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Abstract

Mechanics of Confined Microbial Populations

by

Pawel Gniewek

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Oskar Hallatschek, Chair

Living systems offer a richness of behaviors that are of broad interest to many fields of science. For instance,
cells that are dwelling in their natural environment are mostly subject not only to the scarcity of energy re-
sources, but also the space in which they can grow and live. This space limitation eventually leads to the
emergence of contact forces (mechanical stress) between neighboring cells or the cells and their confining
environment. These emergent forces may further have a crucial impact on the cells’ biology, the dynamics
of the whole population, or even the integrity of confinement (resulting in the remodeling of the environ-
ment). Even though the general importance of these forces has been widely recognized, technical difficulties
and the complexity of the emergent phenomena prevented much progress in this direction. In this thesis,
using mostly computer simulations, I make steps towards overcoming these barriers. In the first part of this
thesis, I describe, on the coarse level, how the geometric properties of micro-confinement entails clogging
of the microbial populations of Saccharomycॽ cerevisiae. These clogged populations are found to be quite
disordered, with intermittent growth dynamics and heterogeneous mechanical stresses — properties much
more like those of granular materials than a continuum. Thus, granular materials are an appealing frame-
work to describe dense microbial populations. However, using a simple 2D model, I numerically show that
the coupling between cellular growth rate and mechanical stress gives rise to deviation from the expected
behavior of inanimate granular materials, and it increases the complexity of the emergent phenomena. The
simple and coarse model used in the first part of the thesis is sufficient for relatively low density systems, but
it is not adequate for strongly compacted systems. Thus, in the second part of this thesis, I employ the Finite
Element Method to study in detail the structure and mechanics of the disordered packings of elastic shells
— our proxy model for dense cellular packings. Therein, I discuss how deformations resulting from large
compressive forces couple the structural and mechanical properties of the compact packings. Finally, using
Lattice-Boltzmann simulations, I investigate the fluid transport in such compacted packings of deformable
shells. I show that a relatively simple model proposed by Kozeny & Carman, combined with a percolation
theory, can capture the fluid transport in porous materials. This result is of interest not only in dense bio-
logical systems, but also in a broader class of granular porous materials.
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1
Introduction

In order to proliferate within a crowded environment, cells must exert mechanical forces onto their sur-
roundings. These forces are necessary to create the space needed to accommodate new cellular material. To
that end, cells act against extracellularmaterial, steric constraints due to confinement, and other cells. Hence,
cell proliferation leads to the generation of compressive forces, which in turn influence themovement of the
cells and the self-organization of the cellular assembly. The importance of forces induced by growth and
their feedback onto growth has been recognized over the last 10 years 1,2. Namely, these forces turned out to
be crucial for morphophonemics 2–4, tumor 5 and tissue 3,6 growth, collective cell migration7, and bacterial
colonies and biofilms development 8–10.

Except for some studies on biofilms, physical stresses that arise due to the growth of themicrobial popula-
tion and their feedback on genes expression aremuch less investigated than the influences of other cues such
as chemical or starvation 11,12. This is largely due to the fact that the classical method of culturing microbes
is in liquid media, and the cells are allowed to grow and divide in the absence of any physical constraints.
Yet, most microbes live in the form of solid biofilms attached to surfaces and restricted by an extracellular
matrix (a polymeric network of peculiar physical and chemical properties). Thus, these studies do not cap-
ture the effects of cellular crowding and emergent mechanical stresses, and as such there have been very few
quantitative studies on the impact of confinement on growth 13,14.

Furthermore, most microbes that inhabit soil, rocks, and other solid surfaces dwell in pores less than 10
µm in diameter 15. Upon cellular growth, due to the lack of space, the cells may leave the confinement in a
fluid-like or plug-like manner. However, for certain geometries of the habitats, the microbial populations
may become clogged inside micro-pores 16,17. Whenmicrobes become clogged, further growth leads to inter-
nal pressure buildup. For example, dense populations of budding yeast generate pressure large enough (up
to 1.0 MPa) to affect growth and motility 18,19 or even impact the integrity of the cells’ environment20; thus
this mechanism may be crucial for microbial pathogenicity9,21–23.

Despite the ubiquitous nature of mechanical forces during the growth of confined cellular populations,
the nature of these forces is largely unknown. Experimentally, a few studies address this aspect and reli-
ably measure growth forces on the cells’ population level 18,24–27. However, the mathematical description
of biofilm formation and development is still incomplete. On one hand, continuum models 28–32 can cap-
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ture large-scale and long-time behaviors but lack the proper descriptions of the stress and density fluctu-
ations and cellular granularity that are responsible for clogging in micro-cavities 33,34. On the other hand,
individual-based cells simulations can capture these effects; however, a simplified description of intercellular
forces with a lack of deformations provides only a tentative description of the structure and mechanics of a
strongly compacted microbial population 34–38.

Henceforth, in this thesis, I develop a computational framework and numerically study the mechanics
and structure of Saccharomycॽ cerevisiae cells in confined spaces. For relatively diluted cellular packings, I
use single-cell based simulations that properly account for cellular granularity, contact forces, and density
fluctuations 18,39–42. As the cellular population becomes dense, the emergent forces deform cells to the extent
that they can no longer be approximated by idealized shapes, and the pair-wise contact forces approximation
is no longer valid. Thus, I study the structure of highly compacted packings using a continuum mechanics
model of deformable cells43–46. As the cellular packings get very compacted and dense, the limitation of nu-
trients, on top of the compressive stress, become an additional obstacle in population development. Thus,
I numerically study a liquid transport, close to the percolation transition, in 3D disordered packings repre-
senting budding yeast cells.

1.1 Structure of this thesis

Chapters in this thesis are, to a large extent, independent projects ranging from the physics of granular ma-
terials to elastic shells mechanics to porous materials to fluid mechanics. Thus, in this introductory chapter,
I only briefly mention the physics background and numerical approach used in the thesis. Details are left
to the corresponding chapters where they are discussed more comprehensively and relevant references are
given.

The following thesis is organized as follow: In Chapter 2, I present a joint experimental and numerical
effort where we found that confinement of growing yeast cells result in the clogging of the population in-
side fabricated microchambers. Microfluidics experiments, done by Morgan Delarue and Jorn Hartung,
show that the clogged yeast population can develop a significant internal pressure which severely impacts
the growth of the cells and the dynamics of the entire population. Using computational models and im-
age analysis techniques, together with Carl Schreck, we link this behavior to the granularity of the cells and
supposed jamming transition that occurs as the population gets clogged.

In Chapter 3, I extend the numerical model developed in Chapter 2. I discuss how the coupling between
compressive stresses and growth rate impacts themechanical properties of confined cellular populations and
how they relate to inanimate granular and amorphous materials.

In Chapter 4, I analyze the structure and mechanics of highly compacted elastic shells using Finite El-
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ements simulations. Therein, I discuss compression mechanics of a pressurized elastic shell, including a
buckling condition for a pressurized shell. Furthermore, I speculate about the minimum energy structure
of disordered packings, and I discuss an “anomalous” shell coordination number upon the approach of a full
compaction. I explain this in terms of the emergent rotational degrees of freedom that need to be stabilized
upon the shells’ deformation. Finally, I address one of the puzzling results from Chapter 2 — presumably a
turgor pressure adaptation as the cellular packings get more compact.

In Chapter 5, using Lattice-Boltzmann simulations and percolation theory, I study the liquid transport in
the packings of elastic shells. I confirm that the classical model for porous materials developed by Kozeny &
Carman, extended by the parameters grounded in percolation theory, provides a good description of liquid
permeability in a broad range of packing densities.

This thesis is shortly summarized in Chapter 6. In Appendices A and B, I provide computational details
of the software that I developed duringmyPhD studies. InAppendixA, I describe aMonte-Carlo algorithm
and anopen-source libraryrndmesh that I used to generate disorderedmeshes on spheres, which is necessary
for Finite Element simulations. In Appendix B, I review computational models of elastic shells with their
foundations in elasticity theory. Then, I describe in detail the implementation of the elasticshells soft-
ware and its benchmarking against known solutions.
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2
Self-Driven Jamming in Growing Microbial

Populations

2.1 Introduction

In natural settings, microbes tend to grow in dense populations 1–4 where they need to push against
their surroundings to accommodate space for new cells. The associated contact forces play a criti-
cal role in a variety of population-level processes, including biofilm formation 5–7, the colonization
of porous media 8,9, and the invasion of biological tissues 10–12. Although mechanical forces have
been characterized at the single cell level 13–16, it remains elusive how collective pushing forces result
from the combination of single cell forces. Here, we reveal a collective mechanism of confinement,
which we call self-driven jamming, that promotes the build-up of large mechanical pressures in
microbial populations. Microfluidic experiments on budding yeast populations in space-limited
environments show that self-driven jamming arises from the gradual formation and sudden col-
lapse of force chains driven bymicrobial proliferation, extending the framework of driven granular
matter 17–20. The resulting contact pressures can become large enough to slow down cell growth, to
delay the cell cycle in the G1 phase, and to strain or even destroy the microenvironment through
crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical
pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial
pathogenesis and biofouling21–26.

2.2 Results

The simultaneous measurement of the physiology and mechanics of microbes is enabled by a mi-
crofluidic bioreactor 27–30 that we have designed to culture microbes under tightly controlled chem-
ical and mechanical conditions. The setup, shown in Fig. 2.1a, is optimized for budding yeast
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(S. cerevisiae). We use this device to measure mechanical forces generated by partially-confined
growing populations and the impact of those forces on both the population itself and its micro-
environment.

At the beginning of each experiment, we trap a single yeast cell in the growth chamber of the
device, which can hold up to about 100 cells. The cells are fed by a continuous flow of culture
medium, provided by a narrow set of channels that are impassable for cells.

While cells first proliferate exponentially as in liquid culture, their growth dynamics is dramat-
ically altered once the chamber is filled. At high density, cells move in a stop-and-go manner and
increasingly push against the chamber walls. The population develops a contact pressure that in-
creases over time until it reaches a steady state, subject to large fluctuations. Note that this contact
pressure is conceptually very different from the hydrostatic pressure because water can flow in and
out of cells. Depending on the geometry of the outlet (Fig. 2.1b and c), the mean steady-state pres-
sure can reach up to 0.7 ± 0.1 MPa. This pressure is larger than the osmotic pressure difference,
≈ 0.2MPa (stationary phase 31), between the interior of a budding yeast cell and the surrounding
medium, and much larger than the≈ 1mPa needed for the cells to overcome viscous friction (see
Appendix).

Although the initial pressure build-up is similar in different devices, we find a sensitive depen-
dence on the device geometry. The steady state pressure can be finely tuned by the shape of the
outlet gate (shown in Fig. 2.1b and c) or the width of the outlet channel (Fig. S2.13).

Both the intermittent flow and pressure build-up are counter-intuitive because, in all cases, the
outlet channel is wide enough for cells to pass. In principle, excess cells could flow like a liquid out
of the chamber. Time lapse movies (Movie S1) reveal that blockages in the device stabilize the
cell packing and prevent flow. Cells proliferate until a sudden avalanche flushes them through the
outlet (Fig. 2.1d and e). Another jamming event occurs, and the process repeats. These dynamics
generate characteristic slow pressure increases followed by sudden pressure drops (Fig. 2.1c).

Jamming, intermittency and avalanches are familiar aspects of flowing sand, grains or even jelly
beans 24. To test whether the interplay of growth, collective rearrangement, and outflow of cells
from the chamber canbe explainedby themechanics of granularmaterials, we set up coarse-grained
computer simulations with cells represented as elastic particles that grow exponentially and repro-
duce by budding. In our simulations, cells move via frictionless over-damped dynamics with repul-
sive contact interactions between neighbors.

Our simulations indeed reproduce the intermittent dynamics observed in the experiments (Fig. 2.2a–
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Figure 2.1: Self-driven jamming of microbes enables collective pressure build-up in microfluidic environ-
ments. (a) Budding yeast cells are grown in a growth chamber threaded by narrow nutrient channels (inset). (b)
The jamming of excess microbes produced by proliferaধon in the device leads to a parধal confinement of the pop-
ulaধon and a gradual build-up of a contact pressure of up to 0.65 ± 0.1 MPa (in the shown experiment), which
strongly deforms the device (white line represents the undeformed layout). The steady-state pressure generated in
a given device depends on the geometry of the outlets (b, right), which effecধvely act as leaky one-way valves. The
resulধng ধme-dependent pressure curves are shown in (c) for different outlets. The pressure measurements were
enabled by an automaধc feedback system that acধvely controls the deformaধon of a thin membrane separaধng the
growth chamber and a control channel (see a and Appendix). The bold curves correspond to one realizaধon of the
experiment, which is characterized by large pressure fluctuaধons due to gradual jamming and sudden unjamming.
The shaded region represents the envelope of the replicates: all replicates are binned together, and within each bin,
the minimum and themaximum define the shading. The dashed line corresponds to the mean of all realizaধons. The
cellular flows exhibits collecধve features known from physics of jamming in granular media: The ouĤlow of cells
is not steady but consists of periods of stasis, accompanied by pressure-build up, and sudden cell avalanches and
pressure drops. This can be seen in ধme lapse movies (Movie S1) as well as Kimographs: (d) shows the random
zig-zag moধon of the chamber membrane and (e) shows the flow through the outlet before, during and ađer an
avalanche with one snapshot every 20 minutes. Note that, depending on the local stresses, cells assume shapes
from nearly spherical (f, low stress) to nearly polyhedral (g, high stress). (f, g, leđ) Micrographs taken close to the
coverslip at the boħom of the chamber. (f, g, right) Mass-spring simulaধons, in which cell walls are represented as
(at vanishing contact pressure) spherical meshworks of springs (see Appendix). For beħer visualizaধon, the simula-
ধons only show the first layer of cells. The depths of this layer are 5.25 µm and 1.7 µm for low and high pressure
respecধvely.
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c). We find that the distribution of pressure drops have an exponential tail in both experiments and
simulations (Fig. 2.2d) for P > ⟨P⟩, similar to avalanche size distributions in hopper flows 32.

Highly intermittent cell flows might reflect spatially heterogeneous mechanical stresses, a hall-
mark of driven granular materials 17–20. Assuming that cell shape deformation is indicative of the
forces between cells, we developed a non-invasivemethod to infer these forces (Fig. 2.2f, Appendix,
and Fig. S2.1). Using this approach, we analyzed microscopy images to determine stress distribu-
tions of crowded populations. Both S. cerevisiae experiments and our coarse-grained simulations
exhibit disordered cell packings that are stabilized by heterogeneous force networks (Fig. 2.2f and
g). Stress is highly localized along branching “force chains” 17,18 while adjacent “spectator cells” 33

experience very little mechanical stress.
We find that jamming-induced contact forces can become so large that they feed back on the cell

physiology. Indeed, a feedback on both cell shape and the dynamics of cell growth is evident in
experiments where we place two devices of different steady state pressures next to one another, as
seen in the time lapse movie (Movie S2). These devices only differ by the width of their outlet
channels (5µm vs. 7.5µm). We find that an increased outlet channel width leads to an increased
mean avalanche size, and correspondingly, a smaller mean pressure (Fig. S2.13). To quantify the
feedback on growth, we estimate the net growth rate, which is the difference between birth and
death rate, in our microfluidic bioreactors by measuring mean cell outflow rate at steady state (see
Appendix). We find that the growth rate decays roughly exponentiallywithpressure until growth is
undetectable at a stalling pressure of about 1 MPa (Fig. 2.3c). The stalling pressure, or homeostatic
pressure 34, is obtained by using a special device with a “self-closing valve”, in which yeast popu-
lations fully confine themselves by the pressure they build up, as seen in Fig. 2.3a. In this device,
the rate of pressure increase gradually decays with pressure until saturation (Fig. 2.3b). This dimin-
ishing return is due to smaller growth rates at higher pressures, and serves as another, dynamical
measure for the feedback between contact pressure and growth rate.

Control experiments supported by finite element simulations show that cells are well-fed and
viable even at the highest densities suggesting a mechanobiological origin for the reduced growth
rates (Appendix and Figs. S2.3 and S2.4). As a first step to uncover the mechanistic basis for the
force-growth feedback, we have explored the impact of contact forces on the pace of cell cycle pro-
gression. In budding yeasts, the late G1 checkpoint Start, homolog to the mammalian Restriction
point, controls the irreversible cell commitment to division 35. Passing of the checkpoint requires
multiple phosphorylations of the repressorWhi5, uponwhichWhi5 is exported out of the nucleus
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Figure 2.2: Pressure fluctuations and intermittent flows of partially confined budding yeast populations can
be reproduced in simulations of proliferating elastic particles. (a) Experimental pressure ধme series are char-
acterized by periods of gradual pressure build-up and sudden pressure drops. (b) Simulaধons show that such ধme
series are the generic outcome of jammed elasধc parধcles proliferaধng in confined spaces. (c) A feedback of pres-
sure onto growth, reported in Fig. 2.3c below, further improves our simulaধons. The gradual pressure increases
prior to avalanche events show diminishing return similar to the experimental ধme series in (a). Pressure drops
during avalanche events, defined as the pressure change from the peak pressure prior to an ouĤlow event to the
base pressure just ađer the event (d), are nearly exponenধally distributed for drops larger than the mean pressure
drop, ⟨∆P ⟩, in both experiments (e: symbols) and coarse-grained simulaধons (e: lines). We can esধmate inter-cell
contact forces in our experiments by measuring the area of contact between two cells through image analysis. (f)
The resulধng network of contact forces in packings of budding yeast cells shows a heterogeneous distribuধon of
mechanical stresses (pressure on the membrane: 0.5 MPa). (g) Force networks obtained from simulaধons of ex-
ponenধally growing budding cells. In both (f) and (g), large forces are clustered into chain-like structures. A movie
illustraধng the dynamics of force networks in our experiments can be seen Movie S3, and a coarse-grained simu-
laধon movie can be seen Movie S4. For our simulaধons, we used box and outlet sizes that match the microfludic
chamber and parameterized the over-damped dynamics using the experimental flow rate and pressure fluctuaধon
data (see Appendix).

until the cell cycle is completed. As a consequence, Whi5 is localized in the nucleus in the G1 phase
prior to Start, and cytosolic otherwise (Fig. 2.3d, top). Using a mutant that express fluorescently
labeled Whi5 thus enabled us to probe the cellular commitment to cell division. We found that
an increased contact pressure is accompanied by an increase in the fraction of cells with nuclear
Whi5 signal (Fig. 2.3d), suggesting a force-induced slowdown of the cell cycle in G1. This finding is
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consistent with the view of the late G1 checkpoint as an integrator of numerous stresses, including
osmotic, chemical and heat shock stresses 36–38. Force-induced cell cycle arrest has been observed in
mammalian cells 39,40, but the associated mechanical stresses are two to three orders lower than the
stalling pressure measured in our experiments.
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stops at the stalling pressure of 1 ± 0.1 MPa (5 replicates, mean ± standard deviaধon). Inset: stalling pressure
measured for the lab strain and the wild strain. (c) Growth rate as a funcধon of growth-induced pressure, esধmated
in two ways (Appendix): The black points represent net growth rates determined from the cell flow out of our leaky
devices in the steady-state (black points; ≥ 5 replicates, mean ± standard deviaধon). The conধnuous blue line,
on the other hand, has been inferred from the diminishing return in the dynamical data of (b) under a quasi-steady
state assumpধon (Appendix; shading indicates± standard deviaধon). The dashed curves represents an exponen-
ধal fit to the steady-state data (k = 0.41 (h−1) exp(-P/0.28 (MPa))). (d) We probed the cell cycle progression using
mutants that express fluorescently labeled Whi5 repressor proteins. In the G1 phase of the cell cycle prior to the
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Perhaps the most salient consequence of growth-induced pressure is cell shape deformations.
While budding yeast cells grown in the absence of mechanical stresses are nearly spherical, we ob-
serve that they tend to morph into convex polyhedra as the population pressure becomes growth-
limiting (Fig. 2.1f and g). Close to the stalling pressure, the packing resembles the structure of a
dry foam41, consisting of cells with nearly flat faces and sharp edges in between, shown in Fig. 2.2f.
The pressure-induced cell shape deformation can be best visualized at the interface between cov-
erslip and cell population: the cell-coverslip contact area increases as the growth-induced pressure
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increases (Fig. S2.6). Our simulations further suggest that, in our experiments, the osmotic pres-
sure inside the cells may increase as a function of the growth-induced pressure (Fig. S2.6).

Most microbial cells are sticky42,43. Indeed, while our lab strains of budding yeast have been do-
mesticated to become non-sticky, wild strains can have strong, velcro-like intercellular fiber connec-
tions44. We find that while sticky yeasts develop in our microfluidic devices a very similar maximal
pressure as the lab strains do (Fig. 2.3b), they develop substantial contact pressures under much
weaker confinement (Fig. 2.4a). Our coarse-grained simulations likewise suggest that attractive in-
teractions promote jamming: The measured build up of pressure is much larger than expected un-
der a non-granular model of a liquid droplet with surface tension, in which jamming is impossible
(Fig. 2.4c and d).
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Figure 2.4: Self-driven jamming is promoted by stickiness and can remodel the microenvironment. (a) Wild
strains of yeast sধck together via strong velcro-like connecধons between cells44. This stabilizes the spherical growth
of the populaধon against shear stresses. (b, c) Simulaধons show that even weak aħracধve forces between cells
can strongly promote jamming. (b) Packing of slightly sধcky cells (right, see Appendix) exhibit a force network with
pronounced force chains in contrast to the non-sধcky case for the shown device. (c) The increase in growth-induced
pressure (steady-state) with sধckiness is much larger than expected from the conধnuum limit (red base line) over
a broad range of outlet sizes (see Appendix). (d) Gradual propagaধon of agar gel cracks by growing populaধons of
budding yeast (lab strain). Cells grow out of a pre-exisধng agar crack and, at the same ধme, propagate the crack
ধps inside the agar. A ধme-lapse movie of the crack propagaধon is available Movie S5.
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Bacteria and fungi have the ability to colonize a wide range of porous media, including tiny
cavities barely larger than their cell size 3,4. Our work suggests that self-driven jamming of growing
microbes can emerge in these microenvironments as it does in our microfluidic devices if chemical
resources are sufficiently abundant.

The resulting growth-induced forces endow biofilms with the potential to remodel, or even de-
stroy, their micro-environment. This could aid microbes in penetrating the soft tissues of host
organisms 10–12, or to invade soil, where most microbes grow in pores of several micro-meter in di-
ameters 3,4. At this length scale, it is possible that the growth-induced pressures measured here
contribute to straining of even stiff materials. Indeed, when we grow budding yeast populations
inside agar gels, we observe the formation and propagation of cracks (Fig. 2.4d, Fig. S2.8 and time
lapse movie Movie S5). Thus, just like jamming of granular media can threaten the mechanical
integrity of their confinements, which can lead to the bursting of grain silos 32,45, it could also be an
important mechanical aspect of host invasion 10–12 and biofouling21.

2.3 Conclusions

We argue that the mechanism underlying self-driven jamming, cell proliferation, extends the no-
tion of driven granular materials, which are usually jammed by external forces, such as shear, com-
pression, or gravity 17–20. On a fundamental level, cell proliferation and death are unique driving
forces because they alter the number of macroscopic degrees of freedom, and thus directly affect
Maxwellian rigidity criteria for jammed materials46,47. New granular physics may also result from
biological features that have no analog in traditionally-driven granular materials. For instance, the
pressure-growth feedback, that we have described above, could homogenize force networks and
enhance pressure buildup, as our simulations indicate (Fig. S2.11). Intermittent flowsmay be influ-
enced by the shape of cells, as rod-like cells tend to align spontaneously, thus increasing the packing
fraction48 (Fig. S2.12). We also expect cell motility49 and viscoelastic extracellular substances6, ex-
pressed by many microbes to promote biofilm formation, to engage in a rich mechanical interplay
with the packing of growing cells in confined spaces.
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2.4 Appendix

Yeast strains and growth conditions: S. cerevisiae cells (S288C background, with a Whi5-GFP con-
struct, courtesy of J. Thorner, UC Berkeley, USA) and wild undomesticated cells (BR-103F strain,
courtesy of Palkova lab at CharlesUniversity inCzechRepublic) are cultured in complete synthetic
medium (CSM, 20 g/L glucose) at 30o C. The device is loaded with cells in exponential phase.

Preparation of themicro-fluidic bioreactor (“Mechano-chemostat”): Themold consists of 2 lay-
ers of different heights, each layer prepared using a classical soft lithography protocol described
in Ref. 1. The first layer is prepared using SU 2000.5 negative photoresist (0.5 µm height), and
the second using SU 2010 (10 µm height). Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corn-
ing, USA) is mixed with the curing agent (ratio 1:10 in mass), poured onto the mold, and cured
overnight at 60o C. PDMS is bound to No. 1 thickness glass slides through an oxygen plasma gen-
erated by a reactive ion etcher (RIE) machine (P02 = 200 mTorr, exposure time = 20 sec). Prior to
loading the device, the surface is treated with Pluronics 127 (VWR, USA) as in Ref. 2 to decrease
any non-specific adhesion that could result in cell-PDMS adhesion or friction.

Twomethods formeasuring the growth-induced pressure: Tomeasure the contact pressure gen-
eratedby the population,wemonitor the positionof a 4µmthickmembrane separating the growth
chamber and a control channel. We adjust the hydrostatic pressure every 30 seconds to keep the
membrane at a fixed position. In this way, we ensure that the known hydrostatic pressure mirrors
the mechanical contact pressure with a precision of 0.02MPa.

Finite element simulations (Comsol) show that, in the absence of a hydrostatic control pressure,
the deformation of the membrane is proportional to the contact pressure in the growth chamber.
This linear relation can be used to convert the deformation of the membrane into the growth-
induced pressure, with a precision of 0.05 MPa. However, this second method of measuring a
growth-induced pressure first requires a calibration of the Young’s modulus of the PDMS device.
When necessary, the calibration is done before each experiment. On average, we measure a PDMS
Young’s modulus of 2 MPa.

Visualizing cell deformations and the contact areabetween cells and the coverslip: FITC-conjugated
Dextran (3kDa, Invitrogen) is added to the culturemedium, at a concentration of 0.1mg/mL. Since
Dextran is not internalized by single yeast cells 1, it stains the extracellular space, and enables the
imaging of cell deformation. The contact between cells and the coverslip is imaged by reflectom-
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etry. Briefly, we shine a 635 nm laser on the sample through a pinhole closed to a minimum, to
obtain an optical slice of 0.3µm. The reflected light is collected without filter, so that local changes
in refractive index can bemeasured at the level of the glass slide. Typical images of cell deformations
are shown in the main text of Chapter 2 (Fig. 2.1), and images obtained by reflectometry are shown
in Fig. S2.6a.

Dependence of contact surface area on pressure: We measure the cell contact area at the inter-
face between the coverslip and cell population, and compare it to our mass-spring simulations (see
below). Reflectometry reveals that the average fraction of the coverslip that is in contact with cells
increases as the population pressure increases, shown in Fig. S2.6a. We find that the experimentally
measured growth-induced pressure increases super-linearly with surface coverage, contradicting
our simple tpressurized-shell model. This may indicate that the yeast cell turgor pressure increases
with growth-induced pressure (Fig. S2.6b).

Measuring the steady-state and instantaneous growth rate: Eachoutlet design, shown inFig. 2.1b
(right), leads to a different steady-state pressure, and a different steady-state cell outflow rate. We
measure the cell outflow rate Jcell from time lapse movies using a custom-made particle image ve-
locimetry algorithm (Matlab), and infer the growth rate in the chamber as k = Jcell/Vch, where
Vch is the volume of the growth chamber.

Alternatively, we can estimate the instantaneous growth rate from the pressure vs. time relation-
ship measured for the self-closing device. Since the cells are fully trapped in the growth chamber,
the time-derivative of the pressure is directly proportional to the growth rate. The proportionality
depends on the packing fraction of the cells (ϕ) and on the volume of the chamber (V ).

We infer the instantaneous growth rate γ of the cells by

γ =
∂tVc
Vc

(S2.1)

where Vc is the volume occupied by the cells. By definition, the packing fraction is the fraction of
volume occupied by cells divided by the volume of the chamber:

ϕ =
Vc
V

(S2.2)
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Hence,
γ = ∂tlogϕ+ ∂tlogV (S2.3)

Now we assume that, at any time, the packing fraction and the chamber volume only depend on
the pressure: V (t) = V (P (t)) and ϕ(t) = ϕ (P (t)). This quasi-steady state assumption is
acceptable only if the cells can adapt their growth rates sufficiently fast to the current pressure curve
or, conversely, that the pressure changes sufficiently slowly.

This enables us to rewrite the growth rate:

γ = ∂tP (∂P logϕ+ ∂P logV ) (S2.4)

In order to plot the growth rate γ as a function of growth-induced pressure, we need three
pieces of information: the time-derivative of the pressure, the packing fraction, and the pressure-
dependency of the volume of the growth chamber. The packing fraction is measured using ex-
clusion fluorescence technique (see Fig. S2.2a and S2.2c), and the dependency on pressure of the
volume of the chamber is calculated through finite element simulations (Comsol) (Fig. S2.2b).

As shown in Fig. S2.2d, the growth-rate vs pressure relationship obtained in this way is in good
agreement with the more direct steady-state measurements. This justifies our steady-state assump-
tions and suggests that the feedback on growth should act as fast or faster than the typical division
time.

Inferring force maps: The interface area between cells in contact is used to estimate the con-
tact force between the cells. To this end, we have modeled the mechanical response of budding
yeast cells in the simplest possible way by assuming that a cell responds to contact forces like a pres-
surized elastic shell, as illustrated in Fig. 2.2f. The force between cells in contact is then given by
F = PA ∝ Pl2, where A is the area of contact, P is the cell turgor pressure, and l is the pro-
jection of the contact surface onto the measurement plane. This takes into account the effects of
turgor pressure and the near-inextensibility of the cell wall, but assumes that these effects dominate
over elastic energies due to bending of the cell wall or cytoskeleton (the turgor pressure of≈ 0.2

MPa 2 is nearly two orders of magnitude larger than the elastic moduli of cytoskeletal networks).
Single-cell studies 3–6 have indeed found that compressed S. cerevisiae cells exert forces proportional
to the area of contact, in agreement with a model that incorporates only internal pressure and cell
wall stretching even for large deformations. We further validate our approach by performing sim-
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ulations of deformable cells composed of spring networks, which show similar deformations as S.
cerevisiae cells at corresponding pressures. The simulations are described in the next paragraph and
in Fig. S2.1 and Fig. S2.7.

Description of mass-spring simulation: The mechanics of a budding yeast cell is primarily con-
trolled by the mechanics of the cell wall and the turgor pressure6. In our “mass-spring” (MS) sim-
ulations, the cell wall is represented as a spherical meshwork of springs, obtained from surface tri-
angulation, and connecting set of vertices. The neighbor vertices, separated by a vector R, are held
together via Hookean spring interactions:

F(R) = kMSR(1−R0/R) (S2.5)

where kMS is a spring constant, andR0 is a length of the relaxed spring. The Hookean spring con-
stants are taken to be the same and related to the Young’s modulus by the following equation:

kMS =
2Et

1− ν
· A0∑

i L
2
i

(S2.6)

where E is Young’s modulus, ν is cell wall Poisson’s ratio, t is the cell wall thickness,A0 is the initial
cell surface area, and Li is the relaxed length of the ith spring7.
The overlap between two non-bonded vertices is modeled by Hertzian repulsive force:

F(R) = −4

3
h3/2E∗

√
R∗R̂ (S2.7)

whereE∗ is an effective Young’smodulus defined as 1/E∗ = (1−ν21)/E1+(1−ν22)/E2,Ei is cell
wall Young’smodulus of the ith vertex, νi is cell wall Poisson’s ratio of the ith vertex,R∗ = 0.5·Rvert

is an effective radius,Rvert is a radius of a vertex, here set to be the same as the cell wall thickness t,
h = 2 ·Rvert −R is an overlap between two vertices, and R̂ is a unit vector along R.
The overlap between a vertex and box walls is modeled similarly but with an effective radiusR∗ =

R, and an effective Young’s modulus:

1

E∗ =
1− ν2vert
Evert

+
1− ν2box
Ebox

(S2.8)

25



The force due to the cell volume-dependent turgor pressureΠ(Vcell) on vertex i is calculated as:

FΠ(ri) = ∇ri
(
Π(Vcell)Vcell

)
(S2.9)

where Vcell(r1, ...., rNvert) is a function of theNvert vertices triangulating the cell surface and the vol-
ume change for the vertex i is calculated using tetrahedral volume defined by the vertex i, its neigh-
boring vertices in themeshwork, and center of themass. The equations ofmotion of over-damped
dynamics have been solved usingHeun’smethod (explicit second-order Runge-Kuttamethod). In
the simulations for all vertices (box wall) Young’s modulus Evert = 150 MPa (Ebox = 200 MPa) and
Poisson’s ratio νvert = νbox = 1/2 are set the same, turgor pressure isΠ = 1.0MPa (unless stated
otherwise), cell wall thickness is t = 0.1µm, and the initial cell radius isR0 = 2.5µm.

