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ABSTRACT OF THE DISSERTATION
Analysis of Laminar Nonpremixed Stagnation Flow and Swirl-Type Tubular Flames

By

Vinicius Maron Sauer

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2017

Professor Derek Dunn-Rankin, Chair

Combustion is expected to remain one of the main sources of power in the world.

Therefore, the understanding of the underlying physical and chemical processes needs to

continue improving, to increase efficiency and to reduce emissions of combustion systems.

In order to study the steady-state characteristics of complex flame configurations, laminar

surrogate models can aid significantly in the description of more complicated systems. One

valuable class of surrogate configurations is the nonpremixed laminar flame, in which fuel

and oxidizer are initially separated. In nonpremixed flames the mixing process is a

necessary part of the flow to be investigated and the chemical process can be represented

by a global reaction mechanism. Such simplification allows the conservation equations to

be treated with analytical or semi-analytical methods, while still capturing the critical

physical characteristics of the system. The dissertation describes and analyzes three

laminar nonpremixed stagnation flow models based on canonical flame configurations: a

coflow impinging flame, a water-laden counterflow flame, and a tubular counterflow

burning condensed fuels. The performance of the theoretical models is validated with

experimental data available in the literature. In addition, the nonpremixed swirl-type

tubular flame configuration is presented for the case of a liquid fueled porous wall fed

system. The experimental system and the mathematical model that describes theoretically

xiv



the configuration are evaluated. To this end, a novel analytical solution based on

asymptotic methods is presented.
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Chapter 1

Introduction

1.1 Overview

Combustion is a remarkable phenomenon that is, at the same time trivial to describe (e.g.,

the fire triangle of heat, fuel, and oxidizer), and extraordinarily complex (e.g., turbulent

multiphase reacting flows). The simplicity of combustion allowed its discovery and

utilization by early humans and its complexity creates environmental impact challenges.

This dichotomy has given rise to two approaches in combustion science — one following the

detailed chemistry and fluid mechanics, and the other exploring the core aspects via

physically relevant simplified systems that are analytically tractable. This dissertation

follows the latter path.

Mankind’s discovery of the ignition process leading to combustion about 30 000 years ago [1]

was a turning point in the evolution of the human race. Fire was used to keep people warm,

to cook their food, in fire drives in hunting or warfare, to kill insects, and to clear forests,

among others [2]. These new abilities allowed the expansion of human activity. Early uses

of combustion technology as a source of power to drive systems have also been documented,

1



including the Aeolipile proposed by Hero of Alexandria in the 1st century BC. Since then,

several devices based on burning of fuels have been developed, such as Thomas Newcomen’s

atmospheric engine (1712), and Nikolaus Otto’s (1876) and Rudolf Diesel’s (1900) engines.

Nowadays, combustion engines are an important part of most people’s everyday life and

they are expected to remain one of the main sources of power in the world. The science

of combustion started its development, in the last half of the nineteenth century, with the

experiments of Sir Humphry Davy (1815), Robert Bunsen (1866), Claude Louis Berthelot and

Paul Marie Eugene Vieille (1881, 1882) and Ernest Mallard and Henry Louis le Chatelier

(1881, 1883), as well as with the theories of Vladimir Aleksandrovich Mikhel’son (1890),

David Leonhard Chapman (1899) and Emile Jouguet (1905) [3]. Combustion science, i.e.,

the understanding of the underlying physical and chemical processes, needs to continue

improving, helping to increase the efficiency and to reduce the emissions of combustion

systems.

Combustion processes are, mainly, highly exothermic gas-phase chemical reactions between

oxidizer and fuels, described theoretically through the interaction of the disciplines of

thermodynamics, fluid mechanics, kinetic theory and chemical kinetics. In many

combustion systems, fuel and oxidizer are initially separated. In the high temperature

zones of these nonpremixed reacting systems, in which the reaction time is very short,

reactants coexist only in thin reaction layers. Fuel and oxidizer, after arriving from

opposite sides, are consumed while crossing the flame by diffusion. Nonpremixed flames are

very common in engineering systems for propulsion and energy production, including diesel

engines, gas turbines, rocket engines, and power-plant furnaces, in heating devices for

domestic applications, and in the process industry [4]. The complete description of these

practical combustion devices requires time-dependent three-dimensional geometries and

chemical models of complex fuels, which typically involve a number of chemical species and

reactions. Such systems are too complex to be modeled effectively using elementary

chemical kinetics and full-fluid mechanical description [5]. For that reason, simplified

2



models that provide fundamental understanding of flame structure and the influence of key

parameters on reacting flows have been developed, for example, concentrating on the

details of combustion chemistry and flame structure in idealized laboratory settings [5].

These surrogate systems are often called canonical flame configurations.

Each of the disciplines used to describe a reacting flow can be simplified to different levels

of detail. The Navier-Stokes equation, i.e., the momentum conservation equations, together

with the continuity equation and an equation of state, describe the flow field of a moving

fluid. A number of flow conditions can be characterized by simple forms of the momentum

equation. For instance, flows with similarity conditions, such as stagnation point flows, in

which a set of assumptions leads to the exact elimination of terms, or flows in which some

terms become small compared to others, such as systems where the boundary-layer theory

is valid. The relation between state variables is commonly described by the ideal gas law.

The first law of thermodynamics, which governs the relations between heat and other forms

of energy, is often simplified by omitting or modeling complicated interactions internal or

external to the system. Most commonly, the enthalpy flux is neglected, the heat capacity of

the mixture is approximated by a polynomial fit in the temperature, the Lewis number (the

ratio of thermal to mass diffusivity) is assumed approximately constant, the diffusion flux

is given by Fick’s law, and the viscosity of a mixture is given as a function of the Prandtl

number (the ratio of the momentum to thermal diffusivity) [6]. The Soret effect (species flux

due to temperature gradient), the Duffour effect (energy flux due to species concentration

gradient), and radiation heat transfer are often neglected as well. The approximation of

the reaction rate using an Arrhenius equation and the law of mass action, usually assumed

in combustion theory, is often sufficient to reveal the basic features of a process, since the

detailed kinetics of the chemical change is not always known [7].

The approximations considered in the theoretical description of reacting flow, thus, require

the specification of a number of thermodynamic and kinetic rate parameters. Those

3



quantities are typically derived from empirical observations, and therefore involve some

degree of uncertainty due to limitations in experimental measurements [8]. At the same

time, the physical models may involve uncertainty in model structure, parameters,

geometry, inputs, initial conditions, boundary conditions, and strong non-linear

dependence on temperature [9]. For that reason, even detailed models that attempt to take

into account all scales involved in the description of reacting systems might suffer from

some level of approximation. Notwithstanding, the more intricate the theoretical model

describing a phenomenon, the more time consuming is the process of obtaining its solution.

A good example is the estimation of transport coefficients in multicomponent systems, such

as reacting flows. In those systems, the detailed models consider the interactions between

all species. In order to do so, kinetic theory of gases is used to evaluate the coefficients, an

effort that requires the solution of linear systems arising from Galerkin approximations of

the linearized Boltzmann equation [10]. Such a task is computationally expensive, and, for

some systems, impractical with the computational resources available. More importantly,

the determination of transport coefficients represents only a fraction of the total effort

involved in the complete theoretical description of a reacting flow. As an alternative,

simplifications in the conservation equations that allow them to be treated analytically or

semi-analytically can provide some qualitative or even quantitative metrics that improve

the understanding of such systems or provide new viewpoints.

1.2 Objective

The present work aims to extend classical theoretical combustion models (e.g., [11–13]) in

order to analyze both new and existing nonpremixed flames configurations operating at

conditions in which simplified analytical and semi-analytical models have not been applied.

Such mathematical descriptions can provide design parameters for the development and
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improvement of physical systems, as well as aid in the evaluation of uncertainties associated

to the models — which is beyond the scope of this manuscript. Unusual configurations

based on canonical nonpremixed systems are described, modeled and solved through

various techniques. In addition, an experimental setup accompanied by a theoretical model

is presented for a condition in which canonical nonpremixed systems have not been

described. The laminar systems discussed herein are categorized into stagnation flow

flames and swirl-type tubular flames. The stagnation systems are analyzed depending on

the direction of the stagnation plane, i.e., axial and radial. The axial systems considered

are nonpremixed coflow impinging flames and water-laden counterflow flames. The

configuration where a radial stagnation plane is established is a tubular counterflow burning

condensed fuels. The last system analyzed is the liquid fueled porous wall fed nonpremixed

swirl-type tubular flame. The experimental setup and the obtained flame structures as well

as stability limits are discussed. A mathematical model that describes the configuration

theoretically is proposed and its solution compared to some experimental observations.

1.3 Summary of the Dissertation

This document consists of six chapters. Chapter 1 presents a literature review on the

main topics of the dissertation. Important concepts are discussed together with a review

of the most relevant research to date on laminar nonpremixed counterflow and tubular

configurations. Chapter 2 introduces the fundamentals of the theoretical models used to

describe laminar nonpremixed flames. Conservation equations for species, momentum and

energy used to predict the flow field, temperature and species profiles based on the a

global chemical reaction are presented together with the simplified assumptions considered.

The bulk of Chapter 3 is devoted to describe the theoretical model and the procedures

employed to obtain the solution to nonpremixed stagnation flow flames. The chapter is
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divided into three main sections, each describing a different configuration. In Chapter 4

the experimental setup for nonpremixed swirl-type tubular flames is presented. Details of

the overall system behavior are discussed together with some description of the operation

conditions. A mathematical model is then presented in Chapter 5 to describe theoretically

some of the experimental observations from Chapter 4. The solution to the model is obtained

through perturbation theory by combining earlier theoretical models used to describe systems

with similar characteristics. In the final chapter, conclusions and suggestions for further

developments and improvements in the theoretical models as well as in the experimental

setup are presented.

