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Abstract 

We describe a computational model of saccadic visual 

memory applied to the task of facial recall.  Each saccade 

provides a mixed-resolution, quasi-stationary snapshot of a 

visual scene to the striate cortical areas yet the brain recreates 

spatially and temporally smooth perceptions and memories by 

combining these visual fragments.  We build on the work of 

(Lacroix et al., 2006) to model this integration of saccades in 

a facial recall task by selecting fixation points based on low-

level saliency of a face image.  At each fixation point, this 

model stores discrete visual samples with multiple resolutions 

as activation patterns without knowledge of their temporal or 

spatial origin to create a kernel density estimate of the studied 

faces.  These visual fragments are then integrated and 

compared to new fixations during recall.  We replicate 

Lacroix’s results by demonstrating that the model achieves 

human levels of performance on the standard psychological 

memory test of facial recall.  We then extend the model to 

facial identity recognition and examine the task-dependent 

effects of visual resolution. 

Visual Integration 

Visual perception begins with retinal sampling information 

of localized areas of a scene before our eyes.  These 

saccades are discrete in space and time.  High-resolution 

visual information is only available from the fovea, 

covering only a small portion of the observed scene.  In 

order to perceive all parts of a visual scene with great detail 

as well as to maintain neural activation in the visual cortex, 

we repeatedly foveate different areas of the scene, spending 

the most time fixating on the parts that are most salient or 

most task-relevant (Yarbus 1967).   

 

It seems reasonable to suppose that the sequences of 

saccades or scan paths that collect the visual data do not, in 

general, follow exactly the same path and thus can not 

reconstruct the exact sequence of stored visual memories 

when examining a previously-viewed object (although the 

distribution of saccades tends to be similar, see Henderson, 

Williams, & Falk, 2005).  Yet we can mentally comprehend 

and recreate spatially and temporally complex constructs 

using only a combination of these static, non-uniform retinal 

samples stored in memory.  How is this discrete information 

integrated into a continuous, dynamic construct? 

 

The solution to this visual jigsaw puzzle must come from 

the way that retinal frames are stored in and retrieved from 

visual memory.  Since snapshots of the environment are 

unlikely to be repeated, a straightforward template matching 

procedure is unlikely to work.  For a simple task like face 

recognition, it is therefore important that there be a 

matching procedure that probabilistically assesses how well 

samples drawn from the current environment could have 

been generated by previous observations.  Here we describe 

how the model developed by Lacroix et al. (2006) can be 

viewed as a kernel density estimate of the likelihood that 

new visual patches of faces were generated by our memory.  

We then show how we can use the same model for face 

identification. Finally, we explore the issue of the scale-

space representation used and show how different spatial 

frequencies affect the matching process. 

  

We begin by presenting an improvement to the model of 

(Lacroix et al., 2006) that uses a saccade selection routine 

that uses the same filters that are used for the memory 

representation.  In Experiment 1, we demonstrate that this 

model can solve the challenge of visual integration by 

modeling the facial recall task.  Experiment 2 extends the 

model to perform a new task; recognition of facial identity.  

Finally, Experiment 3 examines the effect of allowing the 

model to process Gabor filter bands separately and indicates 

a potential method for task-based control of visual attention. 

Visual Memory Model 

Saccade Selection 

Given a current fixation point, the choice of where to 

saccade to next is driven by a number of external cues 

including motion, peripheral complexity and non-visual 

stimuli (e.g. sound) as well as top down task-dependant 

directives such as attention and expectation.  Though many 

methods (Mozer, Shettel & Vecera 2005; Wolfe, 1994; 

Zelinsky et. al 2005) have been proposed for how to 

integrate these cues, in this work we concentrate only on 

bottom-up salience of static images.  We model the saccade 

selection process using an interest operator for determining 

the scan paths introduced in (Yamada & Cottrell, 1995).  

This simplified model uses the rotational variance of low-

resolution Gabor filter responses to construct a distribution 

of the contour complexity (read: salience) over all pixels in 

a given image: 
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where G(i, j, θ ) is the response of a Gabor filter with 
orientation θ, centered at pixel (i, j) and µG is the mean 

response across all orientations.  A similar technique 

developed by (Renninger et al, 2004) uses entropy rather 

than variance of local image contours to define salience.   