Coarse-grained simulations of proliferating elastic particles: In our 2D coarse-grained simula-
tions, illustrated in Fig. S2.9, cells are modeled as two frictionless rigidly-attached spherical lobes 8

(mother and bud) that grow exponentially at rate γi by bud expansion (Eq. S2.10), move according
to over-damped dynamics with mobility µ (Eqs. S2.11 and S2.12), and interact via repulsive spring
forces with elastic modulus k (Eq. S2.13)

ȧi = γiai (S2.10)

ṙi = µFi (S2.11)

θ̇i =
m

I
µTi (S2.12)

V =
∑
ikjl

1

2
kCGδ

2
ik,jlΘ(δik,jl) (S2.13)

where ai = π
4
(σ2

i,mother + σ2
i,bud) is the cell area, σi,mother (σi,bud) is the diameter of the mother

(bud), ri (θi) is the cell position (orientation),mi (Ii = 1
8
Ma2

(
1+∆4

1+∆2 + 2
( (1+∆)∆

1+∆2

)2) with∆i =

σi,bud/σi,mother) is the cellmass (inertia),V is the total potential energy, Fi = −∇riV (Ti = −∂θiV )
is the force (torque) on cell i, and δik,jl = 1

2

(
σik + σjl

)
−
∣∣rik− rjl

∣∣ is the overlap between lobes k
of cell i and l of cell j, andΘ is the Heaviside Step function. This method is similar to studies per-
formed with growing spherocylinders9,10. For simulations with attraction, we extend the potential
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in Eq. S2.13 beyond its repulsive core to have an attractive range of width∆ 11,12

V =
∑
ikjl

(
1

2
kCGδ

2
ik,jlΘ(δim,jn +∆)− 1

2
kCG∆

2

)
(S2.14)

In thismodel, themother lobe has the same sizeσi,mother = σ for all cells. Equations ofmotions are
integrated using a 3rd order Gear Predictor-Corrector algorithm. Growth progresses while σi,bud <
σ and culminates in division. After division, both new cells retain the orientation of cell i.

Cells grow in a rectangular box of dimensions Lx × Ly with an outlet of width a. For the
simulations in this chapter, we used Lx = 6σ, Ly = 16σ, and a = 1.4σ to match experiments
unless stated otherwise. Cells interact with the wall with the same cell-cell repulsive spring force,
Vwall =

1
2
kCGδ

2Θ(δ), where δ is the overlap between the cell and wall.
Without pressure feedback, γi = γ0i where γ0i is chosen from a uniform distribution of width

20% around a mean growth rate γ. With pressure feedback, the growth rate depends on pressure
as γi = γ0i e

−Pi/P0 where Pi is the pressure of cell i.
The free parameters in this model are an effective friction coefficient µ/

(
γ
√
mkCG

)
and a char-

acteristic pressure feedback scaleP0/k. In Fig. 2.3 ofChapter 2, weuse parameters that bestmatches
the experimental pressure fluctuations in the case of intermittent flow where the pressure slowly
builds and then suddenly drops during avalanches. We choose values of µ = 8 × 104γ

√
mkCG

and µ = 2 × 103γ
√
mkCG for simulations with (Fig. 2.2b) and without (Fig. 2.2c) feedback

that best capture the ratio of pressure increase (Ṗ↑) and drop (Ṗ↓) rates in the case as shown in
Fig. S2.10. To obtain an experimentally-motivated value of feedback pressure P0 (Fig. 2.2c), we
used a value of P0 that yields the same ratio of P exp

0 = 0.28MPa (Fig. 2.3c) to ⟨P ⟩exp = 0.7MPa
(135◦ data in Fig. 2.1c), P exp

0 /⟨P ⟩exp = 0.4. Coarse-grained simulations without feedback yield
⟨P ⟩sim = 0.19kCG, giving P sim

0 = ⟨P ⟩sim × P exp
0 /⟨P ⟩exp = 0.07k.

Estimation of pressure due to viscous friction: Here we estimate the pressure arising from fric-
tion between cells in the outlet and the surroundingmedium. In a chamber of dimensionsLx×Ly

with an outlet of dimensions width×length= a × d, the chamber holds Nc ≈ LxLyh/σ
3 cells

and the outlet holdsNo ≈ adh/σ3 cells, whereσ is a typical cell diameter andh is the height of the
device. Assuming that the heighth of the system and thewidth of the outlet a are both a = h = σ,
so that Nc ≈ LxLy/σ

2 and No ≈ ad/σ2. If the cells in the outlet are pushed out at velocity v,
the total frictional force they experience isF = fvNo, where f is a friction coefficient per cell, and
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therefore the pressure at the outlet is

P = F/(ah) = fvNo/σ
2 (S2.15)

Standard viscous friction of a sphere in a liquid yields f = 6πησ/2. We further estimate the flow
velocity by v = Ncσk where k is the growth rate for cells in the chamber, assuming that cells in the
outlet are not growing. This gives:

P =
(
6πησ/2

)(
Ncσk

)
No/σ

2 (S2.16)

= 3πkηNoNc (S2.17)

Using η = 10−3Pa s, k ≈ 0.4h−1 ≈ 10−4s−1,Nc ≈ 100, andNo ≈ 10, we get

P = 3πkηNoNc (S2.18)

= 3π × 10−3Pas× 10−4s−1 × 100× 10 (S2.19)

= 1× 10−3Pa (S2.20)

Thus, viscous friction gives a negligible contribution to the pressure generated in the outlet, which
is in the MPa range.

Conversely, we can use the above estimate to define an effective viscosity of the cell packing of 1
MPa s needed to achieve a pressure of 1MPa. This effective viscosity is much larger than has been
measured for mammalian cells 13.
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Figure S2.1: Tesধng our indirect force-inference method on simulated packings. In Chapter 2, we reported me-
chanical forces in packings of yeast cells that we have inferred from the observed cell shape deformaধons. Our
force-inference method uses use a custom Matlab image analysis code to process the ধme-lapse movies that we
obtained with the fluorescence exclusion method (Fig. S2.2). Each cell is idenধfied with a watershed algorithm and
manually refined if necessary. For each idenধfied cell, the contour is defined as a set of spline funcধons. These
splines are further used to calculate the length l of the contact line between each pair of cells. As a first order
approximaধon, we esধmate the contact area as A ∝ l2, and we assume that the contact force is proporধonal
to the contact area F ∝ A (Appendix: See Inferring force maps). Here, we test our force-inference method on
packing generated by our mass-spring simulaধon. To this end, we compare the inferred force network with the
actual force network in the simulaধons. (a) 80 cells of the same size (R0 = 1.5µm), turgor pressure (Π = 1.0
MPa), and E=100 MPa are randomly distributed and compressed in a slab geometry. The cells are depicted as a
semi-transparent blue meshwork, confined by the rigid box. The contact forces are evaluated numerically and are
represented as the red lines between neighbor cells. The thickness of the lines corresponds to the magnitude of
the contact forces. (b) The final snapshot from the simulaধon is processed with the in-house Matlab code for image
analysis, and contact forces have been inferred. The numerical (in blue) and image analysis (in red) force networks
are superimposed on top of each other for visual comparison. The correlaধon coefficient calculated for these two
sets of contact forces is 0.79. (c) Scaħer plot of each contact force in b. Forces have been scaled by the average
value. Measured are the forces obtained from the mass-spring simulaধons, and compared against the one obtained
from the image analysis procedure.
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Figure S2.2: Inferring the instantaneous growth rate as a funcধon of pressure using the pressure curve obtained
from the self-closing valve. (a) A fluorescent dye, FITC-conjugated Dextran, added to the medium allows us to label
the space between the cells. FITC-conjugatedDextran does not penetrate inside the cells, such that its fluorescence
is excluded from a cell. As a consequence, as the cells are filling the chamber, the fluorescence intensity is, in first
order, proporধonal to the void in between cells, like in the fluorescent exclusion method14. Denoধngϕ the packing
fracধon, and V the volume of the chamber, we assume that the intensity I of fluorophore is I ∝ (1 − ϕ)V . (b)
We use finite element simulaধons (Comsol) to esধmate the change in volume of the growth chamber as a funcধon
of the pressure. We define the PDMS as a hyperelasধc material as in15, with an esধmated Young’s modulus E =
2MPa. We find that the change in volume is to good approximaধon linear in the pressure. (c) We use the excluded
fluorescence, as well as the finite element simulaধon, to esধmate the cell packing fracধon, ϕ, as a funcধon of the
growth-induced pressure. We observe that the growth-induced pressure starts to rise in the chamber for a packing
fracধon of about 0.4. We fit the resulধng relaধonship by a forth order polynomial funcধon to obtain a conধnuously
differenধable funcধon. (d) We use the values extracted from b and c to calculate the instantaneous volumetric
growth rate γ , using a quasi-steady state assumpধon as described in the Appendix (see Measuring the steady-state
and instantaneous growth rate). The dark blue line corresponds to the values calculated from themean pressure, and
the envelope corresponds to the values calculated from the envelope of the pressure curve. Note that the inferred
conধnuous relaধonship between growth rate and contact pressure is in good agreement with the steady-state data
obtained independently, from ouĤlow rates in our leaky devices (black points, mean± standard deviaধon).
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Figure S2.3: The reducধon of growth rate is not due to glucose depleধon in the growth chamber. To esধmate
whether glucose depleধon could account for the observed reducধon of growth rate, we assume that cells would
locally consume glucose at the maximum rate. We consider two cases: either glucose merely diffuses inside the
growth chamber, or it is also advected by the imposed nutrient flow. In both cases, we find that the reducধon
of glucose concentraধon in the chamber is not enough to stall cell growth. (a) We first measure the diffusion of
2-NDBG, a fluorescent glucose analog molecule. Here, we observe at the beginning of the experiment that there
is almost no glucose in the self closing valve, and that it progressively diffuses in the chamber. Noধce the foam-like
packing of the cells, which results from the growth-induced pressure nearly balancing the turgor pressure. (b - c) We
measure the diffusion constant of the glucose analog in 2 different ways. Wemeasure either the local concentraধon
at a fixed posiধon in the chamber (b) or the full width at half maximum (FWHM) as a funcধon of ধme (c, mean±
standard deviaধon). Fiষng of a simple diffusion model agrees well with the experimental data, and enables us to
extract values for the diffusion constant of the glucose analog (see figure). (d - e) The biomass yield of S. cerevisiae
cells is 0.45× gcells/gglucose 16. With a minimum doubling ধme of 2 hours, this yields a glucose consumpধon rate of
2.2×107 molecules/s. We simulate glucose consumpধon in the fully packed growth chamber using finite element
simulaধons (Comsol) and the measured glucose diffusion constant extracted in b and c. We consider two cases:
either there is only consumpধon and diffusion (d) or consumpধon, diffusion and convecধon (e). We find that in the
case where there is only diffusion, the glucose concentraধon drops at about 70% of its boundary value c0, which
is about 14 g/L, and sধll above the concentraধon where depleধon of glucose affects growth17. In a finite element
simulaধon set-up where we impose a convecধve flow of 0.2 nL/s, we observe that there is no glucose gradient in
the growth chamber. We conclude that the observed reducধon of growth rate in figure 3c is not an effect of glucose
depleধon in the growth chamber.
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Figure S2.4: Measurement of cell viability and cell vitality. We assess how pressure changes cell viability and
metabolic acধvity. Cell viability is assessed through a viability kit (LIVE/DEAD Yeast Viability Kit, Thermo Fisher
Scienধfic). Briefly, propidium iodide (PI) is added to the culture medium. PI only enters the nucleus of dead cells
and binds to DNA. We observe that, even at maximum pressure, most of the cells are alive (more than 90% of the
cells). Cell vitality is assessed by adding a cell permeable esterase substrate (FungaLight Yeast CFDA, AM, Thermo
Fisher Scienধfic) that is cleaved by esterases. The cleaved molecule becomes fluorescent, which enables one to
assess esterase acধvity, which is directly linked to the global cell metabolic acধvity. We observe that, even though
cell vitality does not changemuch at 0.5MPa (the change is less than 15%), it is almost non existent at the maximum
pressure of 1MPa. This suggests that, even though alive, cells are not metabolically acধve. This could be explained
by pressure-induced molecular crowding, as in18, where all processes in the cell are slowed down to the point of
stalling by the very high compression. Note that at the highest pressure, we observe about 5% of the cells bursধng.
The data represent, forN ≥ 3 independent replicates, the mean± standard deviaধon.
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Figure S2.5: The density of nuclear Whi5 is anধ-correlated with the growth rate. This plot shows the nuclear Whi5
density for different growth-induced pressures. The Whi5 density was obtained by measuring the number of cells
with a nuclear Whi5 normalized by the observed area. Note that the nuclear density of Whi5 is increasing with
decreasing growth rate, suggesধng that growth rate reducধon is accompanied with a cell cycle delay in the G1
phase of the cell cycle. Errors are mean± standard deviaধon forN ≥ 5 independent replicates.
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Figure S2.6: Relaধonship between fracধon of surface covered and growth-induced pressure indicates turgor pres-
sure adaptaধon. (a) The growth-induced pressure increases (circles) faster than linearly with the fracধon of surface
covered. Typical pictures obtained by reflectometry are presented in the inset for different values of surface cov-
erage. The dashed lines are obtained from our mass-spring simulaধons, in which yeast cells are modeled as elasধc
shells subject to a constant turgor pressure. The simulaধons yield a growth-induced pressure that increases linearly
with surface coverage. The slope is equal to the turgor pressure Π, for which we chose three different values.
The discrepancy between data and simulaধons suggests that the turgor pressure increases with growth-induced
pressure. (b) The growth-induced pressure divided by the fracধon of covered surface corresponds to the pressure
exerted in the contacts between cells and cover slip. Accordingly, the constant turgor pressure simulaধons of elasধc
shells yield nearly horizontal lines. The data, however, clearly shows that the pressure in the cell-coverslip contacts
increase with the growth-induced pressure. This may indicate a gradual increase in turgor pressure. Error bars of
the simulaধon data are smaller than the symbols. Error bars for the surface coverage are esধmated as followed: We
assume that we cannot measure the contact beħer than the diffracধon limit. Hence, assuming a circular contact,
we write that the radius of the contact has a typical error of±δ, where δ is the radius of the Point Spread Funcধon.
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Figure S2.7: The average cell-cell contact stress approaches the cell turgor pressure under high compressive stress.
We measure the cell-cell contact stress in mass-spring simulaধons, and find that for high compression / packing
fracধon, the stress approaches the internal cell turgor pressure. (a) Mass-spring simulaধons scheme. Idenধcal cells
are randomly distributed in a rigid box. The iniধal concentraধon is low so the cells do not touch one another. The
simulaধon box is progressively compressed, hence increasing the packing fracধon. (b) 50 idenধcal cells (R0 =
2.5µm, Π = 1.0 MPa, E = 150 MPa, t = 0.1µm) are compressed. For each pair of cells, the contact stress is
calculated and the average contact stress is ploħed (red line) versus the fracধon of box volume occupied by cells.
For high compression (>0.7) the value of the average contact stress saturates at the value equal to turgor pressure,
1 MPa. The envelope corresponds to ± standard deviaধon and is obtained out of 5 replicates simulaধons with
different random iniধal cell posiধons and orientaধons. Inset. The contact stress is calculated as a raধo of the total
normal force between two cells Fn and total contact area Ac. The contact area Ac on one cell is a sum of areas
of all triangles being in contact with the other cell. A triangle is in contact with another cell if all its verধces are in
contact with the neighbor cell (non-zero repulsive forces). The total normal force exerted on one cell is a sum of
all normal forces exerted on each vertex by the neighbor cell. To calculate the normal force F (red arrow) acধng
on a vertex (black-red circle), first the sum of all non-bonded repulsive forces, Frep (red dashed lines), is calculated.
Next the normal component of this force is extracted as a dot product with all the triangles (described by the normal
vectors ni) being in contact with the neighboring cell (shaded triangles), ni ·Frep . In order to avoid double counধng
of the normal component of the force Frep, each dot product with ni (here i=1,2) is mulধplied by the area of the
triangle on which the force Frep is acধng, and divided by the total contact area (it is the sum of areas of shaded
trianglesA = A1 +A2).
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Figure S2.8: Self-driven jamming can propagate cracks in agar gels. We inoculate an agar gel (2%) by plunging in
it a 0.45 mm diameter needle, which was first dipped in an overnight culture of budding yeast (strain S288C). The
agar dish is then incubated at 30 degree Celsius under humidity control (to avoid drying). As the cartoon illustrates,
cells flow out of the crack, and grow on the surface of the agar gel. The cells on top of the dish give rise to the large
cloud on the lower image observed at 26.5 h, showing that the cells are not fully trapped in the crack. Nevertheless,
the crack ধps are propagaধng as a funcধon of ধme, presumably due to jamming. As a control, we show images of
cracks that were created by stabbing without cells and then incubated for the same amount of ধme. A ধme-lapse
movie of the crack propagaধon is available Movie S5.
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a  Growth b  Division c  Interactions

cell i

cell j

Figure S2.9: How cells grow in our coarse-grain simulaধon. Schemaধc of a the growth and b division processes
and c inter-cell interacধons in our coarse-grained simulaধons. Each cell is composed to two lobes, the mother and
bud. a During growth, the mother lobe diameter of cell i stays fixed at σi,mother = σ while the bud grows from
σi,bud = 0 to σi,mother = σ. b Once the bud reaches σi,mother = σ, cell i divides into two new daughter cells
that retain the orientaধon of their mother cell. c Cells i and j interact via only upon overlap via repulsive linear
spring interacধons with modulus k.
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Figure S2.10: How we parameterize our coarse-grain simulaধon. We use the experimental pressure curves to
parameterize our coarse-grain simulaধons: the pressure rise enables to parameterize the growth, and the pressure
drop the damping rate. (a) Pressure as funcধon of ধme during a single pressure drop for experiments. (b) Pressure
as funcধon of ধme during a single pressure drop for simulaধons without feedback. (c) Pressure as funcধon of
ধme during a single pressure drop for simulaধons with feedback (P0/k = 0.07). The red line in a corresponds to
experiments with an outlet gate with an angle of 135◦. The red lines in b and c corresponds to simulaধonswith best-
fit values of µ (b: µ = 8× 104γ

√
mkCG and c: µ = 2× 103γ

√
mkCG) used in Fig. 2b and Fig. 2c of the main

text, the cyan line corresponds to larger values ofµ (b: µ = 3.2×105γ
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mkCG and c: µ = 8×104γ

√
mkCG)

and the green line corresponds to smaller values ofµ (b: µ = 2×104γ
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↓ that yields the same raধo of Ṗ↓
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Ṗ↑ as experiments.
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Figure S2.11: Effect of feedback on force networks in coarse-grained simulaধons. (a) In simulaধonswhere individual
cell growth rates (ki) decrease exponenধally with pressure (Pi), ki ∝ e−Pi/P0 , we observe that the ধme-averaged
steady-state populaধon pressure ⟨P ⟩ increases as the feedback becomes stronger (P0 decreases). ⟨P ⟩ increases
with decreasing P0 because cell growth slows for ⟨P ⟩ > P0, causing the populaধon to spend more ধme at larger
pressures. (b) Furthermore, feedback homogenizes force networks as illustrated by representaধve configuraধons
without feedback and a heterogeneous force network (P0 = ∞) and with strong feedback and a homogeneous
force network (P0 = 0.005). The reason for this homogenizaধon is that low-pressure cells growmore quickly than
high-pressure cells and fill in gaps in the force network. (c). We see that force-network homogenizaধon is a strong
effect - the coefficient of variaধon of individual cell pressures cP =
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Figure S2.12: Orientaধonal alignment in coarse-grained simulaধons of elongated cells. Simulaধons of proliferaধng
ellipsoidal cells show that cells orientaধonally align in the direcধon of the outlet. (a) This alignment is stronger
for wider outlet channels, illustrated for outlets channel widths of a = 1 which has very liħle alignment and
a = 5σ which has significant alignment. (b)We can quanধfy the degree of alignment via a nemaধc order parameter
S = ⟨cos(2θ)⟩, which measures the mean alignment of cells with the horizontal axis. S shows that orientaধons
are disordered for a < 4 and become increasingly aligned with the horizontal axis as a increases.
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Figure S2.13: Effect of outlet channel width on mean avalanche size. We analyzed the movie (Movie S2), which
was also referenced in the main text for a direct comparison of growth under different contact pressures. (a) Snap-
shot of the ধme-lapsemovie, showing the twofilled growth chambers connected in the sameway to a single nutrient
channel. The outlets of both chambers are connected to an outlet gate with an angle of 135o, but the outlets have
a different channel width, of 5µm and 7.5µm. We observe in this movie that the cells coming out of the outlet with
a channel width of 7.5µm develop less pressure than the cells in the 5µm outlet channel width, and exhibit more
avalanche events. (b) We measure for each avalanche, defined as the duraধon from when cells start to move unধl
the next moment of stasis, the displacement l of the cell populaধon in the channel. We then calculate the mean
cell volume displacement,∆V = l × A, whereA is the cross-secধon of the outlet channel. An esধmate of the
average number of cells per avalanche is then obtained by dividing∆V by a typical cell volume of< v > = 65.5 fL.
This volume corresponds to a mean cell diameter of 5µm. We note that the average size of an avalanche increases
with increased outlet channel width (mean± standard deviaধon forN ≥ 10 avalanches).
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3
Jamming by Growth

3.1 Introduction

Granular materials undergo a jamming transition upon compression, at which point the entire sys-
tem becomes rigid so that further compaction is not possible without pressure build-up 1,2. Pack-
ings obtained in this manner are spatially-disordered similar to liquids but, like solids, do not yield
(irreversibly deform)upon applicationof an external stress 3. The transition occurs at awell-defined
density ϕ = ϕJ

2, at which the system is marginally stable (i.e. removing a single contact causes the
system to lose mechanical rigidity)4. Compression beyond the jamming point (ϕ > ϕJ ) rigidifies
packings, resulting inmechanical properties that exhibit nontrivial power law scalings as a function
of δϕ = ϕ − ϕJ

2,4–8. It has been recently demonstrated that confined microbial populations can
similarly drive themselves into a rigid state via cellular growth and division9. Cellular populations
fundamentally differ from inert granular media in that, whereas granular systems are static unless
driven externally 10–15, cellular populations are active systems that are driven internally as cells con-
sume energy from their environments in order to move or grow9,16–21. Growth-driven jamming
also differs from the recently studied motility-driven jamming transition 18,22, where the system is
kept at constant density and is driven by innate cell motility rather than cellular growth. In the case
of growth-driven jamming, it is an open question if the cellular packings have the same universal
physical properties as conventional granular materials 2,7. In particular, experiments have shown
that cell-cell forces slow down cell growth9, but it remains unknownwhether this mechanical feed-
back at the single-cell level has consequences for population-level mechanical properties. In this
work, we show that budding cells can control themechanical properties of densely-packed popula-
tions by leveraging their shape and the coupling between cellular growth rate and cell-cell forces9,23.
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Figure 3.1: (a) Schemaধc of the growth and division process. Each cell grows by bud expansion. Budding culminates
via mother-daughter separaধon when the daughter reaches the size of a mother cell. (b) Schemaধc of feedback of
cell-cell contact forces onto cell growth. Daughter buds contact their neighbors as they grow (dashed black lines).
The associated contact forces generate pressure on the growing bud, defined here as the raধo of total forceFtot to
the perimeterLbud of the daughter bud (Secধon 3.4.1): Pbud = Ftot/Lbud. This pressure in turn slows its growth
as γ ∝ e−Pbud/P0 . (c-g) Snapshots from a typical simulaধon. (c) Each simulaধon is inoculated with two cells. (d)
Cell growth drives the populaধon to expand outward. During expansion, cells interact with their neighbors via
repulsive elasধc forces and completely overdamped dynamics. (e) The populaধon undergoes a “jamming transiধon”
at ϕJ = 0.84, at which point a system-spanning network of force-bearing intercellular contacts develops (red
lines). At jamming, most mother (gray) and daughter (brown) buds are constrained by their neighbors, but≈ 25%
of buds (yellow) are unconstrained (see SI). Above jamming, populaধons have fewer unconstrained buds when (f)
mechanical pressure feeds back onto cell growth (P0 = 0.001) than when (g) cellular growth rates are independent
of mechanical pressure (both f and g are at ϕ = 0.89). (h) The pressure that the enধre populaধon exerts on its
surroundings P (Secধon 3.4.3) is zero below jamming (ϕ < ϕJ ) and increases as the cells grow above jamming
(ϕ > ϕJ ). With no feedback and weak feedback (P0 = 0.005), P is almost linear in ϕ. For strong feedback
(P0 = 0.001), P increases more slowly with ϕ. All pressures are measured in units of the cell-cell modulus k
(Secধon 3.4.1). (i) The number of contacts Z per cell jumps disconধnuously from Z ≈ 0 to Z = ZJ ≈ 5.5
at jamming at ϕJ , and increases more quickly for strong feedback than for weak or no feedback. (c)-(g) uses box
size L = 7σ and (h), (i) use box size L = 15σ where σ is a cell diameter. (h) and (i) show data for one typical
populaধon.
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3.2 Results

Weperform 2Dnumerical simulations of budding yeast populations growing in space-limited envi-
ronments. Each cell is represented as conjoinedmother anddaughter lobes that reproduce asexually
via expansion of the daughter “bud” (Fig. 3.1a), a modeling approach first developed in9 alongside
microfluidic experiments. In this mode of proliferation, bud expansion progresses until the bud
reaches the size of a mother cell, at which point the bud detaches and mother and bud form two
new cells. To capture the experimentally-measured diminished growth rate under compressiveme-
chanical stress9, each cell in our model grows at a rate that decreases exponentially with the pres-
sure exerted on its daughter bud: γ ∝ e−Pbud/P0 (Fig. 3.1b). The feedback pressure P0 controls the
strength of feedback, with smaller values of P0 corresponding to “stronger” feedback.

As cells proliferate, repulsive elastic forces between cells (Section 3.4.1, Fig. S3.1) push the pop-
ulation to expand outward via completely over-damped dynamics (Fig. 3.1c-g). In the absence of
external confinement (Fig. 3.1c,d), the population remains at zero pressure with no force-bearing
contacts between cells. However once the population fills the environment in which it resides, it is
driven through a jamming transition (Fig. 3.1e) at volume fraction ϕJ ≈ 0.84 that is characterized
by a sudden increase in the population pressureP (Fig. 3.1h) and a discontinuous jump in the num-
ber of contacts Z (Fig. 3.1i). While mechanical feedback does not affect packings below jamming,
feedback strength P0 determines how pressure and contacts build up beyond jamming. To under-
stand how mechanical rigidity emerges beyond jamming we first investigate mechanisms underly-
ing the creation of cell-cell contacts, since contacts are know to control the mechanical properties
of non-living granular media 2,7,24.

At the jamming point, the average number of contacts per cell jumps from Z = 0 to Z =

ZJ ≈ 5.5 (Fig. 3.1i), a result that is independent of P0. The value ZJ ≈ 5.5 is smaller than the
naive isostatic expectation Znaive

iso = 6, predicted by the Maxwell criterion by equating the number
of constraints per cell (Znaive

iso /2) to the number of degrees of freedom per cell (3) 25. This deviation
from naive isostaticity results from the presence of numerous cells whose buds are not in contact
with their neighbors (depicted in yellow in Fig. 3.1e). Cells with “unconstrained” buds are free to
rotate about theirmother, and therefore correspond to degrees of freedom that are not constrained
by cell-cell contacts. By subtracting the number of unconstrainedbuds per cellfu from thenumber
cellular degrees of freedom, we can derive a modified isostatic criterion Ziso = 6 − 2fu (Section
3.4.5) that is satisfied by nearly all simulated populations (Fig. S3.2).
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Figure 3.2: (a) Fracধon of unconstrained buds fu as a funcধon of the populaধon pressure generated by growing
budding yeast packings above the jamming point. Numerical data is shown for populaধons with no feedback (bright
green line), weak feedback (cyan, blue, purple lines), and strong feedback (magenta and red lines). Populaধons
without feedback have a finite number of unconstrained buds up to Pmax ≈ 0.1 which corresponds to ϕ ≈ 1
(Fig. 3.1h). (b) Distribuধon of cell growth rates for microbial populaধons with weak (P0 = 5 × 10−3) and strong
(P0 = 10−4) feedback. In order to measure growth rates as unconstrained buds make contact, both populaধons
have a value of fu that is ≈ 50% of that measured at jamming (fu ≈ 0.13). These values of fu correspond to
P/Pmax ≈ 0.12 (P/Pmax ≈ 0.028) for weak (strong) feedback. The black bar denotes cells under no or very
liħle pressure, thus growing as they would in the absence of feedback. The gray bar denotes cells whose growth
rates are reduced by pressure. The growth rate γ(i) of each cell is normalized by γ0i , the growth rate that a cell
would have without feedback (Secধon 3.4.1). Simulaধons have box size L = 15σ. Each data point is averaged
over 100 independent inoculaধons.

We find that a substantial fraction of cells (fu ≈ 25%) have unconstrained buds, which mani-
fests in a strong departure (Fig. S3.2) from naive isostaticity (Znaive

iso −ZJ ≈ 0.5). The relationship
between unconstrained buds and contacts is also observed in non-growing systems. Packings of
asymmetric dumbbell-shaped particles that resemble budding cells yield similar results (fu ≳ 10%

and Znaive
iso − ZJ ≳ 0.2) 26, whereas packings of symmetric dumbbells with equal-sized lobes have

many fewer unconstrained buds (fu ≲ 2%) and are therefore much closer to isostacity (Znaive
iso −

ZJ ≲ 0.04) 27.
As cells grow beyond the jamming point (ϕ > ϕJ ), the population pressure P builds (Fig. 3.1h)

and unconstrained buds begin tomake contact with their neighbors (Fig. 3.1f,g and Fig. 3.2a). This
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increase inpopulationpressure, corresponding to comparablepressure on individual cells ⟨Pbud⟩ ≈
P , triggers mechanical feedback and slows the growth of cells as P ≳ P0 (Fig. 3.1b). We observe
two distinct behaviors for “strong” (P0/Pmax ≲ 0.05) and “weak” (P0/Pmax ≳ 0.05) feedback,
where Pmax ≈ 0.1 is the pressure felt by populations near confluency ϕ ≈ 1 (see Section 3.4.4 for
relation of ϕ and Pmax). For weak feedback, cell growth rates are not strongly reduced as uncon-
strained buds make contact with their neighbors (Fig. 3.2b). On the other hand, strong feedback
slows the growth of compressed buds by such an extent that it creates two distinct subpopulations:
compressed buds that are effectively stalled in their cell cycle and unconstrained (and therefore
uncompressed) buds that are actively growing. The threshold between strong and weak feedback
corresponds to the pressure (P/Pmax ≈ 0.05) at which the majority of previously unconstrained
buds contact their neighbors in the absence of feedback (Fig. 3.2a). Therefore, in contrast to weak
feedbackwhere cells are driven into contact by nearly uniformpopulation growth, strong feedback
directs growth toward unconstrained buds. This directed drives unconstrained buds tomakemore
contacts under strong feedback (Fig. 3.1f) than in the absence of feedback (Fig. 3.1g), enhancing the
number contacts created per added volume fraction (Fig. 3.1i). Correspondingly, the preferential
growth of unconstrained buds reduces the amount of pressure build-up near jamming (Fig. 3.1h)
because unconstrained buds have free space to grow without incurring cell-cell forces.

By simultaneously driving pressures down and contacts numbers up, strong feedback enables
populations to create additional contacts with very little associated pressure build-up compared
to growth without feedback (Fig. 3.3a). In the absence of feedback, the excess number of contacts
increases roughly as∆Z = Z − ZJ ∝ P 1/2, as expected from studies on jamming in non-living
systems 2,27. However, populations growing under strong feedback exhibit abrupt departures from
this expectation (Fig. 3.3a) at pressures that vanish for increasing feedback strength (P ∝ P0).
For strong feedback, additional contacts are generated rapidly as a function of P until all uncon-
strained buds make contact with their neighbors (Fig. 3.2a), at which point∆Zu ≈ 1 (Fig 3.3b, see
Section 3.4.6 for derivation of Zu). This excess of contacts is pushed to lower pressures as P0 de-
creases, so for P0 = 0 we expect cell packings to have more contacts than required for mechanical
stability even at P = 0 (i.e., hyperstaticity).