1.4 Laminar Nonpremixed Flames

In this dissertation laminar nonpremixed flames are isobaric systems in which a high

temperature reaction zone is produced along a thin region that can be approximated as a

surface which is the locus of stoichiometric composition and where the chemical reaction

rate is much faster than the rate at which the reactants are supplied by diffusion to it

(mixing rate). The theory of nonpremixed combustion was first presented by Burke and

Schumann in 1928 [11] who developed a model for hot nonpremixed flames [7]. The model

consists of a vertical cylindrical coflow burner in which fuel issues from the inner duct and

mixes with the air stream from the outer duct. Upon neglecting heat transport by

radiation, streamwise diffusion, Soret and Dufour effects, and assuming uniform gas flow

with equal diffusivities of heat and mass (unity Lewis number), an analytical solution to

the conservation equations can be obtained. The foundations of the theory of nonpremixed

flames were later established by Shvab [14], Zeldovich [15] and Spalding [16] who described

the general properties of those flames based on Burke and Schumann’s idea of an infinitely

thin chemical reaction zone [7].
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1.4.1 Counterflow Nonpremixed Flames

Several elementary nonpremixed flame configurations have been proposed to study the

overall reaction rates for various combinations of fuel and oxidant, the detailed structure

and reaction mechanism of laminar diffusion flames, and the effects of electric field and

inhibitors on the structure and reaction of the flame [17]. Ishizuka [18] classified laminar

nonpremixed flames into two large groups: the parallel configuration in which a nonpremixed

flame is established between two parallel streams of fuel and oxidizer, and the counterflow

configuration in which a diffusion flame is established between two opposing streams of

fuel and oxidizer. A classical example of the parallel type flame is the Burke-Schumann

configuration [11] and the flat flame obtained by the Wolfhard-Parker burner [19]. Flames

produced in the parallel configuration are known to have their structure and stability affected

by the dead space near the rim of the burner, where the flame is not established due to

heat losses to the wall and where a premixture is formed by the interdiffusion of fuel and

oxidizer [17]. Parallel flames are also susceptible to buoyancy effects that can be minimized

only under very restricted conditions [20]. Moreover, the flame is multidimensional and it is

hard to separate physical and chemical effects when the operational conditions are varied.

Fuel

Air

z

r

Stagnation
Surface

Flame

Figure 1.1: Schematic of the nonpremixed counterflow configuration.

Counterflow systems are in the class of similar, axisymmetric stagnation flows. The

opposing jet configuration was conceived as a tool to measure chemical reaction rates and
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the apparent flame strength (the average mass flow rate of fuel and oxidant per unit area in

the central part of the flame at flame extinction) [21]. The counterflow nonpremixed flame

is stabilized in the zone of impingement of two directly opposed jets of fuel and oxidizer. A

representation of the system is shonw in Fig. 1.1. The physical model with a mathematical

description of the experiment was introduced by Spalding [22]. It was soon realized that

the conterflow configuration was more suitable as a method for studying flame

structure [23] and extinction [24] than high-temperature flame kinetics. It was also noticed

that the effect of the burner port on the flow field could alter the flame behavior of the

configuration with opposed jets from circular tubes. Nozzles [25], metal matrices [24], and

porous-metal [26, 27] burner ports have been proposed and are still of use nowadays. Tsuji

and Yamaoka [28, 29, 30, 31] introduced the notion of using a stagnation point flow as an

ideal way to study the structure of nonpremixed flames [5]. They experimentally mapped

the velocity, temperature and species profiles for a number of fuels and flow conditions

using a porous cylinder from which gaseous fuel was ejected radially. In this counterflow

configuration, commonly referred as the Tsuji burner, the porous cylinder is subject to a

transversal air flow. Systematic computational and experimental studies have been

conducted for counterflow nonpremixed flames since Tsuji’s seminal review [17].

The study of counterflow nonpremixed flames allowed the description of ignition and

extinction phenomena. Integrating numerically the conservation equations for a

counterflow nonpremixed flame, Fendell [32] found that the dependence of the maximum

temperature on Damköhler number (the ratio of diffusion time to chemical reaction time)

becomes S-shaped (three-branched).

1.4.1.1 Condensed Fuel Configuration

In the condensed fuel configuration, a stagnation-point boundary layer flow is established

over the vaporizing surface of a pool of liquid fuel. A schematic of the system is shown
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in Fig. 1.2. The configuration is applied to the analysis of liquid fuels with high boiling

points that do not prevaporize without experiencing thermal breakdown. The systematic

analysis of the structure of nonpremixed flames in the stagnation-point boundary layer of a

condensed fuel was introduced by Krishnamurthy and Williams [33] in 1974. Their

Liquid Fuel

z

r

Air
Nitrogen
Coflow

Stagnation
Surface

Flame

Figure 1.2: Schematic of the nonpremixed liquid-pool counterflow flame.

theoretical model involved the infinitely fast global reaction assumption, with unity Lewis

number. The temperature at the condensed phase was assumed known, an assumption

often made in problems with a condensed phase pool. A mass transfer number B —

introduced by Spalding [34], which characterizes the thermodynamic part of diffusion

controlled combustion — up to 10 was considered. It was observed that the flame sheet

and the point of maximum velocity move towards the free stream as the transfer number

increases due to the increasing fuel mass flux from the surface. The assumption of unity

Lewis number in the asymptotic analysis was later relaxed [35]. Based on the theoretical

results of [33], an experimental setup was developed to study the structure and extinction

of n-heptane, n-decane, n-hexadecane, iso-octane and kerosene in the condensed fuel pool

configuration [36]. Thermocouples and gas chromatography were used to measure

temperature and concentration on a steady pale blue flame located between 1 mm to 3 mm

above the liquid surface. Flame extinguishment was produced either by strain or dilution

of the oxidizer with other gases. Extinction was analyzed in the framework of the

Damköhler number, which was also used to study experimentally flame structure and
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extinction of liquid fuels with [37–40] and without [41–43] the oxidizer mixed with fire

suppressants. The overall kinetic parameters of the fuels studied (methanol, heptane,

toluene, haptane, benzene, iso-propyl ether, butyl-vinyl ether, methyl methacrylate, poly

methyl methacrylate, iso-octane, kerosene, normal alkanes and mixtures of the above) were

obtained through an asymptotic technique developed earlier for stagnation point boundary

layers [44]. A detailed chemical reaction mechanism and multicomponent transport were

used in the comparison between experimental measurements and numerical calculations for

heptane [45]. The results were latter compared to numerical solutions obtained with five-

and six-step reduced mechanisms [46]. Discrepancies observed on the fuel side of the

reaction zone were attributed to inaccuracies in the steady-state concentrations of O and

OH. In both condensed heptane studies [45, 46], instead of prescribing the temperature at

the liquid surface, a gas-vapor equilibrium was presumed, and interface temperature was

calculated through an iterative process. Four- and five-step reduced mechanisms, and

prescribed boiling temperature condition, were considered in a methanol flame

investigation [47]. The simplified solution was compared with early experimental

measurements [38] and a detailed reaction mechanism for a wide range of pressure (1 bar to

10 bar), dilution and preheat temperatures of the oxidizer stream. Flame structure, major

species concentrations and extinction conditions for both reduced mechanisms were in good

agreement with the detailed mechanism. Higher pressures (up to 3.5 MPa) were considered

in a theoretical (unity Lewis number) and experimental [48, 49] study of the extinction

characteristics of a condensed heptane pool configuration. A numerical analysis of a

hydrogen counterflow diffusion flame above liquid oxygen was used to infer that for

cryogenic rocket motors the nonpremixed flame in the wake of the oxygen injector lip

cannot be extinguished downstream [50]. More recently, the condensed fuel configuration

started being applied to investigate ignition. An activation-energy asymptotic theory that

predicts autoignition of condensed hydrocarbon fuels (n-heptane, n-octane, n-decane,

n-dodecane, n-hexadecane, iso-octane, cyclohexane, methylcyclohexane, o-xylene, JP-10,
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JP-8, and diesel) has been developed [51]. The strain-rate, and the Damköhler number at

autoignition were used to obtain the chemical-kinetic rate parameters. The analysis was

extended by employing a detailed kinetic model to predict extinction and autoignition of

straight-chain alkanes and iso-octane [52]. The experimental analysis of ignition and

extinction of low molecular weight esters (methyl butanoate, methyl crotonate, ethyl

propionate, biodiesel, and diesel) was used to provide insights on combustion of high

molecular weight esters and biodiesel. Critical conditions of extinction and ignition were

accurately predicted numerically using a reduced kinetic model for methyl butanoate. The

experimental investigation was extended to analyze extinction curves at pressures up to

0.4 MPa [53].

1.4.2 Tubular Nonpremixed Flames

Albeit strained, the flame produced by the counterflow configuration is flat. As a

consequence, this configuration does not allow fundamental studies on the influence of

curvature effects (unless strong perturbations are induced to the flame [54–59]) or simple

rotating flow motion (unless the burner undergoes rigid body rotation [60–64]) on the

structure and extinction of nonpremixed flames. In order to evaluate those effects a

different elementary system was proposed by Ishizuka in 1984 [65], which is called the

tubular configuration.
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Figure 1.3: Premixed tubular flame configurations. (a) Swirl-type. (b) Counterflow type.
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The tubular configuration is one in which a flame circular in cross section and long in the

perpendicular direction is established. They experience simultaneously stretch, along the

longitudinal direction, and curvature [13]. Tubular flames can be divided into two large

groups based on the swirling characteristic of the flow field [18]. The tubular flame in

non-rotating flows is formed inside a cylindrical burners with porous walls (Fig. 1.3a) [65] or

with radial inlet flow (Fig. 1.3b) [66, 67]. The tubular flame in rotating flows is established

in swirl burners [68, 69]. When the rotation speed is small and the pressure variation caused

by the circumferential movement is low, the tubular flame with rotation is equivalent to

the tubular flame without rotation since the circumferential flow field can be uncoupled

and solved separately [70]. However, high swirl rates lead to substantial radial pressure

variations [71]. In this case, both pressure variation and the pressure gradient influence the

flame response, which is different from the tubular flame without rotation [70]. Nonpremixed

tubular flames were obtained only with non-rotating gaseous flow [72], whereas, in rotating

flows, a nonpremixed flame has already been established for fuels in condensed phase [73].

