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ABSTRACT OF THE DISSERTATION 
 

Booly: a new data integration platform for systems biology 

 

by 

 

Long Hoang Do 

 

Doctor of Philosophy in Biology with a Specialization in 
Bioinformatics 

 

University of California, San Diego, 2010 

 

Professor Ethan Bier, Chair 

 
 

Data integration continues to remain a difficult and escalating problem in 

bioinformatics.   The goal of this thesis is to develop a data integration platform 

that addresses two recurring issues in current data integration methods: 1) the issue 

of naming and identity and 2) the barrier of entry for general researchers to 

contribute and perform analysis of data.  We have developed a web tool and 

warehousing system, Booly, that features a simple yet flexible data model coupled 

with the ability to perform powerful comparative analysis, including the use of 
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Boolean logic to merge datasets together, and an integrated aliasing system to 

decipher differing names of the same gene or protein.  We applied Booly across 

heterogeneous data sources and identified genes useful in comparing avian and 

mammalian brain architecture, which were validated by comprehensive in situ 

hybridization experiments.  The Booly paradigm for data storage and analysis 

should facilitate integration between disparate biological and medical fields and 

result in novel discoveries that can then be validated experimentally. 
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Chapter 1 

 

Introduction 
 

In the 1960s systems theory and biology enjoyed considerable interest among 

eminent scientists, mathematicians and engineers as researchers took a systems 

approach to ‘search for general biological laws governing the behavior and evolution 

of living matter in a way analogous to the relation of the physical laws and non-living 

matter’ [1-4].  Recently, systems biology has re-emerged as a movement in biological 

research that can be described as an inter-disciplinary study field that focuses on 

complex interactions in biological systems and as a paradigm, is the antithesis to the 

reductionist paradigm [4, 5]. 

Systems biology...is about putting together rather than taking apart, 

integration rather than reduction. It requires that we develop ways of 

thinking about integration that are as rigorous as our reductionist 

programmes, but different...It means changing our philosophy, in the 

full sense of the term (Noble 2006 [5]).
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Consistent with Noble’s idea of “integration” is the practice of utilizing an 

inter-disciplinary field such as bioinformatics to develop data integration platforms 

and methods for carrying out systems biology analysis.  However, the difficulty in 

achieving lasting solutions to integration of diverse biological data continues to be a 

central problem in bioinformatics.  A number of technologies and systems have been 

developed that offer a variety of potential solutions to the data integration problem.  

These solutions differ by the architecture they adopt and by the common “touch-

points” used to integrate data (e.g., data values, names, identities, schema properties, 

ontology terms, Uniform Resource Identifier [URI], keywords, loci, spatial-temporal 

points) [6]. 

There are two major approaches to address data integration: the data 

warehousing approach, and the mediated approach [6-8].  The data warehouse 

technique transforms the content of multiple source databases to fit a common data 

model, essentially integrating all the data under a single roof.  In the data warehousing 

approach, software is created to fetch data from remote data sources, transform it into 

the appropriate data model, and load it into the data warehouse.  Examples of the data 

warehouse approach include BioMart and BioWarehouse [9, 10].   

In the mediated approach, a data resource environment is built around a 

collection of data housed and stored autonomously in remote databases.  The data in 

remote locations is accessed by queries made against the mediated schema, and 

software “drivers” or “wrappers” are used to determine where and how to fetch the 



 

 

3 

remote information.  View integration (Kleisli, BioMediator, BioZon, TAMBIS) and 

link integration (SRS, Entrez) are all variations of the mediated approach [11-16].  

Another variation of the mediated approach concerns the semantic integration 

problem.  Projects such as BioMOBY and Bio2RDF use semantic integration 

approaches to establish complex relationships between objects by resolving conflicts 

between the meaning of words and concepts [17, 18].   

A number of challenges exist for current data integration efforts.  At the 

forefront is the issue of naming and identity where the same biological object (e.g. 

genes, proteins) contain multiple aliases.  Goble and Stevens states: “The failure to 

address identity will be the most likely obstacle that will stop mashups, or any other 

technology or strategy, becoming an effective integration mechanism [6]”.   For 

example, the BioMOBY project utilizes shared ontologies as a semantic integration 

approach to describe biological objects, but does not necessarily help in naming the 

biological objects or resolve the same objects with multiple names.  One idea to 

address the issue of naming and identity, as Stein proposes, is to create globally 

unique identifiers as has been done with human gene symbols by the HUGO Gene 

Nomenclature Committee [7, 19].  However, Stein acknowledges the practice rarely 

works due to the “dynamic nature of the field” and that changes would be too difficult 

to keep up with for any commission.   

The second major challenge in data integration is the barrier of entry for 

scientists and developers to contribute and perform analysis of data.  The data 
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integration systems currently in existence either do not account for the general 

researcher contribution or are too difficult to utilize by non-specialists.  Stein opines 

“…the simplicity of the data models and the ease of implementation…will make or 

break [data integration] attempts [7].”  The Bio2RDF project encourages research data 

be deposited in a machine-readable format through the use of the Resource 

Description Framework (RDF) [17].  RDF is regarded as a necessary component in the 

semantic web movement, allowing web content to be meaningful to machines [20].   

However, RDF is overly complicated for the broad base of users who are confronted 

with the simple but vexing problem of integrating data from a diverse set of 

spreadsheets with other data sources. 

The goal of this thesis is to address the two main challenges when carrying out 

data integration for the purpose of systems biology analysis.  First, it describes a 

platform, Booly, with a simple yet flexible data model and tools that lower the barrier 

of entry for general researchers and developers to contribute, collaborate, and perform 

analysis of data.  Secondly, it presents an on demand aliasing method integrated into 

Booly to address the issue of naming and identity.  Finally, it presents a number of 

biologically relevant uses of Booly, including the identification of genes useful for 

comparing avian and mammalian brain architecture, and a method to integrate genetic 

interactions with known disease targets to discover secondary uses of marketed drugs 

(drug repurposing). 
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The novel framework Booly provides for storing and integrating biological 

databases, with contributions from general researchers and large data centers alike 

coupled with high-throughput on demand alias translations, will spark a new approach 

in data integration efforts.  These advantages over existing data integration approaches 

should attract growing contributions from developers and the research community that 

spur important new discoveries.  

Chapter 1, in part, has been submitted for publication of the material as it may 

appear in Booly: a new data integration platform, Do, Long H.; Esteves, Francisco F.; 

Karten, Harvey J.; Bier, Ethan, BMC Bioinformatics 2010.  The dissertation author 

was the primary investigator and author of this paper.
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Chapter 2 

Overview 

2.1 Implementation 

The Booly data integration platform consists of a data warehouse, scripts to 

perform alias lookups and Boolean operations, and a web interface for interaction 

from the user.  In Booly, data from Gene Ontology [21] and PubMed are represented 

as individual datasets similar to a spreadsheet table consisting of rows and columns.  

Each dataset can be merged with others to produce an output of the requested 

combination of Boolean operations constrained against the identifiers and their aliases 

grouped by a similar fingerprint such as gene sequence or chemical formula (Figure 1, 

chapter 4). For example, one can merge a table of microarray data with a Gene 

Ontology dataset to attach annotation to previously unannotated microarray data.  

