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Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclu-
sion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD).
One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive
neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and
cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in
neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant
VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively
overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-
mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in
forebrain regions produced significant progressive impairments of cognitive function, including deficits
in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous
VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in
transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic
compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions,
these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of
transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken
together, these results highlight an important pathologic link between VCP and cognition. (Am J Pathol
2013, 183: 504e515; http://dx.doi.org/10.1016/j.ajpath.2013.04.014)
Supported by NIH/National Institute of Arthritis and Musculoskeletal and
Skin Diseases grant AR054695 (M.K.); partly by NIH grants P50AG16573
(F.M.L.), ES020395 (B.W.), NS066108 (B.W.), and NS073679 (B.W.); and
by a grant from the American Health Assistance Foundation (B.W.).
Valosin-containing protein (VCP), a member of the type II
adenosine triphosphatase associated with diverse cellular
activities superfamily, is ubiquitousand is highly abundant in all
cell types, including neurons.1e3 It forms a homohexameric
structure and is involved in a variety of physiologic functions,
including nuclear, endoplasmic reticulum, and Golgi mem-
brane fusions; cell-cycle regulation; stress responseemediated
apoptosis; B- and T-cell activation; transcriptional regulation;
endoplasmic reticulumeassociated protein degradation; and
autophagosome maturation.4e9 Dysregulation of physiologic
VCP function critically influences cell integrity and survival.
stigative Pathology.

.

Mutations in VCP have been identified to cause a novel
hereditary form of inclusion body myopathy associated
with Paget disease of bone and frontotemporal dementia
(IBMPFD).10 More recently, VCP mutations have been iden-
tified in a subset population of patientswith amyotrophic lateral
sclerosis (ALS).11 Therefore, VCPmutations are hypothesized
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VCPA232E Abets TDP-43 Buildup in Neurons
to mediate as-yet-unknown mechanisms leading to skeletal
muscle degeneration, bone deformation by osteoclast abnor-
mality, and neurodegeneration. The penetrance of the disease
phenotypes, however, varies among them. Approximately
30% of individuals with mutations develop frontotemporal
dementia.10,12,13 Pathologically, neurons develop vacuoles,
inclusions, and buildup of ubiquitinated proteins and trans-
active responseDNA-bindingprotein (TDP-43) in cytoplasmic
and nuclear compartments.14e16 No buildup of tau protein has
been reported in patients, and the distribution of VCP seems
unaltered in these neurons.17

Although VCP is involved in various critical cellular
activities, key pathogenic mechanisms altered by the disease-
relevant mutations are not well understood yet. To study the
disease mechanisms and recapitulate the phenotypes, several
in vivo models have been developed and reported. Recent
studies by Taylor and colleagues16 demonstrated that over-
expression of a disease-specific mutant VCP causes degener-
ation in muscle, bone, and neurons in a transgenic (Tg) mouse
model. Mice with mutant VCP exhibit clearance of TDP-43
from the nuclear compartment and buildup of cytoplasmic
TDP-43 co-localizing with ubiquitin.16 Similarly, Kimonis
and colleagues18 generated a knock-in mouse model of
IBMPFD, which expresses a disease-relevant VCP mutation
(R155H) at physiologically relevant levels. In this model,
increased cytoplasmic ubiquitin deposits were also evident in
neurons together with increased levels of TDP-43 in brain
tissue. These recent findings strongly suggest that mutant VCP
promotes pathologic proteinopathies in the brain.

Several mechanisms have been proposed to explain how
mutant VCP exerts its detrimental effects on the brain. Using
transfection on the neuroblastoma cell line SH-SY5Y, Gitcho
et al19 found that mutant VCP reduces proteasome activity
and increases endoplasmic reticulum stress and apoptosis.
Likewise, stable transfection of the activity-negative VCP
mutant K524A leads to increased levels of the endoplasmic
reticulum stress markers GRP78 and CHOP in differentiated
PC12 cells.20 Mutant VCP also promotes the accumulation of
immature autophagic vesicles, suggesting that VCP is
required for autophagosome maturation.8 In this regard,
protein levels of the autophagy marker LC3I/II have been
reported to be increased in the brain as a consequence of
mutations on VCP,18 and it is well documented that mutant
VCP produces impaired autophagy in muscle cells.7,21,22

We sought to investigate the underlying molecular mech-
anisms of the IBMPFD-associated mutant VCP in neurons.
We, therefore, generated a Tg mouse model overexpressing
mutant human VCP under the control of Thy1.2 promoter
(Thy-VCP) to achieve forebrain-specific transgene expres-
sion. These mice exhibit an age-dependent decline in cogni-
tion and neuronal accumulation of cytoplasmic TDP-43.
We also found that TDP-43 deposits co-localize with ubiq-
uitin and accumulate in stress granules in Tg mice. High-
molecular-weight TDP-43 was observed in the brain of
mutant VCPeoverexpressing mice and was localized exclu-
sively in the cytoplasm. This observationmay provide clues to
The American Journal of Pathology - ajp.amjpathol.org
uncover key pathologicmechanisms of the disease and further
validate the view that cytoplasmic TDP-43 accumulation
is the culprit for mutant VCPeinduced neurodegeneration.
Taken together, this Tg line provides an additional in vivo
model to study the cellular and molecular mechanisms that
drive neural degeneration associated with IBMPFD.