How do excess contacts impact the mechanical properties of populations growing under strong
feedback? Since prior studies have found that contacts generated by external compression increase
the rigidity of granular packings 2, we hypothesize that contacts generated via bud growth likewise
rigidify cell packings. To test this hypothesis, we first measure resistance to external compression
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Figure 3.3: (a) Excess number of contacts (Z ) beyond that measured at jamming (ZJ ),∆Z = Z−ZJ. Colored lines
correspond to growth under a range of feedback values and shaded regions represent one standard deviaধon. To
showwhere growth has been appreciably slowed by cell-cell forces, dashed colored lines correspond to populaধons
whose average cell growth rate is reduced by a factor of 10 compared to growth without feedback (Fig. S3.5). Solid
colored lines correspond to growth rates within a factor of 10 of those without feedback. The doħed black line
shows the number of contact resulধng from unconstrained bud contacts ∆Zu = 4fu ≈ 1 (Secধon 3.4.6). (b)
Shear modulusG for cell packings. Inset: Shear modulus in terms of excess contact number∆Z . Line-types in (b)
are the same as shown in (a). Black lines for each panel show known results for disk packingsG ∝ ∆Z ∝ P 1/2 2.
Simulaধons have box size L = 15σ. Each data point is averaged over 100 independent inoculaধons.

as quantified by the bulk modulus B = ϕedP/dϕe, where the increase in volume fraction ϕe

is caused compaction rather than cell growth. We find that B increases with feedback strength
(Fig. S3.3), a direct consequence of the formation of the additional contacts (Fig. S3.4). In con-
trast to the increase in B (dP/dϕe increases with P0), pressure increases more slowly as volume
fraction is added via cellular growth (dP/dϕ decreases with P0 in Fig. 3.1h). Mechanical feedback
therefore allows cell populations to disentangle theirmechanical response to internal perturbations
(cell growth) from their response to external perturbations (external compression).

While the generation of excess contacts only slightly modifies the bulk modulus (B increases
by ≲ 20%), we expect these contacts to substantially impact the shear modulus since non-living
packings are known tobe fragilewith respect to shear 2,24,28. Bymeasuring the shear stressΣxy gener-
ated under simple shear strain γxy (Section 3.4.3), we find that the shearmodulusG = dΣxy/dγxy
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scales with pressure asG ∝ P 1/2 in the absence of feedback but increases sharply for strong feed-
back (Fig 3.3b) as unconstrained buds make contact (Fig 3.2a). The sharp increase in G is indeed
controlled by contacts made by unconstrained buds, as we find a one-to-one relationship between
contact number and shear modulus (Fig 3.3b inset). The stabilizing role of the added contacts can
be understood from constraint counting: both Z and Ziso increase as unconstrained buds make
contact, butZ increases faster thanZiso so that packings are pushed above isostaticity as cells grow
(Section 3.4.6). The result G ∝ P 1/2 for growth without feedback, also observed for non-living
packings 2,27, suggests that populations near jamming fragile with respect to shear and therefore sus-
ceptible to fluidization under thermal excitation 28 or cell motility 22. Populations growing under
strong feedback, on the other hand, are stabilized by excess contacts even at very small pressure.
Therefore, in contrast to populations without feedback and non-living packings where rigidity
comes at a cost of increased cell-cell forces, cell populations growing under strong feedback can
rigidify themselves with minimal associated pressure.

3.3 Conclusions

We have shown that budding cell populations undergo a growth-driven jamming transition that
has mechanical properties not observed in the jamming of non-living systems. Populations grow-
ing under mechanical feedback develop a greater number of cell-cell contacts. These contacts are
force-bearing and increase thepopulation’s resistance to shear and compressive stresses by an amount
expected from studies on non-living granular materials 2. As the population grows, this creation of
excess intercellular contacts is not accompanied by a faster buildup of the internal pressure in con-
trast to the anticipated behavior of ordinary granular materials. Thus, the aforementioned feed-
back mechanism is a simple and efficient mean for expanding microbial populations to increase
their resistance to mechanical stress without building up growth-limiting compressive mechanical
forces. This mechanism may have important biological consequences for growing microbial pop-
ulations, such as the increased resistance to mechanical stress may prevent unwanted fluidization
that can be caused by processes such as division and apoptosis 29–31,31,32 or cell motility 17,22.
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3.4 Appendix

The source-codes are available on GitHub 1.

3.4.1 Cell-based simulations

In 2D cell-based simulations, illustrated in Fig. S3.1, cells are modeled as two frictionless rigidly-
attached spherical lobes 2,3 (mother and bud) that grow exponentially in time at rate γi by bud
expansion (Eq. S3.1) and interact via repulsive spring forces with elastic modulus k (Eq. S3.2):

ȧi = γiai (S3.1)

V =
∑
i>j

∑
k,l

1

2
kδ2ik,jlΘ(δik,jl) (S3.2)

where ai = π
4
(σ2

i,mother+σ
2
i,bud) is the cell area, σi,mother (σi,bud) is the diameter of themother (bud),

V is the total potential energy, δik,jl = 1
2

(
σik + σjl

)
−
∣∣rik − rjl

∣∣ is the overlap between lobes k
of cell i and l of cell j, and Θ is the Heaviside Step function (Fig. S3.1). The potential energy is
measured in units of kσ2

i,mother throughout this chapter.
The system is relaxed with quasistatic dynamics via conjugate gradient energy minimization4.

Conjugate gradient minimization terminates upon one of the two conditions: (i) two successive
steps j and j+1 yield nearly the same energy value (Vj+1−Vj)/Vj < ϵ2tol = 10−16 or (ii) the potential
energy per particle at the current step is Vj/(kN) < ϵ2tol = 10−16. The forces (Fi) and torques (Ti)
acting on each cell are calculated as:

Fi = −∇riV (S3.3)

Ti = −∂θiV (S3.4)

where ri and θi are the position and orientation of cell i. For conjugate gradient minimization, we
transform these forces to a 3N -dimensional gradient of the potential energy as:
∇V = {F x

1 , F
y
1 ,M1/I1T1, ..., F

x
N , F

y
N ,MN/INTN}, where the ratio of moment of inertia to

mass of each cell is Ii/Mi =
1
8
σ2

(
1+∆4

1+∆2 + 2
(

(1+∆)∆
1+∆2

)2)
with∆i =

σi,bud
σi,mother

.

In this model, all mother cells have the same size, σi,mother = σ. Cells grow in a square box with
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periodic boundary conditions. Cell growth progresses while σi,bud < σ and culminates in division.
After division, both new cells acquire a random orientation (see Fig. S3.1).

(a)  Growth (b)  Division (c)  Cell-cell interactions

cell i

cell j

Figure S3.1: Schemaধc of (a) the growth and (b) division processes and (c) cell-cell interacধons in our cell-based
simulaধons. Each cell is composed to two lobes, the mother (gray) and bud (yellow). (a) During growth, the mother
lobe diameter of cell i stays fixed at σi,mother = σ while the bud grows from σi,bud = 0 to σi,mother = σ. (b)
Once the bud reaches σi,mother = σ, cell i divides into two new daughter cells that have random orientaধons. (c)
Cells i and j interact only upon overlap (δik,jl) via repulsive linear spring interacধons with modulus k.

Without pressure feedback, the growth rate for cell i is: γi = γ0i where γ0i is chosen from a
uniform distribution of width 20% around a mean growth rate γ0. With pressure feedback, the
growth rate is additionally exponentially modulated as γi = γ0i e

−Pi/P0 where Pi is the pressure
on the bud of the cell i, and P0 is a strength of the feedback 3. The pressure Pi is calculated as
Pi =

∑
j(i) |Fij|/Li,bud, where Li,bud = πσi,bud is the perimeter of bud i, |Fij| is the magnitude of

the contact force between a bud i and a particle j, and j(i) is a set of the particles in contact with
i. In Figure S3.5 we show the relation between the strength of feedback P0, population-averaged
growth rate Γ = 1

A

∑
i aiγi (A =

∑
i ai), and growth-induced pressure P (see Section 3.4.3 for

details on the calculation of P ).

3.4.2 Generating jammed packings

The simulation starts with two randomly oriented yeast cells. Initially the cells grow according to
Equation S3.1 with a time-step of dt0 = 0.002/γ0, and this continues while V/(kN) < ϵ2tol. If
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the population energy per cell at time step j is greater than Vj/(kN) > 2 · ϵ2tol, the growth step
is rejected and the time step is halved (dtj → 1

2
· dtj), and the growth step (proceeded by energy

minimization) is repeated (Equation S3.1). If the average potential drops belowV/(kN) < ϵ2tol, the
time step is reset to dt = dt0. The simulation terminates when the the average energy per particles
of a static energy is ϵ2tol < V/kN < 2 · ϵ2tol.

This growth-driven protocol differs from previously-used compression protocols 5. Whereas
compression simulations start with a fixed number of objects and reduce the box size until the
systems jams, growth-driven simulations start with few objects and increase the number of objects
via growth until the system jams.

Once the population reaches the jamming point at ϕJ , the colony grows beyond that point—
up to the preassigned value δϕ = ϕ − ϕJ . The protocol is similar to the one used to find ϕJ ,
however the time-step is halved when the volume fraction exceeds δϕ by a margin of ∆ = 0.5 ·
10−8, i.e. ϕ > ϕJ + δϕ + ∆. The time-step is reset to dt = dt0 if the volume fraction falls
below: ϕ < ϕJ + δϕ − ∆. The protocol ends when the volume fraction falls into the range
ϕ ∈ [ϕJ + δϕ−∆, ϕJ + δϕ+∆].

To speed up simulationswhere population pressure significantly slows down growth (P ≫ P0),
weuse an adaptive time-step. In thismethod,we scale the time-stepdtby the largest cellular growth-
rate in thepopulationγmin: dt′ = dt·γ/γmin. Thismethod ensures that, evenwhile thepopulation
is under pressure, the fastest-growing cells add the same amount of volume per time-step as they
would have without feedback. Unless noted explicitly, all results in this chapter use this adaptive
time-step method.

3.4.3 Calculation of mechanical properties

For each static packing, we calculate the stress tensor Σ̂ via the Virial expression:

Σ̂αβ =
1

2L2

∑
i>j

∑
k,l

(
rαik,jlF

β
ik,jl + rβik,jlF

α
ik,jl

)
(S3.5)

whereFα
ik,jlj is theα-component of the force F⃗ik,jl on kth lobe of particle i resulting from overlap

with the lth lobe of particle j, and rαik,jl is the α-component of the vector from the center of mass
of lobe ik to the center of mass of lobe jl. The pressure is calculated from the stress tensor as
P = 1

2

(
Σ̂xx + Σ̂yy

)
.

57



To calculate bulkmodulus B, the simulation box is compressed by dϕ = 10−8, and themodulus
is calculated from the definitionB = ϕdP/dϕ.

To determine shear modulus G of a cellular packing, the response to quasistatic simple shear is
calculated. To that end, for a static packing at δϕ = ϕ − ϕj , each cell is subject to a small affine
shear strain (along the x direction with gradient in the y direction):

xi → xi + δγxyyi (S3.6)

where ri = (xi, yi) is the location of the center ofmass of a particle i, and δγxy = δx/L = 10−6, and
L is size of the system. Following the application of shear strain, the system is relaxed via energy
minimization. Then, shear modulus is calculated from the definitionG = dΣxy/dγxy.

Throughout this chapter we measure P ,B, andG in units of the cell-cell modulus k.

3.4.4 Pressure scale (Pmax) at confluency (ϕ = 1)

Population pressure P is determined by the overlap between cells, which in turn is set the compres-
sion beyond the jamming point δϕ = ϕ−ϕJ . Here, we estimate the pressurePmax resulting from
compression of cell packings from jamming ϕJ = 0.84 to confluency ϕ = 1.

By explicitly calculating the force between lobes ik and jl, Fα
ik,jl = −∂rαikV = rαik,jl/rik,jl ×

kδik,jl, we can reduce the population pressure to P = 1
2L2

∑
i>j

∑
kl krik,jlδik,jl. This can be

expressed as an average over theNc = Nz/2 contacts in the system, so thatP = Nz
4L2 ⟨krik,jlδik,jl⟩.

To estimate P , we assume that we have a population of monodisperse spherical cells with diam-
eter σ with z ≈ zJ = 4 and ϕJ = 0.84. Further assuming that cells compress purely affinely
upon infinitesimal compression, equivalent to swelling cells from σ to σ + dσ while keeping the
box size fixed atL, and that no new contacts are made in the process allows us to simplify pressure
toP = N

L2kσdσ. Since the volume fraction is ϕ = Nπσ2

4L2 , dϕ = Nπσ
2L2 dσ and N

L2σdσ = 2
π
dϕ. This

allows us to relate P to changes in ϕ: P/k = 2
π
dϕ.

Finally, we are able to calculated the pressurePmax/k = 2
π
0.16 ≈ 0.1 generated by compressing

a cell paacking from ϕJ = 0.84 to ϕ = 1. This value is consistent with our measured data in
Fig. 3.1g.
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3.4.5 Modified isostaticity at jamming point

In this section we describe why the “isostatic” criterion for growing budding cells differs from the
naive expectation ofZnaive

iso = 6.
In order for a system to be mechanically-stable, it must have as many contacts in the system

(Nc) as degrees of freedom (Nd). This is the naive isostatic, or Maxwell, criterion. Since budding
cells have 3 degrees of freedom per cell, the system has a total of Nd = 3N degrees of freedom
and we would naively expect there to be be Nc = Nd = 3N degrees of freedom at jamming,
or Znaive

iso = 2Nc/N = 6 contacts per cell. This argument breaks down, however, because not all
degrees of freedom in the systemare constrained. Unconstrainedbuds and rattlers decrease the con-
tact number at jammingZJ belowZnaive

iso = 6 because contacts are not required to constrain these
degrees of freedom. The isostatic criterion, taking into account unconstrained buds and floaters,
isN iso

c = 3N − 3Nr − Nu − 1 whereNr andNu are the number of rattlers and unconstrained
buds in the system and the −1 is a finite-size correction. We can express the isostatic criterion as
Ziso = 2N iso

c /(N −Nr) = 6− 2fu − 2/(N −Nr) contact per (non-rattler) cell, where fu is the
fraction of (non-rattler) cells with an unconstrained bud. Fig. S3.2 shows that this isostacity crite-
rion holds for nearly all packings analyzed. Note that in themain text we use the large-system limit
Ziso
∣∣
N→∞ = 6−2fu and in Fig. S3.2 we take into account finite-size effect by adding 2/(N −Nr)

toZJ
6.

3.4.6 Hyperstaticity due to unconstrained bud growth

In this section we describe why growth under extreme feedback produces “hyperstatic” (Z > Ziso)
packings. In the case of extreme feedback (P0 → 0), only unconstrained buds grow above the
jamming point and these buds cease growing once they come into contact with their neighbors. If
there are Nu = fuN unconstrained buds at jamming and of these ∆Nu = ∆fuN have come
into contact with their neighbors due to growth above jamming, then the population needsZiso =

2(3N − Nu + ∆Nu)/N = 6 − 2fu + 2∆fu contacts for mechanical stability. However, each
new unconstrained bud needs 2 contacts to stabilize it, so that the contact number increases to
Z = 2(3N −Nu + 2∆Nu)/N = 6− 2fu + 4∆fu as unconstrained buds make contact. So, as
unconstrained buds make contact the system become hyperstatic with∆Z ′ = Z − Ziso = 2∆fu.
In the extreme case, ∆Z ′ = 2fu is determined by the number of buds that were unconstrained
at jamming. Note that this deviation from isostaicity is twice as large as the deviation from the
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coordination number at jamming,∆Z = Z − ZJ = 4∆fu, which we show in Chapter 3.

Figure S3.2: Average number of contacts ZJ as a funcধon of a fracধon of unconstrained buds fu. Dashed-line gives
the relaধon Ziso = 6 − 2fu from constraint counধng arguments. A small correcধon 2/ ⟨N⟩ has been added to
ZJ to account finite-size effects (Secধon 3.4.5). All simulated packings have at least as many contacts as expected
(ZJ ≥ Ziso) while the majority of packings exactly saধsfy ZJ = Ziso. Numerical data is shown for system sizes
⟨N⟩ = 75,⟨N⟩ = 172 ⟨N⟩ = 307.
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Figure S3.3: Bulk modulus as a funcধon of volume fracধon above jamming δϕ = ϕ− ϕJ for populaধons growing
under five different feedback strengths.
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Figure S3.4: Bulk modulus as a funcধon of number of cell-cell contacts above jamming ∆Z = Z − ZJ for
populaধons growing under five different feedback strengths.
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𝚪

Figure S3.5: Populaধon-averaged growth rateΓ as a funcধon of the populaধon averaged pressureP . Γ is calculated
from individual cell growth rates γi as Γ = 1/A

∑
i γ(i)A(i), whereA(i) is the area of the i

th cell, γ(i) is the
growth rate of the ith cell (at a given ধme-step), and A =

∑
iA(i). Populaধon-averaged pressure is calculated

form the stress tensorΣαβ (see Secধon 3.4.3 for details). The results are for 6 different strengths of feedback: No
feedback (green), P0 = 10−2(cyan), P0 = 5 · 10−3(dark blue), P0 = 10−3(blue), P0 = 5 · 10−4(purple), and
P0 = 10−4 (red). Dashed-lines are fits to the numerical data. Fiħed feedback strengths are given of the right-hand
side of the legend. Simulaধons were done with ধme-steps kept constant, without the adapধve ধme-steps method.
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4
Packings of Yeast Cells

In this chapter, we study the structure of compacted packings of elastic shells as a model for the
packings of confined yeast populations, Figure 4.1. Our starting point is the notion of a budding
yeast cell as an elastic spherical shell. With this approximation, I can quantitatively study deforma-
tions of the budding yeast cells 1, a feature that cannot be studiedwith classical soft spheremodels 2,3.
In Section 4.1, I present a more detailed discussion of the cell model from the elasticity theory per-
spective. Although there are models in literature that consider cells as deformable objects4,5, in
this chapter I lean toward a model fromwhich the mechanics can be derived directly from the con-
tinuum mechanics theory, without any further simplifications or assumptions. In Section 4.2, I
characterize disordered packings of shells starting from the jamming point at the volume fraction
ϕj ≈ 0.646 up to the volume fraction ϕ ≈ 1. I compare these packings to a soft-spheres model
with only two-body contact forces. To that end, I analyze the coordination number of the elastic
shells, radial distribution function, and the shells’ shape metrics as the system gets more and more
compressed. In Section 4.3, I postulate a simplemechanismof an adaptation of the yeast cells to the
compressive mechanical stress, and compare it to the experimental data presented in Figure S2.6
(Chapter 2) 1. I also point out that one of the consequences of the model is a homogeneity of the
mechanical stresses and turgor pressures as the system gets more compressed. Finally, in Summary
section, I discuss directions for further research. I end this chapter withAppendix, where I provide
results for the effective friction coefficient µeff between shells — the property that is not explicitly
built into the model, but emerged implicitly from the contact mechanics model.

4.1 Model of a Budding Yeast Cell

I consider the mechanics and the structure of 3D packings of budding yeast cells. To get insight
into the effects that stem from the deformability and granularity of the cells, I approximate Sac-
charomycॽ cerevisiae cells in an undeformed state as spherical objects, cf. Figure 4.1, Top Panel.
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20 μm 20 μm

S. pombe yeast deformation

P = 0 MPa P = 0.8 MPa

S. cerevisiae yeast deformations

S. Pombe yeast deformations

P = 0 MPa P = 0.8 MPa

P = 0 MPa P = 0.5 MPa

15 μm 15 μm

Figure 4.1: Yeast populaধons growing in confined space. Top Panel: Packings of S. cerevisiae yeast cells at the
jamming point (further growth leads to pressure buildup) and when the bioreactor is almost completely filled1;
Boħom panel: the same as in Top Panel but for S. pombe yeast (courtesy of Morgan Delarue).

The diameter of a budding yeast cell is aboutD ≈ 5µm7, putting the cells at the border between
the microscopic and macroscopic worlds. The budding yeast cells are large enough to avoid the
substantial effects of the thermal fluctuations of the environment. Thus, to model some cellular
components that are crucial to the mechanics of the cells, we can use continuummechanics theory.
The content of the cell is maintained by a semipermeable membrane. The osmolarity inside the
cell is higher than the outside due to the high concentration of glycerol and ions inside the cell 8.
Because of the difference in the chemical potential of water, water molecules enter the cell 8. This
results in cell swelling, and it is a mechanism responsible for maintaining the cell’s shape. The wa-
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ter influx stops with the change in the chemical potential of water that is due to the increase of
hydrostatic pressure inside the cell balancing the chemical potential of water outside the cell. For
organisms like budding yeast, this excess pressure, called turgor, can reach values of the order of 1
MPa,which is about three orders ofmagnitude higher than inmammalian cells . The lipid bilayer is
not strong enough to balance the turgor of themagnitude ofMPa, and it ismainly the cell wall that
is responsible for the integrity and protection of the budding yeast cells. The cell wall is a structure
that is basically a biopolymeric cross-linked network of polysaccharides (β-1,3- and β-1,6-glucans),
chitin, and mannoproteins9. The thickness and elasticity of the cell wall may vary during the cell
cycle9, but its Young modulus has been found to be aboutE ≈ 100MPa, and the cell wall thick-
ness t ≈ 0.099µm, Table 4.1. The wall stiffness is larger in the chitin-rich bud-scars 10–12, but in the
first-order approximation, I neglect this heterogeneity. Additionally, the resistance of the eukary-
otic cell cytoskeleton to deformation has been estimated to be of the order of∼ 1-4 kPa 13. In that
context, the presence of the cytoskeleton can be neglected in further considerations about yeast
cells mechanics. Yeast cells dwelling in the natural environment have a tendency to strongly adhere
to each other, amechanismknown as flocculation 14. Flocculation ismostly caused by the expression
of two proteins, flo1p and flo11p, that are attached to the outer layer of the cell wall 14. However,
most lab-strains are selected against the expression of these proteins 15. Thus, in the model below,
we neglect cell-cell adhesion.

In the model, the potential influence of the cellular nucleus on the mechanics is neglected —
sometimes these effects are included in order to study yeast cells under extreme conditions, i.e.
upon hydrostatic loads reaching up to 250MPa 16. Thus, it is primarily the cell wall mechanics and
the turgor that determine the mechanical properties and deformbilty of the budding yeast cells.
This approach was previously used to model a single budding yeast cell in order to obtain the me-
chanical properties of a single cell in compression experiments 17–21 and indentation experiments22.
The computational model of a slightly pressurized elastic shell is described in Appendix B. In the
next section, we analytically discuss the elastic mechanics of compressed shells, and extract the ma-
jor determinants of the mechanics of the compacted packings of these shells.

Elastic and Pressure Forces

In the sectionbelow,wediscuss the flattening and the geometry of an elastic, pressurized, and spher-
ical shell pushed by a rigid wall. The main goal is to analyze stretching, bending, and volumetric
energy contributions to the mechanics of a spherical shell upon compression. In the following,
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Parameter Name Symbol Yeast strain SI value(±σ) Reference

Cell wall thickness t S. cerevisiae Y9 99 nm Smith et al. 20
Young’s modulus E S. cerevisiae Y9 107± 2.8 MPa Smith et al. 20
Turgor pressure P S. cerevisiae Y9 1.08 MPa Smith et al. 20
Cell diameter 2R S. cerevisiae Y9 5.0 µm Phillips et al.7
Poisson ratio ν S. cerevisiae 1/2 -

Table 4.1: Parameters used in Finite-Element Method (or Mesh-Spring) simulaধons. The cell wall is primarily a
polymeric network of: β-1,3- and β-1,6-glucans, chiধn molecules, and mannoproteins9. Hence, we assumed a
Poisson raধo to be the same as for natural rubber, i.e. ν ≈ 0.523.

we discuss three different regimes: i) at very small loads, the deformation is small enough to be in-
sensitive to finite thickness of a shell, hence a Hertz-like contact is developed, i.e. the deformation
region is too small to cross the thickness of the shell; ii) at larger forces, the shell still flattens, but the
disc-like deformation is larger than the thickness of the shell. The geometry and mechanics of this
region involves the balance between bending, stretching, and volumetric energies; iii) finally, as the
pushing force increases, the stretching energy dominates the deformation energy, and the contact
develops an inverted capwhere stretching and volume energies are traded for bending energies. We
intend to find the conditions for the third regime to occur, when the internal pressure is non-zero,
i.e. P > 0. At each of these regimes, the change in volumetric energyWP , is proportional to the
internal pressure and the volume change due to the deformation ∆V, i.e. WP = P∆V. This
term is the same for the first and the second regimes, thus it is not pivotal for the transition be-
tweenHertz-like and shell-like behavior. The transition between the second and the third regimes
involves a symmetric inversion of the spherical cap, hence doubling the volumetric contribution
in the third regime, cf. Figure 4.2 a-c.
We assume that the inverted cap may occur only for relatively low pressure values, where the un-
pressurized shell geometry is not significantly distorted. Hence, we first consider the case of the
unpressurized shell and then discuss the contribution from the internal pressure.
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Overview 499

Fig. 14.6 Cross-section of the half-ball. A downward vertical force F is apphed through a plane 
P. For small forces, the ball flattens, with a downward shift e at the top. e, a, R and r are the 
geometrical quantities .entering into the estimation of the flattening. Our theory deals with thin 
shells {h R), for which deformation is concentrated near the pole (I7I <C 1), although for the 
sake of clarity rather large values of 7 are shown here.

Fig. 14.7 Two configurations of the spherical shell, as observed in the experiments (see Fig. 14.1) 
are analysed in the rest of this chapter; at small squeezing forces F, the top of the thin sphere 
contacts the pushing plane along a flat disc (shaded area in a); beyond a critical squeezing force F, 
the top of the sphere bumps downward and contacts the plane along a circular ridge (b).

However, there is a difference: in Pogorelov’s geometry, the value of the force can be scaled 
out, which ultimately yields a single parameter less problem for the determination of stress. 
On the other hand, a dimensionless parameter remains in the case of a flat pushing plane, 
which is the ratio of the applied force to the characteristic force Fc = Eh^/R. Therefore, 
instead of having one single mathematical problem to solve at the end, the dimensional
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a

b c

Figure 4.2: a: Geometry of the elasধc spherical shell pushedwith forceF by a rigid wall. The iniধal radius of the shell
isR; r is the radius of the contact disc or the ring in the case of inward buckling (Figure 4.2 c); e is a deformaধon
of the shell from the iniধal geometry; b: Disc-like contact geometry between the wall and the shell; c: At certain
deformaধons, the shells create an inward cap, and the contact region between the shell and the wall is a circular
ring. Sketch adapted from Audoly & Pomeau24.

• Hertz-like Contact Between a Shell and a Rigid Plate

For very small forces, the region affected by the pushing wall is of the order of the diameter size of
a Hertz-like contact disc. The vertical displacement e is related to the pushing force F as

e ∼
(
F 2

E2R

)1/3

(4.1)

and the Hertz energy scales asWH ∼ F e ∼ Er3
(
e
r

)2, where r is a radius of the contact disc, E
is the Young’s modulus, andR the size of the shell. The radius of the contact region r can be easily
found from the geometry, and it is r =

√
2eR (for r, e≪ R). In order to stay in the regime of the

Hertz-like contact, the deformation zone cannot be larger than the shell’s thickness t. Hence, the
contact stays Hertz-like if the contact radius is less than shell’s thickness r < t⇒ e < ec = t2/R.
Simple algebra gives us that, at this point, the magnitude of the force is Fc ∼ Et3/R.
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• Disc-like Contact Between a Shell and a Rigid Plate

As the contact size grows larger than the shell thickness (r > t), the stretching and bending contri-
butions need to be balanced. The bending energy density is Eb ∼ Et3∆κ2, where∆κ = κ− κ0
is the change of the mean curvature of the shell where, for a sphere, κ0 = 1

2

(
1/R+1/R

)
. Upon

flattening of the contact region, the change of the mean curvature is∆κ ≈ −1/R. Therefore, the
bending energy density is Eb ∼ Et3(1/R)2, and the total bending energy isWb ∼ Et3(r/R)2

(with the same coefficient as the F.-von K. plate bending energy, i.e. 1
12
(1 − ν2) 24). On the other

hand, the stretching energy density is Es ∼ Et(∂u/∂x)2, where (∂u/∂x) is the general strain. We
assume a straight down projection of the shell cap onto the contact disc and roughly homogeneous
deformation over the contact region — so the contributions from deformations in radial and an-
gular directions are comparable. Likewise, in the Hertz-contact problem, the radius of the disc is
r ∼
√
eR. The material length along that flat disc has been shortened from r′ ≈ R sin−1(r/R)

in the rest state to r. Thus, ∂u ≈ r′ − r = R (r/R + (r/R)3/3! + ...) − r ∼ r3/R2, whereas
∂x ≈ r. Therefore, our generalized strain is (∂u/∂x) ∼ r2/R2. From this, we have the stretch-
ing energy density Es ∼ Et(r2/R2)2 and the total stretching energyWs ∼ Et(r4/R4)r2. As the
bending energy density does not depend on r, and the stretching energy density does, the defor-
mation is dominated by bending, up to the point where Eb ≈ Es. This occurs for the disc radius
of the order of r2 ∼ tR. Since r2 ∼ eR, this means that the stretching energy takes over when
the shell flattening is of the order of the thickness of the shell e ≈ t. Beyond that point, we can see
that Es is rapidly growing with r, and as the pushing force is larger than some critical value Fbckl,
another equilibrium state is established.

• Inverted Cap

Upon further deformation, for which e > t, the shell develops an inverted cap, similar to the case
studied by Pogorelov24,25. For the inverted cap there are twomain components to the elastic energy:
i) the energy of the mean curvature change from +1/R to −1/R (integrated over the surface of
the cap), and ii) the elastic (bending and stretching) energy in the ridge that is in contact with the
pushing wall. The first component is easy to calculate: Wb(cap) ∼ Ebr2 ∼ Eh3(r/R)2. The
energy in the ridge is basically the same as in the Pogorelov’s problem 25, and it reads Wridge ∼
Ee3/2t5/2/R 25. The ridge energy quickly dominates bending, as early as r ≫ tR.
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This completes the analysis of the behavior of the elastic energy as the spherical shell is pushed
by the rigid walls, for the internal pressure P = 0.

• Internal Pressure

In addition to the elastic energy, for the pressurized shells, we have an energy component due to
volume reduction. The change in volumetric energy is WP = P∆V ∼ Pr2e ∼ Pe2R. For
the Hertz-like and disc-like contacts, the change of the volume is the volume of the spherical cap,
whereas upon the transition from the disc-like to the inverted cap geometry, the volume is twice
the volume of the spherical cap with radius r, and height e. In the range of Hertz-like contact, i.e.
0 < e < ec = t2/R, the ratio between elastic and volumetric energies scales as:

WH

WP

∼ E

P

r

R
=
E

P

√
eR

R
=
E

P

√
e

R
<
E

P

t

R
(4.2)

We can see, that for very small deformations, e → 0, the deformation is first controlled by the
pressure. As the deformation approaches e → e′ ≈ R(P/E)2, the elastic contribution starts
playing a role and dominates in the range e ∈ [e′, ec], where ec = t2/R. Next, in the regime
t2/R < e < t, the elastic energy is dominated by bending. The ratio between the bending energy
and the volumetric energy is:

Wb

WP

∼ Et3(r/R)2

Pe2R
=
E

P

(
t

R

)2(
t

e

)
(4.3)

We can see that for the parameters in Table 4.1 this ratio is: 5.0 ≈ (E/P )(t/R) > Wb/WP >

(E/P )(t/R)2 ≈ 0.1. Thus, for e ≪ t, the deformation is dominated by bending, and the volu-
metric term takes over as the deformation approaches e ∼ t. At this point, the stretching energy
Ws dominates the bending energy. If the deformation proceeds even further, e > t, and in the
case of no internal pressure, the stretching energy in the deformed flat disc is traded for the elastic
energy in the inverted cap, and the ring-like contact emerges between the shell and the wall, Figure
4.2 c. However, in the case of non-zero internal pressure P > 0, the energetic cost of this transi-
tion is increased byWP = P∆V, and the buckling does not occur for t < e < e∗. The condition
for the stability of the flat circular disc isWP > Ws, and the characteristic length-scale e∗ can be
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estimated from the conditionWs ≈ Wp, from which we get:

e∗ ≈ t

(
P

E

)(
R

t

)2

(4.4)

For the data in Table 4.1, this condition provides e∗ ≈ 10t. As we can see, for deformations in the
range e ∈ [t, e∗], theWP term dominates the stretching energy. In this regime (i.e. flat contact),
the total energy isW = Wb +Ws +WP ≈ WP . BecauseW ≈ WP , in the range of deforma-
tions e ∈ [t, e∗], the deformation energy scales asW ≈ Wp ∼ P∆V ∼ Pe2R ∼ Pe2. This
leads to the final approximation of the deformation force that reads: F ∼ eP , and allows further
interpretation of the experimental results in Section 4.3.