Furthermore, heterogeneous identifiers from the datasets are resolved by the integrated 

alias lookups and applied accordingly.  

One can perform a combination of Boolean logic on multiple datasets by 

simply arranging datasets on our web interface in a manner akin to an algebra 

equation.  We demonstrate the ability to perform powerful comparative analysis on the 

recently sequenced twelve Drosophila genomes to identify genes lost in one species of 
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the melanogaster subgroup (Figure 2, Figure 3, Figure 4, Table 1, section 3.2) [22, 

23].    

Combining diverse datasets can be difficult when consideration must be made 

to map identifiers to a uniform nomenclature.  A number of aliasing services exist 

which perform the task of alias resolution (DAVID, Synergizer, AliasServer, HGNC) 

[19, 24-26], however many require pre-existing knowledge of an identifier’s source 

before translation can be performed while others lack the flexibility to allow for 

aliases beyond just genes and proteins (e.g. aliases for drugs or ontology terms).  To 

resolve these shortcomings, we have implemented our own streamlined form of alias 

resolution and demonstrate an approximate running time performing a Booly 

intersection with aliasing (Figure 5, Figure 6, section 3.4, section 4.2).  

We illustrate the power of Booly’s alias resolution while integrating multiple 

sources for the purpose of comparing mammalian and avian brain architecture.  Our 

analysis began with a homebrew dataset we curated from the Allen Institute Brain 

Atlas for genes that are selectively expressed at high levels in the mouse hippocampus 

[27].  The next step was to integrate this dataset with mouse Gene Ontology and 

BLAST [28] hits of the mouse genome against other species such as the fish, chicken, 

and fruitfly.  Unfortunately, while the Allen data and Gene Ontology had identifiers 

mapped to official mouse gene names, our BLAST data had identifiers mapped to 

Ensembl [29] sequence identifiers.  Using our aliasing tool, we overcame this 

commonly encountered problem and seamlessly integrated these datasets together, 
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which resulted in the identification of an enriched set of genes that are expressed in a 

region of the avian brain believed to correspond to the mammalian hippocampus 

(Figures 7-10, section 3.1). 

2.2 Extensions and applications 

In addition to the core functionalities we have previously described, Booly can 

be extended further by creation of new applications.  For example, we created an 

application that allows researchers to generate new BLAST datasets.  Another 

application allows the user to switch “touch points” (identifiers used to map one piece 

of data to another) [6], which makes it possible to perform concatenated series of 

complex Boolean comparisons (Figure 11, section 4.3.4).  An example of the utility of 

this tool is to integrate known Drosophila melanogaster genetic interaction networks 

with human diseases and existing uses of FDA approved drugs to develop a new 

approach to identify new potential uses for drugs, sometimes referred to as drug 

repurposing (Figure 12, Figure 13, section 3.3).   Additionally, the Application 

Programming Interface (API) utilizing RESTful web services 

(http://booly.ucsd.edu/api) is will allow developers an easy way to both import and 

retrieve data within Booly. 

2.3 Privacy and data integrity 

The Booly web application allows for users to create a secure, personalized 

account for storage of datasets.  In this manner, only the original owner of a data set 
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will be able to view, modify, delete, and share their content.  Once a data set is shared 

either publicly or to other individuals, permission is granted for the recipients to 

receive a copy of the data set, thereby preserving the original data set's integrity.  The 

security of individual accounts is consistent with today's current web standards and 

will continually see improvements as the technology advances. 

Chapter 2, in part, has been submitted for publication of the material as it may 

appear in Booly: a new data integration platform, Do, Long H.; Esteves, Francisco F.; 

Karten, Harvey J.; Bier, Ethan, BMC Bioinformatics 2010.  The dissertation author 

was the primary investigator and author of this paper. 
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Chapter 3 

Results 

3.1 Avian brain architecture 

A novel and important feature of Booly is its inherent ability to combine data 

from diverse sources into single comparative tables.  One practical example that 

illustrates this enabling power of Booly is in helping to define sets of candidate genes 

that might be expressed in corresponding functional regions of the mammalian versus 

avian brains.   

We were interested in testing the hypothesis that even though avian and 

mammalian brains appear superficially different in organization, that there are clear 

homologous regions in these brains as indicated by shared localized patterns of gene 

expression [30].  As a starting point, we took advantage of the genome-wide 

expression data in the mouse brain generously made available by the Allen Institute.  

We searched for genes expressed within well-defined subdomains of the murine 

hippocampus such as the Dentate Gyrus and the Cornu Ammonis (CA1-CA3) 

subdivisions of Amon’s Horn since these discrete subdomains are defined and 

delimited by multiple gene expression patterns [27, 31].  As a test of the conserved 
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brain structure hypothesis we could then ask whether the avian orthologs of these 

signature genes are similarly expressed in similar patterns in corresponding regions of 

the avian brain. 

To identify well-conserved hippocampal gene markers for our studies we used 

the Booly’s ability to resolve aliases for identifiers of different datasets in our study of 

the vertebrate hippocampus.  We searched the Allen Institute’s In Situ Brain Atlas of 

over 20,000 gene expression patterns for genes that are highly expressed in the mouse 

hippocampus and then constrained our list of candidates to those genes that exhibited 

high sequence conservation with genes in other vertebrate and invertebrate species 

including the chicken as a representative of birds and Drosophila as an invertebrate 

(Figure 7).  Although the Allen Institute does an admirable job of mapping gene 

symbols to the identifiers of sequences, we encountered a number of examples where 

sequences were identified from different sources (mixtures of RefSeq identifiers and 

other NCBI accessions—most likely as a result of unavailable RefSeq curation).  

Some hippocampus specific genes were also identified in previous studies that used a 

different set of identifiers [27].  We therefore employed the Booly to perform the alias 

translations between the Allen data (mouse gene symbols) and data containing 

previous BLAST homologs of the mouse (Ensembl) to those of non-mammals 

(Ensembl).  We were able to also integrate other datasets such as Gene Ontology 

avoiding the complication of having to conform to a singular identifier source. 
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Our data integration of the Allen Data with homologous BLAST datasets 

generated ~150 evolutionarily conserved candidate genes.  We then reduced this list 

further to a set of 13 test genes by focusing our initial attention on genes expressed in 

highly localized patterns that encode transcription factors as well as those involved in 

restricted cell-cell signaling in the hippocampus (e.g., specifically in the CA1 region 

or the dentate gyrus).  One clear prediction of the homology hypothesis (i.e., that there 

should be conserved patterns of gene expression in corresponding regions of the 

mammalian and avian brains) is that the chicken orthologues of mammalian 

hippocampal genes should at least be expressed, and presumably enriched, in regions 

of the bird brain that have been proposed to include the avian hippocampus based on 

functional studies.  To test this hypothesis, we performed Real Time Quantitative 

Polymerase Chain Reaction (RTqPCR) analysis on RNA extracted from micro-

dissected regions of the chick brain.  The data provide a quantitative measure of 

relative gene expression levels in different regions of the brain, and are highly reliable 

as repeated RTqPCR runs produced highly concordant results as did analysis of RNA 

from brain regions dissected in independent experiments (Figure 8).  We compared 

expression levels of these predicted avian hippocampal genes in the 1-day-old chick 

hippocampus to that of other regions in the chick brain.  We found approximately half 

of the genes tested showed at least a two fold elevation in gene expression in the 

hippocampus relative to that of neighboring regions in the chick brain.  The Allen 

Institute database lists 286 genes (out of approximately 20,000) as being highly 

expressed in the hippocampal region/hippocampal formation in the mouse brain.  This 
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constitutes only 1.5% of the total genes tested in the mouse genome.  In contrast, our 

hit rate was approximately 30-fold higher among our predicted set of avian 

hippocampal genes.   