Materials and Methods

Generation of Tg Mice

Human wild-type VCP was purchased from OriGene Tech-
nologies Inc. (Rockville, MD), and a disease-relevant
VCPA232E construct was generated by site-directed muta-
genesis. The mutant VCPA232E was then amplified by PCR
(Phusion PCR kit; Cell Signaling Technology, Beverly, MA)
and subcloned into the Thy1.2 expression cassette23 using
a homologous recombination-based approach (In-Fusion
system; Clontech Laboratories, Mountain View, CA). The
sequence-verified Thy1.2-VCPA232E transgene was lineari-
lized by NotI and PvuI, purified, and microinjected into the
pronuclei of single-cell embryos harvested from C57BL/6J
mice by the University of California at Irvine Transgenic
Mouse Facility (Irvine, CA).

Southern Blot and PCR Analyses of the Thy-VCPA232E
Transgene

All animal procedures and use were performed in strict
accordance with NIH and University of California guide-
lines. All the mice used in this study were housed on a 12-
hour light/dark schedule with ad libitum access to food and
water. Tg mice were identified by tail DNA PCR genotyping
and Southern blot analysis. For PCR genotyping, forward
primer 50-GAGGTATTCATCATGTGCT-30 and reverse
primer 50-AAGGACGATGCAAACAGCTT-30 (Figure 1A)
liberated a 500-bp band from Tg mice (Figure 1C). Southern
blot analysis was also performed to confirm the integrity of
the transgene. Briefly, 2.5 kb of VCP cDNAwas extracted by
NheI and ClaI digestion and was used to make a probe for
Southern blot analysis (Figure 1A). Ten micrograms of
extracted tail DNA was digested overnight with EcoRI, NotI,
and PvuI and was resolved overnight in 0.8% agarose gel.
DNA was then denatured, transferred onto a nitrocellulose
membrane, and probed with [P32]-CTP radiolabeled probe.
The appearance of 4- and 5.5-kb bands on autoradiography
indicated transgene-positive mice (Figure 1B).

Behavior Assays

Morris Water Maze
The protocol was conducted as previously described.24

Briefly, mice were trained to swim to a 14-cm-diameter
circular Plexiglas platform submerged 1.5 cm beneath the
surface of the water and invisible to the mouse while swim-
ming. The platform was fixed in place, equidistant from the
505
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center of the tank and its walls. Mice were subjected to four
training trials per day. During each trial, mice were placed
into the tank at one of four designated start points in a pseu-
dorandom order. Mice were trained for as many days as
needed to reach the training criterion of 25 seconds (escape
latency). If the mice failed to find the platform within 60
seconds, they were manually guided to the platform and were
allowed to remain on it for 5 seconds. The probe was assessed
24 hours after the last training session and consisted of a 60-
second trial without the platform. Escape latency on the
probe trial was defined as the time taken by each animal to
reach the area occupied by the platform during training. We
also determined the number of times each animal completely
crossed through the area occupied by the platform during
training (platform crosses). Performance was monitored
using the EthoVision XT version 7 video tracking software
system (Noldus Information Technology Inc., Leesburg,
VA). The numbers of mice used in the Morris water maze
were as follows: 12 [6-month-old non-Tg (NT)], 12 (6-
month-old A line), 11 (6-month-old B line), 12 (12-month-
old NT), 10 (12-month-old A line), and 12 (12-month-old B
line). These mice were also tested using the novel object
recognition and contextual fear condition tests.

Novel Object Recognition
Each mouse was habituated to an empty Plexiglas arena (45
� 25 � 20 cm) for 3 consecutive days. On training (day 4),
the mice were exposed to two identical objects placed at
opposite ends of the arena for 5 minutes. Twenty-four hours
later, the mice were allowed to explore one copy of the
previously presented object (familiar) together with a new
object for 5 minutes. A video camera was mounted above
the arena, and all the sessions were recorded. Exploration
was considered as pointing the head toward an object at
a distance of <2.5 cm from the object, with its neck
extended and vibrissae moving. Turning around, chewing,
and sitting on the objects were not considered exploratory
behaviors. The recognition index represents the percentage
of the time that mice spend exploring the novel object. Mice
that did not explore both objects during training were dis-
carded from further analysis. Objects used in this task were
carefully selected to prevent preference or phobic behaviors.
To avoid olfactory cues, the objects were thoroughly
cleaned with 70% ethanol and the sawdust was stirred after
each trial.

Contextual Fear Conditioning
On training, mice were placed in the fear-conditioning
chamber and were allowed to explore for 2 minutes before
receiving three electric foot shocks (1 second, 0.2 mA;
intershock interval, 2 minutes). Animals were returned to the
home cage 30 seconds after the last foot shock. Twenty-four
hours later, behavior in the conditioning chamber was video
recorded for 5 minutes and subsequently was analyzed for
freezing behavior, which was defined as the absence of all
movement except for respiration.
506
Tissue Preparation

After deep anesthesia with sodium pentobarbital, the mice
were perfused transcardiallywith 0.1mol/LPBS, pH7.4.Half
the brain was fixed for 48 hours in PBS þ 4% para-
formaldehyde and then was cryoprotected in PBS þ 30%
sucrose for immunohistochemical and immunofluorescence
analyses, and the other half was frozen in dry ice for bio-
chemical analysis. Protein extracts were prepared by homo-
genizing whole brain hemisphere samples in 150 mg/mL of
T-PER extraction buffer (Thermo Fisher Scientific Inc.,
Waltham, MA), complemented with protease and phospha-
tase inhibitors (Sigma-Aldrich, St. Louis, MO), and followed
by centrifugation at 100,000 � g for 1 hour. For nuclear-
cytoplasmic fractionation, tissue was processed using the
NE-PER kit (Thermo Fisher Scientific Inc.) following the
manufacturer’s instructions. For alkaline phosphatase treat-
ment, 60 mg of protein was incubated with 60 U of bovine
alkaline phosphatase (Sigma-Aldrich) at 37�C for 1 hour.
Protein concentration was determined using the Bradford
assay (Bio-Rad Laboratories, Hercules, CA). Unless noted
otherwise, all Tg samples were from B line animals.