Air Air

Stagnation
Surface

r

z

Fuel

Flame

Figure 1.4: Schematic of the nonpremixed counterflow tubular flame.

Non-premixed tubular flames were established using the opposed tubular burner for the

first time by Hu et al. [72]. A schematic of the system is shown in Fig. 1.4. A detailed

structural investigation using the spontaneous Raman scattering technique was conducted

on diluted hydrogen-air flames with constant curvature at various stretch rates. Measured

temperature and major species concentrations had a good agreement with the numerical
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predictions [72, 74]. It was observed that the curvature of the tubular configuration affects

preferential diffusion effects, such that for flames with Le < 1, convex curvature promotes

combustion, enhances the flame temperature and therefore retards extinction and vise versa

for flames with Le > 1 [75]. It was also observed that, for Lewis number close to unity,

curvature has minimal effects on tubular nonpremixed flames. Extinction of the opposed

tubular flames generated by burning diluted hydrogen, methane, and propane with air were

investigated for both concave and convex curvature [76]. Several studies on the observation of

cellular structures with one to four cells were observed for flames with sufficiently low Lewis

number when the flame approaches extinction [76–79]. The characteristics of the cellular

instability of opposed nonpremixed tubular flames near the extinction limit were investigated

using linear stability analysis and two-dimensional numerical simulations, and the cellular

structures dependence on the Damköhler number is replicated in the results [80, 81]. A

review on the effects of stretch and curvature on tubular premixed and nonpremixed flames

was published recently [70].

A variation of the tubular configuration in which liquid fuels have been applied is known

as the liquid film combustor [69, 73]. The concept of condensed fuel film combustors is

based on the injection of liquid fuel into the cylindrical combustion chamber in a way that

allows the fuel to spread over the inner surface of the chamber’s wall. The liquid film

vaporizes and becomes the fuel source for the chemical reaction with air that comes from

the bottom inlet. The flame is located between the fuel film and the exhaust gas in the

center region of the combustion chamber. In early fuel film combustor designs the fuel and

air injection were performed tangentially through injectors located at the closed end of the

combustion chamber [82]. The tangential air injection creates a swirl movement of the flow

field which helps to spread the fuel and stabilize the film on the combustor inner surface [82].

Non-uniformity of the fuel film creates density gradients along the chamber and provides

fuel-rich and fuel-lean zones useful for the flame anchor mechanism and establishment [83].

The flame stabilization mechanism requires a balance of several factors such as air strain
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on the flame base that does not exceed the maximum flame propagation speed, swirling

flow to generate fuel concentration gradients, enhanced heat transfer to the film, a liquid

film that remains upstream of the flame anchor point, and a thermally conductive chamber

material that permits heat transfer from the flame through the walls and to the film [82].

Research on fuel film combustors has also shown their feasibility and potential as portable

power devices [82–86]. Among the several configurations for the film combustor that were

attempted the one with secondary injection showed better flame stability when working at

overall lean conditions [84]. Based on the secondary injection concept, a new configuration

was recently proposed to combine the promising characteristics of different designs [87].

A mathematical model for the system considering unity Lewis numbers was developed to

describe theoretically the combustion process in the liquid film burner [88]. Perturbations

were used to account for effects of swirl-induced flow, vaporization-induced flow, and gas

expansion on an undisturbed plug-flow. For the case of a parabolic velocity profile, the

combination of these effects was not taken into account.

The literature on counterflow diffusion flames described above shows that there remains the

opportunity for enhanced analytical solutions of nonpremixed counterflow flames. Moreover,

it also shows that there are still systems for which both an experimental setup and the

theoretical description of the combustion phenomena has not been proposed yet. These

analyses are the core effort of this dissertation.
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Chapter 2

Conservation Equations for Laminar

Nonpremixed Flames

2.1 Introduction

Nonpremixed flames constitute a class of combustion systems in which fuel on oxidizer are

not combined before entering the combustion chamber, such that the mixing process has

an important role in the system. In this chapter we review the conservation equations and

the assumptions used to obtain the flow field, temperature and species profiles in reacting

flow with a focus on laminar nonpremixed systems. Although some of what follows in this

chapter also appears in the classical combustion literature, it is included to ensure a uniform

nomenclature throughout the dissertation and to provide the foundation for the extended

and novel analyses presented later.
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2.2 Conservation Equations for Reacting Flows

The conservation laws that describe reacting gaseous flows are represented mathematically

by the continuity, momentum, energy and species conservation equations. They are given

respectively by [89],

Dρ

Dt
+ ρ∇ · u = 0 (2.1)

ρ
Du
Dt

= −∇p+∇ · τ + ρf (2.2)

ρ
DYk
Dt

= −∇ · jk + ω̇kMk (2.3)

ρ
Dh

Dt
= Dp

Dt
+∇ · q −

K∑
k=1
∇ · hkjk −

K∑
k=1

hkω̇kMk + Φ (2.4)

The independent variable t is the time. The operator D(·)/Dt denotes the material derivate,

and u is the velocity vector. The term τ is the deviatoric stress tensor and f represents

the acceleration due to body forces acting on the fluid. The mass fraction of each chemical

species k is given by Yk, with k = 1, ..., K, where K is the total number of species. The

variables ρ, p, h and hk are the gas density, pressure, enthalpy and the enthalpy of species

k, respectively. The term ω̇k represents the rate of production of species k per unit mol, and

Mk its molecular weight. The vectors q and jk denote the diffusive fluxes of heat and mass,

respectively, and Φ the viscous dissipation. The conservation equations can be simplified by

noting that, in the systems analyzed, the Mach number is small. In such flows the transport

of energy by pressure variations Dp/Dt is small compared to the transport via conduction

and convection [5]. Together with these hypotheses, other simplifying assumptions are also

considered. Viscous dissipation Φ, which represents the irreversible conversion of kinetic into

thermal energy, heat transport by radiation, and the Soret and Dufour effects are neglected

in the analysis. Stokes hypothesis is assumed. Fourier’s law is used to describe the diffusion

of heat. The mass diffusion flux vector is represented by jk = ρkUk, in which the components

of the diffusion velocity vector of the species k, Uk, in the axial and radial directions are,
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respectively, Uk and Vk. Assuming the gaseous mixture as an ideal gas, the state variables

of the system are related by,

p = ρRT
K∑
k=1

Yk
Mk

(2.5)

in which R is the gas constant. The systems discussed herein can be described more

conveniently in terms of the cylindrical coordinate system. The axysimmetric steady-state

form of Eqs. (2.1) to (2.4) can be expressed as,

∂

∂z
(ρu) + 1

r

∂

∂r
(ρrv) = 0 (2.6)

ρ

(
u
∂u

∂z
+ v

∂u

∂r

)
= −∂p

∂z
+ ∂

∂z

[
2µ
(
∂u

∂z
− 1

3∇ · u
)]

+ 1
r

∂

∂r

[
µr

(
∂v

∂z
+ ∂u

∂r

)]
+ ρfz (2.7)

ρ

(
u
∂v

∂z
+ v

∂v

∂r
− w2

r

)
= −∂p

∂r
+ ∂

∂z

[
µ

(
∂v

∂z
+ ∂u

∂r

)]
+

∂

∂r

[
2µ
(
∂v

∂r
− 1

3∇ · u
)]

+ 2µ
r

(
∂v

∂r
− v

r

)
+ ρfr (2.8)

ρ

(
u
∂w

∂z
+ v

∂w

∂r
+ vw

r

)
= ∂

∂z

(
µ
∂w

∂z

)
+ ∂

∂r

[
µ

(
∂w

∂r
− w

r

)]
+ 2µ

r

(
∂w

∂r
− w

r

)
+ ρfθ (2.9)

ρ

(
u
∂Yk
∂z

+ v
∂Yk
∂r

)
= −

[
∂

∂z
(ρUkYk) + 1

r

∂

∂r
(ρrVkYk)

]
+Mkω̇k (2.10)

ρcp

(
u
∂T

∂z
+ v

∂T

∂r

)
= ∂

∂z

(
κ
∂T

∂z

)
+ 1
r

∂

∂r

(
κr
∂T

∂r

)
−

K∑
k=1

ρcp,kYk

(
Uk
∂T

∂z
+ Vk

∂T

∂r

)
−

K∑
k=1

hkMkω̇k (2.11)

The independent variables z, r, and θ denote the spatial coordinates in the axial, radial

and circumferential directions, respectively. The position of a point in the spatial domain

is represented as (z, r, θ) and the respective components of the velocity vector u are given

as (u, v, w). In Eqs. (2.7) to (2.9), the source terms fz, fr and fθ are the components of

the body acceleration vector f in the directions z, r and θ, respectively. The parameters

cp, µ, and κ are the gas specific heat at constant pressure, dynamic viscosity, and thermal
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conductivity, respectively, which, in general, depend on temperature and composition. The

term cp,k is the specific heat at constant pressure of species k.

The system of conservation equations in Eqs. (2.7) to (2.11) can be further simplified if the

physical model can be described in terms of similarity variables. This simplification reduces

the system of partial differential equations into a system of ordinary differential equations.

The similarity variables are obtained by special combinations of the spatial coordinates. As

described in the next sections, the transformation from the original independent variables

into self-similar ones is specific for the each configuration, i.e., it depends on the physics and

on the geometry of the system.

2.3 Stagnation Flow Configuration

The stagnation (point) flow configuration represents a physical system in which a fluid flow

approaches a stagnation surface. In the region near the surface, the flow changes its direction

and a viscous layer develops. The governing equations for this configuration can describe the

interaction of the fluid flow with a solid surface as well as with another flow in the opposite

direction. Two stagnation surfaces can be represented in term of cylindrical coordinates:

one in which the surface is normal to the axial direction, and another one, in which the

stagnation surface is parallel to the axial direction. Note that the axial direction is not

always the dominant flow direction in these stagnation flows. The stagnation surface can

impede either an axial or radial flow while maintaining cylindrical symmetry.

