modulation of membrane fluidity, and inhibition of intracellular
pathways such as DNA replication and protein synthesis [356,357]. AMPs have been
studied as promising new therapies to combat infections and some of them are even in
clinical trials [358,359]. In one cell-culture based study, LL-37 (also known as cathelicidin)
or cecropin(1–7)-melittin A(2–9) amide (CAMA) AMPs were shown to reduce the minimum
biofilm eradication concentrations (MBEC) against biofilm P. aeruginosa by 8-fold [360].
In another in vitro study, immobilized Melimine and Mel4 chimeric cationic AMPs were
shown to reduce biofilm P. aeruginosa viability by 82% and 63%, respectively [361], high-
lighting their therapeutic potential against device associated P. aeruginosa infections, such as
catheter-associated pneumonia. In a rat model of systemic infection with P. aeruginosa, the
AMPs (Magainin II and Cecropin A) exerted strong antimicrobial activity and achieved a
significant reduction in bacterial levels, plasma endotoxin, and TNF-α concentrations when
compared with control and rifampicin-treated groups [362]. Rifampicin and Magainin II
or Cecropin A combined therapies showed synergistic effect in reducing infection and
mortality rates when compared with singly treated and control groups. In another set of
in vitro and in vivo lung infections, peptide ZY4 (a cathelicidin mimetic) was shown to be
highly effective against standard and clinical MDR P. aeruginosa and Acinetobacter baumannii,
strains in a mouse septicemia infection model [363]. Importantly, ZY4 showed low propen-
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sity to induce resistance, eradicated biofilm bacteria, (even killing persister bacteria), and
decreased susceptibility to lung infection by P. aeruginosa and suppressed dissemination
of P. aeruginosa and A. baumannii to other organs in mice. However, notable limitations
have also hampered AMPs’ therapeutic use (including AMPs’ inherent cellular and tissue
toxicities, potential limitations with their spectrum of activities against pathogens, and
emergence of resistance to AMPs [359,364,365].

7.1.2. Immunomodulator-Based Approaches against P. aeruginosa Infections

In this approach, immunomodulators—primarily proinflammatory cytokines, such as
CCL3, or bacterial products, such as N-Formylmethionine-leucyl-phenylalanine (fMLF)—are
used to mobilize and activate innate immune responses at the possible site(s) of infec-
tion [8,188,189]. Immunomodulator-based approaches to control infection theoretically have
many advantageous over antibiotics, although they could also be used in combination with
antibiotics to further enhance their effectiveness. First, it is highly unlikely for a pathogen to
develop resistance to all antimicrobial weapons that our immune system has at its disposal,
including phagocytosis, bursts of reactive oxygen species (ROS), hypochlorous acid (HOCl),
neutrophil and macrophage extracellular traps and antimicrobial peptides as discussed
above. Second, immunomodulator-based therapies would not be empirically based because,
once mobilized to the site of infection, immune system could in theory be effective against
majority of infections regardless of their origin (bacterial, fungal, or viral). Third, many
pathogens, (including P. aeruginosa), possess stealth mechanisms that allow them to establish
infection even in immunocompetent healthy individuals by dampening host’s immune re-
sponses [7,366–370]. Immunomodulators could potentially overcome at least some of these
stealth strategies and fortify tissue’s defenses against invading pathogens by mobilizing
immune responses to the site of these stealth pathogens. Forth, immunomodulators likely
have fewer undesirable side-effects and may be safer than antibiotics. For example, it is
unlikely that topical application of immunomodulators would result in development of
bacterial resistance, gut dysbiosis, or organ damage (all side-effects associated with the use
antibiotics as discussed above).