Immunohistochemical Analysis

Coronal free-floating sections (25 to 40 mm) were pretreated
with 3% H2O2/10% methanol in Tris-buffered saline (TBS)
for 30 minutes. After TBS washes, sections were incubated
once in TBS þ 0.1% Triton X-100 (TBST) for 15 minutes
and once in TBST þ 3% bovine serum albumin (BSA;
Sigma-Aldrich) for 30 minutes and were blocked for 1 hour
in TBS þ 1% BSA þ 5% goat serum (Vector Laboratories,
Burlingame, CA). Sections were incubated overnight with
VCP primary antibody (dilution 1:2000) (MA3-004; Pierce
Biotechnology, Rockford, IL) in TBSþ 1% BSAþ 2% goat
serum at 4�C. After washes, sections were incubated with
biotinylated anti-mouse secondary antibody in TBS þ 1%
BSA þ 2% goat serum at room temperature for 1 hour
(dilution 1:500; Vector Laboratories), followed by develop-
ment using Vectastain ABC kit and diaminobenzidine
reagents (Vector Laboratories). Sections were mounted on
gelatin-coated slides, dehydrated in graded ethanol series,
cleared with xylenes, and coverslipped with DPX mounting
medium (BDH Laboratory Supplies, Poole, UK). The spec-
ificity of the immune reactions was controlled by omitting the
primary antibody.

Immunofluorescence

Coronal free-floating sections (25 to 40 mm) were pretreated
with sodium citrate, 50 mmol/L (pH 6.0), for 10 minutes at
95�C and then were allowed to cool for half an hour. After
TBS washes, sections were incubated once in TBST for 15
minutes and once in TBST þ 3% BSA for 30 minutes and
then were blocked for 1 hour in TBS þ 1% BSA þ 5% goat
serum. Sections were incubated overnight with one or two
ajp.amjpathol.org - The American Journal of Pathology
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of the following primary antibodies: antieTiA-1 (dilution
1:500) (ab2712; Abcam Inc., Cambridge, MA), TDP-43
(dilution 1:500) (12892-1-AP; Proteintech Group Inc.,
Chicago, IL), monoubiquitinated and polyubiquitinated
proteins (dilution 1:500) (FK2; Enzo Life Sciences, Farm-
ingdale, NY), PSD-95 (dilution 1:500) (ab18258; Abcam
Inc.), and synaptophysin (dilution 1:200) (ab14692; Abcam
Inc.) in TBS þ 1% BSA þ 2% goat serum at 4�C. After
washes, sections were incubated with the appropriate
secondary Alexa Fluoreconjugated antibody (dilution
1:200; Life Technologies Inc., Gaithersburg, MD) at room
temperature for 1 hour, washed, and incubated with 300
nmol/L DAPI (Invitrogen, Carlsbad, CA) for 5 minutes.
Sections were mounted onto gelatin-coated slides using
Fluoromount-G (SouthernBiotech, Birmingham, AL) and
were examined under an EVOS fl fluorescence microscope
(Advanced Microscopy Group, Bothell, WA).

Semiquantitative analysis was performed using ImageJ
software version 1.45s (NIH, Bethesda, MD). Nuclei were
outlined and deleted from polyubiquitin or TiA-1 grayscale
images; the rest was considered cytoplasmic staining.
Images were converted to binary, and percentage of positive
signal was computed from total image area. Three sections
per animal were analyzed (5 to 6 mice per group).

For mean intensity measurements, three square regions of
interest were defined on 16-bit grayscale images in the CA1
and CA3 regions, and mean pixel intensity was computed.

Immunoblotting

Equal amounts of protein were separated on 4% to 15% Bis-
Tris gel and were transferred to polyvinylidene difluoride
membranes. Membranes were blocked for 1 hour in TBS þ
5% nonfat milk or Odyssey blocking solution (LI-COR
Biosciences, Lincoln, NE). After blocking, membranes were
incubated overnight with one or two of the following primary
antibodies: TDP-43 (dilution 1:1000) (12892-1-AP; Pro-
teintech Group Inc.), ubiquitin (dilution 1:3000) (Z0458;
Dako, Carpinteria, CA), monoubiquitinated and poly-
ubiquitinated proteins (dilution 1:1000) (FK2, Enzo Life
Sciences), PSD-95 (dilution 1:1000) (ab18258; Abcam Inc.),
synaptophysin (dilution 1:1000) (ab14692; Abcam Inc.),
glyceraldehyde-3-phosphate dehydrogenase (dilution 1:5000)
(FL-335; Santa Cruz Biotechnology, Santa Cruz, CA), p84
(dilution 1:1000) (5E10; Abcam Inc.), and tubulin (dilution
1:50,000) (B-5-1-2; Sigma-Aldrich) in TBSþ 5%nonfatmilk
or Odyssey blocking solutionþ 0.2% Tween 20 at 4�C. After
washes with TBS þ 0.1% Tween 20, membranes were incu-
bated for 1 hour with the specific secondary antibodies at
a dilution of 1:5000 (horseradish peroxidase conjugated;
Pierce Biotechnology) or 1:15000 (IRDye; LI-COR Biosci-
ences) in TBSþ 5% nonfat milkþ 0.2% Tween 20þ 0.01%
SDS.Blotswere developed usingSuperSignal (ThermoFisher
Scientific) or were scanned in an Odyssey infrared imager
(LI-COR Biosciences). Image Studio software version 3.1.4
(LI-COR Biosciences) was used for protein quantification.
The American Journal of Pathology - ajp.amjpathol.org
Sequential Extraction