2.3.1 Stagnation Flow in the Axial Direction

This configuration represents a physical system in which a viscous flow oriented axially

impinges upon a stagnation surface normal to the axial direction. The formulation can be
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represented by considering two different perspectives, depending on how the flow field far

from the region near the stagnation surface is described. For an incompressible isothermal

viscous flow being impinged on the surface, Homann [90], following Hiemenz [91], proposed

an incompressible stream function in the form,

Ψ(z, r) ≡ −Br2z (2.12)

in which B is a constant. By representing the stream function in cylindrical coordinates as,

∂Ψ
∂r
≡ ρru,

∂Ψ
∂z
≡ −ρrv (2.13)

which is valid for any axisymmetric flow, and substituting the velocity components into the

conservation equation for the momentum in the radial direction, Eq. (2.8), one obtains a

third-order ordinary differential equation for which the boundary conditions are given at the

stagnation surface and at the inviscid region far from the stagnation point [92]. Therefore,

the transformation given in Eq. (2.12) cannot represent flows in which the flow issues from

a manifold separated by a finite distance from the stagnation surface [5]. For such flows, the

boundary condition needs to be defined at both the manifold and the stagnation surface,

and the stream function defined in Eq. (2.12) prevents such description. As an alternative,

the stream function Eq. (2.13) can have its dependence on the axial direction modified and

it can be written as [93–96],

Ψ(z, r) ≡ r2Uz(z) (2.14)

where Uz(z) is an unspecified function of z. By using the stream function in cylindrical

coordinates, Eq. (2.13), the axial and radial velocity components are given as,

ρru = 2rUz, ρrv = −r2dUz
dz

(2.15)
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Equations (2.6) to (2.11) are simplified by substituting the expressions from Eq. (2.15)

as [95, 96]

d

dz
(ρu) + 2ρVz = 0 (2.16)

dp

dz
= −ρudu

dz
+ 4

3
d

dz

(
µ
du

dz
− µVz

)
+ 2µdVz

dz
(2.17)

ρu
dVz
dz

+ ρ
(
V 2
z −W 2

z

)
− d

dz

(
µ
dVz
dz

)
= −1

r

dp

dr
= −Λr (2.18)

ρu
dWz

dz
+ 2ρVzWz = d

dz

(
µ
dWz

dx

)
(2.19)

ρu
dYk
dz

= − d

dz
(ρUkYk) +Mkω̇k (2.20)

ρucp
dT

dz
= d

dz

(
κ
dT

dz

)
−

K∑
k=1

ρcp,kUkYk
dT

dz
−

K∑
k=1

hkMkω̇k (2.21)

where Λr (the radial pressure gradient) is an eigenvalue of the problem [95, 96]. The scaled

radial (Vz) and circumferential (Wz) velocities are given by

Vz ≡ −
1
ρ

dUz
dz

= v

r
, Wz ≡

w

r
(2.22)

Density ρ, temperature T , axial velocity u, mass fractions Yk as well as the scaled radial

Vz and circumferential Wz velocities are seen to be functions of z alone. The velocity

components can be determined from the system composed by Eqs. (2.16), (2.18) and (2.19).

Equation (2.17) is used to determine the axial component of the pressure gradient, which is

decoupled from the system.

2.3.2 Stagnation Flow in the Radial Direction

In systems in which a viscous flow issues from a manifold oriented radially and impinges

on a stagnation surface that is located at a finite distance from, and oriented parallel to,

the axial direction, the velocity field can be described in terms of a stream function in the
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form [13, 97],

Ψ(z, r) ≡ zVr(r) (2.23)

where Vr(r) is an unspecified function of r. The axial and radial components are given as,

ρru = −zdVr
dr

, ρrv = Vr (2.24)

The system of conservation equations given in Eqs. (2.6) to (2.11), can be simplified by

substituting Eq. (2.24) as [13, 97],

d

dr
(ρrv) + ρrUr = 0 (2.25)

ρv
dUr
dr

+ ρU2
r −

1
r

d

dr

(
µr
dUr
dr

)
= −1

z

dp

dz
= −Λz (2.26)

−dp
dr

= ρu
∂v

∂r
− ρw

2

r
− 2 d

dr

(
µ
dv

dr

)
+ 2

3
d

dr

[
µ

(
Ur + 1

r

d

dr
(rv)

)]
− 2µ

r

(
dv

dr
− v

r

)
(2.27)

ρv
dw

dr
+ ρ

vw

r
= d

dr

[
µ

(
dw

dr
− w

r

)]
+ 2µ

r

(
dw

dr
− w

r

)
(2.28)

ρv
dYk
dr

= −1
r

d

dr
(ρrVkYk) +Mkω̇k (2.29)

ρvcp
dT

dr
= 1
r

d

dr

(
κr
dT

dr

)
−

K∑
k=1

ρcp,kVkYk
dT

dr
−

K∑
k=1

hkMkω̇k (2.30)

where Λz (the axial pressure gradient) is an eigenvalue of the problem [95, 96]. The scaled

axial velocity Ur is given by,

Ur ≡
1
ρr

dVr
dr

= u

z
(2.31)

Density ρ, temperature T , radial velocity v, mass fractions Yk as well as the scaled axial

velocity Ur are seen to be functions of r alone. The velocity components can be determined

from the system comprised by Eqs. (2.25), (2.26) and (2.28). Equation (2.27) is used to

determine the radial component of the pressure gradient, which is decoupled from the system.
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2.3.3 Nonrotating Axisymmetric Stagnation Flows

The governing equations Eqs. (2.16) to (2.21) and Eqs. (2.25) to (2.30) can be expressed as a

single system of ordinary differential equations if they are represented in terms of a coordinate

system in which the stagnation surface is used as reference. Denoting the coordinates normal

and parallel to the surface as ξ and η, respectively, and the respective velocity components

as, uξ and uη, the generalized system of conservation equations for nonrotating stagnation

point flows in cylindrical coordinates is given as,

d

dξ

[
ρ(2ξ)βuξ

]
+ ξβ2ρUη = 0 (2.32)

ρuξ
dUη
dξ

+ ρU2
η −

1
ξβ

d

dξ

(
µξβ

dUη
dξ

)
= −1

η

dp

dη
= −Λη (2.33)

ρuξ
dYk
dξ

= − 1
ξβ

d

dξ
(ρξβUξ,kYk) +Mkω̇k (2.34)

ρuξcp
dT

dξ
= 1
ξβ

d

dξ

(
κξβ

dT

dξ

)
−

K∑
k=1

ρcp,kUξ,kYk
dT

dξ
−

K∑
k=1

hkMkω̇k (2.35)

in which Uξ and Uη are the scaled velocities in the normal and parallel directions, and

the parameter β equals zero for the axial, and one for radial stagnation flows, respectively.

Equations (2.32) to (2.35) show that existing computer programs designed to solve axial

stagnation flows (e.g., the algorithms used for reacting flow calculations in CHEMKIN [98]

and Cantera [99]) can be easily extended to solve its radial counterpart by the addition of a

few terms.

2.3.4 Transport Coefficients

Transport coefficients are parameters that represent diffusive transport processes such as

molecular diffusion, thermal conductivity, viscosity and thermal diffusion. In

multicomponent systems, such as reacting flows, the transport coefficients need to be
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estimated considering all the interacting species. In order to do so, different degrees of

approximation can be employed. The multicomponent model, in which the kinetic theory

of gases is used to evaluate the transport coefficients, is the most accurate. However, the

evaluation of the coefficients requires the solution of linear systems that arise form

Galerkin approximations applied to the linearized Boltzmann equation [10], which is

computationally expensive. In cases where one species is in excess, mixture-averaged

coefficients offers a good compromise between computational cost and satisfactory

accuracy [5]. In simplified models, such as asymptotic solutions, transport coefficients for

pure species is often used. The temperature dependence of transport parameters in the

analyses discussed herein are based on the latter.

The variation of the viscosity of pure species with temperature can be represented in the

form of a power law, such as,

µ

µ0
=
(
T

T0

)m
, 150 K 6 T 6 500 K (2.36)

in which, for polyatomic gases, typically m ≈ 0.645 [5], or the variation can be obtained

using the Sutherland formula [100],

µ

µ0
= T0 + Ts
T + Ts

(
T

T0

)3/2
, 100 K 6 T 6 1900 K (2.37)

Assuming constant Prandtl and Lewis numbers, other transport coefficients are obtained

using the viscosity calculated from Eqs. (2.36) and (2.37). These formulas are valid for

a limited temperature range, even though extrapolations are often used. Only a limited

number of species have their Sutherland constants (Ts) tabulated [101]. It is possible to

obtain Sutherland’s untabulated constants either empirically [102] or, for species for which

kinetic-theory parameters are available, though a curve fitting of Sutherland formula.
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The Prandtl number, defined as the ratio of momentum diffusivity to thermal diffusivity, is

assumed as 0.7 for all models discussed in this study.

2.3.5 Infinitely Fast Chemistry

The chemical transformations in combustion systems can be described in several ways. In

general, the reactions occurring in chemically reacting flows can be summarized, in order

of increasing complexity as [5]: infinitely fast reactions, chemical equilibrium, reduced

reaction mechanisms, and detailed reaction mechanisms. These approaches can be divided

into two groups [5]. The first group, comprised of infinitely fast and chemical equilibrium

approaches, is characterized by the fast chemistry assumption, i.e., it is assumed that the rate

of chemical conversion is not kinetically controlled. The second group consists of reduced and

detailed reaction mechanisms. In this group finite-rate chemistry is considered, such that

the processes are kinetically controlled. However, a limitation of the finite-rate hypothesis

resides in the fact that a large computational effort is required to describe comprehensively

the transformations occurring in chemically reacting flows. Finite rate chemistry details are

necessary when the goal is to obtain distributions of intermediate or minor species, as might

be critical for predicting emissions, for instance. When the objective is focused on heat

release, flame shape, and flow coupling dynamics, fast chemistry is often sufficient.