We also validated our RTqPCR results in several cases by in situ hybridization 

and found that these genes were indeed expressed in a localized fashion in the 

proposed hippocampal region of the chick brain (F. Esteves et al., manuscript in 

preparation).  As previously mentioned, we focused on genes expressed within well-

defined subdomains of the murine hippocampus such as the dentate gyrus and the 

CA1-CA3 subdivisions.  Although the dentate gyrus and CA1-CA3 subdivisions are 

readily apparent in the mammalian brain, these exact homologous formations in the 

avian hippocampus remain unclear (Figure 9) [32].  Our in situ hybridization 

experiments identified the homeobox gene prox1 as a reliable marker for the dentate 

gyrus, localizing the gene to a cell-dense “V” shaped area of the avian hippocampus 

(Figure 10). 

Identifying a limited set of gene candidates to test experimentally in this 

encouraging pilot study was greatly facilitated through use of Booly and its ability to 

seamlessly resolve aliases. 

3.2 Species specific genes in the melanogaster 

subgroup 
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We performed comparative analysis on the recently sequenced twelve 

Drosophila genomes to identify genes lost in one species of the melanogaster 

subgroup [22, 23].  In this study, we performed a variety of consecutive intersections 

(AND) and a NOT operation to determine sets of genes that were lost at various nodes 

in the phylogenic tree (Figure 2, Figure 3).  In one such analysis, we examined genes 

lost during evolution of Drosophila ananassae that were retained in the sister 

melanogaster subgroup comprised of D. melanogaster, D. simulans, D. sechelia, D. 

yakuba, and D. errecta and a neighboring out group, D. pseudoobscura (Figure 3).   

Interestingly, the types of genes lost specifically in the D. ananassae lineage (73) fall 

into similar functional classes as those we and others have previously identified as 

being common classes for organism specific genes (Figure 4, Table 1) [22, 33].  These 

genes include those involved in interaction with the outside world such as barrier 

forming chorion proteins (e.g., Cp18), and odorant binding (Or88a, Obp8a), defense 

(e.g., Tot family defensins), and reproductive signaling (OsC: pheromone binding). 

3.3 Discovering secondary drug targets 

As described by Goble et al., “touch points” are targets of various efforts in 

data integration [6].  Booly employs a data model where identifiers (key—short text) 

are attached to every row of data (values can be text or html).  Booly’s initial efforts 

for data integration involve the use of Boolean logic against the keys of each dataset.  

When two keys match (either directly or through alias translation), the values are 

brought together and the appropriate Boolean logic is performed.  Our next goal was 
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to demonstrate how Booly could be used as an intermediate step in extracting other 

touch points for further data integration.  For this task, we first created a utility where 

combined datasets integrated by our Boolean logic functions can be saved as an 

entirely new dataset.  We then added a functionality that allows for switching the 

identifier columns of the primary output tables, essentially changing the “touch point” 

to a new identifier (Figure 11, Figure 13).  Switching identifiers allows users to 

compare datasets that were originally not amenable to Boolean joining.  This process, 

“switching and chaining”, which can be carried out in a concatenated fashion with 

multiple comparisons, allows for the creation of entirely new integrated datasets 

extending far beyond those that could be generated by standard Boolean comparisons 

constrained to datasets with common identifiers. 

An example that illustrates the types of sophisticated analysis that can be 

accomplished using the switching and chaining technique is to identify a list of 

prescription drugs that could potentially be used to treat additional diseases outside of 

its known or intended target, a goal sometimes referred to as drug repurposing.  One 

way to create a list of such candidate alternative drug uses is to link diseases into 

interaction networks (such networks often represent integrated biological processes 

such as signaling pathways or DNA repair) under the hypothesis that one might be 

able to use a drug treating one particular disease in the network for a second disease 

belonging in the same network (Figure 12).  Since many diseases can be caused by 

mutations in genes or are related to such diseases, we first created a link between 

drugs, human diseases, and human disease genes.  As human disease gene interaction 
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data is not readily available, we identified homologs of human disease genes in the 

model organism Drosophila melanogaster and then utilized high quality genetic 

interaction data derived from the vast published literature available for this model 

system.  In practical terms, we first linked the human disease to a gene (gathered from 

human genes known to have allelic variants for the particular disease-OMIM) and its 

prescribed drugs (FDA drug database), then we found the homolog of the human gene 

to that of the fruitfly, and finally we integrated genetic interaction networks found in 

the fruitfly (restricted to high quality interactions, ~1400 D. melanogaster genes).  The 

entire process is summarized in Figure 13, which involves 3 instances of both 

switching and chaining of queries. 

After performing this concatenated combinatorial operation, we retrieved a list 

of ≈ 50 genetic interactions that suggested potential alternative drug targets 

(http://booly.ucsd.edu/drug-networks).  In one such example, the forkhead (fkh) fly 

gene was shown to interact with brachyenteron (byn) via a phenotypic enhancement.  

It’s closest human homologs were NP_036315-- linked to autoimmune diseases, and 

NP_005140--linked to hormone deficiencies, respectively.  A particularly interesting 

drug, Cytomel, was retrieved for treating the general category of hormone deficiency.  

After closer inspection, it was found that Cytomel is used to treat cases of 

hypothyroidism.  Hashimoto's thyroiditis, or chronic lymphocytic thyroiditis, is an 

autoimmune disease where the body's own T-cells attack the cells of the thyroid and is 

the most common form of hypothyroidism in the United States.  Our study was able to 

reveal this particular connection between autoimmune disease and thyroid hormone 
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deficiency.  A question arising from this example is whether other drugs listed to treat 

various forms of hormone deficiency could be used to treat the other autoimmune 

disease, and vice versa, whether any of the drugs used to treat autoimmunity could be 

used to treat certain hormone deficiencies such as Hashimoto’s thyroiditis.   

Another example of a potential connection between genes that could have 

therapeutic implication is one between the multi-EGF domain Crb1 involved in 

stabilizing the adherens junction and another cell junction molecule DLG3 

(http://booly.ucsd.edu/drug-networks-2).  Mutations in Crb1 cause Retinitis 

Pigmentosa (RP), a retinal degeneration disease, while disruption of DLG3 function 

causes mental retardation.  No treatments are currently available to treat RP, however, 

patients with DLG3 mutations can be treated with anti-depression drugs such as 

Mirtazapine, Fluphenazine Hydrochloride, Buphenyl, or Prolixin Decanoate.  Given 

the strong genetic interaction between the fly homologs of the human disease genes 

(crb ≈ Crb1 and DLG3 ≈ sdt) and the fact that they both play an important role in 

stabilizing cell-cell junctions one might wonder whether treatment of RP patients with 

drugs used to treat depression might have a positive effect.  One could extract similar 

potential repurposing of drugs for the other drugs/diseases.  To construct this 

particular list of candidate drugs for new diseases, we used only a small subset of 

interaction data in fruit flies and drug components.  However, one could also perform 

additional queries of this kind based on other types of genetic interactions (e.g., in 

yeast, C. elegans, or mice) or using well validated protein-protein interaction data.  