Pressurized elastic shells behave similarly upon an indentation larger than the thickness of the
shell, e≫ h, where it has been experimentally and numerically found that the deformation force
depends linearly on the deformation and the internal pressure, F ∼ eP 22,26. The dominance
of the turgor pressure over membrane mechanics has been also used in the estimation of turgor
pressure in a single plant cell 27,28, a single bacterial cell (Magnetospirillum gryphiswaldense) 29, and
elastic properties of a filamentous fungal hyphae 30.

4.2 Characterization of the Packings Structure

The knowledge of the structure can give us a lot of information about properties of the solid ma-
terial 31. Thus, we start our investigation of the packings of elastic shells from the analysis of their
structural properties. It has been proven that the densest possible packing of rigid spheres is the
FCC lattice, with a coordination number Z=12, and the packing densityϕ = π/(3

√
2) ≈ 0.74 32,33.

FCC packing has a periodic structure with translational and rotational symmetries. These symme-
tries do not enter into the physics of disordered materials, because they depend on the presence
of long-range order, of which disordered materials are depleted 31. Since the disordered materials
are depleted of long-range order, and only short-range order is present, it is difficult to extract any
structural informations from, for example, diffraction experiments. As the structure is not peri-
odic, we cannot just give a structure of a unit cell to give a full description of the system. Thus, we
have to be content with incomplete information about the packings structure, information which
typically is statistical in its nature. First, we discuss the radial distribution function (rdf) which lays
down the foundation for the discussion of the power-laws of the other structural parameters. Next,
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we look at the coordination number Z , as this number can give us an idea about how compacted
is the structure.

To study the packings of shells, as a model for confined budding yeast cells, we start from the
random close packing model (RCP). RCP was used with much success as a model for amorphous
materials such as foams 34–36, emulations 37, simple liquids 38,39, and (metallic) glasses40,41. The den-
sity of the RCP is lower than FCC, and it is ϕRCP ≈ 0.646. More compact disordered packings
are generated by changing the size of the simulation box. The results presented here are for elastic
shells with constant volume. The rationale and relevance of this choice is given in Section 4.3. The
packings are floaters-free and generated as described in Gniewek et al.42.

4.2.1 Radial Distribution Function and the Coordination Number

The utility of the radial distribution function (rdf) for structural characterization comes down
to the amount of information which is extractable from the radial distribution function ρ(r/σ),
before it levels off at larger values (for the sake of readability, we assume that σ = 1). However,
rdf cannot be placed in a unique correspondence with a definite structural model. At the jamming
point, rdf for RCP packings has many singular properties6,43. In particular, it has been shown that
its first peak is a δ-function at r = 1. The area under this δ-function is the average coordination
numberZ . On the high side of the function, ρ(r) has a power-law decay ρ(r) ∝ (r − 1)−γ , with
the exponent γ = 1/244. It is proposed that this power-law is a vestige of the configurations
visited before reaching the jamming point ϕj

45. Additionally, the second peak of ρ(r) is split into
two singular sub-peaks — one at r =

√
3σ and the other at r = 2σ, see Figure 4.3 a.

Since the disorderedmaterials lack a crystal order, a strict definition of the nearest-neighbor con-
tact (necessary for example for coordination number calculations) is not possible. The average
coordination number Z (also called the average contact number) although providing oversimpli-
fied data in comparison with a full crystal structure is the most valuable single piece of structural
data. For FCC structure, the coordination number is Z = 12. This number can be lower, and
it was shown that the minimum average number of contacts that provide mechanical rigidity is
Zj = 6 − 4/N 46, where N is the number of particles in a periodic box. It was also found that
RCP has exactly that minimum number of required contacts6. This allows us to understand the
structural and mechanical properties and identify relevant correlation length-scales45,47.

As the system is compressed above the jamming point, the height of the first peak decreases as
ρ(1) ∼ 1/δϕ6,44. Additionally, new contacts are created and the average coordination number

73



is Z > Zj . More specifically, a small affine compression of the configuration is equivalent to an
increase of the particle diameter by the amount δr ≈ (ϕ − ϕj)/3ϕj . Then, the number of extra
contacts∆Z = Z − Zj can be calculated as45:

∆Z ≈ 4π

∫ 1+δr

1

ρ(r)r2dr ∝
∫ 1+ 1

3

ϕ−ϕj
ϕj

1

ρ(r)r2dr ∝
∫ 1+(ϕ−ϕj)

1

(r−1)−γr2dr ∼ (ϕ−ϕj)
1−γ

(4.5)
For γ = 1/2we can see that this gives us a known relation∆Z ∼ δϕ1/2 6,44,45. In Figure 4.3 b, we
can see that initially, as the packings get more compacted, the number of extra contacts∆Z has a
power-law dependence. However, the exponent that we found isβ ≈ 0.6 rather than the expected
β = 1/2. It is not the effect of the deformabilty of the particles because the packings of soft-spheres,
with only two-body Hertzian contact forces, also have the similar exponent, Figure 4.3 c. It is also
likely not the finite size effect, as the same exponent value is found for a∼50% smaller system, Figure
4.3 b. Moreover, it does not seem possible that the small effective friction, discussed in Section
4.5.1, is responsible for this deviation, as the friction does not impact the exponent γ, but rather
the height of the first peak ρ(1), i.e. the number of contacts required for mechanical stability48,49.
Interestingly, a very similar exponent value, β ≈ 0.68, was found experimentally with compressed
packings of soft, frictionless, elastic shells 50,51. This puzzling result can be explained by the fact that
if the initial packings at the jamming point are floaters-free, then the exponent γ ≈ 0.4— giving
us the expected value of the exponent β as β = 1 − γ ≈ 0.6. Indeed, our simulations and the
experimental protocol by Jose el al. 50,51 were such that the initial packings were depleted of floating
particles.

For compressions δϕ > 0.15, we can see, however, a departure from the fractional power-law
dependence in ∆Z — an effect that interestingly is not present for the packings of soft spheres
with two-body interactions, Figure 4.3 b. Near to ϕ ≈ 1, we notice that the shapes of the con-
tacts between the shells are polygonal, and the shells themselves resemble the honeycomb structure.
Looking at packings at ϕ = 1 recalls the Kelvin Problem: “What space-filling arrangement, with
similar cells of equal volume, has minimal surface area”? This question is relevant here because, as
discussed in the previous section, the energy of deformed shells is mostly stored in the stretched
membrane. Thus, in the first order approximation, we can assume that just by minimizing the
total surface, we will also approximately minimize the elastic energy of the whole system. We also
expect that the answer to our problem is likely different from theWeaire–Phelan structure 52, as the
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a c  b 

Figure 4.3: a: Normalized radial distribuধon funcধon ρ(r)/ρ0 for five different compressions: δϕ=[1E-3,1E-2,1E-
1,2E-1,3E-1]. Verধcal dashed-lines are at: 1.0,

√
3, and 2.0. Inset: A schemaধc of the packing geometry. Red bar

gives the geometry corresponding to r/σ =
√
3. b: Excess contact number ∆Z = Z − Zj for the packings

of 32 and 50 elasধc shells, and 50 sođ-spheres with Hertzian contact forces. Zj is taken from the formula Zj =
6− 4/N , where N is the number of parধcles in the system (see the main text). Next, the power-law dependence
∆Z = Z −Zj ∼ (ϕ−ϕj)β is fiħed in order to find ϕj and β. The exponents β are i) β = 0.603± 0.050 for
N=32; ii) β = 0.667 ± 0.081 for N=50; and iii) β = 0.0578 ± 0.012 for N=50 sođ spheres. c: the same data
as in b, but in log-log scale (N=32 not shown for clarity).

packings that we are studying lack any long-range order.
In the paper Close Packing and Froth 53, Coxeter discussed a similar question, namely if there

is a division of space by identical polyhedra. There is a solution in non-Euclidean spaces, however
there is no solution to this problem inEuclidean space, unless one accept the possibility of cellswith
facets that are polygons with exactly 5.12 edges, i.e. p-gons with p = 5.12 53. This result however
has been interpreted byCoxeter in statistical terms, defined as the structure called Statistical Honey-
comb, which is a collectionofVoronoi polyhedra generatedby randomarray fill space 31,53. Moreover,
the average number of facets per cell in Statistical Honeycomb is F = 12/(6 − p) = 13.6. The
number of facets F in Statistical Honeycomb can be interpreted as the number of contacts Z be-
tween the compressed shells, and this number is remarkably close to one found in our simulations
(Z = 6 + ∆Z , Figure 4.3 b). Thus, these results suggest that for the compressed random close
packings of elastic shells, deformed in order to minimize elastic energy and in the limit of ϕ = 1,
the final structure is the Statistical Honeycomb with Z ≈ 14 and polygonal facets with an average
of p̄ ≈ p = 5.12 edges per facet.

75



4.2.2 Shells Deformation and Coordination Number

In order to understand the qualitative transition of the excess contact number (∆Z) from the frac-
tional power-law to the linear dependence, and its relation to shells deformations, Figure 4.3 b-c,
the changes in the shell shapes upon compression are quantified. We extracted the shapes from the
mass distribution, encoded in the gyration tensor 54, although other metric could be used as well.
In our case, the gyration tensor gives the distribution of the mass of the shell around its center of
mass and is defined as:

Sαβ =

∫
drρ(r)rαrβ∫
drρ(r)

≈ 1

2N2

N∑
i=1

N∑
j=1

(riα−rjα)(riβ−r
j
β) =

1

N

N∑
i=1

(riα−rcmα )(riβ−rcmβ ) (4.6)

where the r.h.s. is the approximation for the discrete mesh representation, rcm is a position of
the center of mass, and rα is αth component of the r vector. We can find a coordination system
(V1,V2,V3), where the gyration tensor is expressed as: S = VΛVT , where V = [V1,V2,V3], and
Λ = diag(λ2

1 , λ
2
2, λ

2
3), such that λ21 ≥ λ22 ≥ λ23. The shape metrics such as asphreicity b is defined

as b = λ21 − (λ22 + λ23)/2, and the reduced aspect ration reads δε = λ1/λ3 − 1. The results are
presented in Figure 4.4 a. We can see that for relatively low compressions, δϕ < 0.1, the shells
remain spherical and the behavior of ∆Z(δϕ) follows the expected fractional power-law. As the
shells get more deformed in the range δϕ ∈ [0.1, 0.2], we observe a coordinated change in the
number of extra contacts and shape metrics. The progress of the deformation can be seen more
clearly in Figure 4.4 b-e. At first, as the particles are spherical, the rotational degrees of freedom
do not contribute in any way to the stability of the packings, i.e. they are simply zero-frequency
modes 55. As the particles get more deformed, these zero-frequency modes become mobilized into
finite-frequency excitations, and they require the additional number of contacts, δZ , to provide
mechanical rigidity to the packing. It was found that this additional number of contacts scales
with the reduced aspect ratio as a power-law, δZ ∼

√
|δε| 55. In the inset of Figure 4.4 a, we can

see that as the system is getting more compacted, the shells deform and their deformation changes
as a power-law, δε ∼ δϕ2. Then, the extra contacts required to immobilize the rotational degrees
of freedom depends on δϕ as δZ ∼ δϕ. Adding this contribution on top of the scaling for the
translational degrees of freedom, Equation 4.5, we obtain the relation for the total number of con-
tacts required for the mechanical stability ∆Z ∼ Cϕ · δϕβ + δZ = Cϕ · δϕβ + Cε · δϕ, where
β ≈ 0.5 − 0.6. Depending on the exact values of the coefficients Cϕ and Cε, somewhere around
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δϕ ≈ 0.1 the contribution for deformation dominates and leads the linear dependence as found in
Figure 4.3 b for δϕ ≳ 0.15. We conclude that it is likely that these shape changes, here quantified
by δε, are responsible for the qualitative change in the relationship between∆Z and δϕ.

a b  c 

d  e  

e  

c 
b  

2

d  

Figure 4.4: a: Average shape metrics for the packings of elasধc cells as a funcধon of the reduced volume fracধon
δϕ = ϕ − ϕj . Error bars give one standard deviaধon. For each of the shells, a gyraধon tensor is calculated
and its three principal moments, λ21 ≥ λ22 ≥ λ23, are calculated (see the main text). Asphericity is calculated as
b = λ21 − (λ22 + λ23)/2, whereas the reduced aspect raধo as δε = λ1/λ3 − 154. Inset: Log-log plot of the
reduced aspect raধo δε as a funcধon of the reduced volume fracধon δϕ. The black, thick line gives the slope for
the square dependence: δε ∼ δϕ2. b-e: Examples of 50 shells (with periodic boundary condiধons), at different
stages of compacধon. Leħers (b-d) correspond to the reduced volume fracধons δϕ as in Figure 4.4 a.

4.3 A Simple Model of Turgor Adaptation

Upon severe osmotic shock, yeast cells experience a significant volume reduction. Osmotic shrink-
age is completed within a few tens of seconds after the osmolarity jump, and this result in a sub-
stantial increase in protein concentration. That macromolecular density increase leads to the dra-
matic stalling of several signaling and cellular processes 56. Thus, upon osmotic shock, the HOG
pathway is activated to ensure water homeostasis and volume recovery 56–58. Similarly, in yeast cells
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that are exposed to significant compressive mechanical stress, the SMuSh pathway (Ste11 through
Mucin/Sho1 pathway) activates the HOG pathway — which lets cells survive the challenges of
compressivemechanical stress 59. Although themolecular details of this response are yet to be eluci-
dated, it is reasonable to hypothesize that upon large compressive forces, cells not only arrest their
cell cycle to prevent further pressure buildup, but also upregulate their turgor pressure in order
to prevent a volume drop. If one assumes that in compacted cellular packings, it is possible to
distinguish two subpopulations of cells: i) the growing ones, and ii) the ones that are stopped in
the cell cycle or are growing very slowly (due to the compressive stress or depletion of nutrients),
we can approximately model the turgor adaptation in compressed cells by keeping the volumes of
the elastic membranes constant and then compressing the simulation box, cf. Figure 4.5 a. This is
still an approximation, and the adaptation of the non-growing cells would require simultaneous
turgor upregulation of the growing cells — an effect that is not yet accounted in our numerical
model. However, in Figure 4.5 b, we can see that if cells are considered as elastic membranes 1, the
experimental data (blue dots) suggest that the population average turgor 1 (⟨Π⟩ ≈ P/Θ) increases
alongside the growth-induced pressure, P . These results agree very well with the simulation data,
Figure 4.5 b; both for the model with and without bending energy.

To further inspect thepossible adaptationof the turgor pressure (modeled for elasticmembranes
as the hydrostatic pressure), we present data on how the average turgor pressure increases upon the
compaction of packings, Figure 4.6 a. We can see that, close to the jamming point, the pressure
increases slowly; However, it abruptly increases, by about an order of magnitude, as the packings
get closer to the point of complete space-filling, ϕ ≈ 1. This behavior is paralleled by the increase
of the average contact force, Figure 4.6 b. In fact, we can see that there is a roughly proportional
relationship between the average turgor pressure and the average compressive force that each of the
elastic shell experiences: ⟨Π⟩ ∝ F⊥

c , Figure 4.6 c. However, as the turgor pressure increases, the
differences between the shells’ turgors are not growing as well, and in fact the differences stay very
small, as shown by the coefficients of variation in the inset of Figure 4.6 a. The same is true for
the contact forces — but the coefficient of variation for most of the packing fractions is larger and
about cv = σ(F⊥

c )/
⟨
F⊥
c

⟩
≈ 0.5 (inset in Figure Figure 4.6 b). This is a signature of the force-

chains, force structures responsible for the mechanical rigidity of the granular packings61. Closer
to the jamming point, the coefficient of variation is noticeably larger and about≈ 2.0. This is an
anticipated result because, close to the jamming point, the probability distribution of the contact
forces decays exponentially P (F⊥

c ) ∼ exp(−F⊥
c ), whereas for compacted system, it crosses over
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a b 

Figure 4.5: a: A schemaধc of cells in compacted populaধons of budding yeast1 (orange, dashed-line square), pushed
by the neighboring growing cells (orange arrows). The model depicts a hypotheধcal scenario where some cells are
stalled in the cell-cycle and other are growing. See the main text for details. b: Average pressure exerted on the
box wallsP by the cells/shells over the the average surface coverageΘ given as a funcধon of the average pressure
P . Simulaধons are given for N=16 elasধc shells, with and without bending term in the elasধc energy. The shells’
volumes are kept constant at their iniধal values. The iniধal turgor pressure has been set to Π0 = 0.25MPa, as
this value is close to the value commonly taken as the turgor pressure of budding yeast cells in a liquid culture60.
The packings of the monodisperse cells are generated by compressing jammed packings by moving the walls of the
simulaধon box— a procedure imitaধng compression of the cells by their neighbors, as seen in the orange dashed-line
box in Figure 4.5 a. Blue dots are the experimental data from Delarue et al.1.

to the Gaussian distribution, P (F⊥
c ) ∼ exp(−

[
F⊥
c

]2
) 36,51,62. Altogether, this result suggests that

as the packings are progressively compressed, the forces and their internal pressure do not increase
in variability, but rather stay roughly homogeneous.

4.4 Summary

The above results are very promising, but more analysis is required. First, the disordered packings
studied here are all monodisperse, whereas microbial cells in a bioreactor are usually of different
sizes, i.e. polydisperse 1. Next, in order to fully confirm (or reject) the Statistical Honeycomb hy-
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a b  c  c  

Figure 4.6: a: Average turgor pressure (averaged over 50 cells, and 50 independent simulaধons) normalized by the
iniধal turgor pressure Π0 = 0.25MPa, as a funcধon of reduced volume fracধon δϕ = ϕ − ϕj . Error bars give
one standard deviaধon σ(⟨Π⟩). Inset: Coefficient of variaধon of the average turgor pressure as a funcধon δϕ:
cv = σ(⟨Π⟩)/ ⟨Π⟩. b: Average normal contact force F⊥c as a funcধon of reduced volume fracধon δϕ. Inset:
coefficient of variaধon of the average contact force as a funcধon of δϕ. c: Average contact force F⊥c as a funcধon
of the average (and normalized byΠ0 = 0.25MPa) turgor pressure.

pothesis discussed in Section 4.2, larger systems need to be analyzed (at least 100 cells/shells). This
is necessary in order tomake sure that the finite-size effects donot hindermeasure values. Moreover,
a comprehensive comparison between geometries of the Voronoi cells in the Statistical Honeycomb
and deformed cells for ϕ ≈ 1 can provide further evidence for or against the model. Addition-
ally, to corroborate the nature of the extra contacts due to the requirement of the stabilization of
the mobilized rotational degrees of freedom, it is necessary to investigate the changes in the vibra-
tional spectra as the system becomesmore compact, and pinpoint themoment at which rotational
and translational spectra overlap 55. To that end, we can use the model presented in this chapter or
a simpler one, where initially spherical particles deform into ellipsoids upon compression by the
neighboring particles.

The model presented in this chapter provides a unique opportunity to study compacted pack-
ings of deformable objects in much more detail than in the previous studies. Namely, close to
the jamming point, where deformations and contact forces are small, simple models such as soft-
spheres are a good approximation. However, as the shells get more deformed, significant depar-
tures from the simple pictures are observed. First, the linear orHertzian contact forces are no longer
a valid description even for two-body interactions, as the inter-particle contact starts behaving like a
stiffening-spring, cf. Appendix B.6. Second, contacts are no longer independent, as the regions im-
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pacted by two different contacts start overlapping, and participants of different contacts eventually
come into a mutual contact as well, i.e. three (and higher order)-body problem63,64. This problem
was recently discussed for soft materials close to the jamming threshold65. In this case, many-body
interactions are responsible for the logarithmic term in an asymptotic two-body interactions, yield-
ing a relation that cannot be approximated by a power-law anymore65. Additionally, in strongly
compacted systems, particle deformation is so significant that new contacts between particles can
be created as a result of compression by the neighbors63,66,67. These extra contacts may in turn
contribute to the higher resilience of the material63,64,66. These three effects are likely in charge of
granular materials mechanics, although their relative contributions are still to be elucidated.

Finally, in Figure 4.5 b, the simulations are in a surprisingly good agreement with the experi-
mental data 1, even though the computational model is very simple. However, the weakness of the
model is that despite the fact that it is reasonable to assume that some subpopulation of cells do
not grow upon confinement, the compression by other cell necessarily requires other cells to main-
tain the growth. A simple biomass production model can be implemented in both spring-mesh
and Finite Element methods. Namely, the numerical algorithm increases the linear size of the tri-
angular elements, and the amount of the biomass is defined by the relaxed sizes of these elements.
This procedure is similar to the one described in Rodriguez et al.68 and Vetter et al.69, where the
deformation tensor F is decomposed as F = AG, where A described a purely elastic response, and
G is a diagonal tensor describing the amount of added biomass69.

4.5 Appendix

4.5.1 Friction forces

In the budding yeast cell model presented in this chapter and Chapter 2, friction is neglected. Fric-
tion is likely playing some role in the mechanics of the cellular packings, but at such a small length-
scale, it is very difficult to measure or even estimate the magnitude of it experimentally. Although
the friction is not implemented explicitly in the elastic shells model, there is an effective friction be-
tween compressed shells due to the roughness of the surface. This surface roughness results from
the approachused tomodel the contactmechanics between shells, namely placing repulsive spheres
at the vertex nodes. Interestingly, covering mesh with finite repulsive particles is a commonway of
introduction friction between objects in computer graphics70.
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Numerical estimation of the friction coefficients

We measure the effective friction coefficient for a given packings as µeff = max
m,n

(
|F⊥mn|/|F

∥
mn|
)
,

where F∥mn(F⊥mn) is a normal (tangential) force for a contact between cells m and n, and Fmn =

F∥mn + F⊥mn
71. The contact force between two cellsm and n is:

Fmn =

∫
∂Ω

dσfmn (S4.1)

=

∫
∂Ω

dσ
[
f⊥mn + f∥mn

]
(S4.2)

=

∫
∂Ω

dσf⊥mn +

∫
∂Ω

dσf∥mn (S4.3)

= F⊥mn + F∥mn (S4.4)

It is easy to calculate the contact force, which is Fmn =
∑

i∈m fi = −
∑

j∈n fj , where the sums
are over vertex nodes i (or j) that belong to a cellm (or n). The contact force perpendicular to the
contact surface can be calculated as:

F⊥mn ≈
1

3

∑
i

∑
j(i)

(
Aj(i)

Ci

|fi · nj(i)|
)

f̂i (S4.5)

where: j(i) are the indices of triangles that contain a vertex i, fi is a force on the ith vertex, f̂i =
fi/∥fi∥, nj(i) is a normal vector of the j(i)th triangle, Aj(i) is the area of the j(i)th triangle, and
Ci is a dual area of the ith vertex (Appendix A.3.1). From the above, the tangential force is easily
calculated as F∥mn = Fmn − F⊥mn. Numerical data below gives the effective friction coefficient as a
function of the reduced volume fraction (averaged over 50 simulations).
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Figure S4.1: Effecধve fricধon coefficientµeff as a funcধon of a reduced volume fracধon δϕ = ϕ−ϕj . Coefficients
were esধmated as described in Secধon 4.5.1, for N=16, 32, and 50 elasধc shells, with periodic boundary condiধons.
The averages (solid dots) are calculated over 50 independent simulaধons, and the envelopes give one standard
deviaধon.
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5
Fluid Flow Through Packings of Elastic Shells

In this chapter, different from the previous chapters, ϕ stands for the sample’s porosity, not the
volume fraction.

5.1 Introduction

The physics of fluid flow through disordered porousmedia is of fundamental importance to awide
range of engineering and scientific fields including enhanced oil recovery, carbon capture and stor-
age, contamination migration in ground-water, water transport, and nutrient transport in tissues
and microbial colonies 1–5. This has led to a substantial effort in looking for relationships between
the effective physical transport properties and the structural properties of porous materials. In
spite of the extensive work that has been done, a full description of liquid transport in a broad
range of material parameters is elusive6. Experimental studies, especially in 3D systems, are lim-
ited because imagingmaterial samples and resolving fluid flow stream lines are challenging tasks7–9.
Numerical studies are most often tackled in 2D due to the high computational burden 10–16. Even
though a broad range of material porosities in 2D systems has been covered, a drawback of these
studies is that, for disorderedmaterials, the percolation transition coincides with the rigidity transi-
tion 17. For 3D systems, simulations are commonly performed for an idealized model of randomly
distributed inter-penetrating objects like cubes or spheres 18–21. These systems are good prototypes
to study critical phenomena, but liquid transport in complex geometries depends on boundary
condition details; thus, the relevance of these models for actual materials is not clear 22. There is
also work done on fluid transport in geometries obtained from the microtomography of collected
materials. However, these studies are performed using a small number of samples and at relatively
high porosity 23,24.

In recent years, the interest in granular systemsmade of deformable and strongly compacted elas-
tic shells and membranes increased 25–27. This class of models is of interest not only in physics and
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engineering, but also increasingly in biological research of, for example, small cell clusters 28,29, ep-
ithelial cells 30, and jammed microbial packings in confined spaces4,31. Henceforth, in this chapter,
we focus on a model of granular materials where particles are represented as elastic spherical shells,
with the volume of these shells kept constant — motivated by experimental work on confined
microbial populations4,31. For such a model of the granular system, we then numerically study a
single-phase viscous flow in Darcy’s regime, i.e. laminar flow with a linear relation between volu-
metric flow and pressure gradient. We consider packings in a very broad range of porosities, from
the point the packings start to bemechanically stable (jamming transition 32) down to the porosities
where the liquid transport ceases to exist (percolation transition 17). We mainly focus on a model
by Kozeny and Carman 33,34, the classical permeability-porosity framework. First, we briefly intro-
duce the Kozeny-Carman model. Then, we present how the key features of the Kozeny-Carman
model can be physically grounded in a percolation theory. Finally, we present numerical evidence
on how different structural features of granular porous material contribute to the fluid transport
in granular porous media.

Kozeny-Carman Model

Permeability κ measures the ability of fluids to flow through porous media and it is part of the
proportionality constant in Darcy’s law, the relation between fluid volumetric discharge per unit
area U (in units of length/time) and a pressure gradient:

U = −κ
η
∇P(r) (5.1)

where η is the dynamic viscosity of the fluid, and P(r) is the pressure at the location r. This phe-
nomenological relation is valid at lowReynolds numbers when the flow is laminar. For small pres-
sure gradients, we can further assume∇P = ∆P/L, where L is the linear size of the system.

For lowReynolds number flow in a straight and cylindrical capillary channel, we have the Poiseuille
equation:

Ucapillary = −β
R2

η

∆P
L

(5.2)

whereR is the radius of a capillary,β is a numerical factor that accounts for the shape of the capillary,
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and L is the length of the capillary. If a capillary occupies only a fraction of the material, the liquid
discharge per area unit is correspondingly lower. Assuming that the capillaries are homogeneously
distributed in the material, the scaling factor is the amount of the void space in the material, called
a porosity ϕ:

U = −βϕR2

η

∆P
L

(5.3)

For capillaries that are not straight, Kozeny pointed out that due to the tortous character of the
flow, the length of the equivalent channels should be ⟨λ⟩ ≡ τH · L, where τH is called hydraulic
tortuosity, and the fluid discharge needs to be scaled down by it 33. Carman further reasoned that
it takes τH times more time to discharge the same amount of fluid through porous media than it
takes for straight capillaries (in amacroscopic directionof the flow). Thus, the discharge rate should
additionally be τH-times smaller 34. Capillaries are not limited to just the circular cross-sections. For
the general shape of the capillary, the radius R is commonly replaced by a hydraulic radius Rh

35

(defined as the ratio of the cross-sectional area normal to flow to the wetted perimeter of the flow
channels), but sometimes other parameters are used, for example, the critical pore radius 36.

Thus from Equation 5.3, the final relation for the capillary flow in a porous material is 34:

U = −ϕβ R2
h

τH · η
· ∆P
τH · L

= −βϕR
2
h

τ 2H

1

η
∇P (5.4)

Comparing Equation 5.1 with Equation 5.4, a general formula for permeability reads

κ = β
ϕR2

h

τ 2H
(5.5)

and is called the Kozeny-Carman equation. Despite being semi-empirical, Equation 5.4 is com-
monly used as a simple model for the permeability in porous materials.

93



5.2 Methods

5.2.1 Packings of Deformable Shells

Generation of Compressed Packings

The initial packings of the shells are generated using a standard jamming, with periodic boundary
conditions algorithm 32. Starting from these jammed packings, more compacted packings are gener-
ated by changing a linear dimension of the simulation box. The changes of the box size are minute,
and less than 0.4% of the size an elastic shell. After every box size change, the mechanical stresses
are relaxed using the FIRE algorithm 37, see Section 5.5.1 fore more details.

Shells Mechanics

Every shell is modeled as a membrane using about 5000 triangular finite elements per shell. The
ratio of a shell thickness t to the initial diameter D0 is t/D0 = 0.02, so bending effects can be ne-
glected and the shell material is modeled as an isotropic St. Venant-Kirchhoff membrane 38,39. All
of the shells are slightly pressurized at the beginning of the simulation, with initial pressure P0,
and filled with an incompressible liquid. The ratio between P0 and Young’s modulus E is equal to
P0/E = 0.0025. The force due to the shell volume-dependent pressure P(Vshell) on a vertex i is cal-
culated as: F(ri) = ∇ri

(
P(Vshell)·Vshell

)
whereVshell(r1, ..., rNvert) is a functionof theNvert vertices in

themeshwork and the volume change for the vertex i is calculated using the tetrahedral volume de-
fined by the vertex i, its neighboring vertices in themeshwork, and the center of themass4,31. Once
the mechanical forces are equilibrated, the constant shell volume constraint is enforced by varying
the shells’ internal pressures. If the volume of a shell is not equal to the preassigned value V0, the
pressure Pnew is adjusted to the value Pnew = Pold (1 + (V0 − V) /V). This inevitably drags the
system out ofmechanical equilibrium and the system needs to be equilibrated again. The protocol
continues until the volumes of the shells reach their preassigned volumes within 0.1% of accuracy.

5.2.2 Identification of a Percolating Cluster

To identify clusters that percolate the void space between the shells, we project a packing of shells
onto a 3D latticewith a lattice constant δ, see Fig. 5.1 A. Every lattice site that contains a shell’s vertex
is considered impermeable to the liquid, Fig. 5.1 A. The shells are represented as finite elements.
Thus, for a small enough lattice constants δ, themembrane is permeable to the liquid, i.e. the liquid
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can enter the interior of the shell. This problem can be overcome by identifying impermeable
lattice sites using triangles defined by vertices rather than by vertices alone. However, the mid-
surface plane is used to represent the three-dimensional shells in two-dimensional form, so even
though two shells are in contact, there is a finite gap between their mid-surfaces, Fig. 5.1 B. Thus,
below a certain lattice size δc ≈ 0.025, the packings are mostly permeable, and percolating clusters
identified for δ < δc are dubious.

Finally, we look for a percolating cluster using the connected-component labeling algorithm
(implemented in the scipy.ndimage Python library). The cluster is said to percolate the system
if it contains lattice sites on the two opposite sides of the simulation box. One of the characteristic
length-scales in the system is the initial diameter of a shell, D0. We choose to express the lattice
sizes, δ, in units ofD0. In principle, we would like to generate a lattice with δ → 0 as we want to
estimate a fluid flow in the continuum limit. However, due to the aforementioned limitations, the
resolution of the lattices in our study is finite and varies from a coarse one to a fine one, and it is in
the range [0.030, 0.080]. Finally, percolation clusters identified in this way are used for hydraulic
radius and Lattice-Boltzmann calculations.
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B

Figure 5.1: Idenধficaধon of a percolaধng cluster: A. A schemaধc of a 2D system projected onto a laষce with
two different laষce sizes. Every laষce site that contains any part of a parধcle (yellow shapes) is considered to be
occupied and impermeable to liquid (white squares). For the laষce resoluধon δ1 and a given configuraধon, there
is no percolaধng cluster capable of carrying liquid through the packing, but there are some unoccupied laষce sites
(green squares). For the laষce size δ2, there is a percolaধng cluster (blue squares). There are also some unoccupied
laষce sites (green squares) that do not belong to the percolaধng cluster. B. A sketch of two elasধc shells in contact.
Shells are represented by mid-surfaces, so despite the fact that they are in contact, there is a finite gap between
them (δc ≈ 0.025).