 

We convert this salience map into a probability distribution 

by normalizing with the softmax function (Bishop, 1995).  

A fixation point is then chosen randomly, according to this 

distribution.  We relax the salience around the fixated point 

by subtracting a univariate Gaussian, centered at the point 

from the salience distribution and renormalizing.  This 

inhibits repeated fixations at the same location.  Figure 1 

shows a salience map generated in this manner as well as a 

sample distribution of fixation points.   

 

This purely bottom-up model is simple but the resulting 

scan paths for face recognition task qualitatively 

approximate those observed in humans (Yamada & Cottrell, 

1995).  The model satisfies 3 of the 5 criteria identified by 

(Itti & Koch, 2001) for a computational model of visual 

attention: it derives perceptual saliency of a fixation point 

from the surrounding context, it creates a salience 

distribution over the visual scene and it inhibits return to 

previously attended locations.  We ignore the other 2 criteria 

that concern the top-down influence of attention and object 

recognition on fixation point selection.  Future work intends 

to augment this model by extending the results of (Nelson & 

Cottrell, 2005) to use top-down feedback to direct the 

selection of eye-movements by examining which queries 

(i.e. eye movements) would be most useful in enhancing 

performance of the current visual task.   

Retinal / Cortical Image Transform 

Once it has been fixated, an input image undergoes many 

stages of neural processing before being stored as a pattern 

of activation in high-level visual cortex.  In all experiments 

below, we use as input 128x192 pixel grayscale image from 

the FERET database of (Phillips et. al 1998).  Male and 

female Caucasian faces without facial hair or glasses were 

chosen and the images were centered and normalized to 

have common eye positions and equal contrast. 

 

Gabor filter responses at 8 orientations and 4 frequencies 

form our biologically-motivated, V1 processing model 

(Jones & Palmer, 1987).  We transform an image into the 

Gabor-filtered domain by calculating the response of each 

filter at every image pixel.  In these experiments, we use 

Gabor filter frequencies of 1/4, 1/8, 1/12 and 1/16 

cycles/radian.   

 

Figure 1(a): An image from the FERET database.   
Figure 1(b): The corresponding salience map generated 
using the technique of (Yamada & Cottrell, 1997) with a 
sample distribution of ten fixation points.  Fixations tend 
to cluster around highly salient areas but relaxation of 
sampled points enforces an even distribution across the 

image. 
 

The highest spatial-frequency filter responses correspond to 

the high-resolution foveated area around the fixation point.  

The responses of the low-frequency filters are each 

computed from an area surrounding the fixated pixel that 

has spatial context greater than that of the foveated patch 

and thus provide extra-foveal information, corresponding to 

the low-resolution data from the retinal periphery.  By 

extracting just a square patch from these Gabor response 

images, we are in fact producing a foveated representation 

of the fixated point. 

 

The size of the stored patch of filter responses and the 

number of patches that the model may examine for each 

image are experimental parameters that correspond, in 

human vision, to the distance of the eye from the image (and 

thus the size of the foveated area) and the time spent 

studying the image (determining the number of saccades 

made).  For a fixation patch size of 35x35 pixels 

(corresponding to a visual angle of 1.5° for a subject about 

75cm from a 96 dpi computer monitor: an approximation of 

the conditions for human studies discussed below), the input 

feature vector to our model has; 

 

35 x 35 x 8 orientations x 4 frequencies = 39200 dimensions 

 

In order that the memory be able to generalize to recognize 

familiar faces under new conditions where different fixation 

points may be chosen and also so that it has the capacity to 

remember a large number of faces, the dimensionality of the 

input features is reduced while maintaining the majority of 

their representational ability by using principal component 

analysis.  This is analogous to the concise encoding of the 

over-complete retinal and V1 data in higher levels of visual 

cortex.  This feature extraction procedure of wavelet-based 

image decomposition followed by PCA is a standard 
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approximation for biologically motivated vision models 

(Dailey et al., 2002; Palmeri & Gauthier, 2004; Lacroix et 

al., 2006) 

 

We chose to retain just the first 80 principal components in 

order to make the model tractable as well as biologically 

feasible while still accounting for 87% of the variance in the 

feature data when processing all frequency bands together.  