This strategy offers a potentially useful alternative and complementary approach to 



 

 

18 

existing attempts at drug repurposing based on categorizing disease states by virtue of 

shared gene expression profiles [34]. 

Our switching and chaining approach is only one example of how Booly can 

be used as an intermediate platform in data integration.  The value fields can be 

extracted for touch points via other approaches and algorithms in a similar manner to 

how we extracted new identifiers.  Coupled with an initial alias translation and 

Boolean logic functions, Booly offers core functionalities vital to future data 

integration efforts, which we anticipate will be further empowered as developers make 

use of its flexible simple format to create new functionalities that extend its utility. 

3.4 Booly running time. 

 To simulate an approximate running, we performed Booly intersections with 

alias resolution of up to 10 datasets containing at most 20,000 genes apiece.  The test 

was performed on one Xserve 2.3 GHz G5 PPC with 6GB RAM.  A density of 

200,000 genes resulted in a running time of approximately one minute (Figure 6), 

which includes the time it takes to resolve all aliases from the 200,000 genes, group 

them accordingly, perform necessary intersection operations among each dataset, fetch 

data attached to the genes, and display results to the client browser. 

Chapter 3, in part, has been submitted for publication of the material as it may 

appear in Booly: a new data integration platform, Do, Long H.; Esteves, Francisco F.; 
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Karten, Harvey J.; Bier, Ethan, BMC Bioinformatics 2010.  The dissertation author 

was the primary investigator and author of this paper. 

Chapter 3.1, in part, is being prepared for submission for publication of the 

material.  Esteves, Francisco E.; Do, Long H.; Karten, Harvey J; Bier, Ethan.  

Francisco Esteves was the primary investigator and author of this paper. 
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Chapter 4 

Methodology 

4.1 Booly integration algorithm 

An overview of the Booly integration algorithm is shown in Figure 1 and summarized 

below. 

1. Dataset Ordering.  Boolean operations are performed based on the order of 

precedence:   

a. Group Selection Using Parenthesis 

b. NOT/Conjunction (-) Operation 

c. AND/Intersection (+) Operation.  

d. OR/Union (U) Operation.  

e. Precedence for multiple instances of the same operator is determined by the 
order in which they appear in the query. 

 

2. Alias Hash Key Conversion.  When aliasing is requested, all identifiers from every 

dataset (D1..n) are converted to a hash key from an in-house Alias lookup database.  

The hash key is derived by utilizing the Secure Hashing Algorithm (SHA1) 160-bit 

digest of a fingerprint such as a gene sequence, chemical formula, URI, etc... (Figure 

5, Figure 14a, section 4.2).  The hash key is unique to the fingerprint (avoiding
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collisions as is the problem with, e.g. numerical identifiers) and can convert any 

arbitrary length message into 40 hexadecimal characters.  This makes the hash key 

ideal as a non-semantic identifier.  

3.  Identifiers Grouped Based on Aliases.  Hash Keys as well as the original 

identifiers are grouped based on exact matches.   Groups are then consolidated based 

on the criteria that identifiers are one and the same when the same hash key exists 

amongst all identifiers in question. 

4. Consolidated Groups Undergo Boolean Operation.  The first pair of datasets (D1, 

D2) based on Step 1 undergo the requested Boolean operation.  The operation is 

performed iteratively until all matched aliases between the two datasets are exhausted. 

5.  Datasets Combined.  The results of Step 4 are combined into a temporary dataset 

(D1,2). D1,2 is compared against D3 and steps 4-5 are repeated until a final dataset D1..n 

emerges. 

4.2 Aliasing 
A common problem confronted by bioinformaticians is the need to resolve 

whether two or more identifiers are identical, i.e., are aliases of each other.  A number 

of aliasing services have attempted to resolve the differing naming conventions 

created by both computational and manual labeling methods (AliasServer, DAVID, 

HGNC, SEGUID, MagicMatch, NCBI, ENSEMBL) [19, 24, 26, 29, 35-37].  These 

services differ by their technology and solutions with the general strategy of 1) using 
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either in-house generated unique identifiers (NCBI, DAVID, ENSEMBL), or 2) the 

generation of unique fingerprints (AliasServer, MagicMatch, SEGUID) by way of 

cryptographic hashing algorithms which digest large arbitrary blocks of data (e.g., 

sequence) and returns a fixed-size bit string [38, 39].  As each of these systems is 

designed with a specific goal in mind, none of them are optimized for specifically 

answering the single root question: are two identifiers the same (Fig. 1a)?   

4.2.1 Aliasing motivation  

In the course of designing our comprehensive data warehousing and 

comparison application, Booly [40], we recognized a need for a dedicated aliasing tool 

designed to efficiently and flexibly resolve alias identities.  One of the main tasks of 

Booly is to mix and match datasets together using combinations of the Boolean 

operations.  A common usage of such a tool is data aggregation between multiple 

sources (e.g. the aggregation of Gene Ontology data to that of a home brew 

spreadsheet table for annotation).  When identifiers from both datasets are in the same 

format (e.g. gene symbol), the process of integrating the data can be performed 

trivially.  However, the process of integrating the data becomes more challenging 

when converting formats is needed, thus becoming an unwieldy aliasing problem.  

This aliasing problem is compounded when comparing multiple datasets with differing 

identifier formats.  Furthermore, Booly was created to compare content that extends 

well beyond integrating sequence entities (e.g. pharmaceutical drugs, human diseases, 

etc.).  With these requirements in mind, we designed an aliasing system (Booly-
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hashing) that can quickly resolve heterogeneous identifiers from multiple sources 

while maintaining flexibility to handle aliases from multiple entities. 

4.2.2 Booly-hashing 

Booly-hashing is an aliasing database resource that utilizes a 160-bit SHA-1 

hash key to generate unique fingerprints of sequences and their identifiers represented 

as a 40 character hexadecimal number (Fig 14a) [41].   SHA-1 like other 

cryptographic hash functions convert large, variable sized data into a fixed-sized bit 

string (hash value) such that any change in the original data will result in a completely 

changed hash value [37].  The property of cryptographic hash functions allows for fast 

discrimination of sequences millions of bases long that differ even by just a single 

nucleotide, making them ideal for use as fingerprints for genetic sequences. 

 Our streamlined approach requires the storage of only the hash key and its 

associated identifier.  Current aliasing methods utilizing the hashing technology 

require the source of the identifiers to be known (AliasServer, SEGUID) [26, 35].  

This limits the ability to find aliases of identifiers from heterogeneous sources.  Our 

simplified technique is more broadly applicable as it allows for conversion to known 

hash keys for any identifier regardless of originating source. 