5.2.3 Lattice Boltzmann Simulations

Velocity fields of the fluid flow through thepackings of the shells are solvedwith theLattice-Boltzmann
(LB)method40 using theD3Q19 lattice topology. This method has proven to be successful in stud-
ies of liquid flow in porous materials 10–13,15,18–21,23,24,41–45. We use this method to obtain a solution to
the Navier-Stokes equation for the flow in low Reynolds numbers limit. The LB method is using

96



a velocity distribution function rather than velocity and pressure fields and is numerically more
stable than the Finite Element Method at the irregular boundaries that are inevitable in porous
materials40. To ensure better numerical stability for the complex geometry of the pores, we use
multiple relaxation times (MRT) to solve linearized Boltzmann equation with LB method46.

Permeability of the packing and the flow field are resolved by setting a pressure difference ∆P
between two opposite sides of the simulation box, sufficiently small to keep the flow in the incom-
pressible and laminar regimes (Stokes flow). Every simulation is performed for periodic boundary
condition (PBC) in directions perpendicular to the pressure gradient. In the direction of the pres-
sure gradient, the system is open and the boundary conditions are set by pressure difference23,24.
No-slipboundary conditionhasbeen applied to the solidmaterial boundaries. It has been found 13,40

that when the channels carrying liquid become very narrow (of the order of one lattice site) LB sim-
ulations become unstable and the evaluation of the stream lines become inaccurate. To deal with
this problem we use an approach proposed in 13, where every lattice site on which flow equations
are solved is further refined intoM3 smaller cubic elements (refinement level: M). Strictly speaking
δ̃ = δ/M, is a lattice size of the fluid phase, and throughout this chapter we use M = 3 (unless
stated otherwise). Due to computational limitations, LB calculations are performed for the lattice
constant δ = 0.04 (unless stated otherwise).

The flow fields obtained from LB simulations for each lattice site, u(r), are further used to cal-
culate the permeability and the tortuosity. Permeability is calculated as κ = η · ⟨u(r)⟩ /∇P, and
tortuosity as τH = ⟨u(r)⟩

⟨u(r)x⟩ , see Section 5.5.3 for the formal derivation. Permeability is given in
numerical units, and conversion to physical units can be done following Latt47. All the LB sim-
ulations are performed with PALABOS (http://www.palabos.org), and the source-code is
publicly available at https://github.com/pgniewko/porous-LB.

The simulated model of the porous material accounts for deformability and the mechanics of
the shellmembrane using Finite Elementsmethod. Themechanics of the shells are resolvedwith∼
3.75·105 degrees of freedom, and someof theLB simulations requiredup to∼ 107 lattice points to
resolve the fluid velocity field. In turn, the resolution of the calculation imposes restrictions on the
largest system size that we are able to study. Finite size effects for the studied systems may result in
small anisotropies in the permeability tensor 14, but recent studies show that transport in complex
porous geometries can be reasonably well captured if the size of the system is roughly≳ 10 times
larger than the pore size 23,41,48,49.
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5.3 Results

5.3.1 Percolation transition

In idealized systems, such as random packings of overlapping cubes or spheres (and their comple-
mentaries, where the solid material is drilled in random locations, rather than deposited 51,52), the
void space between them undergo a percolation transition 50,53–56. Since, in the vicinity of the perco-
lation threshold, a minute deposition of solid material can disconnect the percolating cluster and
prevent further liquid transport, the abruptness of this transition is well understood. The model
studied in this work differs from the aforementioned ones in that the narrow necks in the perco-
lating cluster decays continuously upon the compaction of the material. Thus, the existence of
a sharp system, size-dependent, percolation transition is not obvious. To address this aspect, fol-
lowing the protocol described in Section 5.2.2, percolating clusters have been identified for three
system sizes (N=16, 32, and 50 elastic shells) and various lattice resolutions, Fig. 5.2 A. The results
for δ = 0.04 are shown in the Fig. 5.2 A and B. As the system gets larger, the transition becomes
steeper, as expected in a first-order transition case 54,56,57. The steepness of this transition depends
on the system size L, and scales as∼ L1/ν , where ν is a critical exponent of the correlation length.
In a continuum percolation model, this exponent is approximately equal ν ≈ 0.88 58.

Fig. 5.2 C shows that a sharp drop in fluid transport capabilities occurs for different lattice reso-
lutions and that the percolation threshold shifts towards lower porosity values as δ decreases— an
effect anticipated from the studies on idealized models 50. The finite representation of the elastic
shells in the studied does not allow for calculations in the continuum limit. It is nevertheless pos-
sible to extrapolate a percolation threshold in the continuum limit δ → 0. In Fig. 5.2 D, we
estimated that for N=50, the percolation threshold in the continuum limit is ϕ∗

c(N = 50) =

0.035 ± 0.014, which is consistent with the values obtained for other granular porous materi-
als 50,55–57,59.

For each system size, the percolation threshold ϕc for a finite δ andN is expected to be related
to the threshold in the continuum limit ϕ∗

c as a power-law ϕc(N) − ϕ∗
c(N) ≡ ∆ϕ(N) ∼ δβ 50.

In Fig. 5.2 D, we estimate the lattice-size scaling exponent to be β = 1.1 for N=50, and similar
values of β are found for N = 16, 32; cf. Table S5.1. The value of the exponent β is in good
agreement with the prediction made by Koza et al. 50, where the exponent is estimated to be 1 —
yielding an approximate relation for the lattice-size dependent percolation threshold that obeys:
ϕc(N)− ϕ∗

c(N) ∼ δ. Additionally, these fits in the continuum limit are subject to a finite system
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Figure 5.2: Percolaধon transiধon: A. Percolaধng clusters (in blue) and deformable shells (in yellow) as the com-
pacধon of the system progresses. For clarity, the smallest system is presented (N=16) with a laষce resoluধon
δ = 0.04. As the system is more and more compacted, the percolaধng cluster gets smaller and more tortuous, and
eventually disappears at the criধcal porosity. B. Percolaধon probability for three system sizes: N=16, 32, and 50.
Dashed lines are sigmoid fits to the numerical data, and binned averages are given by open dots. The laষce-size
dependent percolaধon thresholdϕc(N) has been esধmated as the porosity value for which percolaধon probability
is equal to 0.5. The plots represent data for the laষce δ = 0.04. C. Percolaধon probabiliধes for the system size
N=50 and varying laষce sizes: δ = {0.03, 0.04, 0.05, 0.06, 0.07}. As the resoluধon of the laষce increases,
the percolaধon threshold shiđs toward lower porosity values. D. We extrapolated the percolaধon threshold in the
conধnuum limit. Dashed line is a power-law fit, where ϕ∗c and the exponent for δ are two fiষng parameters. The
fiħed percolaধon threshold in conধnuum limit is ϕ∗c = 0.035 ± 0.014, and the exponent is equal to 1.1 ± 0.2.
The relaধon∆ϕ ∼ δ1.1 agrees well with the work of Koza et al.50. Details of a fiষng procedure can be found in
Secধon 5.5.6.
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size correction, that overestimates (in a first order) the thermodynamic limit byϕ∗
c(N) = ϕ∗

c(∞)+

CIL
−1/ν , where CI ∼ O(1), L ∼ N1/d, and d = 3 55,57,60,61. An accurate extrapolation to the

thermodynamic limit requires data for systems spanningmany orders ofmagnitude, but in Section
5.3.3 and Section 5.3.4 we show that transport properties discussed in this work do not depend
on the exact value of ϕ∗

c(∞), but rather on a reduced porosity δϕ(δ,N) ≡ ϕ − ϕc(δ,N) — a
value that can be well estimated for a given lattice size δ, and system size N 62. Despite the fact
that the universality class of the model studied in this contribution remains an open question, the
numerical results clearly point to common characteristics between the model studied in this work
and previously studied percolation models 50,55,56,61,62. Thus, we use the formalism of percolation
theory in the analysis of fluid flowobstruction in the vicinity of the critical porosity valueϕc, which
in this study is ϕc ≈ 0.15 (unless stated otherwise).

5.3.2 Decrease of hydraulic radiusRh with the porosity

The hydraulic radius is defined as a ratio of a cross-section of a liquid carrying channel to its wetted
perimeter, see Section 5.5.2 for more details. Only in relatively simple cases, such as a laminar flow
inside a pipe, can the hydraulic radius be directly related to the geometry of the system. In practice,
finding this value is problematic because it is difficult to accurately predict a channel’s shape along
the flow stream lines. The situation gets even more complicated in complex geometries where per-
colating channels canmerge or branch out. Thus, the hydraulic radius is commonly approximated
by the ratio of the volume to the wetted area of a cluster carrying the liquid63.

Using the percolating clusters identified for the packings of elastic shells, we estimated the hy-
draulic radii for different lattice resolutions as a ratio of the number of lattice sites belonging to
the cluster divided by the number of surface sites41,64. Using a geometric argument adapted from
references65,66, the hydraulic radius is predicted to vanish linearly at the limit of zero porosity, see
Section 5.5.2. Results corroborating this prediction can be found in Fig. 5.3. The results indicate
that the hydraulic radius decays like:

Rh ∝ ϕ/(1− ϕ) (5.6)

as the porosity goes to 0. If the hydraulic radius was reaching 0 at the percolation threshold ϕc,
this would indicate that as the porosity approaches the percolation threshold ϕ → ϕc, most of
the fluid flow occurs in the layer in the vicinity of the percolating cluster’s bounding surface, where
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the effects of viscosity are significant. Thus, the liquid transport could be controlled by a no-slip
boundary condition on the cluster’s surface and not necessarily the complex (tortuous) geometry
of the cluster. However, the hydraulic radius vanishes independently of lattice size, and its value at
the percolation threshold is finite, as one would expect from a percolation theory67.

Figure 5.3: Hydraulic radiusRh: Hydraulic radius as a funcধon of porosity ϕ for the system size N=50. For each
packing, a percolaধng cluster has been idenধfied and the hydraulic radius is then calculated as a raধo of the volume
of the cluster and the total surface area. Error bars give one standard deviaধon. Dashed-lines are the fits toRh ∝
ϕ/(1− ϕ) for δ = 0.04. See Secধon 5.5.2 for details.

5.3.3 Tortuosity divergence at the percolation threshold

Tortuosity underpins the relationship between a transport process and the underlying geometry
and topology of the pores68. Recently it has been shown, numerically and analytically, that the
tortuosity depends on material structural properties, and may vary significantly close to the perco-
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lation threshold 13,15,35,69–71. Although percolation ideas have been proposed in the context of tortu-
osity in 3Dporousmaterials72, they have not been thoroughly testednear the percolation threshold.
In this contribution, we numerically show a link between the geometry of a percolating cluster and
the liquid transport through porousmaterials with a complex geometry of pores at the percolation
threshold.

Scaling arguments from Ghanbarian and co-workers6,72,73 suggest that the tortuosity scales, in
the thermodynamics limit, with the reduced porosity (δϕ = ϕ−ϕc) according to τH ∼ δϕν(1−D),
where ν is a critical exponent of the correlation length (ν ≈ 0.88 for the continuum percolation
model in 3D),D is the fractal dimension of the cluster throughwhich the liquid is transported, and
δϕ = ϕ− ϕc. It was found that the fractal dimension for the most probable path through which
liquid is transported is approximatelyD ≈ 1.4374–77, implying:

τH ∼ δϕ−0.38 (5.7)

To test this dependence, we evaluated the tortuosity from the velocity field as described in the
Section 5.2.3, and the results are presented in Fig. 5.4 A and Fig. 5.4 B. Close to the jamming thresh-
old, δϕ ≈ 0.25, we find that the tortuosity is τH ≈ 1.4. This result agrees very well with ex-
perimental measurements for the packings of glass beads, τH ≈

√
263. For porosities close to

jamming, the numerical results for all three lattice refinements overlap (Fig. 5.4 A) and agree with
the volume-averaged analytic prediction for mono-dispersed spheres70,71 (cf. black line in Fig. 5.4
B). The increase of tortuosity (and its variance; inset in Fig. 5.4 A) upon approaching the percola-
tion threshold is caused by the complex geometry of the percolating cluster rather than numerical
artifacts coming from the increased resolution of the liquid phase lattice, cf. Fig. S5.4 in Appendix.
For the porosities close to the percolation threshold, δϕ ≈ 0.0, we can see that numerical simula-
tions are consistent with the predicted divergence for the hydraulic tortuosity, Fig. 5.4 A.However,
divergence of a hydraulic tortuosity as τH ∼ δϕ−0.38 is expected in the thermodynamic limit, i.e.
N → ∞. From Equation S5.17, we can see that for finite system sizes, where CIL

−1/ν ≫ δϕ,
the tortuosity is finite and reaches a maximum value at δϕ = 0. This maximum tortuosity scales
with the system size as τmax

H (N |δϕ = 0) ∼ N−(1−D)/d ≈ N0.14 (D = 1.43, d = 3, and recall
thatN ∼ Ld; see Section 5.5.4 for details). In Fig. 5.4 B, we can see that the maximum tortuosity
on the approach to the percolation threshold increases with the system size, and we expect that as
larger systems are simulated, these values will approach the scaling relation τH ∼ δϕ−0.38, denoted
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by the black dashed-line in Fig. 5.4 B. In contrast to the relatively loose packings, for which lattice
refinement is not crucial, lattice refinement for LB calculations is essential for the packings in the
proximity of the percolation transition. This in turn sets the technical limitations on the system
size that can be feasibly simulated. A potential solution to this obstacle could be an evaluation of a
geometric tortuosity63 and capitalizing on the relation between geometric and hydraulic tortuosi-
ties78.

A B

M
M
M

Figure 5.4: A: Hydraulic tortuoisity calculated for the system size N=50, and laষce resoluধon δ = 0.04. The fluid
flow is solved on a laষce with three sizes δ̃ = δ/M, where M=1,2, and 3. At higher porosiধes, ϕ, all three laষce
refinements give similar results. Closer to the percolaধon threshold (δϕ ≲ 0.1), tortuosity calculaধons for the
liquid phase with a refinement level M=1 break down13. For the refinement levels M=2 and 3, the results suggest
a divergence of the tortuosity at the percolaধon threshold (ϕc ≈ 0.15 for δ = 0.04). Error-bars have been set to
0 for beħer readability. Data with error bars can be found in Fig. S5.3. Inset: Log-log plot of the same data. Red
envelope gives one standard deviaধon. Dashed line with a slope−0.38 is given as a reference for comparison. B:
Hydraulic tortuoisity calculated for three different system sizes: N=16, 32, 50 and the refinement level M=3. Black
dashed line is an expected tortuosity dependence τH ∼ δϕ−0.38 in the limit ofN→∞. The black line provides
an analyধc predicধon from Ahmadi et al.70,71 with a parameter B=1.16. Details of a fiষng procedure can be found
in Secধon 5.5.6.
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5.3.4 Kozeny-Carman model of permeability

By construction of the Kozeny-Carman model, the liquid transport thorough the material is en-
sured down to the porosity ϕ = 0. However this is not the case for granular porous materials. To
account for this in Equation 5.3, the porosity ϕ is replaced by the reduced porosity, ϕ → δϕγ =

(ϕ−ϕc)
γ . Exponent γ is sometimes taken ad hoc to be equal to γ = 1 in references 55,79,80, however

there is no firm argument supporting this particular choice. Since this exponent is yet unknown,
we try to estimate γ from a fit to the numerical data. Knowing γ is not crucial for highly porousma-
terials, for which δϕ ≈ ϕ, but it is essential for lower porosities, where the factor δϕγ contributes
to the vanishing permeability κ at the percolation threshold, δϕ→ 0.

In Section 5.3.1, we found numerically that the percolation threshold depends on the resolution
of the used lattice. Moreover, in Section 5.3.2 we found that the hydraulic radius reaches 0 at the
porosity ϕ = 0, and do not strongly depend on the lattices resolution δ. Finally, in Section 5.3.3
we found that the tortuosity of flow stream lines diverges upon the approach of the percolation
threshold, consistent with the prediction τH ∼ δϕ−0.38. Using Equations 5.5, 5.6, and 5.7, we can
put together a relationship between material porosity and permeability κ that reads:

κ = Cκ ×
δϕγ+0.76ϕ2

(1− ϕ)2
(5.8)

where Cκ is a constant. A fit of this model is presented in Fig. 5.5 (black dashed-line). Results are
given for the lattice resolution δ = 0.04, for which the tortuosity diverges and the flow ceases at
porosity ϕc ≈ 0.15. We can see in Fig. 5.5 that Equation 5.8 captures quite accurately the change
of the material permeability κ in a broad range of porosities—from the onset of the jamming up
to the percolation threshold, and regardless of the model fitting method, cf. Fig. 5.5 and Fig. S5.5.
Depending on the fitting procedure, the value of the exponent γ varies slightly, with the average
(over four different fitting procedures) value γ = 0.89 ± 0.15. This is quite close to the value
used ad hoc, γ = 1.0. In the limit of the large porosities, i.e. where ϕ ≫ ϕ∗

c , we can approximate
δϕγ ≈ ϕγ , which reduces Equation 5.8 to a simpler form κ ∼ ϕ3.59/(1 − ϕ)2 (with γ ≈ 0.83).
Interestingly, this approximate form,with a fractional power close to 3.6, is in good agreementwith
recent experimental and numerical work, where this exponent has been estimated to be 3.7 (for
porosities such that ϕ − ϕc ≈ ϕ) 23,24. It is worth noting that although the above model depends
on a value of ϕc (which also encompasses finite-size effects), it does not affect the generality of
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the model because of two reasons: i) the value of the hydraulic radius is quite insensitive to the
lattice size used in the calculations; ii) flow tortuosity and dilution of the capillaries is determined
by a reduced porosity δϕ, thus Equation 5.8 should apply for various system and lattice sizes in the
vicinity of the percolation threshold even though the exact percolation thresholds are different.
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Figure 5.5: Permeability of deformable elasধc shells packings in Darcy’s regime: Permeability obtained from Laষce-
Boltzmann simulaধons for the system size N=50, and laষce resoluধons δ = 0.04 and δ̃ = δ/3 for the solid
and fluid phases, respecধvely. Blue crosses represent permeability for individual simulaধons. Black open circles
represent binned averages, and red stars correspond to medians. Permeability κ is given in numerical units, i.e.
[κ] = δ̃2. Dashed lines correspond to three different models: i) Rh ∼ ϕ/(ϕ − 1), τH ∼ δϕ−0.38, and the
exponent γ being a fiষng parameter; ii)Rh ∼ ϕ/(ϕ− 1), γ = 1.76, and τH ∼ δϕ−0.38; iii) power-law ansatz:
κ ∼ δϕē. Fiষng details can be found in Secধon 5.5.6.

In this workwe compare Equation 5.8 to a scaling ansatzκ ∼ δϕē, a good guess for the transport
properties in disordered systems and close to the critical point62. Halperin et al. 51,52 showed that
there are several universality classes of porous media where the scaling ē depends on the model’s
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details. For example, in the so called Swiss-cheese model ē ≈ 4.4 − 4.5, whereas for the Inverted
Swiss-cheesemodel ē ≈ 2.4 − 2.5. The relation κ ∼ δϕē fits the data in a broad range of porosi-
ties, yellow dashed-lines in Fig. 5.5 and Fig. S5.5. However, the fitted exponent values depend on
the fitting procedure and vary in the range of [2.72, 3.88], with an average value ē = 3.4. More-
over, the estimated percolation threshold (ϕc) differs noticeably from the estimations made in Fig.
5.2 C. Despite the fact that the power-law scalings are often very useful, it is not always clear how
they relate to the connectedness of the pores and the tortuosity of the flow62. Additionally, in Fig.
S5.5 A and Fig. S5.5 B, we compare our numerical data to the standard Kozeny-Carman model,
where κ ∼ ϕ3/(1 − ϕ)2 2,34,65,66,69,79,81. Some authors extended the Karman-Cozeny model by ac-
counting for fractal geometry of porous materials 35,69,81, but these models still assume permeability
down to porosityϕ = 0. This classicalmodel has been successfully applied tomany porousmateri-
als 2,19,66,82,83 for which ϕ− ϕc ≈ ϕ (i.e. ϕc ≈ 0.0). However, in this work, we study permeabilities
for the system projected on a lattice for which the above approximation does not hold. Therefore,
the Kozeny-Carman model performs worse, as shown by the green dashed-line in Fig. S5.5 A and
B.

5.4 Discussion and Conclusions

Our results support a simple model of the fluid flow retardation in deformable granular materials,
compressed from the onset of mechanical stability at the jamming point down to the percolation
threshold. Porousmaterials is essentially described as a collection of tortuous and randomly placed
capillaries, where, close to the percolation threshold, tortuosity and capillaries dilution dominate
liquid transport. We have shown that upon compaction, the void space between pressurized elastic
shells undergoes a sharp, system-size dependent transition. We also find that the hydraulic radius
vanishes in a lattice-resolution independentmanner as the porosity diminishes. Next, usingLattice-
Boltzmann simulations, we have shown that tortuosity of the flow stream lines abruptly increases
at the percolation threshold. In Equation 5.5, the effects of the capillaries’ density and tortuosity are
factorized, and this has motivated a substantial research devoted to tortuosity63,73. Combined with
a percolation scaling theory, wewere able to support the fractional dependence of tortuosity on the
porosity of the sample. Our work underscores that at higher porosities, where the fluid flow is not
tortuous (τH is mildly varying for larger ϕ), the major geometric determinant of the flow obstruc-
tion is the amount of the void space accessible to fluid — captured in the quadratic dependence
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on a hydraulic radius Rh. In turn, upon the approach to the percolation threshold, the complex
geometry of liquid transporting channels ultimately leads to the flow hindrance. Nonetheless, the
dilution of the capillaries upon the approach to the percolation threshold, described by the γ ex-
ponent, remains elusive. We found numerically that γ ≈ 0.89 ± 0.15, which is close to the ad
hoc value γ = 1.0 55,79, but this value does not have a firm grounding in the percolation theory. In
Section 5.5.5, we present a simple argument from the percolation theory that suggests this exponent
to be γ = 1.76. If tortuosity is neglected, this would explain our numerical data very well. How-
ever, when the tortuosity contribution is included, this leads to the decay of the permeability in the
vicinity of the percolation threshold with the exponent close to 2.5, i.e. κ ∼ δϕ2.52. Despite the
fact that this is very close to the Inverted Swiss-cheesemodel exponent (ē ≈ 2.4− 2.5), it does not
reproduce the numeral data well, cf. Fig. 5.5 and Fig. S5.5. This intriguing result motivates further
research on the capillary model in the proximity of the percolation threshold within a framework
of the percolation theory. Additionally, this work, alongside the works of others41,73,83–85, can be
potentially useful in studying other transport processes like, for example, electrical conductivity of
an electrolyte (as well as the electrical tortuosity τe — an analog of the hydraulic tortuosity τH in
the fluid transport)63,73,86,87.

Finally, in our work we considered only packings of identical shells. In Section 5.5.2 we can see
that poly-dispersity seems to contribute only a constant factor in the relation forRh, Equation S5.8,
without changing its functional dependence on the porosity ϕ. Furthermore, in 3D packings of
unequal spheres, polydispersity has only a minor impact on the percolating clusters 55,88. Therefore
Equation 5.8 may be applicable to other disordered and compacted systems made of deformable
particles.

5.5 Appendix

5.5.1 Generation of jammed packings

To generate jammed packings, we randomly place particles in a cubic box with periodic boundary
conditions. The initial radii of these spherical particles are set such that the initial volume frac-
tion is about ψ0 = 0.01. Next, we successively increase or decrease the radii of the particles, with
every change followed by the energy minimization with FIRE algorithm 37 and velocity-verlet inte-
grator 89. The parameters used in the FIRE algorithm are: dtFIRE = 0.1, dtmax

FIRE = 1.5, αFIRE = 0.1,
Nmin = 5, fα = 0.99, finc = 1.1, fdec = 0.25. Termination condition for the FIRE algorithm is:
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max
i
|fi| ≤ 10−15.

Initially, for each inflation step, the particle’s radius is increased following the rule: rnew =

rold · (1 + ϵr), where initially, ϵr = 0.01. The forces between particles are Hertzian: F(R) =

−4
3
E∗
√
R∗R̂h3/2, where h is an overlap between particles, R̂ is a unit vector along R, E∗ is an ef-

fective Young’s modulus where 1/E∗ = (1 − ν2)/E + (1 − ν2)/E, R∗ is an effective radius,
and r being a radius of a particle. In this chapter we use E = 1, ν = 0.5. The pressure in the
simulation box is calculated as: P = −1

3

∑
α σαα, where the stress tensor σαβ is obtained from

the virial formula: σαβ = − 1

V
∑

i

∑
i>j r

α
ij F

β
ij , where rαij is αth component of the vector pointing

from the center of a particle j to i, and Fβij is βth component of the contact force between particles i
and j.

When thepressure of thepacking is greater thanP > 2·Pmin = 2·10−8, theparameter ϵr is halved,
and theparticles’ sizes are deflated according the rule: rnew = rold·(1− ϵr). When thepressure drops
below Pmin = 10−8, the ϵr is again halved and the particles are inflated. The process continues
until the pressure P settles at the value Pmin < P < 2Pmin. If the packing contains any rattler, the
configuration is rejected and a procedure is repeated. The final configuration provides positions
of soft-spheres particles that are next replaced by the Finite Element representation. The packings
generated using the described algorithm have been tested in terms of the number of contacts (Fig.
S5.1) and the finite size effects on the volume fraction at jamming point (Fig. S5.2) 32.

5.5.2 Hydraulic radius: a geometric argument65,66

For a packed bed of spherical particles with a particle size distribution n(Dp), the ith moment of
the particle size distribution is:

µi =

∫ ∞

0
Di

pn(Dp)dDp (S5.1)

If a horizontal cut is made across the packing, one obtains circular disks of the size x, projected on
the sectional plane. The size distributions of these disks is:

f(x) =
∫ ∞

0
P(x|Dp)P(Dp)dDp (S5.2)
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N
Figure S5.1: Average contact number: A mechanically stable systemmust have a force balance on each parধcle. For
N spheres in d dimensions the number of constraints that has to be saধsfied by the inter-parধcle forces is d×N. In
the system with periodic boundaries this number is d×N− d. Addiধonally, there is one more degree of freedom,
a volume fracধon at the jamming, that has to be constrained. Thus, counধng argument provides the number of
constraining equaধons that needs to be Nc = d × N − d + 1. According Maxwell’s criterion, the number of
inter-parধcle contacts, N ⟨Z⟩ /2, must be at least equal to the number of equaধons Nc. For fricধonless spheres
the packing at the jamming point has exactly this number of contacts: ⟨Z⟩ = 2d − 2(d − 1)/N; which for 3D
average number of contact per parধcle is ⟨Z⟩ = 6− 4/N 32. The results in Fig. S5.1 are in the range of N that is
meaningful for the present study: (10,100). For each N, 100 different packings are generated. Error bars give one
standard deviaধon.

Here P(Dp) is the pdf of Dp:

P(Dp) =
n(Dp)∫
n(Dp)dDp

=
n(Dp)

µ0
(S5.3)

109



N
Figure S5.2: Distribuধon of the volume fracধon at the jamming thresholdψJ : The posiধon of the maximum of the
jamming volume fracধon distribuধon exhibits finite-size scaling: ψ∗ − ψJ = d0N

−1/dν , where d0 = 0.12 ±
0.03, d = 3, ν = 0.71± 0.08, and ψ∗ = 0.639± 0.00132. The asymptoধc value is ploħed as a shaded area.
The green dots in the plot are the average values calculated from 100 independent simulaধon. Error bars give one
standard deviaধon.

P(x|Dp) is a conditional probability density function that given a sphere diameter Dp the diameter
of a given disc in a plane cut ranges between x and x + dx. Note that disks of the same size can
originate from spheres of a different size because the disc size depends on the position at which a
sphere is cut.

It has been shown that a plane cut through a random spheres packing provides a distribution of
disks on a plane that follows65,66:

P(x|Dp) =
x

Dp

√
D2

p − x2
[
1−Θ(x−Dp)

]
(S5.4)
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whereΘ(·) is the Heaviside function. Substituting Equation S5.4 into Equation S5.2, we get:

f(x) =
∫ ∞

0

n(Dp)

µ0

x

Dp

√
D2

p − x2
[
1−Θ(x−Dp)

]
dDp (S5.5)

Thus, for a given plane cut, the amount of the surface occupied by the disks on that plane is given
as:

α = Nα
π

4

∫ ∞

0

x2f(x)dx = Nα
π

6
µ2

µ0
(S5.6)

whereNα is number of discs per unit cross-section area. Integrating over thewhole body, we obtain
the volume of the solid material: V = αL3, where L is a linear dimension of a body. We can see
that α is proportional to the volume fraction ϕ = V/L3, and finally Nα ∝ ϕ = 1− ϕ, where ϕ is
a sample porosity. Similarly, the wetted perimeter per unit area of bedΣ can be obtained from:

Σ = Nαπ

∫ ∞

0
xf(x)dx = Nα

π2

4
µ1

µ0
(S5.7)

leading toΣ ∼ Nα ∝ 1− ϕ.
Finally, the hydraulic radius Rh is:

Rh =
1− α
Σ

=
2

3π

ϕ

1− ϕ
µ2

µ1
(S5.8)

Hydraulic radius calculated from a percolation cluster is given in lattice units δ. Additionally, from
Equation S5.8 we can see that µ2 scales as µ2 ∝ δ2, whereas µ1 scales as µ2 ∝ δ. Thus, in Fig. 5.3 to
compare hydraulic radii calculated for different lattice sizes, we scale their values by δ−2.

5.5.3 Tortuosity calculation

For the fluid flow, hydraulic tortuosity τH is defined as:

τH =
⟨λ⟩
L
≥ 1 (S5.9)

where ⟨λ⟩ is the mean length of the fluid particles paths and L is a linear dimension of a porous
medium in the direction of a macroscopic flow. Despite this simple definition, tortuosity is not
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easy to measure experimentally and computationally. In real porous media, flow streams are com-
plicated, as the fluid fluxes continuously change their sectional area, shape, and orientation, or the
flow streams branch and rejoin. It is also not clear how the average in Equation S5.9 should be cal-
culated: over the whole volume or over the planar cross-section, and if so, what is the most proper
cross-section to do this? It has been concluded that the proper hydraulic tortuosity should be cal-
culated as an average in which streamlines are weighted with fluid fluxes 15,20,63. Thus tortuosity can
be calculated as:

τH =

∑
i λ̃iωi∑
i ωi

(S5.10)

where i enumerates discrete streamlines, λ̃i = λi/L, λi is the length of the ith streamline with
the weight ωi = 1/ti, where ti is a time in which fluid particles move along the ith streamline 15.
The rationale behind ωi factor is to weigh each streamline proportionally to the volumetric flow
associated with a streamline. For the incompressible flow, ti tells how long it takes for the particles
in a given streamline to travel a distanceL in a macroscopic flow direction. Thus, the average com-
ponent of the velocity for that streamline, in a direction of the flow, is proportional to the weight
factor ⟨vx⟩i ∼ ωi. Extending this idea in the continuous limit, for a cross-section perpendicular to
the macroscopic flow, the hydraulic tortuosity can be formulated as:

τH =

∫
A
ux(r)λ̃(r)dσ∫
A
ux(r)dσ

(S5.11)

where A is a cross-section perpendicular to the axis x, both integrals are taken over the surface dσ ∈
A, λ̃(r) is the length of a streamline intersecting with the surface A at the location r (normalized by
L), and ux(r) is the component of the velocity field at r ∈ A normal to A.Moreover, it was shown
that the cut can be done not necessarily in a direction of the macroscopic flow but in principle in
any direction 15. Even though there is a freedom in the location of where the cut can be done, both
integrals are still difficult to calculate numerically 13.

This numerical problem can be bypassed by noticing that 15:

τH =

∫
A
u⊥(r)λ̃(r)dσ∫
A
u⊥(r)dσ

=

∫
V
u(r)dν∫

V
ux(r)dν

(S5.12)
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and the r.h.s. can be further simplified as 15:

τH =
⟨u⟩
⟨ux⟩

(S5.13)

This form of tortuosity is particularly handy in numerical analysis since it requires only solving
the flow field without struggling with resolving streamlines 13,20. Some inaccuracies may occur in
Equation S5.13 if the eddies exist in the flow. Although it cannot be assured that such structures do
not occur in complex porousmaterials, the contribution from eddies to Equation S5.11 is negligible
at low Reynolds numbers 15.

Finally, the velocity field is found with Lattice-Boltzmann simulations. Then, τH can be calcu-
lated from the values of the flow at each node in the lattice:

τH =

∑
r u(r)∑
r ux(r)

(S5.14)

where r runs over all lattice nodes 20.