Experiment 3 will present an alternative treatment where we 

do individual PCA decompositions on each of the 4 

frequency bands. 

Memory storage and retrieval 

Given the natural input patterns of activation or image 

fragments described above, the role of the brain is to 

analyze them and retrieve similar or related patterns.  The 

nature of this analysis and the methods of storage and recall 

are the focus of our modeling work. 

 

The memory model used is based on the Natural Input 

Memory from (Lacroix et. al, 2006).  The “memory” in this 

case is a high-dimensional vector space and “memories” are 

vectors in this space.  Given an input vector derived from an 

image as described above, the memory storage process is 

simply to assign this vector to the memory space.  This 

approach of conceiving of memories as patterns of neural 

activation in a sparse vector space has been successfully 

applied in many domains of cognitive modeling such as 

(Nosofsky & Palmeri, 1997 - response-time modeling; Sagi 

et al., 2002 - speech processing and Dollar et al., 2004 - 

video behavior analysis), among others.   

 

The retrieval process is instigated when a new sample is 

input to the system.  The patterns of activation of this novel 

input are compared to all the stored instances in the memory 

vector space.  As with the models in (Lacroix et. al, 2006; 

Nosofsky & Palmeri, 1997), proximity in this space is 

designed to relate to similarity in the perceived world.  

Multi-dimensional patterns can now be compared for 

similarity using simple vector-based methods such as 

Euclidean distance, suitable for comparing integral-

dimension stimuli. 

 

There is no guarantee that the fixation points chosen in the 

testing phase by our stochastic interest operator will exactly 

match those used in training; scan paths are not repeatable 

(Henderson, Williams, & Falk, 2005).  Therefore (as with 

human vision), fixated samples will rarely be a perfect 

match for anything stored in memory and we must instead 

use a more tolerant metric.  In order to judge the familiarity 

of an input pattern, the model uses a form of kernel density 

estimation (Bishop, 1995) a technique that has been applied 

by (Lacroix et al, 2006; Dailey, Cottrell & Busey, 1999) for 

facial memory modeling.  For each M-dimensional fragment 

input to the system, we count the number of stored 

memories, nf, that lie within an M-dimensional volume of 

radius r, centered on that input.  r is a free parameter of the 

model which controls required distinctiveness for an input 

fragments, that is the strictness required for it to be judged a 

match.  The familiarity, Fi, of an image i, is defined as the 

average number of memories matching each of the S fixated 

samples taken from the image; 
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As outlined in Bishop (1995), this is an (un-normalized) 

kernel density estimate of the probability that the new face 

was generated by the memory. For a subject to decide 

whether the image is familiar or not, they must threshold 

this probability. To visually assess the hypothesis that 

proximity in the memory vector space corresponds to 

similarity in the world, figure 2(c) shows the distance from 

a fragment taken from the image in figure 2(a) to all other 

possible fragments from that image while figure 2(d) shows 

the distance from the same fragment to all possible 

fragments from a different image, shown in figure 2(b).  

Given the strong peak in similarity around the fixation 

point, it can be seen that fragments that are close to the 

memorized fragment match very well.  Moving away from 

this point, similarity drops off quickly so that even 

fragments from similar locations on the unfamiliar image do 

not respond strongly. 

 

 

 

 

Figure 2: A target and lure image and their similarity 

maps.  Figure 2(c) compares distances from the outlined 

patch of the face in figure 2(a) to all possible patches 

from the same image.  Figure 2(d) compares the same 

patch to all possible patches from the face in figure 2(b). 
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Experiment 1 – Facial Recall 

To confirm that our modifications of Lacroix’s model still 

perform tasks similar to those she performed with it, we 

applied it to a face recognition experiment.  In this paradigm 

the subject studies a sequence of N briefly presented faces.  

In the test phase, a second list of faces is shown where 

(typically) half are from the original studied list (targets) 

and half are unfamiliar distracters (lures).  The goal is to test 

the subject’s ability to recognize the studied faces (hits) 

without classifying the lures as familiar (false alarms). 