Proteins from half the brain were extracted sequentially as
described elsewhere.25,26 Briefly, brain tissue was first
homogenized in low-salt (LS) buffer [10mmol/LTris, pH7.5,
5 mmol/L EDTA, 1 mmol/L dithiothreitol, 10% sucrose, and
protease/phosphatase inhibitor cocktails (Sigma-Aldrich)]
and then was centrifuged at 25,000� g for 30 minutes at 4�C
to collect the LS fraction. Pellets were washed with PBS
andwere homogenized in high-salt buffer (LSþ 1%TritonX-
100 and 0.5 mol/L NaCl). The mixture was centrifuged at
180,000 � g for 30 minutes at 4�C, and the high-salt fraction
was collected. The resulting pellets were washed with PBS
and were homogenized in sarkosyl buffer (LSþ 1% sarkosyl
þ 0.5 mol/L NaCl). The mixture was incubated for 1 hour at
22�C with gentle shaking followed by centrifugation at
180,000� g for 30minutes at 4�C. Sarkosyl-insoluble pellets
were washed with PBS, resuspended in urea buffer (7 mol/L
urea, 2mol/L thiourea, 4%CHAPS, 30mmol/L Tris, pH 8.5),
and centrifuged at 25,000 � g for 30 minutes at 22�C. The
protein concentration of each fraction was quantified by the
Bradford assay (Bio-Rad Laboratories). Samples were mixed
with 4� Laemmli loading buffer (Bio-Rad Laboratories) and
0.25 mol/L dithiothreitol, boiled for 10 minutes at 90�C, and
loaded onto SDS gels as described previously herein.

Immunoprecipitation

Protein (150 mg) was precleaned for 1 hour with protein
Geagarose (EMD Millipore Corporation, Billerica, MA) on
a 360� rotator at 4�C. Beads were removed and samples were
incubated with 1 mg of VCP antibody (MA3-004; Thermo
Fisher Scientific) on a 360� rotator at 4�C. One hour later,
protein Geagarose was added to samples and incubated for
an additional 2 hours. Beads were washed several times,
resuspended in 4� Laemmli loading buffer (Bio-Rad Labo-
ratories) þ 0.25 mol/L dithiothreitol, and boiled for 10
minutes. After centrifugation, supernatant was collected and
analyzed by immunoblot.

SH-SY5Y Cell Transfection and Immunocytochemical
Analysis

Cells were seeded at 70% confluency on chambered cov-
erglass. Twenty-four hours later, 1 mg of one of the
following constructs was transfected with BioT (Bioland
Scientific, Paramount, CA) according to the manufacturer’s
instructions: human wild-type VCP, human VCPA232E, or
human VCPR155H fused to enhanced green fluorescent
protein. After 7 hours, the medium was replaced with fresh
medium. Cells were processed for immunocytochemical
analysis 72 hours after transfection. The VCPeenhanced
green fluorescent protein plasmids used herein were a gift
from Dr. Akira Kakizuka (Kyoto University, Kyoto, Japan).

For immunocytochemical analysis, cells were fixed in
PBS þ 4% paraformaldehyde (pH 7.4) for 15 minutes. After
507
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Figure 1 Generation of Thy-VCPA232E Tg mice. A: The Thy1.2-VCPA232E
transgene construct shows the location of the sequence amplified by PCR
genotyping (arrows; 0.5kb) and the probe used in Southern blot analysis
(2.5 kb). B: Southern blot analysis of founder lines A, B, and C. Asterisks
indicate the 4- and 5.5-kb bands in Thy1.2-VCPA232E Tg mice. Bands above
6 kb are undigested multiple copies of the transgene that were incorpo-
rated into genomic DNA. C: PCR genotyping shows amplification of 500 bp
(asterisk) by the primer set shown as arrows in A. D: Immunoblot analysis
of VCP in the brain. Increased steady-state levels of VCP at 98 kDa in the
brain were detected in founder lines A, B, and C. Actin was used as loading
control.

Figure 2 Overexpression of VCPA232E causes age-dependent cognitive
impairment. Six- and 12-month-old mice were trained in hippocampal- and
cortical-dependent behavioral tasks. A and B: The higher-expressing
VCPA232E B line showed significant impairment in Morris water maze
acquisition at 6 and 12 months of age, whereas the lower-expressing A line
was not different from wild-type animals. C and D: Both 12-month-old Tg
groups presented cognitive impairments when tested 24 hours later as
measured by escape latency but not as measured by platform crosses. E:
Both VCPA232E-expressing lines performed poorly in the object recognition
task at 12 months of age but not at 6 months of age. yP < 0.05 from 50%
(chance level, shown as a horizontal line). F: Only the higher-expressing B
line showed impairments at 6 and 12 months of age when contextual fear
conditioning was assessed (n Z 10 to 12 per group). *P < 0.05, **P <

0.01. Data are given as means � SEM.

Rodriguez-Ortiz et al
TBS washes, cells were incubated with TBST þ 3% BSA
for 10 minutes and were blocked in TBS þ 1% BSA þ 5%
goat serum for 1 hour. Cells were incubated overnight with
TDP-43 primary antibody (dilution 1:500) (12892-1-AP,
Proteintech Group Inc.) in TBS þ 1% BSA þ 2% goat
serum at 4�C. After washes, sections were incubated with
Alexa Fluoreconjugated anti-rabbit secondary antibody in
TBS þ 1% BSA þ 2% goat serum at room temperature for
1 hour (dilution 1:200; Life Technologies Inc.), washed, and
incubated with 300 nmol/L DAPI for 5 minutes. Cells were
coverslipped with Fluoromount-G (SouthernBiotech) and
were examined under an EVOS fl fluorescence microscope
(Advanced Microscopy Group). Semiquantitative analysis
was performed using ImageJ software. Ten areas of each
coverslip were selected (three independent experiments per
group), and nuclei were outlined and deleted from TDP-43
grayscale images. Images were converted to binary, and the
granule size and number were calculated on green fluores-
cent proteinepositive cells.