In a wound model of infection in diabetic mice, Roy et al. demonstrated that one-time
topical treatment with low level CCL3 reduced P. aeruginosa infection by >99% by enhancing
the neutrophil response in diabetic wounds [8]. Importantly, CCL3 treatment did not lead
to persistent non-resolving inflammation in diabetic wounds, which is the hallmark of
diabetic foot ulcers [371,372]. Rather, inflammation subsided over time and CCL3-treated
diabetic wounds healed substantially better even in the presence of P. aeruginosa infection,
which has been shown to exacerbate healing and contribute to heightened inflammatory
environment in diabetic wounds as they age and become chronic [9,103,373]. In another
wound infection model in immunocompetent C57BL/6 mice, Mahmud et al. recently
demonstrated that one-time topical applications of CCL3, fMLF, or LPS immunomodulators
were as effective, (if not more), as prophylactic tobramycin, in reducing P. aeruginosa
infection (by nearly 90%) in wound [188]. Interestingly, these immunomodulators did
not adversely impact healing processes. Rather, they even modestly stimulated wound
healing in this immunocompetent animal even in the absence of infection. In another study
involving periprosthetic implant joint infection with Staphylococcus aureus, Hamilton et al.
demonstrated treatment with fMLP significantly reduced S. aureus infection levels by >90%.
In addition, fMLF therapy reduced infection-induced peri-implant periosteal reaction,
focal cortical loss, and areas of inflammatory infiltrate in mice distal femora. Importantly,
fMLP treatment reduced pain behavior and increased weight-bearing at the implant leg
in infected mice. These reports highlight the therapeutic potential of immunomodulators
in reducing infections and potentially as stimulants in wound healing even in uninfected
animals. The possible drawback against this approach is their possible ineffectiveness
in severely immunocompromised patients who may lack the ability to mount effective
immune responses to immunomodulators.
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7.2. Phage-Based Therapeutics against P. aeruginosa Infections

Lytic bacteriophages (also known as phages) are viruses that selectively target and
kill bacteria by lysis [374,375]. Phage effective killing of P. aeruginosa was first reported in
1957 by Kellenberger et al. [376]. Since then, various animal models and clinical studies
have demonstrated the effectiveness of phages as alternative or adjunctive therapies with
antibiotics to treat P. aeruginosa infections particularly when infections with MDR or XDR
P. aeruginosa strains are suspected [374,377–380]. In a mouse burn wound model of fatal
infection with P. aeruginosa, McVay et al. demonstrated that phage cocktail consisting
of three different P. aeruginosa phages was effective in increasing survival rates by 87%,
(when administered via intraperitoneal (i.p.) route), as compared to only 6% in the sham
control group [379]. In a CF zebra fish model, phage therapy was shown to substantially
lower bacterial burden, reduce proinflammatory response, and significantly decrease
lethality, caused by P. aeruginosa infection [380]. In a case report involving a patient with
a pan drug-resistant P. aeruginosa spinal abscess, local and intravenous injections of a
purified personalized phage cocktail adjunct therapy with antibiotics was able to heal this
patient, despite the strain’s resistance to all antibiotics including ceftazidime/avibactam,
ceftolozane/tazobactam, and colistin [377]. In another case report involving prosthetic
vascular graft P. aeruginosa infection, single application of phage OMKO1 and ceftazidime
was sufficient to resolve infection with no signs of recurrence [381]. Despite these successful
cases, clinical trials of phage therapies show low to moderate efficacy with large variations
in infection clearance between subjects within the studies [382]. In addition, phage therapies
also have their own set of limitations, including development of resistance to phages in
bacteria, the requirement for high dose of viral particles, and the potential serious but not
life-threatening side-effects [382–384].

7.3. Therapeutics Targeting P. aeruginosa Virulence Factors

P. aeruginosa pathogenesis is due to an arsenal of cell-associated and secreted virulence
factors [385]. Therefore, disarming P. aeruginosa by reducing its virulence in vivo is a logical
and promising therapeutic strategy that is gaining momentum [386–391]. For example, the
T3SS virulence structure is an essential virulence structure for T3SS-expressing P. aeruginosa
strains during infection and without it, this organism is rendered avirulent and cannot cause
disease [9,392,393]. In a recent study, INP0341, a T3SS inhibitor, was shown to attenuate
corneal infection by P. aeruginosa in an experimental model of murine keratitis [394]. In
another study, monoclonal antibodies against T3SS structural component PcrV provided
strong prophylactic protection in several murine infection models and a post-infection
therapeutic model [389]. Quorum sensing (QS) is another major virulence mechanism that
regulates the expression of many virulence factors and biofilm in P. aeruginosa [395]. In one
study, sitagliptin (a QS inhibitor) was shown to inhibit pyocyanin, hemolysin, protease,
and elastase in addition to blocking swimming, swarming and twitching motilities, and
biofilm formation in P. aeruginosa [390]. In another recent report, the FDA-approved drug
allopurinol showed anti-QS activity against P. aeruginosa and reduced the infiltration of
P. aeruginosa and leucocytes and diminished the congestion in the liver and kidney tissues
of infected mice [396]. Other QS inhibitors have also shown effectiveness in the treatment
of drug resistant P. aeruginosa [397]. In another report, inhibition of Pseudomonas aeruginosa
secreted virulence factors reduced lung inflammation in CF mice [398]. Other virulence
factors (e.g., pyoverdine, AlgR, CdpR, RpoN, CysB, and AnvM) have also been investigated
as potential drug targets to inhibit P. aeruginosa virulence during infection [399].