 

In order to quantify the relationship between hits and false 

alarms, we look to signal detection theory and the 

detectability index, d’ which compares the normalized 

familiarity scores for the target and lure images (Kay, 

1998); 

2

'
22

LT

LT

FF

FF
d

σσ

µµ

+

−
=  

where 
TF

µ  and 
2

TF
σ  (

LF
µ  and 

2

LF
σ ) are the mean and 

variance of the familiarity scores for images from the target 

(lure) list.  All results are the average of 10 trials. 

 

To compare our model’s performance with the results from 

human subjects, we examine the psychological data from 

(Lewis & Johnston, 1997).  Note that in this experiment, 

subjects viewed ¾ profile faces whereas in our experiments, 

we use frontal views.  Other human studies testing frontal 

views such as (Hancock, Burton & Bruce, 1996; O’Toole et 

al., 1994) used far larger test lists (174 faces) albeit with 

unconstrained study times and had correspondingly lower d’ 

scores (average 1.37).  The results of (Lewis and Johnston, 

1997) do give us a baseline comparison level for human 

performance in a facial recall task.  In their work, the study 

list had N = 20 images, each displayed for 5–10 seconds.  

Allowing for approximately 4 saccades per second, we 

allow our model to take 10–40 samples from the studied 

images.  For each saccade, we sample 35x35 patches from 

the Gabor-filtered responses of the studied 128x192 pixel 

grayscale image from the FERET database.  We then test on 

40 images, including the 20 from the study set.  Results are 

shown in Figure 3.  These data replicate the human-like 

performance of the model found by (Lacroix et. al, 2006).  

These results make the intuitive prediction that as more 

samples are taken from the study and test lists 

(corresponding to longer viewing time by the human 

subjects), recall performance improves. 
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Figure 3: Recall performance for humans as reported by 
(Lewis & Johnston, 1997) and for our model 

Experiment 2 - Identity recognition 

The second memory task we tested our model on was 

identity recognition.  In order to frame the task in the same 

terms as Experiment 1, we again present the model with a 

set of images for study and then examine its performance on 

a set of test images.  In this paradigm, we can evaluate 

performance with the same familiarity and d’ metrics as 

before.  Here the study list is comprised of 6 different 

images of the same person (with changes in lighting and 

expression).  Given a test list of 39 images containing 3 

novel images of the studied face (the targets) as well as 9 

different images of 4 other identities (the lures), the task 

now is to discriminate this original identity from the 

unfamiliar faces.  For each image, we allow the model to 

make 20 fixations.   

 

This task introduces an extra challenge for the kernel 

density estimate model in that it must now generalize to 

recognize images that it has never seen before.  While the 

stochastic nature of the saccade selection model made it 

unlikely that same fragment would be examined in study 

and test in the recall task, this is impossible now.  This 

further tests the capabilities of the kernel density method of 

memory modeling by requiring the model to integrate 

fragments from multiple images to form an estimate of the 

identity and to compare this density estimate to a 

completely unfamiliar set of fragments. 

 

Figure 4 demonstrates that the model performs successfully 

on the identification task.  The d’ scores of around 2 

indicate human-like performance.  As expected, overall 

recognition performance was somewhat worse than for the 

simple recall task (compare the results for this experiment in 

Figure 4 to the middle bar of Figure 3).  Again, reported 

results are the average of 10 repeated trials where, in each 

trial, variability arises from the fact that a different sample 

of saccades is taken from salience distribution and thus a 

different set of fragments are stored and analyzed for the 

study and test images. 

51



0

0.5

1

1.5

2

2.5

1 2 3 4 5

Identity

D
e
te
c
ta
b
il
it
y
, 
d
’

 

Figure 4: ID Performance (20 fragments per image, 

radius = 1.5) 

Experiment 3 - Multi-resolution processing 

Combining resolutions 

The results presented above and in (Lacroix et. al, 2006) as 

well as many of previous models from our lab. (Dailey et. 

al, 2002) consider each level of resolution together by 

concatenating them into a single feature vector.  Though it 

is the most straightforward method for processing image 

data, this approach disregards the fact that the scale most 

appropriate for a given visual object recognition task can 

vary greatly, depending on both the object and the task.  As 

an example, low-resolution, peripheral vision might be 

enough to tell you that there is a page of text in front of you 

but would be useless for discerning the individual letters 

printed there.  On the other hand, the fine-detailed 

discrepancies between a friend’s face from one year to the 

next would not prevent you from recognizing her.  Thus, it 

seems necessary to allow a memory model to have control 

over how it uses information of varying resolution, rather 

than forcing it to consider all scales as equal.  