5.5.4 Hydraulic tortuosity: percolation theory argument

The evolution of the void region between overlapping, randomly located spheres undergoes a per-
colation transition 55,56. This transition exhibits a critical behavior and falls into a continuumperco-
lationuniversality class 55,56,61. For porousmaterials, a porosityϕ acts like the percolationprobability
in a classical percolation theory. Above a certain porosity threshold ϕc, there exists a cluster that
spans the whole system and facilitates fluid transport. This has been leveraged to connect tortuos-
ity with material porosity6,72,73. Here we present an equivalent but simpler argument.

Percolation theory predicts that a mean distance ξ between any two sites on a cluster is given by a
scaling law 58:

ξ ∼ |ϕ− ϕc|−ν (S5.15)

where ν is a critical exponent of the correlation length. The total length of a walkλ constructed on
that cluster has a fractal dimensionD and reads λ ∼ ξD 90. At the percolation threshold, the corre-
lation length scale ξ diverges and is the same as the system size. From the definition of a tortuosity
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τH, we have then (close to the percolation threshold):

τH =
λ

ξ
∼ ξD−1 ∼ |ϕ− ϕc|ν(1−D) ≡ δϕν(1−D) (S5.16)

For a finite system, there is an additional finite-size correction that accounts for the shift of the
percolation transition. Taking this into account, the scaling for τH reads:

τH ∼ |ϕ− ϕc + CI · L−1/ν |ν(1−D) (S5.17)

whereCI is a constant and it is of the order ofCI ∼ O(1).
It has been shown that the most probable traveling length of an incompressible flow on a percolat-
ing cluster falls into the same universality class as the optimal path in strongly disorderedmedia and
the shortest path in the invasion percolation with trapping74,75 — for which the fractal dimension
isD ≈ 1.4376,77. Finally, taking the exponent ν ≈ 0.88, one gets a scaling law for tortuosity (L→
∞): τH ∼ |ϕ − ϕc|−0.38 ≡ δϕ−0.38. For finite systems (N < ∞), tortuosity reaches maximum
value at δϕ = 0, which scales with the system size as τmax

H ∼ L−(1−D) = N−(1−D)/d ≈ N0.14,
where d = 3 is a system dimension.

A similar scaling argument was numerically tested for 2D overlapping squares on Cartesian lat-
tice 15, where via finite-size scaling analysis, it was shown that the tortuosity in the neighborhood of
percolation transition is controlled by the fractal geometry of a percolating channel.

5.5.5 Scaling argument for the γ exponent

Taking a planar cut through the porousmaterial, we observenc capillaries distributed over the area
of the cut. If the material is isotropic, the direction of the cut does not matter, and we can assume
that the cut is made perpendicularly to the direction of fluid transport. This plane-cut would ob-
viously contain cross-sections of all the capillaries that are responsible for the liquid transport thor-
ough the material in the given direction. Close to the percolation threshold, we expect to have a
single capillary in the area that is proportional to ξ2, where ξ is the correlation length. If that is the
case, the expected number of capillaries penetrating thorough the material is nc ∝ L2/ξ2, where
L is the linear size of the body. ξ is related to the exponent of the correlation length (ν ≈ 0.88)
as ξ ∼ δϕ−ν . Therefore, we have a power-law relation between the number of capillaries and δϕ
which reads nc ∼ δϕ2ν ≈ δϕ1.76.
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Figure S5.3: The same numerical data as in Fig. 5.4 — with error bars.

5.5.6 Parameters fitting procedure

Parameters fitting and standarddeviation estimations are donewith anon-linear least squaresmethod
from the scipy Python library.

Extrapolating percolation threshold to the continuum limit

In Fig. 5.2 D, we extrapolate a percolation threshold down to the continuum limit ϕ∗
c , i.e. δ → 0.

To that end, we fit a sigmoid function to the percolation probability data in Fig. 5.2 C. Next, for
different δ we take a porosity at which the percolation probability is equal 1/2 as a percolation
threshold. Finally, we fit a power-law dependence: ϕc − ϕ∗

c = A · δβ . The fitting results are in
Table S5.1 (row: Fig. 5.2 D). Parameters are obtained as a result of minimization of the function:
Error =

∑
i

(
ϕnum
c,i − ϕfit

c,i
)2, where ϕnum

c,i is a percolation threshold estimated from the numerical
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data, and ϕfit
c,i is estimated from the power-law dependence for varying ϕ∗

c ,A, and β.

Fitting power-law dependences for tortuosity

We fit a power-law dependency for tortuosity data obtained from Lattice-Boltzmann simulations.
The relation has a functional form τH = Cτ (ϕ− ϕc)

−0.38, where there are only two fitting param-
eters: ϕc and a constant factor Cτ . Porosity ϕ is a value known from Finite Elements simulations,
and the exponent −0.38 is predicted from a percolation theory, see Section 5.5.4. We perform a
non-linear fit by minimizing the error function: Error =

∑
i

(
τ numi − τ fiti

)2, where the index i
runs over all experimental samples, τ numi is a numerical tortuosity from LB simulations for the sys-
tem i, whereas τ fiti is a fit to the power-law dependency. The results are given in the Table S5.1 (row:
Fig. 5.4 B).

Parameters estimation for permeability

Fits are done for three different permeability relations: i) κ = Cκ(ϕ − ϕc)
γ+0.76ϕ2(1 − ϕ)−2,

ii) κ = Cκ(ϕ − ϕc)
2.52ϕ2(1 − ϕ)−2, and iii) κ = Cκ(ϕ − ϕc)

ē. In Fig. 5.5, Fig. S5.5 A, and
Fig. S5.5 B, a percolation threshold is a fitting parameter ϕc, whereas in Fig. S5.5 C and Fig. S5.5
D, the percolation threshold is held fixed and estimated (for N=50) from the equation ϕ(δ) =

0.035 + 3.76 · δ1.1, where δ = 0.04 and the numerical parameters are taken from Fig. 5.2 D.
Fits are done for two different error functions i) Error =

∑
i

(
logκnum

i − logκfit
i
)2 in Fig. 5.5 and

Fig. S5.5 A and C, and ii) Error =
∑

i

(
κnum
i − κfit

i
)2 in Fig. S5.5 B and D. κnum

i is a permeability
value obtained from LB simulations for the ith packing, whereas κfit

i is a value for a given set of
parameters. The results of these fits can be found in Table S5.1.
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                     M=1                                          M=2                                          M=3

Figure S5.4: Tortuosity calculated for three different δ and different laষce refinement levels: LB simulaধons are
performed on percolaধng clusters that are detected for three different laষce sizes: δ = [0.03, 0.04, 0.05], and
N = 50. The flow fields are resolved on laষces with a size δ̃ = δ/M, where M = 1, 2, 3 are laষce refinement
levels13. Tortuosity increases as the refinement level increases, consistently with previous studies13. The same
behavior is observed for all δ. This suggests that the abrupt increase of τH close to the percolaধon threshold is
caused by the fractal geometry of the percolaধon cluster rather than by arধfacts of the numerical methods. Each
data-point is an average from about 100 simulaধons. τH is given as a funcধon of δϕ, where laষce size dependent
percolaধon threshold was esধmated from the fits in Fig. 5.2 D, and Table S5.1: {ϕc(0.03) = 0.113, ϕc(0.04) =
0.141, ϕc(0.05) = 0.171}. Error-bars are not shown for beħer readability.
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Figure S5.5: Permeability obtained from Laষce-Boltzmann simulaধons for the system size N=50, the laষce resolu-
ধon δ = 0.04, and the laষce size for the fluid phase δ̃ = δ/3. Symbols are the same as in Fig. 5.5; blue crosses
represent permeability for individual simulaধons, black open circles represent binned averages, red stars are median
values, and dashed lines correspond to different models. Fiħed parameters are given in Table S5.1. In Fig. S5.5
A and B, ϕc is a free parameter, whereas in Fig. S5.5 D, ϕc is fixed at ϕc = 0.141 (see Secধon 5.5.6). Classical
Kozeny-Carman model (κ ∼ ϕ3/(1− ϕ)2) is given for a comparison in Fig. S5.5 A and B. Error funcধons used in
a fiষng procedure are given in Table S5.1.
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6
Conclusions

The central theme of this thesis is the notion that microbial populations, on the scale of hundreds
of cells, can be described as a granular material rather than a continuum. This proposal was exten-
sively corroborated in Chapter 2. In the aforementioned chapter, combining microfluidics experi-
ments, individual based simulations, and image analysis methods, we revealed that the structure of
confined microbial populations is disordered, that the population dynamics is intermittent, and
that contact forces are heterogeneous. We also found that these confined populations can generate
and strive under very large pressures that can reach even the magnitude of 1 MPa. In Chapter 3,
we show that the feedback of mechanical stress on the growth rate controls the mechanical prop-
erties of budding yeast population in a non-trivial way. Aiming at further understanding of the
structure of extremely compacted microbial populations, I developed a model that treats cells as
separate entities, but also captures the deformation of these cells with great accuracy. Armed with
this numerical model, in Chapter 4, I uncovered the structural consequences of cells deformabil-
ity and how these deformation may give rise to the unexpected emergence of rotational degrees of
freedom that need to be constrained. Finally, in Chapter 5, capitalizing on the idea of treating a
microbial population as a living granular material, I studied fluid transport through the packings
of compressed elastic shells— our proxymodel of a compactedmicrobial population. The notion
of these packings as a granular porous material, combined with percolation theory, provided us
with a description of the flow obstruction near the percolation threshold.
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Appendix A
Unstructured Mesh Generation on a Sphere

A.1 Mesh Generation

Mesh generation is the first step in a wide range of applications from scientific computing to com-
puter graphics. Amesh is a set of nodes and a topology of links between these points. These nodes
and links determine where and how the model is solved.

The simplest approach to mesh generation is generating a structured mesh such as the Carte-
sian grid. In this approach, the nodes are located at the intersection of perpendicular lines and the
mesh elements are rectangular. This kind ofmesh is extremely simple and quick to generate. How-
ever, applicability of this mesh is also limited to the simplest geometries, and the mesh generation
method requires modifications for curved boundaries — so-called a body-fitted mesh generation 1.
This is still essentially the Cartesian grid, but mesh elements are shaped to fit the boundaries. This
procedure gets increasingly difficult as the complexity of the boundary increases and it is not guar-
anteed that such a procedure exists for all boundaries. Alternatively, an unstructured mesh can be
generated. Oneof the advantages of theunstructuredmesh is that nodes canbe set on theboundary
surface, allowing for the greater accuracy required in numerical calculations. Another advantage is
flexibility in terms of boundaries to which this algorithm can be applied, and the number of nodes
that represent the mesh. There is some substantial work done towards mesh generation, and some
numerical packages are publicly available, for example: DistMesh 2, and Triangle 3.

A.2 Sphere Triangulation Algorithms

A.2.1 Iterative Algorithms

Iterative triangulation of a sphere is a mesh generation method where the algorithm starts with a
predefined triangulation (called in this chapter a triangulation level 1), and then a higher resolution
mesh is generated in an iterative manner. The iterative process replaces every triangle belonging to
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the mesh by a set of triangles obtained by a subdivision of the original ones and projecting it back
onto the sphere. Examples of a triangle subdivision process are depicted in Figure A.1. Simple
subdivision splits a triangle into two triangles (bisection), where the longest side is divided into two
pieces of the same length, and the middle point is connected to the node on the opposite side of
the triangle, Figure A.1 a. For Simple triangulation, the starting triangulation is a cube with a
topology as in Figure A.2 a.1. Platonic triangulation uses any Platonic figure as a starting point,
for example, anoctahedronor an icosahedron, cf. FigureA.2 b.1 and c.14,5. Every equilateral triangle
is subdivided into four new triangles (quadrisection), and the new nodes are projected back onto
the sphere, Figure A.1 b.

a)

b)

Figure A.1: Subdivision of a triangle: a) Bisecধon in the Simple algorithm. b) Quadrisecধon of an equilateral
triangle used in the Platonic triangulaধon algorithm.
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a.1 a.2 a.3 a.4

b.1 b.2 b.3 b.4

c.1 c.2 c.3 c.4

d.1 d.2 d.3 d.4

Figure A.2: (a) Simple triangulaধon: Subdivision of a triangular element is presented in Figure A.1 a. (b) Icosa-
hedron Triangulaধon, and (c) Octahedron triangulaধon: The method of the triangular element Quadrisecধon of
a triangular element is presented in Figure A.1 b. (d) Stochastic triangulaধon: Mesh is generated as described
in Secধon A.2.2. Four different mesh sizes are shown: N=51 (d.1), N=100 (d.2), N=204 (d.3), N=625 (d.4).
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A.2.2 rndmesh - Monte Carlo mesh generation algorithm

Iterative algorithms that generate a mesh by subdividing triangles are simple and computationally
very efficient. However, the main disadvantage of these algorithms is that they cannot generate a
mesh with an arbitrary number of nodes. In other words, iterative algorithms are restricted to the
specific number of vertex nodes resulting from a subdivision procedure.

In many mechanics calculations, it is crucial to have control over a density of nodes on the sphere
surface and to be able to simulate an object of arbitrary size. To that end, we developed a Monte
Carlo algorithm that is an extension of the algorithm proposed in Paulose et al.6. The algorithm
takes two parameters i) the radius R of a sphere to triangulate, ii) and the number of vertex nodes
in a mesh N, and it returns a set of points that are distributed on the surface of that sphere. The
fictitious size of each vertex rv is chosen such that for a given N, nodes cover the whole sphere uni-
formly, i.e. Nπr2v = 4πR2. First, these nodes are randomly distributed on a sphere. Then, for such
a configuration, Simulated Annealing Monte Carlo (SAMC) simulation7 is performed as follow:
the simulation starts at the temperature Tmax = 1000 [en.u.] and the system is cooled down to
the temperature Tmin = 0.1 [en.u], where [en.u.] stands for the energy unit. The cooling process
is performed in nanneals = 200 steps. At the ith step, the temperature is decreased exponentially:
Ti = Tmax · exp [−∆T · (i− 1)], where ∆T = log(Tmax/Tmin)/(nanneals − 1). Each annealing
step consists of nmc = 100Monte Carlo steps. A singleMonte Carlo step consists ofN attempts of
displacement of a randomly selected node. A new configuration is accepted using the Metropolis
criterion 8. For theMetropolis criterion, the energy difference is evaluated using a repulsive part of
the Lenard-Jones-8 potential with the parameter ϵ = 1.0 [en.u.]. The potential has a cut-off at
rc = 3 × σ = 3 × 2 × rv. As the interactions are short-ranged, the computational complexity of
the simulation is O(N). At the temperature Tmin, the topology of the mesh is generated for the
final configuration using Delaunay triangulation of points on a sphere — Algorithm 772 from a
STRIPACK library9. The pseudo-code of the Monte Carlo procedure (except Algorithm 772) is
given in Algorithm Boxes 1, 2, and 3.
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Algorithm 1 Simulated Annealing Procedure
1: procedure SimMC(x) ▷ x given
2: Tmax, Tmin, nanneals, nmc, rv ▷ Parameters
3: ∆T← log(Tmax/Tmin)/(nanneals − 1)
4: for i← 1, nanneals do
5: Ti ← Tmax × exp [−∆T(i− 1)]

6: for j← 1, nmc do
7: x← MCSTEP(x,Ti, rv)

{triangle}i ← Algorithm772(x) ▷Triangulate sphere

Algorithm 2 Single Monte Carlo Step
1: procedure MCSTEP(x,T,rv)
2: N← len(x) ▷ Parameters
3: for i← 1,N do
4: dx← Uniform[−0.5rv, 0.5rv]
5: x̃← Project(x, dx) ▷ Project onto sphere
6: x← Metropolis(x, x̃,T, rv)

Algorithm 3 Metropolis Criterion
1: procedure Metropolis(x, x̃,T, rv)
2: E1 ← E(x, rv) ▷ Calculate energy
3: E2 ← E(x̃, rv) ▷ Calculate energy
4: ∆E = E2 − E1

5: p← Uniform[0, 1] ▷Get a (pseudo) random number
6: if p < min(exp[−∆E/T], 1) then
7: return x̃
8: else
9: return x
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A.3 Mesh quality metrics

In engineering and computer graphics, the quality of the mesh is of crucial importance. Equilat-
eral triangles of roughly the same size are desirable when solving PDEs with the Finite Element
Method 10. It is also desirable to avoid elements that are not very proportional, i.e. when one of the
element’s dimension is much larger than the other. Below, we provide definitions of some of the
quality metrics used in mesh quality evaluation.

A.3.1 Triangle geometry metrics

Dual area of the ith vertex node in the mesh is defined as:

Ci =
1

3

∑
t∈{T}i

At (A.1)

Here t denotes a single triangular element, {T}i denotes a set of triangular elements that contain
the node i, andAt is the area of the triangle t.

The dual areametric of the vertex is basically a normalized area of the surface that is associatedwith
the given point.

Dual ratio area is defined as:

qA =
min
i
Ci

max
i
Ci

(A.2)

where: min
i

andmax
i

refer to themaximum andminimum over the whole set of nodes in themesh,
and describes the spread in the areas that are associated with vertex nodes in the mesh. The smaller
the dual ratio, the better. Angular departure from π/3 (the value for equilateral triangle) is quan-
tified as:

qθ =

min
T

( min
k=1,2,3

θk)

π/3
(A.3)

qθ and qA are important in particular, because themaximumallowed time used in hyperbolic PDEs
solvers (like for advection equation) is controlled by qA and qθ 11 —with larger qA, the time step∆t
can be longer. Contrary to qA, qθ controls∆t in an inverse manner, meaning that the lower the qθ,
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the larger the integration time-step.

The last parameter is a relation between the size of circles that are inscribed (rin) and described
(rout) on a triangular element:

q = min
i

2
rin
rout

= min
i

(b+ c− a)(c+ a− b)(a+ b− c)
abc

(A.4)

where a, b, and c are lengths of triangle sides, and index i runs over all triangular elements. Other
metrics could include distributions of the above statistics, but amore comprehensive analysis is left
out for further investigations.

A.3.2 Bounding volume calculations

Two different approaches to calculate a volume contained by a spherical mesh are presented.

Volume Calculation — Tetrahedral elements

For any non-concave objectwith non-zero volume, its center of themass is contained in the interior
of the body. If that is the case, the volume calculation is relatively simple. Namely, the volume is
calculated as a sum of tetrahedrons build on top of each triangular element in the mesh and the
center of the mass as the fourth vertex. This method, although restricted to convex objects, gives
an easy way to calculate volume change upon displacement of a single vertex.

Volume Calculation — Divergence Theorem

There is a more general way of calculating the volume of an arbitrary, closed, and non-intersecting
object. This method is based on the Divergence Theorem.∫

Ω

dν (∇ · F) =
∫
∂Ω

dS (F · n) (A.5)

where F is any vector field, and n is the pointing vector of the surface element. Taking an arbitrary
vector field F = (x, 0, 0) ≡ x̄, we have ∇ · F = 1. Thus the left hand side of the divergence
theorem reads:

∫
Ω
dν =

∫
∂Ω

dS (x̄ · n) = V. Then the numerical formula to calculate the volume
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of a triangulated surface is:

V =

∫
∂Ω

dS (x̄ · n) ≈
∑
i

ni
xsi (A.6)

where ni
x is x-component of a normal vector of the ith triangular element, and si is the area of the

ith triangular element. This approach is used, for example, in medical physics 12.

A.3.3 Curvature estimation for the mesh

A mesh is often generated for continuum mechanics calculations in engineering and computer
graphics. One of the energy component of interest is the bending energy. This requires an es-
timation of the local radius of curvature. Many techniques are developed for that purpose, but
for simplicity and performance purposes, the most popular method is based on the angle between
two neighboring triangular elements, θ. θ is the angle between normal vectors n̂1 and n̂2 of two
triangular elements that share an edge, and it is calculated from “The Law of Cosine”: n̂1 · n̂2 =

|n̂1|+ |n̂2| − 2|n̂1||n̂2| cos(θ), Figure A.3. Having estimated θ, the radius of curvature Rest can be
estimated as (R−1

est = 1/Rext):
R−1

est = 2 sin(θ/2)/h (A.7)

where h = (h1 + h2)/2, and h1 and h2 are altitudes of the triangles projected on a common edge, ê.

Figure A.3: Mesh geometry: Two triangles are sharing edge ê. The angle between two elements is defined for two
normals n̂1 and n̂2. Sketch from Bridson et al.13.
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A.4 Results

A.4.1 A sphere approximated by a mesh

A sphere is an idealized object. Triangulation approximates this object as a collection of flat trian-
gular facets, but this representation is subject to inaccuracies. These inaccuracies are crucial when
comparing to analytic solutions. The results of this approximation (for Simple algorithm) are
presented in Figure A.4. We can see that it takes a relatively large number of points, on the order
of thousands rather than hundreds, to accurately approximate both the surface and the volume of
a sphere. However, for simple iterative algorithms, the number of vertex nodes grows very quickly,
and this may become a limitation if higher accuracy is needed.

Figure A.4: Sphere approximated by a mesh: A relaধve surface area and a sphere volume, calculated for the first
10 triangulaধon levels for the Simple algorithm (cf. Figure A.2 a). Arrows give the number of nodes in a mesh. In
this Figure, TRIANGULATION DEPTH is used in the same sense as the triangulation level.
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A.4.2 Mesh quality

The algorithm that produces equilateral triangles is desiredwhen solvingPDEswith Finite Element
Method. The upper bound for themaximumerror depends only on the smallest angle in themesh,
and if all angles are close to 60o, a good numerical stability is achieved. The metric that captures
this behavior is qθ, with qθ = 1 if all triangles are equilateral. It can be seen from Tables A.1, A.3,
andA.4, thatSimple, Icosahedron, andOctahedron triangulations providemesheswith quite
good qθ in the entire range of different mesh resolutions. This is not the case for Tetrahedron
triangulation, where qθ quickly drops to about 0.5, Table A.2. Although values of qθ for Simple
and Tehtrahedron algorithms are not that different, we can see that the qA metric decreases to
less than 0.1 for Tetrahedron triangulation, whereas it stays about 0.5 for Simple triangulation.
The rule of thumb is that if all triangles in the mesh have q ≥ 0.5, the mesh is considered high
quality 2. This is the case for all iterative algorithms except Tetrahedron triangulation. We can
also see that Icosahedron triangulation is much better in terms of all the metrics than any other
iterative algorithm, Table A.3.

For relatively small meshes (N < 500) and low Tend < 1.0, the quality of random meshes
(rndmesh) is better than for Simple, Tetrahedron and Octahedron triangulations, Table A.5.
Although the same is true for larger meshes, the quality is sightly worse, Table A.5. The reason for
that can be two-fold: first, as the system size increases, the energy landscape becomesmore complex.
In such a case, the quality of the mesh boils down to the sampling efficiency. Secondly, q-metrics
are defined formin andmax functions; they take only extreme values under a consideration. As the
systemgrows larger, the fluctuationmagnitudes increase,making itmore likely to find a lowquality
triangular element. FromTable A.6, we can see that the choice of the final temperature Tend is also
crucial for the quality of generatedmeshes. As the temperature is lowered in the SAMC algorithm,
the glass transitionoccurs at around the temperatureTg ≈ 1.3−1.4 14,15, andhighqualitymeshes can
be extracted from the configurations obtained for T < Tg. Finally, we can see, that in terms of qA-
metric, while larger random meshes (N ≈ 2500) are comparable to the ones from Icosahedron
triangulation, the metrics qθ and q for rndmesh are noticeably worse. Nevertheless, quality of the
random meshes is still good enough for reliable engineering and graphics calculations.
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A.4.3 Curvature estimation accuracy

Local curvature estimation is essential for mechanics calculations on curved surfaces. The accu-
racy of this estimation depends on the geometry of a mesh and is one of the quality metrics. To
benchmark different algorithms, for a given sphere with a known radius R0, we generate meshes
with different resolutions. Next, for each pair of triangles that share an edge, we estimate a ra-
dius of curvature Rest, as described in Section A.3.3. The results are in Figure A.5. We can see that
for coarser meshes, where the angles between triangles are larger, the estimations are very accurate.
This changes for finer meshes (as the local geometry is more planar), and the estimates are subject
to much larger errors. For the Icosahedronmethod, the errors are relatively low. However, the
Simple triangulation method has much lager inaccuracies — up to 5-fold overestimation of the
radius of curvature.

A.4.4 Computational time performance

In SAMC calculations, there are only short-ranged, non-bonded interactions between individual
particles. For computational efficiency, identification of neighbor particles is handled with the
linked-cells list method 16 — implemented in the nbody library available at https://github.
com/pgniewko/nblists. The computational cost of the simulation is O(N), where N is the
number of vertex nodes on a sphere. In Figure A.6, results are shown for the computational cost
as a function of system size, the number of Monte Carlo steps, and the number of temperature
anneals. We can clearly see that the scaling with the system size is pretty linearO(N)—as expected
for the linked-cells method.
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Figure A.5: Curvature esধmaধon for two different triangulaধon techniques and different triangulaধon levels. θ can
be calculated for a pair of two triangles sharing an edge. R0 is given, and Rest is esধmated as described in Secধon
A.3.3.

A.5 Conclusions and Further Directions

Further work will include more comprehensive quality tests of the random meshes (for example,
distribution of the q-metrics). The rndmesh library implements a method that creates roughly
uniform meshes on a sphere. However in some applications, the heterogeneities in a mesh may
be desired. To that end, rndmesh can be further extended by introducing a one-body, position-
dependent potential.

Finally, the rndmesh library can be used in solving The Thomson Problem— an arrangement
of identical charges on the surface of a sphere. Mathematically, the task is a search for the globalmin-
imumof the energy functionE =

∑
i ̸=j r

−1
ij , where rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2,

and subject to the constraint x2i + y2i + z2i = 1. The Thomson Problem can be generalized to
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Figure A.6: Scaling of the computaধonal cost of triangulaধon as a funcধon of the system size, number of MC steps,
and number of temperature anneals. Simulaধons were performed on a single 1.8 GHz Intel Core i5 CPU, with 8GB
of RAM.

the repulsive potential of the form x−α (Riesz α-kernels). The solution to the problem has many
applications in physics, chemistry, and biology, but the general solution is still unknown 17.
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Level # Nodes # Triangles qA qθ q

1 8 12 0.667 0.750 0.828

2 14 24 0.667 0.852 0.935

3 26 48 0.500 0.681 0.869

4 50 96 0.493 0.627 0.729

5 98 192 0.487 0.582 0.748

6 194 384 0.483 0.568 0.646

7 386 768 0.480 0.556 0.711

8 770 1536 0.477 0.553 0.624

Table A.1: Simple Triangulation: Geometric quality metrics for different triangulaধon levels. For the defini-
ধons of the metrics qA, qθ , and q, please refer to the main text.

Level # Nodes # Triangles qA qθ q

1 4 4 1 1 1

2 10 16 0.367 0.662 0.710

3 34 64 0.218 0.545 0.537

4 130 256 0.116 0.512 0.482

5 514 1024 0.087 0.503 0.469

6 2050 4096 0.079 0.501 0.465

7 8194 16384 0.077 0.500 0.464

8 32770 65536 0.076 0.500 0.464

Table A.2: Tetrahedron Triangulation: Geometric quality metrics for different triangulaধon levels. For the
definiধons of the metrics qA, qθ , and q, please refer to the main text.
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Level # Nodes # Triangles qA qθ q

1 12 20 1 1 1

2 42 80 0.784 0.926 0.989

3 162 320 0.740 0.907 0.973

4 642 1280 0.667 0.902 0.970

5 2562 5120 0.648 0.900 0.969

6 10242 20480 0.642 0.900 0.969

7 40962 81920 0.641 0.900 0.969

8 163842 327680 0.640 0.900 0.969

Table A.3: Icosahedron Triangulation: Geometric quality metrics for different triangulaধon levels. For the
definiধons of the metrics qA, qθ , and q, please refer to the main text.

Level # Nodes # Triangles qA qθ q

1 6 8 1 1 1

2 18 32 0.572 0.820 0.906

3 66 128 0.474 0.768 0.850

4 258 512 0.361 0.755 0.834

5 1026 2048 0.328 0.751 0.830

6 4098 8192 0.320 0.750 0.8289

7 16386 32768 0.317 0.750 0.829

8 65538 131072 0.317 0.750 0.828

Table A.4: Octahedron Triangulation: Geometric quality metrics for different triangulaধon levels. For the
definiধons of the metrics qA, qθ , and q, please refer to the main text.
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rv # Nodes # Triangles qA qθ q

0.45 123 242 0.661 0.729 0.829

0.4 156 308 0.635 0.668 0.731

0.35 204 404 0.624 0.651 0.719

0.3 277 550 0.615 0.633 0.690

0.25 400 796 0.614 0.624 0.671

0.2 625 1246 0.580 0.605 0.644

0.15 1111 2218 0.588 0.617 0.671

0.1 2500 4996 0.596 0.623 0.681

Table A.5: Geometric quality metrics for Monte Carlo mesh generaধon algorithms. The simulaধon starts at T=1000
[en.u.], and anneals the system down to T=0.1 [en.u.]. The size of the sphere is kept constant,R = 2, whereas the
size of the vertex nodes is decreased, rv .

Temperature # Nodes # Triangles qA qθ q

0.1 2500 4996 0.595 0.619 0.657

1 2500 4996 0.566 0.607 0.663

10 2500 4996 0.381 0.514 0.583

50 2500 4996 0.218 0.387 0.410

100 2500 4996 0.182 0.349 0.333

250 2500 4996 0.135 0.304 0.329

500 2500 4996 0.110 0.242 0.227

750 2500 4996 0.085 0.251 0.224

Table A.6: Geometric quality metrics for Monte Carlo mesh generaধon algorithms. The number of vertex nodes
is kept constant at N=2500 and rv = 0.1[a.u.]. The simulaধon procedure is described in Secধon A.2.2. The
simulaধons start at the temperature T=1000 and stops at the temperature T=Temperature [en.u.].
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Appendix B
Mechanics and Simulations of Elastic Shells

B.1 Linear Elasticity Theory

B.1.1 Foundations

A basic assumption in the linear elasticity theory is that stress is a linear function of the strain:

σij = Cijklεkl (B.1)

where σij is the stress tensor, εkl is the strain tensor, andCijkl the 4th-order stiffness tensor. In 3D,
stress and strain tensors can both have 9 elements, implying that the stiffness tensor can have 9·9 =

81 independent elements. However, stress and strain tensors are symmetric, which reduces their
number of independent elements to 6, and as a result, the number ofCijkl independent elements
cannot be greater than 36. Additionally, we have:

σij =
∂W

∂εij
⇒ Cijkl =

∂2W

∂εijεkl
(B.2)

whereW is a density energy function. Since the order of differentiation is arbitrary, we can see that
Cijkl = Cklij , which further reduces the number of possible independent elements in Cijkl to 21.
Further reduction of the independent elements occurs for isotropic materials. If we consider an
isotropicmaterial, then the elements ofCijkl must be independent of the coordinate system. They
can be independent only if they transform in the same way as δij tensor (Kronecker delta). There
are only two possible combinations that fulfill this requirement: δijδkl and δikδjl + δilδjk. Thus,
for isotropic materials, there can be only two independent parameters (λ and µ):

Cijkl = λ (δijδkl) + µ (δikδjl + δilδjk) (B.3)
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where λ and µ are called Lamé coefficients, which are measured in units of pressure (µ has a special
name: shear modulॿ).

Similarly, for isotropic materials, the stress tensor must be related to the strain tensor in a way
independent of the coordination system. One such possibility is σij = const · εij . However, there
is also the possibility of the unit tensor δij multiplied by a scalar that is a function of ε. The only
scalar function such as that, is

∑
εii. Thus, the stress tensor can be expressed in a general form (for

isotropic materials) :
σij = 2µϵij + λϵkkδij (B.4)

B.1.2 Shear and bulk moduli

The shearmodulusµdescribes thematerial’s resistance to the volume-preserving deformation (sim-
ple shear), and it is independent of dimension d. Contrary to the shearmodulus, the bulkmodulus
(KB) accounts for the resistance to the volumetric compression as:

KB = − P

V/V0

(B.5)

where V0 and V are the material’s volumes before and after application of the pressure P . For
isotropic materials, the stress tensor corresponding to the uniform compression is σαβ = −Pδαβ ,
and the pressureP can be easily expressed asσαα = −P ·d. Moreover, the trace of the strain tensor
is εv ≡ εαα ≈ V/V0 (exact in the limit εαα → 0). Because the trace ofσij isσαα = (2µ+dλ)εαα,
the bulkmodulus depends (throughEquationB.4) on amaterial dimensionality throughEquation
B.4. In 2D the bulk modulus is 1:

KB =
σαα
dεαα

= λ+
2

d
µ = λ+ µ (B.6)

B.2 Elastic description of shell mechanics

An elastic shell resists both stretching and out-of-plane deformations. For a thin shell, these two
contributions can be factorized, and the total energy can be represented as a sum of these two
contributions:

W = Ws +Wb (B.7)
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whereWs andWb stand for in-plane stretching and out-of-plane bending energies, respectively.
In the elasticity theory of thin plates, a deformation is represented by an in-plane displacement

vector field u = (u1(r), u2(r)) and an out-of-plane deflection field f(r). Displacement defined
this way maps the point (x1, x2, 0) in the mid-plane reference state to (x1 + u1, x2 + u2, f). The
strain tensor, for the displacement fields u(·) and f(·), is then defined as:

εij =
1

2

(
∂iuj + ∂jui + ∂iuk∂juk + ∂if∂jf

)
(B.8)

where the indices run over 1 and 2, and the displacement fields are evaluated along the mid-surface.
For small displacements, the quadratic terms in uk can be neglected, but we must keep the term
quadratic in deflection f since there is no lower order in f .