7.4. Vaccine Development against P. aeruginosa

With the rapid rise in the MDR and XDR P. aeruginosa clinical strains, it is absolutely
vital to develop effective vaccines against P. aeruginosa. To date, there have also been several
vaccine candidates developed against P. aeruginosa membrane and LPS O antigens, outer-
membrane porin proteins, the T3SS structural components (PcrV) and secreted effector
peptides (ExoU), and combinations of these factors [400–405]. One study assessed the
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effectiveness of oral and intraperitoneal (i.p.) vaccinations with attenuated Salmonella
enterica serovar Typhimurium SL3261 expressing P. aeruginosa serogroup O11 O antigen
against P. aeruginosa infection in an acute fatal pneumonia model in BALB/c mice [406].
They reported that while both modes of immunization elicited O11-specific serum im-
munoglobulin G (IgG) antibodies, IgA was observed only after oral immunization. They
further showed that oral vaccination significantly increased survival in an acute fatal
P. aeruginosa pneumonia model. In another study, a multivalent live-attenuated mucosal
vaccination (combining up to 4 attenuated strains having different LPS serogroups) elicited
opsonophagocytic antibodies, which were directed not only to the LPS O antigens but also
to the LPS core and surface proteins, correlated with protective immunity to P. aeruginosa
lung infections [407]. In another study, vaccination with Pseudomonas aeruginosa outer
membrane vesicles (PA_OMVs), formulated with aluminum phosphate adjuvant, was
shown to reduce bacterial colonization, cytokine secretion and tissue damage in the lung
tissue, thus protecting mice from lethal challenge of P. aeruginosa [408].

As for vaccine candidates against the T3SS, active and passive immunization with the
PcrV antigen was shown to protect mice against P. aeruginosa-induced lung inflammation
and injury and ensured the survival of challenged mice [403]. Interestingly, antibodies to
PcrV also inhibited the translocation of type III toxins, thus reducing P. aeruginosa pathogen-
esis. In a follow up study, intramuscular injection of PcrVNH (a chimeric derivative of PcrV
which contains the N-terminal domain (Met1-Lys127) and H12 domain (Leu251-Ile294) of
PcrV)—elicited a multifactorial immune response and conferred broad protection in an
acute P. aeruginosa pneumonia model and was equally effective to full-length PcrV [405].
Moreover, passive immunization with anti-PcrVNH antibodies also showed significant
protection, at least based on inhibition of the T3SS and mediation of opsonophagocytic
killing activities. An important limitation with T3SS-directed vaccines is the emergence of
PA7-like clade of P. aeruginosa strains which lack T3SS [409–411].

Vaccine candidates against recombinant outer membranes OprF–OprI conjugates have
been shown to be well-tolerated in healthy volunteers patients following mucosal admin-
istration [401]; or in patients with severe burns following intramuscular injection [402].
These vaccines have also been shown to elicit specific serum IgG and s-IgA antibodies in
these patients, respectively [401,402]. Supporting these findings, in a clinical trial study
involving 48 volunteers in six vaccination groups with either a systemic, a nasal, or four
newly constructed oral live vaccines based on attenuated live Salmonella, expressing P.
aeruginosa OprF-OprI recombinant as antigen, it was reported that while systemic and
mucosal vaccines induced a comparable rise of serum antibody titers, a significant rise
of IgA and IgG antibodies in the lower airways was only noted after nasal and oral vac-
cinations [412]. Disappointingly, in a randomized placebo-controlled phase II study in
ventilated ICU patients, OprF–OprI vaccination (via intramuscular injection) produced
a significant immunogenic effect (increases specific IgG), but it did not reduce infection
rates [404]. Despite these considerable efforts, no vaccine has yet been found to be clinically
efficacious against this pathogen. The main obstacles to achieve this goal include poor
immunogenicity of the protective epitopes, a large variant subtype antigens, leading to
high degree of serologic variability, a large genome facilitating adaptation to new environ-
ments, phenotypic plasticity between acute and chronic infection, and variations in animal
responses to P. aeruginosa that make determination of the optimal vaccine formulations
difficult from such studies [400,413].