Implementation of this idea can provide insight into how 

multi-resolution data is combined in visual recognition tasks 

and gives clues about how to apply task-based (top-down) 

controls on attention. 

 

We examined methods for improving our model by 

allowing it to process each frequency band separately.  The 

first observation is that the variance in the feature data is 

proportional to the frequency of the filter as shown in Table 

1.  While this may not be surprising of itself (higher 

frequency filters capture more rapidly varying data), it 

makes a strong argument for treating each frequency band 

individually.  PCA allocates components in directions where 

the data has most variance, in this case, the high frequency 

bands.  However, as shown in Figure 5, these are not the 

most useful bands for recall tasks.  Therefore, treating all 

bands as equal and using a single PCA transform to 

represent them all will allocate more representational 

capacity to features that are less useful for the memory 

task1. 

 
Table 1:  Variance of Gabor filter bands. 

 

Gabor Filter 

Spatial Frequency 

Kernel 

Radius (r) 

Variance Accounted for 

by PCA to 20 Dimensions 

0.0625 1.5 90.3% 

0.0883 1.05 86.5% 

0.125 0.6 76.1% 

0.25 0.15 61.3% 

 

Rather than coalesce all frequency bands into one feature 

vector, we have extended our model to process each band 

individually and calculate detectability based on average 

familiarity values.  In this way, fragments which are 

ambiguously familiar at one scale (Fi,scale a  ≈ 0) but distinct 

at another (Fi,scale b  > 0) can still be recalled. 

 

The interesting result is that the effect of the 4 frequency 

bands in the identity task is different from the recall task.  

Figure 5 shows the detectability score for both tasks using 

just one frequency band (with 20 principal component 

features stored for each example).  We see that, for recall, 

the lowest frequency was the most significant in detecting 

familiar faces, with a gradual fall off as the resolution is 

increased. Identity recognition relies more on the 

intermediate-low frequency (though the low is also 

important) but receives very little useful information from 

the highest frequency band.  This makes the intuitive 

prediction that, for identifying familiar objects under novel 

conditions, excessive detail is in fact distracting. 

  

A second result that springs from our multi-resolution 

analysis is that the distance between fragments (and 

therefore radius parameter of the kernel, inside of which 

they will be classified as familiar) changes with scales.  This 

is illustrated in the center column of Table 1.  These radii 

are roughly inversely proportional to the frequencies they 

correspond to (we found setting the high-frequency radii 

even lower improved results).  This demonstrates that the 

criterion for successful fragment matches, distinctiveness, is 

coarser at low spatial frequencies due to the imprecise 

nature and low variability of these features than those 

required for features from higher frequency bands and adds 

weight to the argument for treating bands individually. 

 

                                                           
1 We should note here that in previous models from our lab, the 

filter responses are whitened on a per-filter basis, so all bands have 

the same energy, and PCA only collects covariances. 
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Figure 5: Per-band detectability for recall and identification 

tasks, from low to high frequency (left to right). 

Discussion 

We have introduced an extension of the facial recall 

memory model of (Lacroix et. al, 2006) and shown how it 

can also be applied successfully to the task of identity 

recognition.  Using inspiration from neurobiology, this 

model is able to integrate a non-uniform sampling of a 

visual scene, potentially containing much novelty and 

without explicit knowledge of the spatial or temporal 

ordering of the samples it achieves human-levels of memory 

performance.  This discrete sampling, concentrating on the 

salient parts of images could be the genesis for bottom-up, 

parts-based object representations where extracted 

fragments are stored, grouped and recalled according to 

their locations in our memory vector space. 

 

By examining visual fragments at multiple scales, we have 

also demonstrated a possible method for implementing top-

down, task-specific controls on familiarity.  We have shown 

that the constraints imposed by fragment matches at one 

scale could be used to set expectations for matches at others 

dynamically.  Our future work plans to incorporate these 

insights by developing a model that can learn task- and 

scale-specific match thresholds, corresponding to the 

versatile development of task-dependant perceptual 

expertise in humans. 
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