Statistical Analysis

Comparisons between multiple groups used appropriate
analysis of variance followed by Fisher post hoc tests.
Comparisons between two groups used Student’s t-test. P �
0.05 was considered significant.

Results

Forebrain Overexpression of Mutant VCP Impairs
Cognitive Function in an Age-Dependent Manner

Mutant VCPA232Eeoverexpressing mice were generated by
microinjection of Thy1.2-VCPA232E transgene into a single
cell embryo from C57BL/6J mice. The Thy1.2 promoter
508
limited expression of the transgene to forebrain neurons.27

Three founder lines were isolated showing integration of
the Thy-VCPA232E transgene. All the lines had the entire
transgene successfully integrated into genomic DNA. The A
line harbored the fewest copy numbers, whereas the B and C
lines harbored approximately three to four times more
copies of the transgene than the A line (Figure 1B). VCP
expression was found to be higher on the brain of all Tg
lines compared with their littermates (Figure 1D). Detailed
genetic studies indicated that the C line founder was mosaic;
hence, we excluded this line from further analysis.
Because transgene expression was limited to forebrain

neurons, and high expression was observed in the hippo-
campus and cortex (Supplemental Figure S1J), a battery of
behavioral tests, including the Morris water maze, novel
object recognition, and contextual fear conditioning, was
used to determine whether the expression of mutant VCP
influences cognitive function in an age- and Tg dose-
dependent manner (Figure 2). In the Morris water maze,
the higher VCP-expressing B line showed significant im-
pairment in acquisition at 6 and 12 months of age, whereas
ajp.amjpathol.org - The American Journal of Pathology
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the lower VCP-expressing A line was not different from
age-matched wild-type mice (Figure 2, A and B). However,
both Tg lines were significantly impaired in memory reten-
tion, as measured by probe trial escape latency, at 12 months
of age compared with NT mice (Figure 2C). The swim speed
and swim distance in the defined timeframe were not
The American Journal of Pathology - ajp.amjpathol.org
different between age-matched NT and Thy-VCPA232E Tg
mice (data not shown).

Similarly, object recognition showed that only 12-month-
old Thy-VCPA232E mice (A and B lines) were significantly
impaired in recalling the familiar object, but 6-month-old Tg
mice were not different from chance level (50% recognition
index), although NT mice were different (Figure 2E). In
contextual fear conditioning, only the higher-expressing B
line showed impairments at 6 and 12 months of age
(Figure 2F). The overexpression of mutant VCP in the
forebrain, therefore, mediated age- and dose-dependent
cognitive impairment in mice.

Mutant VCP Abets Focal TDP-43 Deposits that
Co-Localize with Stress Granules and/or Ubiquitin
in the Cortex

The overexpression of mutant VCP did not cause alterations
in the gross anatomy of the hippocampus and cortex, where
transgene expression driven by the Thy1.2 promoter was
maximal (data not shown). Also, we did not observe any
apparent aggregation or abnormal accumulation of endog-
enous VCP in neurons in these regions in NT mouse brain
(Supplemental Figure S1, AeC). In Tg mice, however, VCP
immunoreactivity was extended to dendrites in cortical and
hippocampal regions, probably due to overexpression of
mutant VCP (Supplemental Figure S1, DeI). A lack of VCP
aggregate consisted of histopathologic observations on patients
with IBMPFD.17 We next sought to examine whether TDP-
43 immunoreactivity was altered in neurons. A previously
reported Tg mouse model overexpressing mutant VCP exhibi-
ted complete clearance of TDP-43 from nuclear compartment
andbuildupof cytoplasmicTDP-43depositswith ubiquitin.16 In
the present mousemodel, we observed abnormal accumulations
of TDP-43 only, although a small percentage (19%), in neurons
of Thy-VCPA232E Tg mice but not in NT mice (Figure 3, C and
D). Focal accumulation of TDP-43 was co-localized with stress
granules, identifiedbyTiA-1, in the cytoplasm (Figure 3,A and
B). Quantification of 12- and 20-month-old cortical sections
showed augmented levels of TiA-1 protein on 20-month-old
Thy-VCP animals (Figure 3I). These findings support a redis-
tribution of TDP-43 and increased stress responses, which
may alter RNA metabolism and contribute to neurodegenera-
tive processes. Similarly, a significantly increased number of
Thy-VCPA232E neurons had ubiquitin cytosolic inclusions
(Figure 4, A and B), which were co-localizedwith cytoplasmic
Figure 3 Thy-VCPA232E mice display TDP-43 protein accumulation in the
cytoplasm that co-localized with the stress granule marker TiA-1. A and B:
Fluorescence microscopy analysis of 20-month-old mice revealed TiA-1
(red)epositive staining on wild-type (A) cortical sections but to a lesser
degree than on VCPA232E (B). D: TiA-1 co-localized with TDP-43 (green)
deposits in the cytoplasm of Tg brains but not NT (C). E and F: DAPI
staining (blue) was used as nuclear marker. G and H: Merge images of NT
(G) and Tg (H). I: Quantification of 12- and 20-month-old sections showed
significant increases in TiA-1 levels on the latter age. Data are given as
means � SEM. Scale bars: 10 mm. n Z 5 to 6 per group. *P < 0.05.
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TDP-43 aggregates (Figure 4, D and H). Accordingly, image
analysis revealed that Thy-VCPA232E brains have more
ubiquitin-positive staining (Figure 4I). Biochemical analyses
demonstrated accumulation of ubiquitinated proteins in an
510
age-dependent manner on Thy-VCPA232E mice (Figure 4J).
Ubiquitinated protein accumulation was detected to be greater
in Thy-VCPA232E brain cytoplasmic fractions (Figure 4, K
and L).