Aliasing technologies that utilize in-house generated unique identifiers have 

also been developed (DAVID) [24],	
  however, such systems actually add to the 

growing number of alias identifiers.  Furthermore, these unique identifiers are often 

assigned to identifiers belonging within computed gene or alias clusters (single-
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linkage clustering--DAVID), which can restrict the type of clustering that can be 

performed.  In contrast, Booly-hashing does not perform any clustering of identifiers, 

but rather leaves the process of clustering aliases together to the end user. 

Finally, unlike other sequence-related aliasing technologies, we have 

developed our Booly-hashing infrastructure to accommodate aliases from other 

sources such as pharmaceutical drugs or keyword aliases.  As an example, in the case 

of pharmaceutical drugs, the unique fingerprint is the chemical formula that remains 

intact despite multiple branding names.  A comparison table of the differences in 

features among our approach and other aliasing tools can be found in Figure 14b. 

In aggregate, our aliasing method allows one to efficiently and accurately 

ascertain whether two or more identifiers are aliases of each other.  Furthermore, our 

streamlined approach is flexible and easy to modify and update.  We have 

incorporated this aliasing model as part of a necessary component in Booly, our data 

integration platform designed to aid researchers in making new connections leading to 

novel discoveries in the laboratory.   This generalized aliasing system should be of 

similar utility for development of other comparative tools that also have the simple 

requirement of rapidly deciding whether two identifiers are the same.  

4.2.3 Booly aliasing complexity 

The Booly-hashing alias resolution method utilizes the cryptographic SHA-1 

hashing algorithm to create unique fingerprints attached to identifiers.  Unlike other 

alias solutions that require knowledge of the identifier source (AliasServer, SEGUID) 



 

 

25 

or a valid output source (DAVID), our approach accepts any identifier and converts it 

to all known fingerprint hash keys (Figure 5, Figure 14a).  Not having to iterate 

through all known sources or all possible output sources reduces our run-time 

complexity by a factor of n as shown below.  

Run-time Complexity 

Run-time complexity is a useful generalized measure of speed that can be used 

to compare various algorithms in a hardware independent fashion.  Although under 

certain simplified conditions, run-time complexities of different algorithms can be 

similar, a discriminating test is to ask how these various algorithms perform in worst 

case scenarios. 

Instance 1. Identity of Source Required.   

For the first scenario, the alias application requires knowledge of the 

identifier’s source (SEGUID, AliasServer).  In a worse case scenario, we must iterate 

through each source database (s) when our list contains a heterogeneous mix of 

identifiers (m) (e.g. mix of REFSEQ, Gene Name, Entrez ID, etc…).  The inner loop 

executes a total of m*s times resulting in a total complexity of O(n2). 

Pseudocode:      

1  for i←1 to m        

2  for j←1 to s      

3   return fingerprint(i,j)    



 

 

26 

4 done 

 

Instance 2. Identity of Output Source Required. 

For the second scenario, the alias application requires knowledge of the output 

source for alias conversion.  A common approach to determine whether two aliases 

refer to the same gene is to convert the aliases into a reference identifier shared 

between the two.  For example, choosing conversion to REFSEQ would convert two 

identifiers into a common REFSEQ alias.  However, there are many instances where 

aliases may exist in one source but not another, that is, a lack of redundancy across 

different databases (Table 2).  Therefore, one must iterate through all known alias 

source databases to ensure completeness.  

The DAVID gene conversion tool, which has over 1600 citations annually, is 

one of the most popular resources for gene alias lookups and conversions [24].  The 

DAVID tool utilizes a single linkage method to cluster similar aliases together into 

gene groups, assigning a unique identifier for each cluster.  However, the DAVID 

identifier is an incremented value reset after each new update and is therefore not ideal 

for lasting comparison usage, unlike unique fingerprints such as a sequence hash key.  

In fact, the DAVID identifier is not available via the public query web interface but 

rather only through a bulk download request.  Therefore, if we bypass the unique 

identifiers supplied by the DAVID conversion tool due to its limitations as described 

above, and utilize DAVID to convert heterogeneous identifiers (p) into all known 
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output source identifiers (t), then this tool can be classified within instance 2, which 

also has a time complexity of O(n2).  

Pseudocode:  

1  for i←1 to p 

2  for j←1 to t     

3   return identifier(i,j)   

4 done 

Instance 3. Booly Method.   

Our method does not require the identifier’s source database or the output source 

database.  The method simply iterates through every identifier (b) and performs a 

lookup of its fingerprint hash-key resulting in a run-time complexity of O(n). 

Pseudocode:        

1  for i←1 to b       

2  return fingerprint(i)    

3 done 

 

4.2.4 Alias clusters  

Unlike other aliasing methods (DAVID, HGNC), the Booly Aliasing approach 

is generalizable to diverse types of data since it can create clusters of aliases beyond 

just gene clusters.  One particular usage is to be able to distinguish between different 
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protein variants yet still cluster aliases of the same protein.  For example, our approach 

can distinguish between protein variants spir-PA (NP_724254, FBpp0080884) and 

spir-PB (NP_524854, FBpp0080885) of the D. melanogaster spire gene since each 

variant has a different unique sequence hash key while aliases (e.g. spir-

PA/NP_724254/ FBpp0080884) have the same sequence hash key.   Our approach is 

sufficiently flexible to create gene clusters by labeling genes with their protein 

sequence hash keys in addition to the gene sequence hash keys.  It can also be used to 

resolve identifiers of data such as aliases of chemical structure names, which can then 

be used in combination with gene identifiers to create associations between drugs and 

genetic disease phenotypes [40]. 

4.2.5 Booly-hashing creation and updates 

The Booly Alias database table is a simple three column table consisting of 1) 

a variable sized column for the identifier, 2) a fixed sized (40) column for the hash 

key, and 3) a timestamp column.  Additionally, a uniqueness constraint is placed on 

column 1 and 2 (identifier and sequence are the same) to avoid duplicate entries. 
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During the creation and update steps of our Alias table, FASTA formatted files 

are processed for sequences and associated identifiers.  Sequences free of spaces and 

gaps are converted to upper case letters, submitted to the database SHA-1 function, 

and deposited row by row attached to associated identifiers.  The entire process is fast, 

efficient, and easily replicated.  

4.3 Booly infrastructure 

Specialized databases such as PUBMED or GenBank have been optimized in 

such a way that one can, for example, rapidly retrieve published references or 

sequence information.  This specialization requires unique organization and entry 

methods to accommodate the differences in each database.  Our goal has been to 

create an infrastructure such that any web based content can be stored inside our 

system without the overhead of more specialized databases; i.e., we want to be able to 

store PUBMED entries, GenBank sequence entries, images--all types of web-based 

data, using a singular database schema (Figure 15). 

4.3.1 Keys and values 

At the heart of our singular database schema is the key to value relationship.  

The “key”, or identifier, is simply a label for each row of data while the “value” is the 

actual row of data.  Keys can be gene names, protein names, or any symbolic string 

(50 maximum).  Values on the other hand, are data that do not have length constraints.  