7.5. Other Antibiotic-Free Therapies for P. aeruginosa Infection
7.5.1. Silver

Silver has been recognized for its antimicrobial properties for centuries and because
it is considerably less toxic to human cells than pathogens, it has been used in a variety
of applications to prevent infection [414]. Silver has a broad spectrum of antibacterial,
antifungal and antiviral properties. Many mechanisms have been postulated to underlie
silver antimicrobial action, including cell wall and cytoplasmic membrane disruption, inhi-
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bition of protein synthesis machinery by denaturation of ribosomes, interference with ATP
production and chemiosmosis, production of ROS, and interference with DNA replication
machinery (reviewed in [415]). Silver has been shown to be very effective against both
planktonic and biofilm P. aeruginosa, although higher silver concentrations are needed for
it to be effective against biofilm P. aeruginosa [416]. In a murine model of wound infec-
tion, silver nanoparticles (AgNPs) were shown to reduce P. aeruginosa infection by nearly
5 log-orders as compared to control wounds on day 4 post-infection and stimulate complete
wound closure by day 12, although AgNPs in combination with tetracycline was more
effective [417]. In another study, silver nanocomposite was used to deliver two pharma-
ceutical compounds (alginate lyase and ceftazidime) to degrade the alginate and eradicate
biofilm P. aeruginosa from the lungs. Silver nanocomposites displayed a high dispersity,
good biocompatibility, and high ceftazidime-loading capacity, and a low pH-dependent
drug release and degradation profiles [418]. Importantly, they were highly effective in
eradicating P. aeruginosa from the mouse lungs and decreasing the lung injuries. In an-
other wound infection studies in diabetic mice, combination of AgNPs—immobilized on
chitin-nanofiber sheet (CNFS)—and weakly acidic hypochlorous acid (HClO) was shown
to significantly reduce P. aeruginosa infection burden and stimulate healing in an otherwise
impaired healing animal model [419]. Because of its potent antimicrobial property, silver is
routinely used as an adjunct in wound dressings [420]. However, because it can also be
toxic to keratinocytes, it also has the potential to impair healing [420]. The application of
silver as an adjunct therapy on medical devices may not be suitable. In a large randomized
clinical trial involving 1309 hospitalized patients, coating urinary catheter with silver was
not only ineffective in reducing the incidence of bacteriuria, it actually increased infection
rates in male patients, particularly with S. aureus [421].

7.5.2. Honey

Honey has long been known for its antimicrobial and healing properties, dating back
to ancient times, well before we gained the knowledge that microorganisms could cause
infection and disease [422]. Honey exhibits a broad-spectrum of antibacterial activity
against both Gram-positive bacteria and Gram-negative bacteria [423]. The antibacterial
activity of honey has been attributed to several factors, including its high viscosity, its
simple and complex sugar contents, its mild acidic nature, its hydrogen peroxide content,
and its high levels of phenolic compounds with antimicrobial properties [424,425]. Lu
et al. recently demonstrated that honey, at substantially lower concentrations compared to
those found in honey-based wound dressings, inhibited P. aeruginosa biofilm formation and
significantly reduced established biofilms [426]. In another recent investigation, Bouzo et al.
demonstrated that no single component of honey can account for its total antimicrobial
action against P. aeruginosa [427]. They further showed that honey affects the expression of
many genes, particularly the genes involved in the electron transport chain maintenance,
causing proton leakage across membranes, and inducing membrane depolarization and
permeabilization in P. aeruginosa. A randomized clinical trial (105 patients) to compare a
medical grade antibacterial honey (Medihoney™) with conventional treatments in wound
care, reported clinical benefits from using honey in wound care with 23% fewer episodes of
infection [428].