Having the strain tensor defined by Equation B.8, we can get the stretching energyWs by inte-
grating out the z-direction in Equation B.1 (assuming a constant thickness of the plate t). In terms
of the two Lamé coefficients µ and λ and the the strain tensor εij , the stretching energy is:

Ws =
1

2
Y

∫
Ω

dS
(
2µε2ij + λε2kk

)
(B.9)

The integral is over the area of the reference state. The Lamé coefficients are related to the other
familiar material parameters, such as themodulॿ of stiffness Y = E · t, and the Poisson ratio ν by
relations:

E =
4µ(µ+ λ)

2µ+ λ
(B.10)

ν =
λ

2µ+ λ
(B.11)

The Poisson coefficient νmeasures a tendency of thematerial to shrink in a direction perpendicular
to the stretching stress (or expand upon applied compression).

Similarly toWs, assuming no shear in a direction perpendicular to themid-surface, the bending
energy for the isotropic shell is defined as:

Wb =
1

2
κ

∫
Ω

dS
[
(∇2f)2 − 2(1− ν) det(∂i∂jf)

]
(B.12)

where κ = Et3/12(1 − ν2) is called the bending rigidity. Twice the mean curvature H (H =
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1/R1 + 1/R2) and Gaussian curvature K (K = 1/R1R2, where R1 and R2 are the canonical
radii of curvature) can be expressed in terms of f as:

H = ∇ ·

(
∇f√

1 + |∇f |2

)
(B.13)

K =
det(∂i∂jf)

(1 + |∇f |2)2
(B.14)

For small |∇f |,H ≈ ∇2f andK ≈ det(∂i∂jf). Thus for small deflections, the bending energy
can be approximated as:

Wb ≈
∫
Ω

dS
(
1

2
κH2 − κGK

)
(B.15)

where κG = Et3/12(1 + ν) is called the Gaussian rigidity. From the Gauss-Bonnet theorem of
compact surfaces, the second term is a topological invariant

∫
dSK = 2πχ(X), where χ(S) is

called the Euler-Poincaré characteristic of the surface. For surfaces that are topologically equivalent
to spheres, χ = 2. Since we do not consider any topological transformations, and we study only
homogeneous shells, this term is constant and can be dropped out from further calculations of the
bending energy and forces. If the material is heterogeneous or the material’s thickness varies, then
the Gaussian rigidity terms needs to be included in Equation B.15 2–4.

B.2.1 Contributions from stretching and bending

Considering the simplest case of a homogeneous plate or a shell, two parameters determine the
behavior of the body: Y = Et, and κ = Et3/12(1 − ν2). As a result, the thickness of the
shell strongly affects its elastic behavior. In particular, for very thin plates and shells, the cubic de-
pendence of κ on t (κ ∝ t3) determines that bending is highly favorable over stretching. This
behavior is demonstrated by the ease of bending a piece of paper compared to stretching it 5,6. Flat
elastic plates can exhibit pure bending with no associated in-plane stretching. This is not always
true for shells that have non-zero curvature in their undeformed state. The underlying curvature
mediates a linear coupling between out-of-plane displacements and in-plane strains, i.e. any trans-
verse deformation ω introduces a strain of the order of ω/R0, whereR0 is the radius of curvature
in the relaxed state6. This coupling causes the localization of the normal deformation within a
narrow width in the spherical shell 5. Deformation of maximum depth ω, localized over a length l,
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leads to the curvature change∝ ω/l2 and strain∝ ω/R0. This corresponds to the energy densities
per unit areaWs(l, ω) ∝ Y ω2/R2

0, andWb(l, ω) ∝ κω2/l4 6. Minimizing the sum of energies
Ws +Wb, with respect to l, gives a typical length-scale of a deformation localization:

l∗ =

(
κR2

0

Y

)1/4

≡ R0

γ1/4
(B.16)

where we introduced a dimensionless Föppl-von Kármán number 3:

γ ≡ Y R2
0

κ
≈ 10

(
R

h

)2

(B.17)

The Föppl-von Kármán number quantifies the relative importance of stretching to bending defor-
mations for spherical shells. A shell is considered thin when γ ≳ 1000, i.e. when h ≲ 0.1R0

5.

B.2.2 Elastic Stretching Energy

General Overview of Spring-Mesh Models

The elastic stretching energy Ws can be approximated by the energy of elastic harmonic springs
with bonds between the nodes7:

Ws =
∑
⟨i,j⟩

kij
(
|rij| − |r0ij|

)2
(B.18)

where |rij| and |r0ij| are the lengths of the deformed and initial states of the bond connecting points
i and j. This form, irrespective of the relation between a spring constant kij and Y , reproduces the
stretching energy component of the elastic energy in the continuum limit for materials with only
ν = 1/3 (2D), see Section B.2.2. Having potential energy calculated, the forces between two nodes
connected by a spring can be calculated as:

Fij = −Fji = kij
(
rj − ri

)(
1−
|r0ij|
|rij|

)
(B.19)
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Seung and Nelson’s Model

Seung andNelson considered a 2D triangular lattice with unit spacing7. Lattice deformationmaps
a point ri into the new location r′i. The streching energyWs is defined as:

Ws =
1

2
k
∑
⟨i,j⟩

(
|r′i − r′j| − 1

)2
=

1

2
k
∑
a

Ua (B.20)

where k is a stiffness constant (same for all of the springs), the sum runs over all pairs of connected
nodes ⟨a, b⟩, and Ua is a sum over nearest neighbors b of a node a: Ua = 1

2

∑
b (|r′a − r′b| − 1)2.

Using the metric tensor, it is shown that7:

Ua =
3

8

(
2ε2ij + ε2kk

)
(B.21)

Thus, in the limit of infinitesimally small edge lengths (continuum limit), the stretching energy is
approximated as:

Ws =
1

2
k
∑
a

Ua ≈
1√
3
k
∫
Ω

dSU(r) =
√
3

8
k
∫
Ω

dS(2ε2ij + ε2kk) (B.22)

Comparing the abovewith Equation B.9, we get the Lamé coefficients: λ = µ =
√
3
4
k, fromwhich

in 2Dwe obtain the Poisson ratio ν = 1
3
(in 3Dwe get ν = 1

4
, known as the Cauchy value), and the

modulॿ of stiffness Y = 2√
3k. At this point, it is important to note that the spring stiffness k is a

free parameter and can be adjusted tomatchmaterial propertyY , whereas the Poisson ratio is fixed
and equal to ν = 1/3 for allmembranes simulatedwith thismethod. This stems from the fact that
Ua is a central force potential, i.e., the total energy can be expressed asWs =

1
2
k
∑

i ̸=j Ua (∥rij∥),
where F is a deformation tensor, rij = rj − ri is the distance between two nodes i and j, andUa(·)
is a given potential.

Kot, Nagahash & Szymczak’s Model

Kot et al. 8,9 took the idea of Seung and Nelson a step further7 and extended it to the cases of
disorderedmeshes. Homogeneous and isotropicmediumcanbe characterized by two independent
parameters. Aswe already pointed out, for allmodelswith central forces (including springmeshes),
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the Poisson ratio is fixed at ν = 1/3. Thus, we need one more elastic parameter to complete the
description of thematerial. The simplest quantity to calculate is the bulkmodulusKB . Thematrix
form of Hooke’s Law (Equation B.4) is:

σ11

σ22

σ33

σ23

σ13

σ12


=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ϵ11

ε22

ε33

2ε23

2ε13

2ε12


For a membrane, we can assume that: σi3 = εi3 = 0, and the above matrix equation reduces to:σ11σ22

σ12

 =

2µ+ λ λ 0

λ 2µ+ λ 0

0 0 µ


 ε11

ε22

2ε12


For a 2D system, mechanical parameters such as bulk modulusKB (planar modulus in 2D), Pois-
son’s ratio ν, and Young’s modulusE for 2D system are related to Lamé coefficients as:

KB = λ+ µ , ν =
λ

λ+ 2µ
, E =

4µ(λ+ µ)

λ+ 2µ
(B.23)

We can also easily check thatE = 2KB(1− ν). Upon an isotropic compression, the strain tensor
is εij = δijεwhere ε < 0, and the energy density is:

∆e =
1

2
σ : εij =

1

2
ε2 · 2 · (2λ+ 2µ) = 2KBϵ

2 =
E

1− ν
ε2 (B.24)

If we assume that all the spring constants are the same (i.e. ki = k) and that all the springs are
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compressed uniformly (i.e. εi = ε⇒ li = Li(1 + ε)) we have:

∆e =
1

V

∑
i

1

2
kiL2

i ε
2
i =

1

2t · A0

ε2k
∑
i

L2
i (B.25)

where Li is the relaxed length of the spring,A0 the area of the membrane before the compression,
and t is the membrane’s thickness (which does not change upon compression).
Finally, we get a relation for a spring constant:

k =
2Y

1− ν
A0∑
i L2

i
(B.26)

Sinceν = 1/3, the spring constant for unstructuredmeshes is k = 3Y A0/
∑

i L
2
i
10. Ifwe consider

a hexagonal lattice, made of N identical equilateral triangles with edges of length Li = α, then
A0 =

√
3Nα2/4, whereas

∑
i L

2
i = 3/2Nα2. Substituting it into Equation B.26, we obtain

k =
√
3Y/2, identical to Nelson et al.7,11.

Van Gelder’s Model

The model developed by Allen Van Gelder is another version of the spring-mesh model for the
simulation of isotropic elastic materials 12. Since the spring-mesh models cannot match the Finite
Element Method exactly, the idea behind Van Gelder’s model is to parametrize every spring in the
mesh in such a way that the mechanics of every triangular elements matches, as closely as possible,
the deformation of an isotropic elastic material 12. That said, the model is limited to the case where
external forces are uniformly distributed along each edge in the mesh and deformations are linear.
For a triangle as in Figure B.1 A (for a small deformation), a spring constant for edge c reads 12:

kc(T) =
(

Y

1 + ν

)
AT

|c|2
+

(
Y ν

1− ν2

)
|a|2 + |b|2 − |c|2

8AT
(B.27)

where Y = Et;E is Young’s modulus; t is material thickness;AT is the area of the triangle T that
contains the edge c; |a|,|b|, and |c| are the lengths of the edge; and ν is the Poisson ratio.

It is important to note that although ν appears to be a free parameter, in fact it is not. For the
spring-mesh, the Poisson ratio is ν = 1/3 (Section B.2.2), contrary to the value ν = 0 used in a
paper by van Gelder 12.
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(a)                (b)                       (c) 

Figure B.1: (a): An undeformed triangular element with the area AT. Sketch from Van Gelder12 (b) Rest triangle
TP (on the leđ), with vertex nodes posiধons Pi, edge lengths Li, and rest angles αi, is deformed into a triangle
TQ (on the right) with vertex nodes posiধons Qi, edge lengths li, and rest angles βi. Sketch from Delingeħe13,14

(c): Geometry of a bending hinge. Two triangles sharing an edge e0, between nodes x0, and x1. π− θ is an angle
between normals n(0), and n(1) of the triangular elements T0 and T1, and θ is the angle between two triangular
elements. α1 = ∠(ê0, ê1), α2 = ∠(ê0, ê2), α3 = ∠(−ê0, ê3), α4 = ∠(−ê0, ê4). Sketch from Wardetzky
et al.15.

If the edge is a boundary edge, thenEquationB.27 applies directly. However, if the edge is shared
by two triangles, T1 and T2 (the edge c is in the bulk of the material), then the spring stiffness is a
sum of the contributions from these two triangles: kc = kc(T1) + kc(T2)

12.

Delingette’s Biquadratic Springs

As discussed in previous sections, spring-mesh models cannot reproduce completely elastic mate-
rials mechanics, and they perform especially poorly for disordered meshes 12. The disadvantages of
the spring-mesh models have been improved upon by Delingette 13,14, with the model called Trian-
gular Biquadratic SpringsModel. Themodel is equivalent to the Finite ElementsMethod, but it is
expressed in a much simpler form. The advantage of the model is that it is easy to implement, yet
still gets the correct continuum mechanics description for non-linear finite deformations. To cap-
ture the behavior for different values of Poisson ratio, themodel requires angular springs that resist
changes in the element’s angles. The model considers a compact domainΩ ⊂ R2 that is deformed
into another domain Φ(Ω). A material point X ∈ Ω is moved to a new position Φ(X) ∈ Φ(Ω),
where Φ(X) is the deformation function. The right Cauchy-Green deformation tensor C is de-
fined as C = ∇ΦT∇Φ, and the Green-Lagrange strain tensor E is defined as E = 1/2(C − I).
The Green-Lagrange strain tensor is invariant to translation and rotation, thus is appropriate for
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large-displacement description. The membrane is assumed to be an isotropic St. Venant Kirch-
hoff membrane (a linear relationship between the stress and strain), for which the energy density
is defined as:

Ws (X) =
λ

2
(trE)2 + µtr(E 2) (B.28)

where λ and µ are the Lamé coefficients. The total stretching energy is then:

Ws =

∫
Ω

dSW (X) =
∫
Ω

dS
(
λ

2
(trE)2 + µ

2
tr(E 2)

)
(B.29)

This is is the simplest hyperelastic material model, where the linear elastic material model is ex-
tended to the nonlinear regime. The surface is discretized into a set of linear triangular elements
{T}i ∈ Ωh (due to this assumption, we get closed-form stiffness matrices). This surface discretiza-
tion leads to a formula for the stretching energy of a triangle TP deforming into a triangle TQ

(Figure B.1 B) which is:

Ws(TP ) =
3∑

i=1

kTP
i

4

(
l2i − L2

i

)2
+
∑
i ̸=j

cTP
k

2

(
l2i − L2

i

) (
l2j − L2

j

)
(B.30)

The model is called Triangular Biquadratic Springs since the first term can be interpreted as the
energy of three tensile biquadratic springs that prevent edges from stretching, and the second term
canbe seen as three angular biquadratic springs that prevent any changes of the element’s angles (cTp

k

controlling the change of the angles around nodes Qi andQj). Applying Rayleigh-Ritz analysis to
Equation B.30, the force acting on vertex i due to the triangular element deformation is:

FTP
i =

∑
j ̸=j

kTP
k ∆2lk(Qj −Qi) +

∑
j ̸=i

(cTP
j ∆2li + cTP

i ∆2lj)
(
Qj −Qi

)
(B.31)

where:
kTP
i =

Y (2 cot2 αi + 1− ν)
16(1− ν2)AP

(B.32)

cTP
k =

Y (2 cotαi cotαj + ν − 1)

16(1− ν2)AP

(B.33)
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∆2li =
(
l2i − L2

i

)
(B.34)

whereAP is the area of a triangle TP , and αi are defined in Figure B.1 b.
The energy required to deform the whole triangulated surface Ωh is simply the sum of the en-

ergies for each triangle TP ∈ Ωh. Thus, if an edge is shared by two triangles T1 and T2, the total
stiffness of the edge is kT = kT1 + kT2 . The tensile stiffness is always positive, while the angular
stiffness may be zero or even negative. For a triangular lattice with α = π/3 and ν = 1/3 the
angular stiffness is zero and the model reduces to the standard spring-mesh model. Biquadratic
springs were successfully applied in biomechanics research 16.

B.2.3 Elastic Bending Energy

The bending energyWb requires an estimation of the surface curvature. There are two common
ways of handling this task.

Bending Springs Energy

Themost popular, and conceptually the simplest approach, is an introduction of a fictitious spring
that controls the angle between two triangles that share an edge, see Figure B.1 C. Similarly to the
discrete version of the stretching energy (EquationB.20), the discrete version of the bending energy
reads (for a flat surface):

Wb =
1

2
κ̃
∑
⟨α,β⟩

|nα − nβ|2 = κ̃
∑
⟨α,β⟩

(1− nα · nβ) (B.35)

where the sum runs over all pairs of triangles ⟨α, β⟩ that share a common edge, nα and nβ are
normals of triangular elements, and κ̃ is a renormalized bending constant. A relation between
the bending rigidity κ and the microscopic parameter κ̃ is most easily derived by comparing the
bending energy of a triangular lattice folded into a shape of a cylinder. This can be easily done and
yields7:

κ =

√
3

2
κ̃ (B.36)

where κ = Et3/12(1− ν2). Such a renormalization, however, depends on the shape into which
we fit, and repeating the calculation for a sphere givesκ = 1√

3
κ̃ 17,18. For its simplicity, this approach
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is very popular in the physics community for elastic shells simulations7,11,18–20. It has to be pointed
out that in the process of renormalizing the constant κ̃, the integration in Equation B.35 runs over
the whole area of triangle, rather than just over 1/3 part of it. Because of that, it is important
to keep in mind that in the computer graphics community, where a similar approach is used, the
renormalization of that constant differs by a constant factor due to an improper integration over a
surface 15.

This approach can be extended by parameterizing the bending stiffness for each bending spring.
From the trigonometry we have:

(1− nα · nβ) = 1− cos(π − θ) = 1 + cos(θ) (B.37)

Then, the bending stiffness can be parametrized for each bending hinge, κi as:

Wb =
∑
i

κi(1 + cos(θi)) = κ
∑
i

3|e20|
Ai

(
2 cos

(
θi
2

))2

(B.38)

where κi = 3|e20|κ/Ai,Ai is a combined area of two triangles meeting at the edge ei, and θi is ei’s
dihedral angle, cf. Figure B.1 c. This is a mathematical form for the bending energy used in the
computer graphics community 15,21–23. This form also partially deals with the problem of unstruc-
tured meshes, where the bending stiffness is a property that depends on the local geometry of the
triangular mesh. Equation B.38 applies to the plate that is flat at equilibrium. If the initial metric
of the membrane is curved, then the equation has the form:

Wb =
∑
i

κi(1 + cos(θi − θ0)) (B.39)

Finally, for the dynamics simulations, forces can be calculated for each vertex i = 0, 1, 2, 3meeting
at the hinge j (denoted as e0 in Figure B.1 c) as:

Fi = −∇xiWj = −
3|ej|2

Aj

sin
(
θj − θ0j

)
∇xiθ (B.40)

A gradient∇xθ can be calculated for the every vertex in the pair of triangles 15 andusing the notation

160



as in Figure B.1 c, these derivatives are:

∇x0θ = −
1

|ej|
[
cot(α3)n(0) + cot(α4)n(1)

]
(B.41)

∇x1θ = −
1

|ej|
[
cot(α1)n(0) + cot(α2)n(1)

]
(B.42)

∇x2θ =
1

|ej|
[cot(α1) + cot(α3)] n(0) =

|ej|
2A(Tj

0)
n(0) (B.43)

∇x3θ =
1

|ej|
[cot(α2) + cot(α4)] n(1) =

|ej|
2A(Tj

1)
n(1) (B.44)

where A(Tj
0) and A(Tj

1) are the areas of the triangles in the pair j; n(0) and n(1) are the normal
vectors defining these triangles; and |ej| is a shared edge in the hinge j (denoted as e0 in Figure B.1
c). For the definitions of the angles α[1,2,3,4] see Figure B.1 (c).

Bending Energy From Surface Discretization Operator

It has been noticed that renormalization of the bending stiffness done as in7 is not the most suit-
able for disorderedmeshes 24. The computer graphics community deals with it by relating bending
stiffness of the hinge between two triangular elements to the geometry of these triangles κi =

κ
3|e2i |

A(T0)+A(T1)
, cf. Equation B.38. In the physics community, it is the bending energy rather than

the bending forces that is evaluated at the mesh nodes. This approach is not implemented in the
elasticshells software, but we describe it for the completeness of the discussion. In this ap-
proach, the curvature tensor is constructed from the mean curvature H and Gaussian curvature
(trace H ≈ ∇2f , and determinant K ≈ det(∂i∂jf), respectively). An approximation for the
mean curvature associated with the ith vertex node is 24:

Hi =
1

σi
ni ·

∑
j(i)

σij
rij

(Ri − Rj)

 (B.45)

where σij = rij [cot(θk) + cot(θk′)] /2 is a length of a bond in the dual mesh connecting the
centers of the two triangles {i, j, k} and {i, j, k′} that share an edge ei−j , with the length rij , and
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angles θk and θk′ calculated at the nodes k and k′; ni is the surface unit vector normal at the ith

node (the average of the normal of the faces surrounding the node i); Ri and Rj are Cartesian
coordinates of the vertices i and j; σi =

∑
j(i) σijrij/4 is the area of the dual cell of the node i (the

polygon of bonds surrounding vertex i), and j(i) is a set of nodes neighboring the ith node. Using
the Gauss-Bonnet theorem for Voronoi regions, the Gaussian curvature at the ith node is 17:

Ki =
1

σi

2π −
∑
k(i)

αk

 (B.46)

where αk is an angle subtended by triangle k at the vertex i, and the sum runs over all facets that
contain the ith node. The discretized version of the bending energy for a metric with a curvature
R0 (for simplicity, we assume it is the same for all the nodes) is the sum over all contributions from
the nodes in a mesh:

Wb =
Et3

24(1− ν2)
∑
i

σi

[(
Hi −

2

R0

)
− 2(1− ν)

(
Ki −

Hi

R0

+
1

R2
0

)]
(B.47)

For the uniform shell, the Gaussian curvature energy is an invariant and the term ∝ Ki can be
ignored. However, if the shells are not homogeneous, then the Gaussian curvature is not an invari-
ant and needs to be considered as well25. This approach has been very successful in the mechanics
of elastic shells 16,19,24,26–28, and it was especially instrumental for materials with varying properties
on a shell’s surface2–4. In these cases, for each node we replace R0 → R0(i) and, if necessary, the
thickness t→ t(i) as well 2.

B.2.4 Pressure Force I

The spherical membranes that we study can be pressurized. The internal pressure prevents the
membrane fromcollapse due to the outer pressure andhelps to keep its spherical shape. For further
discussion we indicate the difference between the internal pressure p2 and outer pressure p1 as
Π ≡ ∆p = p2 − p1 > 0.

For the triangulated surface, the simplest way to calculate the pressure force Fp acting on the ith

triangular element is simply: Fp = Πn̂idSi, where n̂i is a normal vector pointing outside-out, and
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dSi is the area of the ith triangular element. This method is conceptually very simple and useful in
computer graphics, where we deal with objects having complex geometry. This method, however,
requires calculation of the normal vector and deciding how to distribute the pressure force among
all the vertices belonging to the triangular element. For simple shapes such as spheres, there is an
alternative approach that we present next.

Pressure Force II

The contribution to the total energy from the internal pressure is:

WΠ =

∫ Ṽ

0

dW =

∫ Ṽ

0

dV (Π · V) (B.48)

The change of the energy due to the volumetric change is:

dWΠ = VdΠ+ΠdV (B.49)

If the pressure inside the object is assumed to be constant, the above equation reduces to a simpler
form: dWΠ = ΠdV, and the total energy is simply: WΠ = ΠV. The force acting on the vertex i
in a mesh due to pressure is:

Fp(xi) = −
∂

∂xi
W = − ∂

∂xi
ΠV (B.50)

Again, if the pressure is constant, then the force is simply:

Fp(xi) = −Π
∂

∂xi
V (B.51)

If the pressure inside the membrane is not constant, the situation requires a bit more elaboration.
The simplest case is a membrane filled with an ideal gas. For an ideal gas, the pressure and the
volume of the gas are related as ΠV = nRT, where n is the amount of gas, R is the gas constant,
and T is temperature. In further derivations, we denote Ñ = nRT. The membrane is a closed
system, and the volumetric change is isothermal, thus we can writeΠ1V1 = Π2V2. Furthermore,
we assume that the membrane may have some excluded volume Ve. For such a case, the pressure
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energy reads:

WΠ(V) =
∫ V

Ve
dV′Π(V′) =

∫ V

Ve
dV′
(

Ñ
V′

)
= Ñ ln

(
V
Ve

)
(B.52)

and the force is:

Fp(xi) = −
∂

∂xi
WΠ(V) = −

Ñ
V

∂

∂xi
V = −Π(V) ∂

∂xi
V (B.53)

where Π(V) = nRT
V−Ve

. In Section B.2.4, we show how to evaluate a derivative ∂V/∂xi for the
volume calculated as a sum of tetrahedrons build on the triangularmesh and the center of themass
of the spherical membrane.

Volume derivative calculations

To calculate the force acting on a node due to the internal pressure, we pick a point inside a shell
(it can be, for example, the center of mass) and split the shell into a set of tetrahedrons. A tetra-
hedron is defined by four points: A = (Ax, Ay, Az), B = (Bx, By, Bz), C = (Cx, Cy, Cz),
D = (Dx, Dy, Dz). Let us assume that the pointD is a position of the center of mass. The total
volume is equal to the sum of all tetrahedrons: V =

∑
i Vi, Appendix A.3.2. Thus, the problem

of the pressure forces reduces to the calculation of a tetrahedron’s volume derivative.

The volume of the tetrahedron is then given by:

V = |(A−D) · ((B −D)× (C −D))|/6 (B.54)

For three points a, b, and c, the derivative of a scalar triple product in a direction x is:

∂x [a · (b× c)] = ∂xa · (b× c) + a · ∂x(b× c) (B.55)

If b and c are fixed points, and only a can change, then:

∂x [a · (b× c)] = (∂xa) · (b× c) (B.56)

Thus, for fixed pointsB,C , andD, we have, in the x direction, of the pointA:
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∂AV = ∂A(A−D) · [(B −D)× (C −D)] /6 (B.57)

= (B −D)× (C −D)/6 (B.58)

For the pointA, the derivatives in y and z directions can be calculated analogically. For the vectors
B andC , we use the same method, leveraging the cyclic formula (for brevity we takeD = 0):

A · (B × C) = C · (A×B) = B · (C × A) (B.59)

Finally, to calculate the total volume derivative, we need to add up all of the volume changes from
tetrahedrons that meet at the given vertex node.

Constant volume algorithm

The elasticshells package also implements a constant-volumemodel. The constant volume is
controlled by varying shells’ internal hydrostatic pressures. If the volume of the shell is not equal to
thepreassignedvalueV0, thepressureΠnew is adjusted to the valueΠnew = Πold (1 + (V0 − V) /V).
This inevitably drags the system out of mechanical equilibrium and the system needs to be equili-
brated, see Section B.4. The protocol continues until the volumes of the shells reach their preas-
signed volumes within 0.1% of accuracy.

B.2.5 Membrane contact mechanics

The penetration of two shells is prevented by the repulsive interaction between vertex nodes be-
longing to different shells. The radius of the repulsive vertexRv is usually assumed to be equal to
the thickness of the shell t. The vertex nodes cover the surface densely enough, so each triangular
element is completely covered by its three vertices. The repulsive force between non-bonded nodes
is modeled by the Hertizian repulsive force:

F(R) = −4

3
h3/2E∗

√
R∗R̂ (B.60)
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whereR∗ is defined asR∗−1 = R−1
i +R−1

j , the effective Youngmodulus 1
E∗ =

1−ν2i
Ei

+
1−ν2j
Ej

, h is
the overlap between two vertices h = Ri + Rj − |R|, and R̂ is a unit vector along R = Ri − Rj .
In all of our simulations, we assumedEi = Ej = E, νi = νj = ν, andRi = Rj = Rv, thus we
have haveE∗ = E/2(1− ν2), andR∗ = 1/2Rv. For the contact mechanics with rigid walls, we
use the same Equation B.60, however, withR∗ = Rv, and the effective Youngmodulus calculated
for the new set of parameters νwall andEwall.

B.2.6 Handling Non-bonded interactions

Themost expensivepart of the simulation is the calculationof the interactionsbetweennon-bonded
vertex nodes. The most straightforward implementation of the time-driven algorithm (see Sec-
tion B.3), has the cost of the computation that scales asO(N2), see Figure B.2 A. This was slightly
mitigatedbyLoupVerlet, whodeveloped adata structure calledVerlet-list 29,30. In theVerlet-
list approach, we set up the sphere of the sizeR = Rc +Rs, wereRc is the interactions’ cut-off
distance andRs is the thickness of the “skin”, Figure B.2 B. Next, all the particles within distance
R are assigned to the list of potential particles being in contacts, i.e. Verlet-list. Next, at each
time-step, only particles that belong to the particle’s Verlet-list are considered for forces calcu-
lations. This list must be recalculated from time to time so particles that get into theR range [0, R]
are included and the ones that left are excluded from the list. The number of time-steps between
Verlet-list updates (or equivalently R) is chosen based on particles velocity, density, etc. For
example, if drmax is themaximumdistance that any particle can travel during one time-step∆t, and
if we want to use Verlet-list for n time-steps before recalculation, than the radius of Verlet-list
must beR = Rc+ndrmax. Despite the fact that the computational costs for the already constructed
Verlet-lists isO(N), updating these lists dominates the computational cost, and for larger systems
it still scales asO(N2). This cost can be reduced by applying linked cells-list data structure
which has costO(N) 30, Figure B.2 C. The idea of linked-cell lists is to split the system into
a collection of cells of a size comparable to the iterations’ cutoff L ∼ Rc. Then, at each time step,
particles are assigned to the cells and only particles belonging to the neighbor cells are considered.
In theelasticshells software, we use thenblistspackage to handle non-bonded interactions
(https://github.com/pgniewko/nblists). Thismethod can be further optimized by usage
of different data-structures such as octrees. However the gain is relatively small, reaching 50%
better computational performance in expense of substantial programming work 31.
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Figure B.2: Contacts detecধon between non-bonded parধcles. The most computaধonally demanding step in forces
evaluaধon is idenধfying overlaps between non-bonded vertex nodes. In the simplest and least efficient approach,
for the parধcle iwith a finite interacধon radiusRv , we need to check the separaধons between all of theN parধcles
in the system. Thus the cost of the evaluaধon of the contact forces for all of the nodes isO(N2), A. If the inter-
acধons between nodes are only short-ranged, the cost can be slightly miধgaধng by construcধng a Verlet-list
with a radius larger thanRv and containing just the most likely nodes in contact, B. This reduces only a pre-factor in
the naïve method, and the computaধonal cost is sillO(N2). Much more efficient is the method where the system
is divided into a set of boxes with a linear size larger thanRv . To find all of the contacts for our target node (a blue
dot) we just need to check neighboring cells, C. This approach reduces the computaধonal costs toO(N).
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B.3 Elastic Shells Simulations

The simulations are performed in a continuous space, i.e. there is no fixed Euclidean grid onwhich
we solve the mechanics of the model. The model is force-based, for which time has a straightfor-
ward definition. Stochasticity in the dynamics is neglected. The model is intended to simulate
macroscopic systems, for which the inertia effect can be neglected — the Reynolds numbers are
very small, such that the friction dominates the momentum 10,32,33. Dropping the acceleration term
in the equations of motion leads to a system of coupled first order equations applied to every node
in elastic shells:

fd(ẋ)−∇xWtot = fb (B.61)

where the first term on the left hand side is a dumping of motion — most commonly given as µẋ,
where µ is a friction coefficient; in our simulations, we fixed µ = 1; the second term represents
the internal forces due to deformation of the bodies (stretching and bending forces, Equations B.31
and B.40) or interaction between two shells in contact, Equation B.60. The right-hand side term
fb represents all of the external forces applied to the body, for example, by the simulation box upon
compression, cf. Figure B.3.