TDP-43 Accumulates as a High-Molecular-Weight Form
in the Thy-VCPA232E Mouse Model

The underlying mechanisms by which TDP-43 is abnormally
redistributed into cytoplasm and gains cytotoxicity remain
unknown. Recent studies have suggested that TDP-43 is
posttranslationally modified and abnormally accumulates in
cells. Phosphorylation,28 ubiquitination,25,29 and proteolytic
cleavage30 of TDP-43 are found to associate with various
disease states. We, therefore, sought to investigate whether
particular forms of TDP-43 predominantly accumulate in the
cytoplasm of Thy-VCPA232E Tg mice. We detected a high-
molecular-weight (w90-kDa) TDP-43 band with greater
intensity in aged B line Tgmice that corresponds to the size of
dimeric TDP-43 (Figure 5A). Full-length TDP-43, on the
other hand, was unchanged with age or transgene expression
(Figure 5A). Nuclear-cytosolic fractionation showed a high-
molecular-weight TDP-43 present only in the cytoplasm of
Thy-VCP brain homogenates (Figure 5, BeE).
The aggregation states of TDP-43 were next determined

by sequential extraction of brain tissue. We found several
high-molecular-weight isoforms of TDP-43 in all fractions
of Tg brain (Figure 6, A and B). A faint low-molecular-
weight TDP-43 band (25 to 30 kDa), previously described
in patients with ALS and frontotemporal dementia,25 was
also detected in detergent-soluble and sarkosyl fractions
(Figure 6B). In addition, we observed increased levels of
high-molecular-weight ubiquitinated proteins in LS and urea
fractions (Figure 6C).

Tg-Specific High-Molecular-Weight TDP-43 Interacts
with VCP

TheoverexpressionofmutantVCP induced aberrant inclusions
and redistribution ofTDP-43 in forebrain neurons (Figures 3, 4,
and 5). To determine whether VCP directly mediates these
changes in TDP-43 through direct physical interaction, Thy-
VCPA232E and NT brain samples were immunoprecipitated
with a VCP antibody and then were immunoblotted for TDP-
Figure 4 Thy-VCPA232Emice showage-dependent cytosolic accumulation of
polyubiquitinated proteins.AeH: VCPA232E cortical sections from 20-month-old
mice showed increased levels of polyubiquitin proteins (red) (B) and cyto-
plasmic TDP-43 (green) accumulation (D) compared with NT mice (A and C).
E andF: DAPI staining (blue) was used as nuclearmarker.G andH: Merge images
of NT (G) and Tg (H). I: Quantification of 12- and 20-month-old sections
uncovered increased levels of polyubiquitinated proteins on the Thy-VCP brain.
J: Immunoblot analysis showed age-dependent buildup of polyubiquitinated
proteins. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
loadingcontrol.K: Polyubiquitinatedproteinswere accumulated in the cytosolic
compartment of mutant VCP mice. Tubulin was used as loading control. L:
Quantification of K. Scale bars: 10 mm. nZ 5 to 6 per group. *P< 0.05, **P<
0.01. Data are given as means� SEM.
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Figure 5 A high-molecular-weight TDP-43 isoform accumulates in the
cytoplasm of Thy-VCPA232E mice. A: Immunoblot analysis revealed a TDP-43
band of approximately 90 kDa only on mutant VCP mice at 6 and 12 months
of age. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
loading control. B and C: Nuclear-cytosolic fractionation unveiled a Tg-
specific TDP-43 high-molecular-weight (HMW) band in the cytosol compart-
ment of 12- and 20-month-old animals. p84 and GAPDH were used as nuclear
and cytoplasmic purity controls, respectively. D: A better resolution of the
TDP-43 HMW band was obtained when samples were run in a 5% acrylamide
gel. E and F: Quantification of the HMW TDP-43 band in the cytoplasmic
fraction of animals aged 12 (E) and 20 (F) months (n Z 6 to 7 per group).
*P< 0.05, **P< 0.01. Arrowheads indicate HMW TDP-43 bands. Asterisks
indicate full-length TDP-43 bands. Data are given as means � SEM.

Figure 6 High-molecular-weight TDP-43 is present in different aggre-
gation states. A and B: Sequential extraction of brain tissue showed
high-molecular-weight TDP-43 (arrowheads) in detergent-soluble and
detergent-insoluble fractions. C: High-molecular-weight ubiquitinated
proteins were detected in LS and urea fractions (n Z 6 per group).

VCPA232E Abets TDP-43 Buildup in Neurons
43. We found that only high-molecular-weight TDP-43 was
immunoprecipitated with VCP (Figure 7A).

To determine whether high-molecular-weight TDP-43 is
a hyperphosphorylated isoform,Tg andNTbrain sampleswere
treated with alkaline phosphatase and were analyzed by
Western blot. Alkaline phosphatase treatment did not reduce
high-molecular-weight TDP-43 levels (Figure 7, B and C).
Together, these data suggest a physical interaction between
VCPand a high-molecular-weight TDP-43 isoform inTgmice.

Mutant VCP Overexpression Does Not Show Evident
Neurodegeneration

As shown in Figure 2, forebrain neuron-specific expression
of mutant VCP exhibited age- and dose-dependent cognitive
impairment in mice. We sought to investigate whether loss
of synapses contributed to cognitive impairment in Thy-
VCPA232E Tg mice. Both synaptophysin and PSD-95 in the
hippocampus were quantitatively measured by immunoblots
(Supplemental Figure S2, A and B, for synaptophysin and
Supplemental Figure S2, C and D, for PSD-95), but no
The American Journal of Pathology - ajp.amjpathol.org
definitive differences were detected. Similarly, immunoflu-
orescence staining failed to show any statistical significance
in the intensity of synpaptophysin (Supplemental Figure S2,
E and F) or PSD-95 (Supplemental Figure S2, G and H) in
VCP Tg mice compared with age-matched NT mice.