7.5.3. Hyperbaric Oxygen Therapy (HBOT)

HBOT is used as an adjunctive therapy in the management of infections such as di-
abetic foot, osteomyelitis, gas gangrene, necrotizing fasciitis, and fungal infections [429].
The underlying mechanisms of HBOT’s bactericidal functions involve activation of in-
nate immune system (via restoration of neutrophils’ bactericidal functions under hypoxic
environment or diabetic condition), and enhancement of ROS production in targeted bac-
teria [191,429,430]. In another study to evaluate the therapeutic potential of HBOT as an
adjuvant to tobramycin treatment, HBOT was able to significantly enhance the effect of
tobramycin against aggregates of all the P. aeruginosa isolates from CF patients in vitro.
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The effect was attributed to increased O2 levels [431]. In experimental subcutaneous
and pulmonary rat infection models, oxygen therapy was shown to significantly reduce
P. aeruginosa titers in the blood and bronchial aspirates, and protected animals against
infection-induced mortality and morbidity as compared to control group [432]. In com-
bination with amikacin antibiotic, these effects were even more impressive, highlighting
HBOT’s potential as an adjunctive therapy. Although the impact of HOBT on P. aeruginosa
infection has not been directly examined, two systemic reviews of reports on randomized
controlled trials comparing the effects of therapeutic regimens which include HBOT with
those that exclude HBOT (with or without sham therapy)—have found HBOT to be benefi-
cial for the treatment of necrotizing infections and to improve wound healing in diabetic
ulcers and ischemic leg ulcers [433,434].

7.5.4. Negative Pressure Wound Therapy (NPWT)

NPWT has been shown to reduce surgical site infections (SSIs) by reducing fluid
accumulation within the avascular dead space in a closed wound [435,436]. NPWT was
shown to reduce infection and decrease mortality in a murine model of burn wound sepsis
with P. aeruginosa [437]. In a rabbit wound model of infection, NPWT was shown to be
significantly more effective than the control treatment (a sterile gauze dressing) in reducing
the expression of virulence factors and P. aeruginosa bacteria counts [438]. In another report,
NPWT was shown to reduce the mobility of P. aeruginosa and enhance wound healing in
a rabbit ear biofilm infection [439]. NPWT was also shown to inhibit the invasion and
proliferation of P. aeruginosa in burn-wounded tissue and decrease mortality in a murine
model of burn-wound sepsis [437].

8. Concluding Remarks

Pseudomonas aeruginosa is a serious pathogen that can cause deadly acute and chronic
infections particularly in immunocompromised hosts and CF patients. What makes this
pathogen so successful in colonizing diverse environments within its host are its large
genome, which gives this pathogen the metabolic flexibility to quickly adapt to changes
within its environment; and its large arsenal of cell-associated and secreted virulence factors,
which protect this pathogen from recognition and attack by host’s immune responses. What
is alarming about P. aeruginosa is its high intrinsic and acquired resistance to many available
antibiotics which further highlights the need and the impetus for the development of novel
strategies to deal with this organisms.

Table 1. Pseudomonas aeruginosa infection types, prevalence, and animal models.

Acute Infections
Site Reported Prevalence Infection Model

Respiratory Tract Infections [48,49] See pneumonia & CF infections below Various murine models lung infection
[155,156,158–162,440]

Hospital acquired pneumonia [50]
21.8% [61,62],
15.6% [64]
17.8% [65]

Intratracheal inoculation in various
animal models infection
[155,156,158–162,440]

Ventilator-associated pneumonia [50] 23.2% [63], 25.9% [64],
19.4% [65]

Intratracheal inoculation in various
animal models infection
[155,156,158–162,440]

Keratitis and corneal ulcers [52,53] 6.8% to 55% [72–76] Eye infection in murine models
[178–181].

Urinary tract infections [54] 7% to 17% [77,78]

-Mouse intravenous injection [162,163]
-Surgical implantation of bacteria coated
beads or bladder catheterization
[167–171]
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Table 1. Cont.