Values can be any length of text, including HTML.  The use of HTML allows one to 
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create nested tables, multiple columns, hyperlinks, and numerous formatting options.  

The minimal requirements of a key to value relationship in any piece of data added 

makes Booly amenable to both diverse current and future data storage needs. 

4.3.2 User data management 

The most dynamic component of Booly is the ability of users to create their 

own content and store this information on the server.  To keep track of each user’s 

data, we integrated an open source forum based login system (phpBB) into Booly[42].  

This feature offers not only a reliable account management system, but also a forum 

for communication with developers and other Booly members.  Users can share 

datasets while also having access to any datasets made publicly available by other 

members.  For example, users that have access to a list of C. elegans RNAi feeding 

libraries can easily submit their dataset to the public repository for others to use and 

perform Boolean queries against their list of C. elegans genes.  If privacy is a concern, 

one can restrict sharing of datasets to colleagues through private email rather than by 

submitting the data to the open access public repository.  These lists can then be added 

for comparison to the publicly available data from the users own local terminal. 

A foremost concern in the construction of Booly is its potential to grow 

exponentially in size as more and more users store data.  Although space concerns can 

be remedied by hardware upgrades, the speed at which user data is accessed can 

degrade as the database grows.  To address this issue, a horizontal partitioning scheme 
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is used to separate users into different groups.   In this manner, the load can be spread 

across different locations (i.e. across different tables as well as different hardware). 

4.3.3 Query interface 

The user constructs a Boolean operation by ordering datasets in an appropriate 

sequence and placing Boolean commands between each dataset (Figure 2).  For 

example, the “OR” disjunction operation is constructed by adding the “or” command 

between two datasets, while the “NOT” negation operation requires addition of the 

“not” command between them.  By default, the “AND” conjunction command is 

inferred if no Boolean operators are specified between two datasets.  Therefore, 

adding two datasets to a list without any operators would result in output containing 

entries that exist in both datasets.   

4.3.4 Exporting results and external applications 

Another important function that we have incorporated into Booly is the ability 

to export results once a Boolean query has been performed.  Two options exist when 

exporting: 1) a local save (as an xml file or html file) on a user’s personal computer, or 

2) a remote save back onto Booly as an entirely new data set.  The latter ability to 

create a new data set within Booly opens up new avenues of data integration.  We 

briefly describe two applications, switching keys and keyword filtering, which both 

take advantage of exporting results as a new Booly dataset.   

Switching Keys 
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The “key” in a key-value relationship is significant in Booly since it is the key 

that is used when comparing datasets against one another using Boolean logic.  

However, in some instances, the values may actually contain identifiers within them 

that could be used as keys for further Boolean operations (Figure 11).  By allowing 

users to switch keys during the export of Boolean results, one can chain together 

datasets and rename keys with identifiers derived from text within the values.  This 

creates the possibility of integrating data within values and not just the keys.  The 

powerful combination of switching keys and chaining together concatenated series of 

Boolean queries allows users to make sophisticated links between otherwise 

unconnected datasets. 

Keyword Filter 

Another feature to increase the value of exporting results of a Booly merge is 

the ability to filter out those results based on a keyword.  An example of this usage is 

the ability to search for results that have gene ontology involved in immune response 

after a dataset of gene ontology has been merged with gene expression data.  Users 

can search for key words and then export these results as a new Booly dataset. 

Further Integration Using External Applications 

An important aspect of Booly is the ability for users to store content such as 

output from a computer program.  For example, we have developed a tool that allows 

users to perform BLAST comparisons and store its results directly inside Booly.  The 

output of the job is tailored specifically for Booly and stored in the user’s account, 
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allowing the user to retrieve and compare other datasets to the newly created BLAST 

dataset.  We plan to provide a variety of additional plug-in modules in the form of a 

Web API for developers in the near future.  By allowing applications to directly 

submit output into Booly for data storage, users of the application would receive 

integration of their generated data with other applications as well as the ability to 

perform Boolean operations and alias resolution.  

Chapter 4, in part, has been submitted for publication of the material as it may 

appear in Booly: a new data integration platform, Do, Long H.; Esteves, Francisco F.; 

Karten, Harvey J.; Bier, Ethan, BMC Bioinformatics 2010.  The dissertation author 

was the primary investigator and author of this paper 

Chapter 4.2, in part, is currently being prepared for submission for publication 

of the material. Do, Long H. and Bier, Ethan. The dissertation author was the primary 

investigator and author of this material.  
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Chapter 5 

Summary and Conclusions 

5.1 Summary 

The growing volume of biological and medical information deposited within 

disparate databases has created an organization and data integration dilemma within 

the research community.  Furthermore, new data not configuring to pre-existing 

specialized databases must await creation of new dedicated inclusive databases.  We 

have created a novel tool, Booly, as a web application that solves key problems 

impeding current data integration efforts.  An important feature of this system is a real 

time alias translation system, which we used to successfully integrate datasets with 

heterogeneous identifiers between Ensembl, gene symbols and gene ontology.  

Secondly, we addressed the issue of the entry barrier by creating an easy to use 

contribution model for both developers and researchers.  Users are able to easily add 

datasets by copying and pasting their spreadsheet tables or by utilizing applications 

designed to create new Booly datasets.  Lastly, we showed how Booly could be used 

as an intermediate step in data mining and data integration through our 

implementation of the switching and chaining technique to change “touch points”.  
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There are a myriad of other enabling applications for Booly.  For example, as 

personalized genomes become available to the general population, Booly is poised to 

offer individuals space to house their biological and medical information such that it 

can also be used to compare with publicly available content in a safe and secure 

fashion.  Booly is also a resource for developers to add content without the obstacle of 

creating an online storage facility or the troublesome nature of alias resolution.  Booly 

thus offers a fundamentally new paradigm for storing, sharing, and integrating current 

and future health and biological content. 

5.2 Future Directions 

 Boolean modeling is a formal description of a broad array of biological 

phenomena, one notable example being gene regulation [43].  To this extent, many 

biological processes can be modeled by using Boolean Networks.  Booly offers an 

important functionality for system level studies as it greatly facilitates integration of 

diverse datasets from multiple experimental sources, providing the first step in 

gathering data into a Boolean model.  Further development of algorithms that apply 

networking or clustering of touch points within the groupings created by Booly could 

similarly lead to novel systems based hypotheses. 

 Booly offers a Uniform Resource Locator (URL) based web API, allowing 

developers to easily integrate their applications and datasets into Booly.  In this 

manner, developers will be able to create their tool or database and use Booly as a 
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repository for the tool’s output.  For example, an external database may allow users to 

directly download all of the results from a search and place them directly into the 

user’s Booly account.  The output generated from these tools, once placed inside 

Booly, will inherit all its functionality, including the ability to easily share the data, to 

perform Boolean logic comparisons with other data sets, and to resolve aliases. 

 An obvious concern for comprehensive databases, and thus for Booly, is the 

issue of scalability.  That is, how will Booly deal with the exponential growth of data 

deposited into its systems?  For example, as personalized genomes become a reality, 

as is currently being implemented in the 1000 Genomes Initiative [44], a means for an 

individual to store and explore this information will be highly desirable.  We have 

created Booly in such a way that as the data grows, additional machines can be 

introduced in parallel into the system for load balancing and data partitioning without 

adversely affecting the Booly’s efficiency (speed) and reliability (uptime). 