The fast chemistry approximation, also known as the Burke-Schumann limit, is

characterized by the assumption of instantaneous reactions, which is valid if the system is

mixing controlled, i.e., when the chemical reaction rate is much faster than the mixing rate.

This corresponds to a high Damköhler number, a dimensionless parameter defined as the

ratio of diffusion time to chemical reaction time. For the chemical equilibrium model, an

equilibrium composition is estimated by minimizing the Gibbs free energy of the system.

Both infinitely fast and chemical equilibrium models often result in similar model

24



predictions for major species, provided the overall process is diffusion controlled, but the

may fail in predicting concentrations on minor components such as pollutants [5].

The present work aims at describing reactive flows through simple models with a focus on

major flame behaviors in unusual stagnation flow geometries. Thus, the analysis performed

herein focus on infinitely fast chemistry. The fast chemistry assumption is used solely in

the evaluation of the structure of high-temperature steady nonpremixed flames. Extinction

cannot be predicted using such an assumption unless a threshold temperature is also

considered. In the Burke-Schumann limit the chemical reactions are described by a single

one-step irreversible reaction. The infinitely fast conversion of reactants into stable

products is assumed to be limited to a very thin exothermic reaction zone — which can be

treated as a geometrical surface — where stoichiometric mixing of fuel and oxidizer occurs,

and where temperature and combustion products concentrations are maximized. This

assumption results in the absence of fuel on the oxidizer side and vice-versa. The

combustion process for alkanes (the type of hydrocarbons considered in this study) is

represented by the one-step irreversible global reaction,

CnH2n+2 + 3n+ 1
2 (O2 + 3.76N2) −−→ nCO2 + (n+ 1)H2O + 1.88(3n+ 1)N2 (I)

where the composition for air is assumed as 21 % O2 and 79 % N2 by volume. This overall

reaction represents with good accuracy the global chemical reaction when the concentrations

of the minor species on the products side, such as H2, OH, CO, H and O, are small compared

with those of the main species CO2 and H2O. According to Reac. (I), a unit mass of fuel

reacts with a mass s = 8(3n+ 1)/(7n+ 1) of oxygen, to produce a mass sCO2 = 22n/(7n+ 1)

and sH2O = 9(n + 1)/(7n + 1) of carbon dioxide and hydrogen, respectively, with 1 + s =

sCO2 + sH2O [4]. An amount qc of heat is released per unit mass of fuel burnt in the process.

From the assumptions, the mass production rate of the species k can be expressed in terms
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of an irreversible Arrhenius rate as,

ṁk = Mkω̇k = νkMk
ρYF
MF

ρYO
MO

A exp (−E/RT ) (2.38)

where νk is the stoichiometric coefficient of species k, where A and E are the pre-exponential

factor and the activation energy, respectively. The subscripts F and O denote fuel and

oxidizer, respectively. The conservation equation for species k, Eq. (2.3), can be simplified

to,

ρ
DŶk
Dt

= ∇ ·
(
ρα

Lek
∇Ŷk

)
+ νkMk

Yk,ref

ρYF
MF

ρYO
MO

A exp (−E/RT ) (2.39)

where Ŷk is the nondimensional species mass fraction scaled by a reference value Yk,ref, and

α (≡ κ/ρcp) is the gas mixture thermal diffusivity. The parameters Lek ≡ αk/Dk, αk and

Dk are, respectively, the Lewis number, thermal diffusivity, and mass diffusivity of species

k. Adopting a Fickian description for the diffusion velocities, the conservation equations for

species Eq. (2.39), for fuel (ŶF ) and oxidizer (ŶO) scaled mass fractions, and energy, Eq. (2.4),

can be written, respectively, as,

ρ
DŶF
Dt

= ∇ ·
(
ρα

LeF
∇ŶF

)
− ṁF (2.40)

ρ
DŶO
Dt

= ∇ ·
(
ρα

LeO
∇ŶO

)
− SṁF (2.41)

ρcp
DT̂

Dt
= ∇ ·

(
κ∇T̂

)
+ qcYF,fuelṁF/T0 (2.42)

where, ṁF = ρ2ŶF ŶOA exp (−E/RT )YO,0/MO is the scaled consumption rate of fuel mass

per unit volume and T̂ ≡ (T − T0)/T0 is the nondimensional temperature scaled by the its

value at the oxidizer inlet, T0. The reference values used in the definition of the

nondimensional mass fractions of fuel and oxidizer are the mass fractions of fuel and

oxidizer at their respective inlets, namely, YF,f and YO,0. The stoichiometric mass ratio is
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defined as S ≡ sYF,f/YO,0. An extension to the Shvab-Zel’dovich [14, 15] formulation

proposed by Liñán [4, 103–105] is invoked in order to simplify the set of conservation

equations. Assuming uniform temperature dependent physical properties for the whole

mixture, energy and species conservation equations can be replaced by conservations

equations free of source terms for the mixture fraction Z and the excess-enthalpy H given,

respectively, as,

ρ
DZ

Dt
= ∇ ·

(
ρα

Le
∇Z

)
(2.43)

ρ
DH

Dt
= ∇ · (ρα∇H) +K∇ · (ρα∇Z) (2.44)

in which the conserved scalars are defined, respectively, as,

Z ≡ (SŶF − ŶO + 1)/(S + 1) (2.45a)

H ≡ T̂ /γ + ŶF + ŶO − 1 (2.45b)

in which the heat release γ ≡ qcYF,f/cpT0(S + 1). At the flame front, the concentrations of

fuel (ŶF ) and oxidizer (ŶO) are minimized and the flame position can be determined by,

ZS = 1/(S + 1) (2.46)

The peak flame temperature TS can be obtained as [4, 106],

TS = T0 + γYF,f + (Tf − T0)/(S + 1) (2.47)

The Lewis number Le and the parameter K are written as [103–105],

Le =


LeF for Z > ZS

LeO for Z < ZS

and K =


1− LeF
LeF

1
1− ZS

for Z > ZS

LeO − 1
LeO

1
ZS

for Z < ZS

(2.48)
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With the formulation given above, the flame surface is defined by the set of points at which

Z = ZS. Due to preferential diffusion effects, non-unity Lewis number, the flame temperature

is eventually higher (Le < 1) or lower (Le > 1) than its adiabatic value.

As described above, the analytical formulation implemented in the following chapters uses

the basic classical methods of infinitely-fast chemistry and Schvab-Zel’dovich variables, and

then employs an extension to the latter with novel geometric flow self-similarity to solve a

set of stagnation and tubular flow combustion problems.
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Chapter 3

Stagnation Flow Flames

3.1 Introduction

The stagnation flow configuration has been applied to a variety of reacting systems, such

as chemical-vapor-deposition reactors, premixed and nonpremixed counterflow and tubular

flames, among others. In this chapter, the theoretical model for nonpremixed flames is

presented for systems that can also be described in terms of the governing equations for

stagnation flows presented in Chapter 2. Solutions are obtained for the case of infinitely fast

chemical reactions. A theoretical model is presented for a novel configuration, identified as

an impinging coflow flame, and its solution is obtained semi-analytically. Two nonpremixed

opposed flow systems are then discussed. The first one is a classical counterflow flame,

but studied under water-laden fuel conditions. Finally, the mathematical model for the

tubular counterflow flame configuration is extended and solved for the case of condensed

fuels delivered through porous walls.
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3.2 Impinging Coflow Flames

Flame impingement heating is a well-established technique that has been widely used and

studied for many years. Typical applications include melting of scrap metal, shaping glass

and heating metal bars. Fabrication and assembly applications include soldering, brazing,

cutting and welding [107]. In industrial furnaces the use of direct flame impingement

significantly enhances the convective heat transfer rates from combustion products to the

load, increasing productivity, reducing fuel consumption and lowering pollutant

emission [107]. Several semi-analytical solutions have been proposed for calculating the

structure and heat flux of impinging flames, and a number of reviews are available

describing further details of the solutions [107–110].

The majority of the work on the analysis of impinging flames is devoted to the study of

premixed flames. Both laminar and turbulent premixed flames have been investigated.

Impinging jets are considered to be laminar up to Reynolds numbers of approximately

2500 [108]. Earlier descriptions of premixed impinging flames, as those from Sibulkin [111],

Fay and Riddell [112], Rosner [113] and, most recently Remie et al. [114], developed equations

to compute the structure and heat flux at the stagnation point of an axisymmetric surface

subject to a uniform, external, steady flow. Sibulkin [111] described the heat flux near

a stagnation point that was obtained by numerically solving the laminar boundary layer

equations of an impinging jet. Lees [115] analyzed the laminar heat-transfer problem in

dissociated air, using the boundary layer equations considering equilibrium and diffusion

controlled regimes to obtain expressions for the heat transfer coefficients for both cases. Fay

and Riddell [112] later extended the semi-analytical solutions from Sibulkin [111] and Lees

[115] by taking into account the recombination of radicals in the boundary layer. More

recently, numerical models have been applied to study impinging jet flames. Liakos et al.

[116] evaluated the effects of the reacting mixture pressure and angle of impingement of a

turbulent premixed jet flame impinging on a solid surface using a numerical code. Malikov
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et al. [117] used a simplified two-dimensional numerical simulation of a reactive jet to study

heat and mass transfer in a direct flame impingement system and compared their results

with experimental data from a furnace. Liakos et al. [118] developed a numerical model

of a premixed turbulent jet impinging on a plane wall using the k-ε model and the RNG

k-ε model to calculate heat release, local extinction effects and radiative heat transfer. The

numerical results were compared with experimental data from the literature. Remie et al.

[114] derived an analytical expression for the heat flux of a laminar flame impinging on a flat

plate with flame jet approximated by a hot inert jet. Their analytical expressions are based

on an isothermal plug flow concept for the flame jet valid for radial distances r < R and

nozzle-tip distances z < 2R. Remie et al. [119] extended their analytical solution to predict

the complete heat-transfer distribution to a flat target. In a subsequent work, Remie et al.