Acute Infections
Site Reported Prevalence Infection Model

Blood stream infections [54–56] 18% to 61% [81,82]
Bacteria injection via intravenous,
intraperitoneal, or retro-orbital routes
[172–175]

Osteomyelitis [57,58]

- 10.8% of all osteomyelitis [441]
- 66% of all P. aeruginosa osteomyelitis
were acute, 44% chronic
osteomyelitis [442]

Chronic osteomyelitis animal murine
model [443]

Endocarditis [59,60] 0.015% [444]; 3% [60] Rats [184]; Rabbits [185,186]
Chronic Infections

Site Reported Prevalence Infection Model

Cystic Fibrosis [88–90] 60% to 70% infections in adult CF
[445–447]

Transgenic mutant CFTR mice, rats,
rabbits, ferrets, pigs, and sheep animal
models [156,211–217,219–222]

Wounds [13,92–98,448]

- Diabetic ulcers; 10% [449]; 14.3%
[450];18.8% [451]; 29.8% [97]
- Burn wounds; 12.4–57%
[141,143,452–454]

Full thickness excision skin wounds and
burn wounds in mice, rats,
[8,9,104,188,199,200]

Infection in Immunocompromised
Patients [102–110]

- 8% to 25% in HIV patients
[43,81,116–119,455]
- >21% in acute leukemia [126,127]
- 9% of solid organ transplant
infections [137]
- 57% of major burn wounds [143]

Drug-induced and transgenic
immunosuppression in rodents & guinea
pig [205–207]

Table 2. Conventional antibiotic treatments for Pseudomonas aeruginosa infections, their limitations,
and mechanisms of resistance in P. aeruginosa.

Antibiotic Therapy Target Limitations & Resistance Mechanisms
b-lactam antibiotics:
- Non-carbapenem b-lactam
antibiotics [223–225,227,228]
- Carbapenems [223,224]
- Cephalosporins [223,224]

Peptidoglycan cell wall production
via covalent binding of
penicillin-binding proteins [225,456]

Fluoroquinolones [223,224]
DNA synthesis via inhibition of DNA
gyrase and topoisomerase IV
[256,457]

Tetracycline [223,224] Protein synthesis via inhibition of 30S
and 50S ribosomal subunits [458,459]

Aminoglycosides [223,224] Protein synthesis via inhibition of 30S
ribosomal subunit [460,461]

Polymyxins [223,224] Lipid A moiety in outer membrane
LPS [462,463]

- Expression of antibiotic restrictive porins
[314,315]
- Reduced expression of outer-membrane porins
reducing antibiotic permeability [313,316]
-Expression of efflux pumps which reduce
antibiotic concentration [313,317–319]
- Biofilm protections against antibiotics
[320–322,324]
- Emergence of antibiotic tolerant persister
bacteria [325–329]
- Mutation of antibiotic targets [330–332]
- Acquisition of resistance genes via HGT
[289,333–335]
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Table 3. Emerging non-antibiotic therapeutics for Pseudomonas aeruginosa infections.

Therapy Target Therapy imitations & Resistance
Mechanisms

Antimicrobial peptides (AMPs) Membrane integrity, DNA replication,
protein synthesis [356,357]

Cellular toxicity, limited spectrum of activity,
Multiple resistance mechanisms, including
alteration in cell wall & degradation by
proteases [359,364,365]

Immunomodulators Activation of host cellular
immunity [8,188]

No cellular toxicity; Resistance not reported
but highly unlikely as they activate multiple
immune responses [8,188,189]

Phage-based therapeutics Membrane lysis [374,375] - Low clinical efficacy, Development of
resistance, & side-effects in patients [382–384]

Therapies against Virulence factors

- T3SS inhibition by small molecule or
antibody [389,394]
- Quorum sensing activity [390,394]
- Secreted virulence factors [398,399]

Not reported but bacteria can potentially
become resistant to these therapies in similar
mechanisms to antibiotics

Vaccines

- LPS O-antigens [407]
- Outer membrane vesicles [408]
- PcrV (T3SS) [403,405]
- OprF-OprI [401,402,404,412]

Vaccines have not been clinically effective,
Variant subtype antigens and serologic
variability, & animal model variability in
determining formulations
[400,404,409–411,413]

Silver Various [415]
- Cytotoxic to keratinocytes [420]
- Potentially ineffective as medical device
coating [421]

Honey Various [424,425] Not Reported

Hyperbaric oxygen therapy
Activation of innate immunity and
enhanced ROS production in
bacteria [191,429]

Not Reported

Negative pressure wound therapy Bacterial proliferation [435–437] Not Reported
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