A large component of Booly is the user contribution model as similarly applied 

to such online applications as Wikipedia and more relevantly, WikiGene [45].  

However, a major concern is quality control of user-contributed data.  Our plan to 

address this dilemma is to implement a community based review system for each 

dataset (similar to Amazon product ratings).  In this manner, users will be able to 

search and add datasets based on “collective intelligence”, a key element of Web 2.0 

[46]. 
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With most if not all data integration platforms, there is a concern that data can 

quickly grow out of date and require updating.  The goal for Booly is to become a 

publically driven data repository reviewed and updated by its community.  To aid the 

community in their efforts, we hope to implement a notification system such that when 

a new dataset is available, subscribers to the old dataset will be notified and allowed to 

upgrade or add the new dataset.  In the meantime, we have created a forum message 

board so that contributors can disseminate update information to the community. 

Finally, there is a growing movement in the life sciences to develop tools for 

semantic integration by way of the RDF model [17, 47].  Semantic integration 

approaches involve establishing complex relationships and meanings between objects, 

which can then be used to classify them or extract novel information regarding their 

behaviors.  The goal of Booly is more modest, to establish identity between objects 

and to use this information to integrate data in which distinct names refer to the same 

objects.  We felt our initial challenge was to help researchers and developers get their 

data quickly onto the web and to address the identity problem directly.  However, to 

aid in interoperability with other data integration efforts that utilize RDF and other 

semantic integration approaches, we plan to provide export of data into a structured 

model such as RDF.   It is our hope that the streamlined but efficient and user friendly 

comparative tools offered by Booly attract a broad base of users who are confronted 

by the simple but vexing problem of integrating data from a diverse set of spread 

sheets.  Such users once adept at using Booly would presumably be primed to expand 
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their sphere of comparison by trying out new tools such as those offered by semantic 

integration approaches. 

5.3 Conclusions  

Booly offers a new platform for the creation, storage, and integration of both 

personalized and public biological databases.  As more applications are developed 

around the Booly platform, we anticipate these additions will further enhance the user 

experience.  Booly presents a great opportunity to engage the research community in 

sharing data and adding combinatorial depth to potential queries.  Such advances as 

offered by Booly should greatly aid researchers in formulating new questions that lead 

to novel discoveries in the laboratory. 

Chapter 5, in part, has been submitted for publication of the material as it may 

appear in Booly: a new data integration platform, Do, Long H.; Esteves, Francisco F.; 

Karten, Harvey J.; Bier, Ethan, BMC Bioinformatics 2010.  The dissertation author 

was the primary investigator and author of this paper. 
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Appendix 

Figures and Tables 
 
 

 

Figure 1. The Booly data integration algorithm.  Overview of the steps involved in 
performing a Booly query with aliasing.  Access Booly at http://booly.ucsd.edu. 
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Figure 2. Illustration of Booly list form and Boolean logic precedence. The right 
textbox depicts a list of datasets ready for Boolean operations.  Numbered cartoon 
demonstrates the order of operations performed for this query.  This query identifies 
genes lost in D. ananassae but are retained in the melanogaster subgroup and in the 
outgroup D. pseudoobscura (see Suppl. Figs. S4a, S4b). Booly Precedence: 1) Group 
Selection Using Parenthesis. 2) NOT/Conjunction (-) Operation. 3) AND/Intersection 
(+) Operation. 4) OR/Union (U) Operation. Precedence for multiple instances of the 
same operator is determined by the order in which they appear in the query. 
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Figure 3. Twelve Drosophila genomes.  Drosophila genomes that have been 
sequenced and an associated divergence timeline (http://rana.lbl.gov/drosophila).  We 
subtracted genes of D. ananassae (red) from the subset of genes found in the genomes 
of the melanogaster subgroub and the outgroup D. pseudoobscura (blue).  
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Figure 4.  Genes lost selectively in D. ananassae.  We identified over 73 genes that 
were lost during evolution of the Drosophila ananassae lineage that were retained in 
the sister melanogaster subgroup comprised of D. melanogaster, D. simulans, D. 
sechelia, D. yakuba, and D. errecta and in the outgroup D. pseudoobscura.  Annotated 
lost genes fall into the same major functional classes as those that are found to be 
enriched among species-specific genes.  The results of this query can be accessed at: 
http://booly.ucsd.edu/dana-lost. 
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Figure 5. Alias resolution of heterogeneous identifiers.  In the following example, 
the protein variants CG6995-PA and CG6995-PC have aliases FPpp00084077 and 
NP_001034066, respectively.  When joined by a Boolean operation, the variants are 
kept separate due to having different unique sequence keys.  However, if the proteins 
are joined with a list containing the gene parent (CG6995), the entire group is merged 
together if the gene has aliases that point to the protein variants.  
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Figure 6. Booly running time. Approximate running time performing a Booly 
intersection with alias resolution.  Y-axis contains the total number of combined 
identifiers (e.g. genes) for every dataset in a Booly merge.  Plot shown represents 
200,000 genes (10 intersections of datasets containing 20,000 genes apiece). 
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Figure 7.  A Booly query combining disparate datasets utilizing on-demand alias 
resolution.  Datasets merged in this Boolean query include annotation data, mouse 
brain expression summary graphs and in-situ thumbnails (Allen Mouse Brain Atlas), 
and BLAST summaries of mouse against the chicken, fish, and fruitfly. The results of 
this query can be accessed at: http://booly.ucsd.edu/hippocampus and a higher 
resolution version of the image can be downloaded at: 
http://booly.ucsd.edu/figures/Allen_results.jpg.  
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Figure 8.  RT-PCR analysis of genes predicted to be enriched in the avian 
hippocampus.  Relative fold change of selected genes in the Hippocampus and other 
areas of the Chick Brain, based on two or more individual independent experiments, 
which were highly concordant. Housekeeping genes GAPDH and actin were used as 
controls for normalization as described in the Methods section. 
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Figure 9.  Hippocampus of birds and mammals.  In mammals (A,C) the 
hipocampus can be divided into two broad sub regions the CA fields and the dentate 
gyrus based on citoarchitecture alone, while in birds (B,D,E) this is not the case since 
there are no prominent citoarchitectural features and in fact, the organization of the 
subdomains in the avian hippocampus remains unclear with opposed views (D, E). 
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Figure 10. prox1 is a reliable marker for the Dentate Gyrus.  In the mouse 8 week 
old brain (B,C,D), prox1 is easily distinguished in the Dentate Gyrus and predictably 
disappears when a rostral section missing the hippocampus is probed (D).  
Equivalently, the 1-2 day old chick brain shows homologous prox1 patterns in the cell 
dense “V” shaped area of the presumed avian hippocampus.  F. Esteves et al. 
(unpublished). 
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Figure 11. Exporting Results and Switching Keys. Example of exporting and saving 
as a new dataset in Booly.  A new key is assigned for each row by taking an identifier 
within the “value” field.  
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Figure 12. Linking Drugs to Interaction Networks.  An example of a complex, 
chained Boolean comparison is the identification of new diseases that might be treated 
by FDA approved drugs currently used to treat a different disease.  The idea is to first 
link a list of FDA approved drugs to diseases they can treat, then to associate genes 
with these diseases based on mutations in these genes causing phenotypes similar to 
the diseases treated by drugs, then linking these human disease genes to homologous 
genes in the fruit fly, then to broaden this list of genes to those interacting genetically 
with mutations in the fly gene homolog, then to ask whether any of the interacting fly 
genes have human homologs that also lead to disease, and finally to ask whether these 
potentially related human diseases might also be treatable with drugs used for the first 
disease, and vice-versa. The results of this query can be accessed at: 
http://booly.ucsd.edu/drug-networks. 
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Figure 13. Switching Keys and Chaining Boolean Queries.  An example of 
switching “touch-points” so that two separate diseases and their associated drugs can 
be integrated within an interaction network found in D. melanogaster (fkh and bkn). 
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Figure 14. Booly aliasing resource. (a) Difference between other aliasing approaches 
and the Booly-hashing method.  The single question we wish to answer efficiently is, 
whether two identifiers (e.g., FBgn0000055 and ADH) are one and the same? Booly-
hashing utilizes a 160-bit SHA-1 hash key to generate unique fingerprints of 
sequences and their identifiers represented as a 40 character hexadecimal number.  
Identifiers with the same hash-keys are considered as aliases of each other.   Other 
approaches require knowledge of the source of the original identifier or knowledge of 
a conversion format. (b) Comparison of two commonly used aliasing tools in 
bioinformatics (AliasServer and DAVID Gene Conversion Tool) against the Booly-
hashing resource.  
 