[120] modified their analytical results based on the numerical solution from a commercial

CFD software.

Despite the fairly rich research in premixed flames, the impinging nonpremixed flames

literature is sparse. In some experimental and numerical analyses of premixed flames, the

inner conical rich premixed flame produced by a Bunsen burner is incidentally surrounded

by an outer nonpremixed flame [121, 122], but the nonpremixed flame is not the focus of the

work. Coflow systems have also been applied, but the work was limited to the experimental

and numerical study of premixed and partially premixed flames [123]. More recently, Dong

et al. [124] presented an experimental investigation of inverse nonpremixed flames. They

compared their measurements of the heat flux at the stagnation plate with the semi-analytical

solution from Fay and Riddell [112]; however, no qualitative agreement was observed, mainly

because of the different flow regimes for relatively low Reynolds numbers (1500) in the inverse

nonpremixed flame analyzed. It appears that the works of Chien et al. [125–127] are the

first experimental studies on impinging nonpremixed flames. In the course of their study

of electric field effects on nonpremixed flames, they investigated the effect of a stagnation

plate on the structure of a nonpremixed coflowing reacting jet of air and methane. In order
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to provide a theoretical background to their system, a semi-analytical model was proposed

by Sauer and Dunn-Rankin [128, 129], with which, using simplifying assumptions, the flame

position can be obtained.

The theoretical model proposed by Roper et al. [12, 130] for coflow nonpremixed flames

— a modified version of the Burke-Schumann’s nonpremixed flame [11] — assumes that

axial velocity u, temperature T and species mass fractions Yk are functions of the axial

direction only. Sunderland et al. [131] extended Roper’s model to predict complete flame

shapes assuming uniform velocity and temperature throughout the flame with a formulation

they called the Extended Roper model [132]. Sauer and Dunn-Rankin [129] proposed an

extension of the model developed by Sunderland et al. [131] to study impinging coflow

flames. In order to determine the velocity field of the system, a stagnation point viscous flow

for incompressible fluids between stationary porous plates [93–96] and the Extended Roper

model (ER) are used to obtain the flame shape. The conservation equations of the model can

also be transformed using streamline coordinates; an approach called the Stream Function

as a Coordinate (SFC), introduced by von Mises in 1927 [133]. The transformation of

coordinates of the conservation equations from the axial and radial coordinates into another

system (in which the equations present a simpler form) was also performed by Li et al. [134]

and Vázquez-Espí [135] to study coflow flames. They analyzed an axisymmetric laminar jet

nonpremixed flame in unconfined coflowing air using a boundary-layer description applying

the von Mises [133] approach. The use of SFC simplifies the conservation equations by using

the stream function as one of the independent coordinates and the axial direction as the

other. The second approach included here to analyze impinging coflow nonpremixed flames

is based on the von Mises transformation. The conservation equations are transformed using

the SFC model from which the flame shape and height are determined.
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3.2.1 Experimental Observations

The theoretical model for nonpremixed impinging flame is based on the experiment

represented in the schematic in Fig. 3.1 which is described in detail in [125–127]. Although

the system was used for other work, as identified in the references, specific measurements

for inclusion in this dissertation were taken to focus on the key features of comparison

needed for validating the analytical approach. The system is composed of a vertical

cylindrical coflow burner and stainless steel plate that acts as the impinging surface. The

radius of the inner tube, from which methane is issued, is rF = 2 mm, the radius of the

outer tube, from which air is supplied to the system, is rO = 25.4 mm.

Fuel

Stagnation
Plate

z

r

AirAir

FlameH0

rf
r0

Figure 3.1: Representation of the physical system.

The flow from the outer tube is made uniform by a bed of beads and a honeycomb mesh

positioned at the burner port. The inner tube does not have any stabilizing strategy, such

that the velocity profile of the fuel at the burner port is fully developed and laminar. Both

fuel and air are issued at a constant nominal velocity of 20 cm s−1. The plate is a 1.5 mm

thick stainless steel square with 10.2 mm sides. The impinging surface is allowed to move

vertically and its position is adjusted by a translation stage. For the conditions described,

the overall flame luminosity (mainly due to exited-state CH and OH radicals) was imaged at

different positions using an intensified EMCCD camera with resolution of 512 x 512 pixels.

The flame position is determined as the locus of maximum luminous intensity. An Abel

transform is used for image deconvolution and the resulting data is filtered to reduce the
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Figure 3.2: Photographic images of the flame with the stagnation plate at different vertical
positions. (a) H0 = 10.6 mm; (b) H0 = 9.4 mm; (c) H0 = 7.5 mm. The horizontal white line
represents the bottom surface of the impinging plate.

remaining noise. In order to apply the transform, a set of images of the steady flame is

averaged over time, and the background noise from the camera removed by using pictures

from the system without any ambient light. Photographic images of the flame luminosity

scaled by its maximum intensity are shown in Fig. 3.2. The images show the different flame

shapes observed when the impinging plate is positioned at three different vertical distances

from the burner port. As the plate is moved closer to the flame, the luminous core transitions

from an open-tip into a closed-tip structure.

3.2.2 Theoretical Model

The models through which the system is represented are described in terms of a semi-infinite

axisymmetric domain following the schematic in Fig. 3.1. The inlets are located at the r-axis.

Fuel flows from the inner tube of radius rf (diameter Df ) and mixes with the air stream

from an outer tube of radius r0 (diameter D0). The flat plate acting as a stagnation surface

is kept at a finite distance H0 from the burner port. The outer tube and the plate diameters

are assumed sufficiently large compared with the maximum flame radius, so that edge effects
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do not disturb the coflowing stream near the flame. Inflow velocities and temperature of

air and fuel streams are equal and represented by u0 and T0, respectively. The inlet mass

fractions of fuel and oxidizer at their respective inlets are represented by YF,f and YO,0, and

the flame position is represented by ZS. The chemical reactions are described by the single

one-step irreversible reaction from Reac. (I). Buoyancy effects are neglected in the analysis.

The formulation from Section 2.3.5 is invoked in order to simplify the set of conservation

equations, by assuming equal diffusivities of heat and mass, i.e., unity Lewis number, which

allows energy and species conservation equations to be replaced by a conservation equation

for the mixture fraction Z, given by Eq. (2.44).

3.2.2.1 Axisymmetric Stagnation Flow

The velocity field is described in terms of the conservation equations for axial stagnation

flows, namely, Eqs. (2.16) to (2.18). These conservation equations are nondimensionalized

in order to simplify the evaluation and generalize the conclusions to systems with similar

structure as influenced by the same dimensionless parameters. Assuming a nonrotating

axisymmetric flow with constant uniform properties, the dimensionless continuity and radial

momentum equations are given, respectively, as,

dû

dẑ
+ 2V̂z = 0 (3.1a)

û
dV̂z
dẑ

+ V̂ 2
z = −Λ̂r + 1

Re

d2V̂z
dẑ2 (3.1b)

where ẑ ≡ z/H0 and r̂ ≡ r/H0 are the independent variables scaled by the distance between

the burner port and the stagnation surface H0. The term û ≡ u/u0 is the velocity component

in the axial direction scaled by the uniform value at the inlet u0, and V̂z ≡ H0Vz/u0 is the

nondimensional scaled velocity in the radial direction, where Vz is given as in Eq. (2.22). The

Reynolds number and the dimensionless eigenvalue are given, respectively, by Re ≡ H0u0/ν0
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and Λ̂r ≡ ΛrH
2
0/ρ0u

2
0, where the constants ρ0 and ν0 represent the gas density and kinematic

viscosity, respectively. The boundary conditions required to solve the system of equations

are given by,

û− 1 = V̂z = 0, ẑ = 0 (3.2a)

û = V̂z = 0, ẑ = 1 (3.2b)

3.2.2.2 The Extended Roper Model

Roper [12] considered the following assumptions to predict the flame length:

1. Temperature and axial velocity are allowed to vary in the axial direction but are

constant at each z location, i.e., they are functions of z but not r;

2. Combustion causes no change in the number of molecules;

3. Axial diffusion is neglected;

4. The momentum, mass and thermal diffusivity are equal;

5. The effects of radiation are not integral to the model but the first assumption allows

them to be considered approximately.

As a consequence of the first assumption — which is also valid for the SFC model — body

forces such as buoyant acceleration effects [132] and forces due to the presence of electric

or magnetic field can be accounted for by the model. The assumptions in the Roper model

were originally conceived to predict flame height [12]. Therefore, hypothesis 1 to 5 are not

perfectly suited for determining flame shapes, and some modifications are required for better

qualitative predictions [132].
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The steady-state conservation equations for species k, Eq. (2.20), can be combined into a

conservation equation for the mixture fraction Z free of source terms, Eq. (2.44). Considering

the third assumption, the conservation equation for the mixture fraction can be simplified

as [136],

u(z)∂Z
∂z

+ v(r)∂Z
∂r

= D
r

∂

∂r

(
r
∂Z

∂r

)
(3.3)

where, from the first assumption, the velocity components u(z) and v(r) are functions of

z and r, respectively, and Z is allowed to vary in both axial and radial directions. The

following transformations are used in order to determine the position of the flame sheet,

t ≡
∫ z

0

dz

u
, ξ(r, z) ≡ r

rD(z) ,
d ln rD
dt

≡ v

r
, θ ≡ D

∫ t

0

dt

r2
D

(3.4)

in which t and rD are, respectively, the residence time on the flame axis and the characteristic

length of diffusion [136]. Substituting Eq. (3.4) into Eq. (3.3),

∂Z

∂θ
= 1
ξ

∂

∂ξ

(
ξ
∂Z

∂ξ

)
(3.5)

which is subject to the boundary conditions,

Z(0, ξ) = 1, 0 6 ξ 6 1 (3.6a)

Z(0, ξ) = 0, ξ > 1 (3.6b)

Both sides of Eq. (3.5) are functions of only one independent variable, thus its solution can

be found by a separation of variables in the form,

Z(θ, ξ) = Θ(θ)R(ξ) (3.7)
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which can be substituted into Eq. (3.5), yielding,

1
R

(
d2R

dξ2 + 1
ξ

dR

dξ

)
= 1

Θ
dΘ
dθ

= −λ2 (3.8)

The solution for the direction θ is obtained by integrating the equation for Θ(θ) as,

Θ(θ) = c1 exp
(
−λ2θ

)
(3.9)

where c1 is a constant of integration. The left hand side of Eq. (3.8), which is in

Sturm-Liouville form, is the Bessel differential equation of order zero for R(ξ). Its solution

is given by,

R(ξ) = c2J0(λξ) (3.10)

where J0 is the Bessel function of the first kind of order zero, which is bounded at ξ = 0.