B.3.1 Simulation scheme

Initial shells packing are generated following Gniewek et al. 34. The simulation starts from a dilute
packing (ϕ < 0.1). In the next step, a linear dimension of the box is changed in small steps, Figure
B.3. If the periodic boundary condition is used, the shells get compressed by the neighbor shells due
to the increased density of the shells in the box. If the rigid wall boundary conditions are applied,
the shells are swept by the box walls towards the center of the box, and they get compressed by the
other shells and the boxwalls. After each change in the box size, the resulting forces are equilibrated
by the energyminimization algorithm, see Section B.4. The box dimension is changed in relatively
small steps not exceeding the linear size of a single vertex in the shells’ mesh. During the simulation,
the mesh connectivity is held fixed, i.e. the membranes are modeled as a solid material.
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Figure B.3: Spring-mesh simulaধons scheme: Mono-disperse shells are randomly distributed in a rigid box. The
iniধal concentraধon is low so the cells do not touch one another. The simulaধon box is progressively compressed,
hence increasing the packing fracধon, and lead to the pressure buildup. Sketch from Delarue et al.10.
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B.4 Energy Minimization Algorithms

We minimize the energy by solving equations of motion for a given model, until all of the forces
are equilibrated. This procedure finds only a local energy minimum, but this is desired, as it does
not require any complicated excluded volume energy and works very well for our purposes.

B.4.1 Integration schemes

EquationB.61 is a 1st order differential equation (ODE), sowidely used integrators such asVelocity-
Verlet or Leapfrog cannot be used 30. Below, we present algorithms that can be used to solve Equa-
tion B.61. These numerical algorithms belong to the broad family of Runge-Kutta methods (R-
K) 35. The Runge-Kutta method is conventionally called “being of the sth order” if its error is
O(δts+1). R-K numerical integrators take the general form of:

yn+1 = yn + h
s∑

i=1

biki (B.62)

where kth coefficients are defined as:

ki = f

(
tn + cih, yn + h

s−1∑
j=1

aijkj

)
(B.63)

All these methods can be classified using the Butcher tableau
(
C A

B

)
:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
... . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs

(B.64)

Below, we start with description of the simplest case called the Euler-method, and later on we dis-
cuss higher order methods.
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Explicit and Implicit Euler

The over dumped dynamics is modeled with a set of the 1st order ODEs:

ẋ = f(x) (B.65)

The change over time can be approximated by the difference of two consecutive states:

∂x
∂t
≈ xn+1 − xn

h
= f(x) (B.66)

We need to decide at what point we evaluate the function f(x). The most obvious choice is to
evaluate f(x) at xn. This leads to a scheme called Forward Euler:

xn+1 + xn + h · f(xn) (B.67)

This scheme assumes forces to be constant throughout the entire time-step. This approach over-
shoots the exact solution, making an error grow relatively quickly, and making the scheme numer-
ally unstable. However, it is attractive because it can be evaluated directly using known f(xn), and
we do not have to solve a linear system of equations. An alternative is to evaluate the function f(x)
at xn+1 which leads to this system of equations:

xn+1 − h · f(xn+1) = xn (B.68)

Denoting∆x = xn+1 − xn, the function f can be expanded in the Taylor’s series:

f(xn +∆x) ≈ f(xn) + f ′(xn)∆x (B.69)

leading to:
∆x = h (f(xn) + f ′(xn)∆x) (B.70)

This can be rewritten as: (
1

h
I− f ′(xn)

)
∆x = f(xn) (B.71)
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and finally, a solution to the time-step can be found as:

∆x =

(
1

h
I− f ′(xn)

)−1

f(xn) (B.72)

This scheme is calledBackward Euler, and it ismorenumerically stable thanForward Euler,making
it very popular in the computer graphics 36. However, the method requires more work, although
the computational cost pays back, because the time step h can be increased, usually, by an order of
magnitude in comparison to Forward Euler.

For the Forward-Euler (first order) method with a time step δt, the error is O(δt2), and the
Butcher table is:

0 0

1
(B.73)

However, this method is not recommended for practical use 35. The Butcher table for Backward
Euler is:

1 1

1
(B.74)

Second-order Runge-Kutta methods

The explicit (i.e. A matrix being lower triangular), generic, second-order method is given by the
table:

0 0 0

x x 0

1− 1
2x

1
2x

(B.75)

where for x = 1/2we obtain the explicit midpoint method:

0 0 0

1/2 1/2 0

0 1

(B.76)

However, this linearly stable Runge-Kutta time discretization can generate oscillations around the
energy minima. The other second order R-K method is referred to us as Heun’s method (x = 1)
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and it can be written using the Butcher table as:

0 0 0

1 1 0

1/2 1/2

(B.77)

Despite the fact that for each time-step we have to evaluate forces twice, we can increase the time
step δt by at least one order of magnitude, and as a result, get better efficiency and numerical sta-
bility than for simpler methods. Although stochasticity is neglected in our simulations, Heun’s
method can be easily extended to stochastic differential equations 37.

Fast Inertial Relaxation Engine: FIRE

The FIREmethod is a general optimization frameworkwhere a point in a phase-space is attributed
with a fictitious mass. The trajectory of that point is solved with a variant of MD simulation, and
the energy excess is properly removed to provide a fast convergence. Specifically, the system obeys
the following equation of motion:

v̇(t) =
F(t)
m
− γ(t)|v(t)|

[
v̂(t) ˆF(t)

]
(B.78)

wherem is the fictitious mass, v(t) = ẋ is the velocity, F(t) = −∇W (x) is the force, and ·̂ (hat)
denotes a unit vector. If the power is positive, such as P (t) = F(t) · v(t), the particle accelerates
in a direction that is steeper than the current direction of motion via the function γ(t). If the
power P (t) is negative, then all the particles in the system stops, i.e. the velocity vector is set to
zero, v(t) = 0.
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Algorithm 4 Energy Relaxation with FIRE algorithm 38. MD (·) is your favorite MD integrator.
1: procedure Integrator(x,∆t) ▷ Full simulation
2: αstart, ∆tmax, fα, finc, fdec, Nmin ▷ Parameters
3: it← 1, cut← 1
4: α← αstart

5: v← 0

6: F← FORCES(x) ▷ Calculate Forces
7: while max

i
(Fi) ≥ Fmin do

8: x, F, v← MD (x, v,∆t) ▷MD integrator
9: P← v · F
10: v← (1− α)v + αF̂|v| ▷ α = γ(t)∆t
11: if P > 0& (it− cut) > Nmin then
12: ∆t← min (∆t · finc,∆tmax)

13: α← α · fα
14: else if P ≤ 0 then
15: v← 0

16: cut← it
17: ∆t← ∆t · fdec
18: α← αstart

19: it← it + 1

In our simulations, we use FIRE with the Velocity-Verlet integrator 30. The other parameters
used in FIRE algorithm are: ∆t = 0.1,∆tmax = 1.5,αstart = 0.1, Nmin = 5, fα = 0.99, finc = 1.1,
fdec = 0.25. The termination condition for the FIRE algorithm is max

i
|Fi| ≤ 10−15.

The optimizer is easy tounderstand and implement, and found in some applications in physics 39.
The method has proven to be comparable in many cases to state-of-the art optimizers such as L-
BFGS 38,40. Despite the fact thatmethods like L-BFGS41 gain their superiority by having additional
curvature information40, they cannot be applied to every problem.
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Other methods

Next, we describe methods that were also tested but are not included in the final release of the
elasticshells software. Thesemethods, although efficient for someproblems, have not proven
its superiority to the FIRE or Heun’s methods. We discuss them for completeness.

Gear predictor-corrector

This method offers great flexibility and good numerical stability because a corrector step amounts
to a feedbackmechanism that can dampen instabilities that might be introduced by the prediction
step, see Appendix E in Allen & Tildesley 30.

Although the Gear corrector-predictor (c-p) is not more stable than Runge-Kutta integrators
(roughly the same dt can be used) it requires one more (50%) force evaluation than R-K. In our
simulations, the 3rd order Gear c-p integrator was implemented because it saves memory space
and gives the same errors for largest possible values of dt; see Allen&Tildesley 30 and also f.02 code
in the Allen & Tildesley 30 codes library.

With the corrector predictor method, it is possible to iterate over correction-prediction steps.
However, there is little gain in it because each iteration requires a forces evaluation. Thus one may
better run simulations with a shorter time step and only one iteration. Moreover, even if we iterate
a c-p algorithmwith a shorter time step, we still do not get the exact trajectory. This is why we gain
more accuracy by going to a shorter time step rather than by iterating to convergence at a larger
value of dt.

Conjugate gradients

The details of the method are complex and we do not intend to repeat it here since there are
many good resources on-line42. The source code for the method is provided in resources such
as “Numerical Recipes in C++” 35 and is also freely available in the GNU Scientific Library43. The
elasticshellsmethod did not find a broader use because, for strongly compressed systems, the
optimizer was crossing the energy barrier caused by the excluded volume of the membrane, and
the membranes ended up intersecting.
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Figure B.4: A: A pressurized elasধc membrane withR0 = 2.5 m, t = 0.1 m,E = 25MPa, ν = 1/3. The mesh
is generated with the Icosahedral triangulaধon algorithm (Appendix A.2.1), and triangulaধon level=4 (Appendix
A.2.1). The energy minimum is found with Heun’s integrator, and a ধme step dt = 0.00025s. The radial strain ϵr is
given as a funcধon of a reduced pressure∆P ∗ = ∆P/E . Inset: Iniধally relaxed spherical membrane (black line)
is pressurized with an internal pressure∆P , and seħles into a mechanically stable state (doħed line). B: A square
membrane with linear size L = 2.28 m, with the number of vertex nodes in a hexagonal laষce aboutN ≈ 2200,
elasধc material E = 25 MPa, t = 0.1 m. Energy minimum is found with Heun’s integrator, and a ধme-step
dt = 0.00025 s. Inset: Iniধally relaxed square membrane (black line) is axially stretched (black arrows) with a small
force that results in a small strain (ε≪ 1), and seħles into a mechanically stable state (doħed line).

B.5 Simple Benchmarking Tests

B.5.1 A pressurized spherical membrane

Weconsider largedeformationsof apressurized, sphericalmembrane. In this numerical experiment
we compare spring-meshmodels, with twoways of setting spring constants 8,12, and Finite-Element
Method (FEM) 13,14. The energy density is formulated in terms of the finite Green strain tensor E .
The potential energy of the membrane, in terms of the Green strain tensor E , is:

Ws =
Et

2(1− ν2)

[
E211 + E222 + 2νE11E22

]
(B.79)
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For the inflated sphericalmembrane, due to the symmetryof theproblem,E11 = E22 = 1
2
(λ2 − 1),

where λ is a stretch of the membrane. The energy density in terms of λ,Et, and ν is:

Ws =
Et

4 (1− ν)
(
λ2 − 1

)2 (B.80)

The internal pressure∆P that balances the stretch λ is:

∆P =
∂Ws

∂R
=

Et

R0 (1− ν)
(
λ3 − λ

)
(B.81)

where the radius of the inflated sphere isR = λR0. Since λ = 1 + εr, where εr is an engineering
strain, we have:

εr +
3

2
ε2r +

1

2
ε3r =

∆PR0

2Et
(1− ν) (B.82)

This solution reproduces a known solution εr = ∆PR0(1 − ν)/2Et in the infinitesimal strain
limit εr → 044. In numerical simulations, we estimate a membrane stretch from the volume as
λ = 1 + εr =

3
√

V/V0. To compare with the analytical solution, we numerically solve Equation
B.82 for εr. In Figure B.4 A, we plot a radial strain ϵr as a function of the pressure difference∆P .
We keep the membrane properties constant, whereas we change the value of the internal pressure.
We choose the Poisson ratio ν = 1/3 to make the benchmark fair for spring-mesh models. In Fig-
ureB.4A,we can see that for small radial strains ϵr, all three approaches reproduce similar analytical
results. However, for strains larger than 1%, we can see a noticeable deviation for spring-meshmod-
els, whereas FEM reproduces large strains mechanics very close to the analytical solution. Small
inaccuracies for FEM may be the result of the residual errors in the volume evaluation, Appendix
A.4.1.

B.5.2 Poisson ratio

One of the problems with simple spring-mesh models is that they cannot simulate a material ac-
curately with a Poisson ratio different than ν = 1/3. Upon force being applied uniaxially (in
direction 1), the strain in that direction is ε1, whereas it shrinks in a transverse direction ε2. The
Poisson’s ratio is defined as:

ν = −ε1
ε2

(B.83)
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To estimate numerically the value of ν in spring-mesh and FEM, we perform a numerical exper-
iment in which a square membrane is uniaxially stretched with a force F (sufficiently small to keep
the strains small) homogeneously, and distributed along both edges in 1-direction, i.e. all compo-
nents of the stress tensor are zero except σ11, see Figure B.4 B. Upon application of the load, the
square membrane has dimensionL×L stretching into a rectangular shape of dimensionL1×L2.
The axial strain is then estimated as ε1 = (L1−L)/L, and ε2 = (L2−L)/L. In Figure B.4 B, we
plot the values estimated numerically ν(sim) for the corresponding ν(material). For spring-mesh,
we assigned spring constants with Equation B.26. Although Poisson’s ratio is formally a parameter
in Equation B.26, it should have no effect on the mechanics of the membrane except for the incor-
rect resultant stiffness modulॿ Y = Et. As expected, the spring-mesh model, regardless of the
preassigned value of the Poisson ratio, always gives values very close to ν ≈ 1/3 due to the reasons
detailed in Section B.2.2. Contrary to this, FEM reproduces the preassigned Poisson ratio values
pretty closely, cf. Figure B.4 B. (red dots).

B.5.3 Circular Plates: Small deflections

In the previous sections, the tests do not take into account the bending energy. In the next three
tests, we show how a circular plate, clamped on the edge, bends due to concentrated and uniform
loads. We test only FEM with and without a bending term. For the first two tests, we stay in a
regime of a small deflations and compare radial deflections to the analytic solutions. In the third
test, we exert large uniform loads on a clamped circular plate and compare themaximumdeflection
at the center of the place to the approximate analytic solution.

Concentrated Load at the Center

We consider a circular plate with a clamped edge, for which the boundary conditions are at r = R0,
w = 0 and dw/dr = 0, where w is a normal deflection. The load is applied at the center with
a magnitude P0, Figure B.5. For this setup, a deflection as a function of a distance to the centerR
is44:

w(R) =
P0

16πD

(
2r2 ln

(
R

R0

)
+R2

0 −R2

)
(B.84)
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whereD = Et3/12(1−ν2), andR0 is a radius of the plate. Themaximumdeflection (in a regime
of small loads), is at the loading point, and has magnitude:

wmax =
P0R

2
0

16πD
(B.85)

Results are presented in Figure B.5. As we can see, FEM simulations without a bending term devel-
ops a cusp atR = 0. This is expected as the bending term is missing, and a development of high
curvatures does not cost any energy, but it relaxes in-plane stress. We can also see an abrupt dis-
placement atR/R0 → 1. This solutions is strongly disfavored by bending; however, in the case of
the missing bending term, this is allowed and only counteracted by stretching energy. When bend-
ing is included, the simulation results are reproducing analytical results very accurately—within a
maximum relative error below 10%.
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Figure B.5: Concentrated load of a clamped circular plate: A concentrated load with a magnitude P = 5 · 103 N
is applied to a circular plate with a radius R0 = 2.25 m, thickness t = 0.1 m, Young’s modulus E = 25 MPa,
Poisson raধo ν = 1/3, and the number of nodes in a hexagonal laষce isN ≈ 1200. Triangular elements have a
linear dimension a ≈ 0.3m. The energy minimum is found with Heun’s integrator and a ধme step dt = 0.0005 s.

Uniformly Loaded Circular Plate

The same circular plate as in Section B.5.3, with the clamped edge and the boundary conditions
r = R0, w = 0, and dw/dr = 0 is considered, cf. Figure B.6. However this time, the load P0

is applied uniformly and perpendicularly to the surface across the whole plate. Displacement as a
function of distance from the plate’s center reads44:

w(R) =
P0

64D

(
R2

0 −R2
)2 (B.86)
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The maximum deflection in the regime of small loads is:

wmax =
P0R

4
0

64D
(B.87)

Results are presented in Figure B.6. We can notice a behavior that is similar to the case of a concen-
trated load atR/R0 → 1. Contrary to the previous case, the membrane solution to the uniform
load does not create a cusp atR→ 0, but it overestimates a deflection by more than 300%. When
bending is included, the relative error is significantly reduced, and atR = 0, is only about 10%.

Figure B.6: Uniform load of a clamped circular plate: Uniformly distributed load with a total magnitudeP = 1 ·103
N is applied to a circular plate with a radiusR0 = 2.25 m, thickness t = 0.1 m, Young’s modulusE = 25MPa,
Poisson raধo ν = 1/3, and the number of nodes in a hexagonal laষceN ≈ 1200. Triangular elements have a
linear dimension a ≈ 0.3m. The energy minimum is found with Heun’s integrator and a ধme step dt = 0.0005 s.
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B.5.4 Large Deflection of a Clamped Circular Plate

For small deformations (w/t≪ 1.0), a deflection is controlledmainly by a bending term, whereas
for larger deflections, the stretching energy term dominates. For large deflections, the linear solu-
tion given by Equation B.86 does not apply, and the analytic solution does not exist. However,
approximate solutions are given in an implicit form. One of the most commonly used solutions
is44:

P0 =
64D

R3

(
wmax

R0

)
+

(
8

3

)(
E

1− ν

)(
t

R0

)(
wmax

R0

)3

(B.88)

The alternative form of Equation B.88 is:

12

64(1− ν2)

(
P

E

)(
R0

t

)4

=
wmax

t

[
1 +

1 + ν

2

(wmax

t

)2 ]
(B.89)

The first and second term on the right-hand side represent stretching and bending solutions, re-
spectively44. This formula has been used to find wmax numerically as a function of dimensionless
pressure P ∗ = PR4/Et4. The results are presented in Figure B.7. In order to plot wmax/t as a
function of P ∗ = (P/E)(R0/t)

4, we numerically solve Equation B.89 forwmax using the Scipy
Python library. It is clear that for very small pressuresP ∗, the deflection is mostly controlled by the
bending term and the solution is wmax =

P0R4
0

64D
, whereD = Et3/12(1 − ν2). The linear theory

solution is satisfactory (i.e. less than 10% of the relative error) for wmax < t/244. For the value of
reduced pressure P ∗ < 10, the FEM, without a bending energy component, deviates significantly
from the analytical solution. However, upon large loads, the model with only the stretching term
provides a quite accurate solution, cf. Figure B.7.
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Figure B.7: Clamped plate deflecধon: Large deformaধon of a circular, clamped plate. Parameters of the plate are
E = 25 MPa, ν = 0.0, thickness t = 0.1 m, and R0 = 2.14 m. FE model was solved on a hexagonal laষce
containingN ≈ 1000 vertex nodes and a linear size of a triangular elementa ≈ 0.2m. The local energyminimum
was found with Heun’s integrator and ধme step dt = 0.0005 s. Red data points represent full FEM model with
stretching and bending energies, whereas blue data-points correspond to themodel with only the stretching energy.

B.6 Contact Problem of an Inflated Spherical Nonlinear Membrane: Compres-
sion calculations

Next, we test FEM against the solutions of the contact problem for a large deformation of an in-
flated, non-linear, and spherical membrane between two rigid plates45, Figure B.8. The solution
to the contact problem is expressed in the form of three first-order ODEs for the region where the
spherical membrane is not in the contact with the rigid plates. The constraint introduced by the
rigid plate on the part of themembrane that is in contact with the plate reduces the number of gov-
erning equations to two ODEs. The spherical membrane is filled with an incompressible liquid,
thus the volume of themembrane upon compression is kept constant, Section B.2.4. The solution
gives a load-deflection relation for the inflated membrane under compression.
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Figure B.8: Geometry of the contact problem of an inflated spherical membrane between two rigid plates: ψ is
an angular posiধon of a point on a membrane from the verধcal axis of symmetry prior to compression, Γ is an
angle of a point on the edge of the contact region between the compression surface and the shell, ρ and η are the
horizontal and verধcal coordinates, η̄ is the distance between the compression surface and the equatorial plane,
ρ̄ is the laterally extended radius of the deformed membrane, z is the half-distance that the membrane has been
compressed to,Ri is the radius of the inflated membrane, and rc is the radius of the contact area.

B.6.1 Model

A sketch of the model is in Figure B.8. A membrane model is formulated as follow:

1. Deformed and undeformed profiles of amembrane and compressive loads are axisymmetric.

2. Before deformation, the elasticmembrane is composed of an incompressible, homogeneous,
and isotropic material with constant thickness.

3. Themembrane’s thickness is small in comparison to a linear dimensionof the sphericalmem-
brane; therefore the bending effects can be neglected.

4. There is no friction between the membrane and the compressing plates.

A spherical membrane with thickness t and radiusR0 is inflated by the initial internal pressure P0.
Then two large parallel and rigid plates (with the inflated membrane in between them) are pressed
into contact with the spherical membrane. Due to the symmetry of the problem, only the upper
half of the membrane is considered. The problem setup is depicted in Figure B.8, together with
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the coordination system used in further model development. For the deformation presented in
Figure B.8, we define two principal stretch ratios in the meridian and circumferential directions,
respectively45:

λ1 = ε1 + 1 =
1

R0

√
ρ′2 + η′2 (B.90)

λ2 = ε2 + 1 =
ρ

R0 sin (ψ)
(B.91)

where derivatives in Equation B.90 are calculated in respect to ψ; R0 is the initial radius of the
uninflatedmembrane; andρ and η are cylindrical coordinates, see Figure B.8 for details. Neglecting
bending and shear effects, the energy function is defined as:

Ws =
Et

8(1− ν2)

∫ π/2

0

dψ
[
(λ21 − 1)2 + (λ22 − 1)2 + 2ν(λ21 − 1)(λ22 − 1)

]
(B.92)

It is worth noting that the above form is identical to the St. Venant-Kirchhoff material, given by
EquationB.28. The full sets ofODEsdescribing theproblem is derived for contact andnon-contact
regions as in the paper by Yang et al.45.

B.6.2 Contact region

Due to the constraint imposed by the plate, there are only two ODEs, and they read:

dλ1
dψ

= − λ1
λ2 sinψ

(
f1
f3

)
−
(
λ1 − λ2 cosψ

sinψ

)(
f2
f1

)
(B.93)

dλ2

dψ
= −λ1 − λ2 cosψ

sinψ
(B.94)

where f1, f2, f3 are functions of principal tensions T1 and T2 and are defined in the next section.

B.6.3 Non-contact region

There are three ODEs governing the mechanics of the membrane in a non-contact region:

dλ1
dψ

=

(
δ cosψ − ω sinψ

sin2 ψ

)(
f2
f1

)
−
(ω
δ

)(f3
f1

)
(B.95)
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where δ = λ2 sinψ. The second equation reads:

dδ

dψ
= ω (B.96)

The above is equivalent to the differential equation for λ2:

dλ2
dψ

=

(
ω sinψ − δ cosψ

sin2 ψ

)
(B.97)

The last equation relates the hydrostatic pressure inside the membrane to the parameter ω; that is:

dω

dψ
=
dλ1
dψ

ω

λ1
+
λ21 − ω2

δ

(
T1
T2

)
− PR0

λ1
√
λ21 − ω2

T1
(B.98)

Finally, we define tensions T1, T2 in the meridian and circumferential directions, as well as three
auxiliary functions f1, f2, and f3:

T1 =
1

λ2

∂Ws

∂λ1
=

Et

2(1− ν2)
· λ2
λ1

[
νλ22 + λ21 − (1 + ν)

]
(B.99)

T2 =
1

λ1

∂Ws

∂λ2
=

Et

2(1− ν2)
· λ1
λ2

[
νλ21 + λ22 − (1 + ν)

]
(B.100)

f1 =
∂T1
∂λ1

=
Et

2(1− ν2)
1

λ2

[
λ21 + νλ22 − (1 + ν)

]
(B.101)

f2 =
∂T1
∂λ2

=
Et

2(1− ν2)
λ1
λ22

[
νλ22 − λ21 + (1 + ν)

]
(B.102)

f3 = T1 − T2 (B.103)

B.6.4 Boundary conditions

Boundary conditions for this problem are:
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1. At ψ = 0, stretches λ1 and λ2 are the same: λ1 = λ2 = λ0. λ0 is an unknown parameter,
to be found numerically.

2. At ψ = Γ, i.e. at the boundary between contact and non-contact regions, the meridian
stretches are the same: λc1 = λnc1 . Γ is an unknown parameter to be found numerically.
Additionally, λ2 = δ

sinΓ . In practice we start solving ODEs fromψ = 0 toψ = Γ, and then
we switch to another set ofODEswith initial values given by the above boundary conditions.

3. At ψ = Γ, we have η′ = 0, and δ′ = λ1

4. At ψ = π
2
, we must have δ′ = 0, meaning ω = 0.

The model also requires us to specify material parameters Y = Et,R0, and λs. The initial stretch
ratioλs canbe, however, estimatedpretty accurately from thenon-linear inflatedmembranemodel
based on Equation B.82, where λs = 1 + εr. Note that specifying ν is not required, as it can be
implicitly inferred from the knowledge of Y = Et,R0, and λs.

B.6.5 ODEs solving algorithm

To solve two sets of ODEs, i.e. Equations B.93, B.94, B.95, B.96, and B.98, researchers usually start
with prescribing a compression level η̄. Then Γ and λ0 are guessed. Next, ODEs are solved for the
contact region. After that, the hydrostatic pressure P is guessed, and then the ODEs are solved
for the non-contact region. Once the equations are solved, the boundary condition at ψ = π/2

is checked. If the check fails, then a new λ0 is guessed again, and procedure is repeated. If the
condition at ψ = π/2 is satisfied, then the constant volume condition is checked. If this check
fails, then the new contact angle Γ is guessed and the whole procedure is repeated. Finally, when
the constant volume condition is satisfied, the solution is found45–48. The volume used for the
constant-volume condition check is evaluated as:

V = 2π

∫ η̄

0

ρ2dη (B.104)

where ρ = R0δ
47. For any boundary point, η can be found from the equation:

dη

dψ
= −R0

[
λ21 −

(
dδ

dψ

)2 ]1/2
(B.105)
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It can be seen, that for each given η̄, we are looking for a set of parameters: {Γ, λ0, P}. Finding a
solutionnumerically is a non-trivial task because the equations thatwe need to solve are highly non-
linear, sensitive to slight changes in parameters, and numerically unstable. Thus, in order to find
a solution to the above equations for any arbitrary compression η, we took a different approach.
Namely, we used Particle Swarm Optimization (PSO)49, Section B.6.6.

B.6.6 Particle Swarm Optimization

PSO49 is an algorithm that uses a set of particles that aremoving according to the laws ofmechanics
in amulti-dimensional space. Contrary to the physical systems, the energy function that represents
the state of each particle can be an arbitrary function of the particle’s variables. The algorithm
intends to search for the global scoring function minimum by a means of the “swarm wisdom”.
Namely, every particle has a memory and stores the information about the coordinates with the
best position that it has visited so far. In each time step, the particle moves ballistically through the
space; however, every particle is also attracted to its best found solution. Additionally, the particles
are also following the “leader”, i.e. they are attracted to the best solution foundby thewhole swarm.
The parameters used in the simulations are:

1. Particle velocity scaling factor ωPSO = 0.5

2. Scaling factor to search away from the particle’s best known position ϕp = 0.5

3. Scaling factor to search away from the swarm’s best known position ϕg = 0.5

4. Number of particlesN = 2500

5. Maximum number of iterationsNiter = 104

6. Scoring function: score(Γ, λ0, P ) = |(V − V0)/V0| + |ω|, where volume V is evaluated
from Equation B.104 and ω is taken from the integration of ODEs at ψ = π/2.

Thus, at each time-step, the set of ODEs is solved for the every particle (defined as a set of three
parameters {Γ, λ0, P}i where i is the particle’s index), then the volume andω are used to score the
solution, and finally the simulation proceeds forNiter steps. Upon the termination of the simula-
tion, the solution is taken as the point with the lowest value of the scoring function that was found
during the simulation. Once the PSO simulations are done, we obtain for every preassigned η̄ a set
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of parameters {Γ, λ0, P}. The pressure under the contact region is evenly distributed and is equal
to the pressure inside the membrane. Thus, the force exerted by the membrane on a plate equals:

F = P × Ac = πPr2c = Pπ(R0λ2)
2 sin2(Γ) (B.106)

The above calculation is then repeated for each value of η̄. The simulations were executed with the
help of the Python library pyswarm.

B.6.7 Calculation results

The results comparing Finite Elements calculations to the analytic solution are presented in Figure
B.9. The parameters used in the numerical calculations are: P/E = 0.0025, t/R0 = 0.04, and
ν = 0.5. We can see that FEM and the analytic results agree very well. In Figure B.9 b, we can see
that for deformations up to X̂ ≈ 0.2, the force-deformation relation follows closely the Hertzian
contact-force dependence F̂ ∼ X̂3/2. For larger compressions, the force increases much faster
than given by the Hertz contact model and deviates for about an order of magnitude from the
expectation — the membrane, in terms of the order parameter X̂ , can be treated as a stiffening
Hertzian spring. We can see that despite the nonlinear behavior of the model, FEM can accurately
reproduce the force-deformation relation.
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a. b.

Figure B.9: A comparison of the results from FEM calculaধons and a semi-analyধc soluধon (SecধonB.6.1): Material
properধes used in calculaধons areP/E = 0.0025, t/R0 = 0.04, ν = 0.5. (a): Normalized hydrostaধc pressure
P ∗ = P/P0 vs a membrane deformaধon X̂ . (b): Normalized force F̂ vs a membrane deformaধon. Symbols are
the same as in Figure B.8. Total force exerted by the membrane in FE simulaধons are summed up from all the vertex
nodes in contact with the simulaধon box walls.

B.7 Buckling of an Elastic Shell

Under an increase of external pressure, an idealized shell stays spherical until the pressure reaches
the critical pressure value. At this pressure, called buckling pressure pc, a very small increment in
the external pressure triggers a shell collapse that significantly reduces the shell’s volume. Such a
deformation happens at the pressure 50:

pc = 4
√
κY /R2

0 (B.107)

where κ = Et3/12(1 − ν2), Y = Et, and R0 is the initial radius of curvature. The buckling
transition occurs at pc as the idealized homogeneous sphere releases in-plane compression energy
(i.e. stretching energy with λ < 1) at the cost of the bending energy in the form of an oscillatory
transverse deflection 3,50. This instability would not exist without coupling between in-plane stress
(resulting from external pressure) and bending stress (due to normal deflection) 3,50. Any defects or
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heterogeneities in the shell lowers the buckling pressure due to the emergence of short-wavelength
deflections 50, which are related in a non-trivial way to the defects in the structure 3. In this test case,
we generate meshes with rndmesh library, with different final temperatures, and with the same
starting temperature Tstart = 1000 [en.u], Appendix A.2.2. High temperatures introduce a larger
number of defects in themesh and generate broader distributions in termsof plain angles and linear
dimensions of the triangular elements, Figure B.10. Each simulation is performed for spring-mesh
models with the spring constant given by the Seung andNelsonmodel7 and the bending energy as
described in the Section B.2.2. Starting from the relaxed sphere, with the external pressure P = 0,
the pressure is increased in small steps, dP = 0.0025pc, with the shell’s volume and asphericity
monitored alongside. Buckling is identified as a sudden drop in the shell’s volume (the same results
are obtained when a sudden jump of the shell’s asphericity is used as a buckling criteria). In Figure
B.10, we can see results for different FvK numbers: γ = [1k, 5k, 10k, 50k], Equation B.17. We can
see that for meshes generated at lower final temperatures, the mesh’s topologies are quite uniform
with a relatively low amount of defects. For these meshes, the structure’s resistance to compressive
stress is maximal for a given γ. Comparing buckling pressures p/pc, we can see that the shells with
lower FvK numbers are closer to the analytic prediction. Lower γ corresponds to thicker shells,
meaning that thick shells are more resistant to the defects in the structure than thin ones. We can
also see that for all γ, the structural resistance deteriorates as the mesh contains more and more
defects and becomes more irregular. These irregularities in a node’s location give rise to the set of
functions describing the distributions of these heterogeneities, called imperfectionmodes 50. These
imperfectionmodes couple to bucklingmodes,weakening the structure and leading to the structural
collapse at pressures much lower than the critical buckling pressure pc.
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a)

b.1 b.2 b.3

Figure B.10: Buckling pressure: (a): Buckling pressure calculated for meshes with varying amount of disorder; four
different FvK numbersγ are tested. Calculaধon is based on Paulose et al.3. Temperature gives the final equilibraধon
temperature in the rndmesh algorithm, Appendix A.2.2. (b): Three meshes used in a buckling pressure calculaধon.
The number of vertex nodes in each mesh isN = 1000. Gray dots depict the vertex nodes with the number of
links equal to 6; blue dots depict the vertex nodes with the number of neighbors less than 6; red dots depict the
vertex nodes with the number of neighbors more than 6. Three examples for the temperatures T = 0.1 (b.1),
T = 50 (b.2), T = 200 (b.3) are shown.
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