*Run-time analysis of a worse case scenario to iterate through a given input list of 
identifiers and the total number of database source or output formats.  
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Figure 15. Database Schema for Booly.  Booly is an account based web tool which 
utilizes a relational MySQL database and custom scripts to perform Boolean merges 
between different datasets. The “Dataset” table consists of similarly structured tables 
horizontally partitioned across multiple servers (d_location).  Each row of data 
contains a key, value pair.  The key is the identifier for the value (text or html).  Booly 
has integrated aliasing to group the same genes or proteins together.
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Table 1. Genes lost selectively in D. ananassae.  We identified over 73 genes that 
were lost during evolution of the Drosophila ananassae lineage that were retained in 
the sister melanogaster subgroup comprised of D. melanogaster, D. simulans, D. 
sechelia, D. yakuba, and D. errecta and in the outgroup D. pseudoobscura. 



 

 

56 

 

Function D. mel Gene 
D. mel 
CG 

D. mel 
Name D. mel Gene Ontology 

D. mel  
Prot. 
Lngth 

      

Defense      

 FBgn0044811 CG31691 TotF humoral defense mechanism (sensu Protostomia) 125 

 FBgn0031701 CG14027 TotM humoral defense mechanism (sensu Protostomia) 131 

 FBgn0044810 CG31193 TotX humoral defense mechanism (sensu Protostomia) 142 

 FBgn0053117 CG33117 Victoria 
extracellular, "humoral defense mechanism (sensu 
Protostomia)" 134 

 FBgn0004240 CG12763 Dpt 

extracellular, "antibacterial humoral response (sensu 
Protostomia)", "defense response to bacteria", 
"innate immune response", "NOT defense response 
to Gram-negative bacteria" 106 

Barrier Formation     

 FBgn0000357 CG6517 Cp18 
structural constituent of chorion (sensu Insecta), 
"insect chorion formation", "chorion" 172 

 FBgn0041252 CG15573 Femcoat 
structural constituent of chorion (sensu Insecta), 
"cytoplasm", "insect chorion formation" 201 

Chemosensation     

 FBgn0041232 CG32395 Gr65a taste receptor activity 408 

 FBgn0038203 CG14360 Or88a 
olfactory receptor activity, "odorant binding", 
"perception of smell", "NOT integral to membrane" 401 

 FBgn0034509 CG13421 Obp57c 
odorant binding, "transport", "cellular_component 
unknown" 149 

 FBgn0030103 CG12665 Obp8a odorant binding, "transport" 163 

Reproduction     

 FBgn0010401 CG3250 Os-C pheromone binding 131 

 FBgn0000246 CG17604 c(3)G 

synaptonemal complex, "structural constituent of 
cytoskeleton", "protein targeting", "cytoskeleton 
organization and biogenesis", "mitosis", "meiotic 
recombination", "microtubule binding" 744 

Metabolism      

 FBgn0025809 CG8962 
Paf-
AHalpha 

1-alkyl-2-acetylglycerophosphocholine esterase 
activity, "phospholipid metabolism" 225 

 FBgn0044051 CG14173 Ilp1 
insulin receptor binding, "hormone activity", 
"extracellular", "physiological process" 154 

Transcription     

 FBgn0033010 CG3136 Atf6 

DNA binding, "nucleus", "regulation of 
transcription, DNA-dependent", "protein 
homodimerization activity" 741 

 FBgn0033459 CG12744 CG12744 nucleic acid binding, "nucleus", "zinc ion binding" 160 

 FBgn0037183 CG14451 CG14451 nucleic acid binding, "nucleus", "zinc ion binding" 264 

Translation      

 FBgn0039739 CG15527 RpS28a 

nucleic acid binding, "structural constituent of 
ribosome", "cytosolic small ribosomal subunit 
(sensu Eukarya)", "protein biosynthesis" 64 

 FBgn0011824 CG4038 CG4038 

small nucleolar ribonucleoprotein complex, "rRNA 
processing", "35S primary transcript processing", 
"ribosome biogenesis", "rRNA binding" 237 

Proteolysis      

 FBgn0033875 CG6357 CG6357 
cysteine-type endopeptidase activity, NOT cathepsin 
L activity 439 

 FBgn0051704 CG31704 CG31704 
serine-type endopeptidase inhibitor activity, 
"proteolysis and peptidolysis" 68 
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Table 2.  Redundancy of common reference databases.  The DAVID Gene 
Conversion tool creates clusters of gene groups analogous to Entrez Gene.  Gene 
clusters from DAVID are labeled with numerical identifiers that are reused and 
recycled after each update, thus not optimal for use as a reference identifier of a gene.  
A common approach is to convert aliases into a single source database (REFSEQ, 
Entrez, etc.) identifier for comparison.  The above table shows the lack of complete 
redundancy across multiple reference databases.  Only 29% (37081/127749) of gene 
clusters identified by DAVID (v6.7) are found to be present in all five reference 
databases from the three organisms. 
 
 
Unique DAVID Id's Mapped Fruitfly Mouse Human Total 
DAVID-Refseq mRNA 13978 16262 16060 46300 
DAVID-Entrez Gene ID 21227 58530 40959 120716 
DAVID-Ensembl ID 13945 18307 18370 50622 
DAVID-Genbank GI 14253 48480 37281 100014 
DAVID-Gene Symbol 20571 44859 32100 97530 
     
Total DAVID ID Overlap  11525 13231 12325 37081 
Total Unique DAVID IDs 23569 59881 44299 127749 
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