It has been proposed that mutant VCP leads to increased
NF-kB signaling, producing degeneration of muscle and bone
tissue through hyperactivity of the NF-kB pathway.16,31 VCP
modulates the NF-kB signaling cascade by regulating the
degradation of IkB-a, which, in turn, frees NF-kB from an
inactive to a phosphorylated active conformation that trans-
locates to the nucleus. In this regard, it was shown that
myoblast C2C12 cells overexpressing mutant VCP present
lower IkB-a protein levels and increased phosphorylated
NF-kB protein levels compared with cells overexpressing
wild-type VCP when stimulated with tumor necrosis factor
a.16 To address whether altered NF-kB signaling underlies
cognitive impairment in Thy-VCPA232E mice, we analyzed
NF-kB and IkB protein levels in the nuclear and cytoplasmic
fractions of wild-type and Tg animals (Supplemental
Figure S3, AeE) and the activity of NF-kB by electropho-
retic mobility shift assay (Supplemental Figure S3F), but we
did not uncover differences between genotypes (Supplemental
Figure S3). However, we observed that a small number of
neurons exhibited nuclear localization of NF-kB in VCP Tg
mice (Supplemental Figure S3G). Further studies are required
to identify the link between VCP, TDP-43, and cognitive
impairment in the brain.
SH-SY5Y Cells Transfected with Mutant VCP Present
TDP-43 Cytoplasmic Inclusions

To evaluate VCP-mediated TDP-43 accumulation in the
cytoplasm in a cell culture model, human neuroblastoma
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SH-SY5Y cells were transfected with one of the following
constructs: wild-type VCP, VCPR155H, or VCPA232E fused
to enhanced green fluorescent protein. Seventy-two
hours after transfection, analysis of green fluorescent pro-
teinepositive cells indicated formation of a small number of
TDP-43 inclusions in the cytoplasm when IBMPFD-related
VCP mutations were introduced (Figure 8, AeF). Larger
TDP-43 deposits were observed in the cytosol of VCPA232E-
and VCPR155H-transfected cells compared with transfection
with wild-type VCP (Figure 8M).
Figure 7 High-molecular-weight TDP-43 interacts with VCP. A: Immu-
noprecipitation (IP) with a VCP antibody and immunoblot (IB) for TDP-43
uncovered an interaction between VCP and the Tg-specific TDP-43 high-
molecular-weight isoform (arrowhead). B: High-molecular-weight TDP-43
is not affected by alkaline phosphatase treatment (arrowhead). C: Quan-
tification of B (n Z 4 per group). Asterisks indicate full-length TDP-43
bands. Data are given as means � SEM.
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Discussion

TDP-43 is a DNA- and RNA-binding protein and a compo-
nent of heterogeneous nuclear ribonucleoproteins, which are
involved in RNA transcription, splicing, and transport.32,33 In
particular, because TDP-43 has nuclear localizing signal and
nuclear export signal in its sequence along with two DNA/
RNA recognition motifs (RRM1 and RRM2),34 it is critically
involved in the trafficking of mRNAs between the nucleus
and cytosol.35,36 Although TDP-43 is predominantly local-
ized in the nuclear compartment, its physiologic role in spines
and involvement in synaptic plasticity have recently been
reported,35 further suggesting a diverse role of TDP-43 in
neurons. Shortly after abnormal TDP-43 was first recognized
as forming a part of cytosolic inclusions in affected neurons in
ALS and frontotemporal dementia,25 mutations on TDP-43
causing ALS were identified,37,38 confirming that TDP-43
plays a critical and causal role in the pathogenesis of ALS.
Redistribution and accumulation of TDP-43 in the cytosol

are also observed in affected skeletal muscle fibers in inclu-
sion body myositis,14 suggesting that TDP-43 may be
a primary culprit in various human diseases in multiple
tissues. In some cases, TDP-43 is reported to co-localize with
ubiquitin or stress granules.39e41 In Tg mice and cell culture
models, increased cytosolic accumulation of TDP-43 or its
proteolytic 25-kDa fragment triggers neurotoxicity.42,43

However, detailed molecular mechanisms by which cyto-
solic TDP-43 induces cell death have not yet been defined.
Some biochemical evidence suggests that TDP-43 forms

a homodimer in physiologic conditions.34 In addition,
structural analysis of the TDP-43 RRM2 domain showed
similar structural arrangement to heterogeneous nuclear
ribonucleoprotein A1 protein, which forms a homodimer
when bound to DNA.34 In this study, it was also revealed that
dimeric RRM2 is quite resistant to temperature because of
a highly stable antiparallel b-sheet conformation, presenting
a denaturing temperature of approximately 85�C. On the
other hand, a TDP-43 fragment that included both RRM
domains of TDP-43 protein showed a much lower melting
point (approximately 50�C). In the present report, we ob-
served a high-molecular-weight TDP-43 that is consistent
with the size of dimeric TDP-43, exclusively expressed in the
cytoplasm of Tg mice. This putative dimeric TDP-43 band
would also be in a thermal-stable conformation, as well as
resistant to denaturing and reducing conditions (Figure 5). In
this regard, Shiina et al44 reported an 86-kDa cytoplasmic TDP-
43 isoform in several human cell lines. The 86-kDa band reacts
to specific N-terminal and C-terminal TDP-43 antibodies and is
sensitive to siRNA targeted to TDP-43. Moreover, samples
treated with dithiothreitol or 2-mercaptoethanol before immu-
noblotting showed the 86-kDa band when immunoblotted with
TDP-43 antibodies. These authors detected a similarmolecular-
weight band in detergent-soluble brain samples from patients
with disparate affections, including ALS, parkinsonism,
multiple sclerosis, schizophrenia, and depression.44 When this
86-kDa isoform was overexpressed in cell culture, it promoted
ajp.amjpathol.org - The American Journal of Pathology
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Figure 8 SHSY-5Y neuroblastoma cells present TDP-43 cytosolic
buildup when transfected with mutant VCP. Cells transfected with wild-type
VCP showed TDP-43 (red)epositive staining mainly in the nucleus, with
little to no cytoplasmic signal (A). Cells transfected with the common
R155H (B) or severe A232E (C) VCP mutation also showed TDP-43 nuclear
signal with small, but evident, TDP-43 deposits in the cytoplasm (arrow-
heads). DeF: Green fluorescence protein signal was used to identify
transfected cells. GeI: DAPI staining (blue) was used as nuclear marker.
JeL: Merge images of wild-type VCP, VCP(R155H), and VCP(A232E),
respectively. M: TDP-43 granule size was larger in cells transfected with
mutant VCP. Scale bars: 50 mm. *P < 0.05. Data are given as means � SEM.