The solution of Z(θ, ξ) is integrated over all positive values of λ, yielding,

Z(θ, ξ) =
∫ ∞

0
c(λ) exp

(
−λ2θ

)
J0(λξ)dλ (3.11)

The boundary condition at the burner port is used to determine the coefficients c(λ). At

θ = 0 Eq. (3.11) becomes,

Z(0, ξ) =
∫ ∞

0
c(λ)J0(λξ)dλ (3.12)

which is the Fourier-Bessel expansion of the function Z(ξ, 0), for which c(λ) are given by,

c(λ) = λ
∫ ∞

0
ξ′J0(λξ′)Z(ξ′, 0)dξ′ (3.13)
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Substituting Eq. (3.13) into Eq. (3.11) yields,

Z(θ, ξ) =
∫ ∞

0

[
λJ0(λξ) exp

(
−λ2θ

) ∫ ∞
0

ξ′J0(λξ′)Z(0, ξ′)dξ′
]
dλ (3.14)

Rearranging the order of integration and simplifying [137],

Z(θ, ξ) = 1
2θ exp

(
− ξ

2

4θ

)∫ 1

0
ξ′ exp

(
−ξ
′2

4θ

)
I0

(
ξξ′

2θ

)
dξ′ (3.15)

I0 denotes the modified Bessel function of the first kind of order zero. Equation (3.15) is

called the P-function [134, 137, 138]. Conversion from transformed coordinates (θ, ξ) into

dimensionless physical coordinates (ẑ, r̂) is given by the following expressions,

ẑ =
u0r

2
f

H0

1
D0

(
T0

TS

)m
θ (3.16a)

r̂ = rf
H0

(
u0

u

TS
T0

)0.5
ξ (3.16b)

where D0 is a reference mass diffusivity, TS is a constant temperature in the flame region [12],

and the exponentm is due to dependence of the viscosity µ being approximated by the power

law expression from Eq. (2.36).

3.2.2.3 Stream Function as a Coordinate (SFC) Model

The stream function from Eq. (2.15) defines the flow streamwise direction. Using the von

Mises transformation [133], i.e., defining,

ζ = ẑ (3.17a)

η = Ψ̂(ẑ, r̂) (3.17b)
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and assuming that the diffusion of heat and mass in the streamwise direction is negligible,

the conservation equation for the coupling function Z, Eq. (2.44), can be simplified by

substituting the partial derivatives for r̂ and ẑ by the transformed coordinates as,

∂

∂r̂
= ρ̂r̂û

∂

∂η
(3.18a)

∂

∂ẑ
= ∂

∂ζ
− ρ̂r̂v̂ ∂

∂η
(3.18b)

yielding,

∂Z

∂ζ
= 1
Pe

∂

∂η

(
ρ̂D̂ûr̂2∂Z

∂η

)
(3.19)

where the Peclét number is defined as Pe ≡ u0H0/D0, ρ̂ ≡ ρ/ρ0 is the scaled density,

and D̂ ≡ D/D0 is the scaled mass diffusivity. The assumption of negligible diffusion in

the streamwise direction is valid if the convective transport along the streamlines is large

compared to the diffusive transport [139]. Equation (3.19) can be further simplified using

Eqs. (2.14) and (2.15) to give,

∂Z

∂ζ
= 2
Pe

∂

∂η

(
η
∂Z

∂η

)
(3.20)

which is subject to the boundary conditions,

Z(0, η) = 1, 0 6 η 6 ηf (3.21a)

Z(0, η) = 0, η > ηf (3.21b)

where ηf represents the transformed dimensionless inner duct radius. Assuming constant

uniform properties (ρ̂ = D̂ = 1), and noting that Eq. (3.20) has the same form as Eq. (3.5),

its solution is found using the same procedure discussed in Section 3.2.2.2, and it is given
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by,

Z(ζ, η) = Pe

2ζ exp
(
−Pe η2ζ

)∫ ηd

0
exp

(
−Pe η

′

2ζ

)
I0

(
Pe

√
ηη′

ζ

)
dη′ (3.22)

Conversion from transformed coordinates (ζ, η) into dimensionless physical coordinates (ẑ, r̂)

is given by the following expressions,

ẑ = ζ (3.23a)

r̂ =
(2η
û

)1/2
(3.23b)

3.2.3 Discussion

The mixture fraction field of a nonpremixed methane-air flame is obtained using ER and

SFC models. The axisymmetric stagnation flow for a finite gap is used to obtain the constant

temperature velocity field between the burner port and the stagnation plate surface. The

system parameters, based on the experiment, are T0 = 298 K and m ' 0.67. The flame

is located at the position where Eq. (2.46) is satisfied, i.e., at the locus where the mixture

is stoichiometric. For methane-air flames the stoichiometric value of the mixture fraction

on a mass basis, ZS, is 0.055. For the Roper Model the coupling function is defined

on a molar basis, following [12], and its stoichiometric value is 0.095. The solution of

the stagnation point flow equations is obtained via a FORTRAN code. The FORTRAN

BVP_SOLVER [140] subroutine is used to solve the system of ordinary differential equations,

Eqs. (3.1a) and (3.1b). The integrals, Eqs. (3.15) and (3.22), are calculated using the

FORTRAN QUADPACK [141] subroutine.
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3.2.3.1 Velocity Field

Classically, the viscous flow field in an incompressible isothermal impinging system,

represented schematically in Fig. 3.3, is divided into three zones: the free jet, the

stagnation and the wall jet regions [109]. The free jet region is characterized by a potential

r

H0

z

D

Free Jet 
Region

Stagnation 
Region

Boundary 
Layer

Wall Jet 
Region

Wall Jet 
Region

Stagnation 
Region

Figure 3.3: Flow zones in an impinging system (adapted from [109]).

core zone, in which the axial velocity profile remains approximately constant; a developing

flow region, in which the axial velocity starts to decay; and a developed flow region, in

which the velocity profile is fully developed [108]. The free jet region is an outer inviscid

and rotational layer which extends from the burner port to the boundary of the stagnation

region, where the tangential component of the flow velocity vanishes. The stagnation

region is characterized by a turning of the jet in the radial direction and approximately

constant thickness. It consists of an inner viscous flow layer near the plate surface, which

extends slightly bellow the stagnation plane. The wall jet region is characterized by a bulk

flow in the outward radial direction.

The computed velocity profiles for three different Reynolds numbers are shown in Fig. 3.4.

It is observed that dV̂z/dẑ is approximately constant from ẑ = 0 to ẑ ' 0.8 for Reynolds

numbers of order 102 or greater, which is the case of the flows analyzed. In that region,
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advective (convective) terms should prevail over the diffusion terms in the conservation

equations. This limit defines the thickness of the viscous (inner) layer and the inviscid (outer)

layers. Therefore, in the outer region, the assumption of negligible streamwise diffusion is

valid.
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Figure 3.4: Nondimensional scaled velocity profiles for Reynolds numbers 10, 100 and 1000.

3.2.3.2 Model Validation

The axisymmetric flame contour for a methane-air flame for both the ER model and the SFC

model in the ẑr̂ plane are presented in Fig. 3.5. The flame position obtained experimentally

is also shown. The full width at half maximum (FWHM) of the experimental measurements

is shown as a shaded area in Fig. 3.5 and represents uncertainty in the measurements.

The results for the ER model are obtained considering the constant temperature in the flame

region as TS = 1500 K [130]. In the SFC model the reference diffusion coefficient, which,

following [142], is treated as an adjustable parameter, is evaluated at 750 K. We observe

from Fig. 3.5 that both models represent qualitatively well the overall flame shape. The

flame shape obtained through the ER model is wider than the solution obtained using the

SFC model for all conditions analyzed. The difference is due to the approach considered

in the ER model to account for the variation of physical properties with temperature from
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the burner port to the flame region. The flame shapes obtained using the SFC model

present qualitatively good agreement with the shapes obtained experimentally for the three

separation distances presented, particularly given the simplifying assumptions in the model.
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Figure 3.5: Experimental and calculated flame location with the stagnation plate at different
vertical positions. Dotted line: ER model. Solid line: SFC model. Dashed line: Region
of maximum luminous intensity obtained experimentally. Shaded area: FWHM of the
maximum luminous intensity obtained experimentally. a) H0/Df = 5.3 (H0 = 10.6 mm);
(b) H0/Df = 4.7 (H0 = 9.4 mm); (c) H0/Df = 3.75 (H0 = 7.5 mm). The long-dash-dot line
at ẑ = 1 represents the stagnation plane.

In the present analysis, an insulating inert wall is assumed. However, in real systems, the

gaseous components can interact with the solid surface through heat or mass transfer, for

example, if heat conduction through the stagnation plate or destruction of active radicals

at the stagnation surface are considered. Thus, the models developed herein need to be

extended if some of the neglected physics or chemistry phenomena are to be included in the

analysis. For flame shape, however, the results of the simplified model already capture the

key behaviors.