VCPA232E Abets TDP-43 Buildup in Neurons
the accumulation of TDP-43ereactive proteins that range in
size from 70 to 200 kDa, indicating that dimeric TDP-43 would
be a seed molecule for TDP-43 inclusions.44

VCP is involved in multiple cellular functions through
interaction with a plethora of cofactors. For example, VCP
associates with several E3 ligases to deliver polyubiquitinated
proteins to the proteasome for degradation.45,46 In addition,
several polyubiquitinated proteins require direct interaction
with the N-terminal region of VCP to translocate to the pro-
teasome.47 Accordingly, mutant VCP isoforms lead to altered
The American Journal of Pathology - ajp.amjpathol.org
proteasome activity and induce apoptosis.17,19 A previous
report showed interaction between VCP and TDP-43 in ALS
brain samples and SHSY-5Y cells transfected with mutant
VCP.19 Herein, we observed interaction between VCP and
TDP-43 in the Thy-VCP mouse; however, VCP coupled
exclusively to the putative TDP-43 homodimer, probably to
direct it to the proteasome for degradation, but when this
process is disrupted by mutant VCP, TDP-43 accumulates in
the cytoplasm. In support of this view, it has been reported that
IBMPFD-relevant VCP mutations cause cytoplasmic TDP-
43 inclusions in vitro.19

Furthermore, some evidence indicates that TDP-43 is
degraded through the ubiquitin-proteasome system and that
impairment of the proteasome leads to aggregation of ubiq-
uitinated TDP-43 in the cytoplasm.19,48,49 Herein, we observed
VCPA232E-mediated accumulation of TDP-43 in the cytoplasm
specifically concentrated in stress granules. In response to stress
insults, cells sequester nonessential RNA transcripts in protein-
mRNA complexes called stress granules, allowing available
resources to deal with stress. Protein-mRNA complex forma-
tion relies on regulated aggregation of RNA-binding proteins,
such asTDP-43.50 In this regard, it has been shown that cellular
stress produces TDP-43 recruitment to stress granules40,41 and
that TDP-43 is involved in stress granule assembly and main-
tenance.51 Consistently, TDP-43 regulates the maturation of
stress granules containing G3BP and co-localizes with stress
granules containing TiA-1.51,52 These pieces of evidence
indicate that regulated protein aggregation of TDP-43, similar
to other RNA-binding proteins, exerts direct influence on stress
granule dynamics and the way cells deal with stress.50

In physiologic conditions, stress granules rapidly
dissociate when stress is overcome. However, mutations
on key proteins of the stress granules pathway and/or
chronic stress may lead to up-regulation of stress granule
formation and, consequently, pathologic aggregation of
proteins.50 Accordingly, ALS-relevant TDP-43 mutations
have been reported to produce larger stress granules than
their wild-type counterpart,41,53 which may be an indica-
tion of an altered stress response or an increased propen-
sity for aggregation. It has also been shown that TDP-43
accumulation in stress granules can progress to stable
cytosolic aggregates that may be part of a toxic gain-of-
function process.54 Therefore, manipulation of the path-
ways involved in stress granule formation provides an
opportunity to modify the pathologic protein aggregation
commonly observed in neurodegenerative diseases.50

Another interesting and related mechanism by which
TDP-43 may contribute to pathologic abnormality is derived
from the fact that TDP-43 is required for activity-dependent
transport and stability of mRNAs in dendrites.35 Pathologic
TDP-43 relocalization to stress granules may impair local
dendritic mRNA translation in response to neuronal activity,
contributing to neurodegeneration through the disruption of
normal synaptic function.

We generated a Tg mouse overexpressing an IBMPFD-
associated mutant VCP selectively in forebrain neurons to
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investigate the molecular and cellular mechanisms by which
mutant VCP mediates neuronal dysfunction and neuro-
degeneration. Although extensive neurodegeneration was not
observed throughout the life span of mice, age-dependent
cognitive decline, increased stress response, and altered
TDP-43 distribution in affected brain regions were clearly
detected in Thy-VCPA232E mice. Previous Tg models have
successfully recapitulated different IBMPFD phenotypes,
contributing valuable insights on IBMPFD disease mecha-
nisms.15,16,18,42,55 The present Tg mouse model exhibited
several remarkable changes in affected neurons, including
accumulation of high-molecular-weight TDP-43 only in the
cytosolic compartment with age. This model could serve as
an additional in vivo tool to further study the brain abnor-
malities associated with IBMPFD and other TDP-43 protei-
nopathies without confounding complications, such as
myopathy and bone deformations, that could interfere with
cognitive assessments.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2013.04.014.
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