3.2.3.3 Effect of Separation Distance on Flame Tip Opening

The flame shape transitions from a closed tip to an open tip configuration as the separation

distance between the stagnation plane and the burner port is varied. The tip opening can
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be observed in Fig. 3.5 as the stagnation plane moves downward, with H0/Df going from

3.75 to 4.7. Consequently, there exists a relationship between the separation distance H0

and the maximum flame height. Both the ER model and the SFC model are able to predict

the flame tip opening phenomenon.
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Figure 3.6: Maximum flame height obtained using ER and SFC models.

In a classical Burke-Schumann problem, it is possible to obtain a closed form solution for the

maximum height of the flame, since, in the case of an overventilated flame, the tip is expected

to close at the axis of symmetry. However, in the present case it is not possible to express the

flame height in terms of a simple analytical function for all the separation distances, because

the solution for the velocity field is obtained through the numerical solution of the system of

ordinary differential equations given by Eq. (3.1b). The same is true for the stagnating plate

distance at which flame tip opening is observed. The semi-analytical nature of the solutions

for the flame shape allows determination of the maximum flame height at several separation

distances and ploting them as a function of the distance between the burner port and the

stagnation plate as shown in Fig. 3.6.

The lines in Fig. 3.6 represent several positions of the maximum flame height ẑmax at the

axis of symmetry. The heights are determined recording the positions in the ẑ axis where

the coupling function has its stoichiometric value. The ER model predicts flame opening

45



at slightly lower separation distance compared to the SFC model. From the experimental

results in Fig. 3.5, the position at which the flame opens seems to be accurately predicted

by both models. The ER model predicts flame tip opening at H0/Df = 3.8, and the SFC

model, at H0/Df = 4.3.

3.2.3.4 Temperature and Mass Fraction Fields

The first assumption considered in the theoretical model proposed by Roper [12], namely the

hypothesis that temperature is allowed to vary only in the axial direction, prevents the ER

model from predicting the temperature field in any coflow system. On the other hand, in the

SFC model no assumptions are made with respect to the spatial variation of temperature

or concentration of species. Contours of the nondimensional temperature field and mass

fractions are presented, respectively, in Figs. 3.7 and 3.8 for the SFC model.
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Figure 3.7: Contours of dimensionless mass fraction fields. The dashed line represents the
flame sheet. a)H0/Df = 5.3 (H0 = 10.6 mm); (b)H0/Df = 4.7 (H0 = 9.4 mm); (c)H0/Df =
3.75 (H0 = 7.5 mm). The long-dash-dot line at ẑ = 1 represents the stagnation plane.

The flame position, obtained as the location where the mixture fraction satisfies Eq. (2.46),

is highlighted. In Fig. 3.8 the contour levels represent the nondimensional temperature.

Dimensionless mass fractions of fuel (ŶF ) and oxidizer (ŶO) are represented in Fig. 3.7 by

continuous and dotted lines, respectively, in their respective sides. Experimental results are
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not available for the validation of those profiles. However, based on the results obtained

by the SFC model for the flame position presented in Section 3.2.3.2 the profiles observed

in Figs. 3.7 and 3.8, are expected to predict qualitatively experimental observations.
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ẑ

1.0
02.0

03.004.00

5.
00

6.
00

(a)

-1 -0.5 0 0.5 1
r̂

0

0.5

1

1.5

2

ẑ
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ẑ

1.0
02.0

03.0
04.0

05.0
06.00

(c)

Figure 3.8: Contours of dimensionless temperature fields. The dashed line represents the
flame sheet. a)H0/Df = 5.3 (H0 = 10.6 mm); (b)H0/Df = 4.7 (H0 = 9.4 mm); (c)H0/Df =
3.75 (H0 = 7.5 mm). The long-dash-dot line at ẑ = 1 represents the stagnation plane.

3.3 Water-Laden Counterflow Flames

The addition of water to combustible systems and the interaction between water and the

flame has attracted the interest of researchers in past years [143–146]. Water is considered as

a nontoxic, noncorrosive suppressant with zero ozone depletion and negligible global warming

risks. Previous studies have focused mainly on fire suppression applications since water

mists possess significant cooling capacity and diluting effects of reactants in both liquid and

vapor phases, reducing the adiabatic flame temperature [143–147]. In addition, studies that

have focused in understanding the combustion of water/fuel emulsions have incorporated

high amounts of water addition to liquid spray fuels in order to mitigate the production of

nitrogen oxides (NOx) in internal combustion engines [148]. Another example of a water

laden nonpremixed flame is the methane hydrate flame since large amounts of water are
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naturally incorporated into the fuel stream. Molar composition in hydrate fuels is, in general,

86 % water and 14 % methane [149].

In the case of laminar nonpremixed flames, the counterflow burner, due to its practical

assembling and modeling, is a configuration that has been broadly used to compare

experimental data and the solution of the conservation equations that govern the system.

The effect of water addition on nonpremixed counterflow flames has been analyzed in a

number of studies, most of them focusing on chemical kinetics effects when water is added

to the air side of the burner. The addition of water has also shown effects on three-body

recombination and water-gas shift reactions [150–152]. Numerical analysis of similar

systems concluded that the concentration of OH radical is increased if water is added to

the system, but that this effect is reduced with increasing water addition [153, 154]. The

augmented production of OH radical is commonly justified by increased water dissociation.

More recently, the effect of water addition to the fuel side of a nonpremixed counterflow

burner has been examined numerically and experimentally [155–157]. The effect of water

addition on a a similar configuration is performed in this dissertation study to analyze the

effect of water addition on the physics of the system by assuming infinite Damkõhler

number.

In order to account for the combustion process the infinitely fast chemistry from Reac. (I)

is used, reducing the flame to an interface that separates the rich and lean sides. In spite of

its simplicity, many important dynamic aspects of the combustion process can be

understood by assuming that the chemical reaction between fuel and oxidizer takes place in

a single overall step [158]. The conservation equations for axial stagnation

flows Section 2.3.1 are simplified by considering Schvab-Zel’dovich variables

from Section 2.3.5 for flows with non-unity Lewis numbers and the equations are utilized to

determine the steady-state structure of the water-laden counterflow flame system. The gas

composition is assumed uniform throughout the domain. The temperature dependence of
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thermodynamic and transport properties is obtained, respectively, by the ideal gas

law Eq. (2.5) and the power law expression from Eq. (2.36). Buoyancy effects are

neglected, and the Prandtl number, defined as Pr ≡ ν/α is assumed constant, as discussed

in Section 2.3.4. The conservation equations, Eqs. (2.16), (2.18), (2.43) and (2.44), can be

nondimensionalized as,

d

dẑ
(ρ̂û) + 2ρ̂V̂z = 0 (3.24)

ρ̂û
dV̂z
dẑ

+ ρ̂V̂ 2
z −

1
Re

d

dẑ

(
µ̂
dV̂z
dẑ

)
= −Λ̂r (3.25)

ρ̂û
dZ

dẑ
= 1
LePe

d

dẑ

(
ρ̂α̂
dZ

dẑ

)
(3.26)

ρû
dH

dẑ
= 1
Pe

d

dẑ

(
ρ̂α̂
dH

dẑ

)
+ K

Pe

d

dẑ

(
ρ̂α̂
dZ

dẑ

)
(3.27)

where ẑ ≡ z/L0 is the independent variable scaled by the distance between the burner

ports L0. The term û ≡ u/u0 is the velocity component in the axial direction scaled by

the uniform value at the oxidizer inlet u0, and V̂z ≡ L0Vz/u0 is the nondimensional scaled

velocity in the radial direction. The Reynolds number and the dimensionless eigenvalue are

given, respectively, as Re ≡ L0u0/ν0 and Λ̂r ≡ ΛrL
2
0/ρ0u

2
0, where ρ0 and ν0 are the density

and kinematic viscosity at the oxidizer inlet, respectively. The Péclet number is defined as

Pe ≡ RePr. The boundary conditions required to solve the system of equations are,

û− ûf = V̂z = Z − 1 = H = 0, ẑ = 0 (3.28a)

û+ 1 = V̂z = Z = H = 0, ẑ = 1 (3.28b)

where ûf ≡ uf/u0 is the nondimensional axial velocity at the fuel inlet.
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3.3.1 Model Validation

The counterflow nonpremixed flame configuration represents a strained, laminar,

one-dimensional flamelet, with well characterized dynamics. A schematic of the system is

shown in Fig. 3.9. The experimental apparatus, described in [155], consists of a pair of

steel tubes (nozzles) separated by a finite distance, each surrounded with a concentric

coflow of nitrogen (N2) which prevents burning of fuel with the ambient air. Methane

(CH4), air and nitrogen are supplied by gas cylinders. Water is vaporized in an electric

furnace and mixed with methane. Thermocouples are used to measure the temperature

distribution in the flame as well as the state of the gas mixtures at the inlets.

Fuel
+

Water Vapor

Air

Stagnation
Surface

z

r

Nitrogen
Coflow

Flame

Figure 3.9: Schematic of counterflow nonpremixed flame.

The mixture of fuel and water vapor is issued from the bottom nozzle and air, from the one

at the top. The inner diameter of both nozzles is D0 = 19 mm and the separation distance

between them is L0 = 12.7 mm. For obtaining stabilized, uniform flow at the nozzle exits, the

flows are forced through stainless steel beads with an average particle diameter of 2.61 mm

and three layers of stainless steel honeycombs. A stainless steel screen covers each nozzle

exit. The upper and lower inner tubes are aligned so that their centerline is along the same

axis. The burner is placed inside a semi-closed, plexiglas chamber to help isolate the flame

from external contamination. The mixture of fuel and water vapor reacts with air near a

stagnation plane between the nozzles. A spark-igniter initiates the laminar, flat nonpremixed
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flame. To prevent burning of fuel with the ambient air, a N2 coflow dilutes the products

and prevents heating the upper nozzle. The coflow injection velocity is adjusted to be the

same as the respective fuel and air injection velocities uF,f and uO,0. However, the nominal

fuel-side coflow velocity does not include the additional momentum produced when water

vapor is added. Commercial mass flow controllers are used to deliver CH4, air (21 % O2

and 79 % N2 in volume) and nitrogen coflow. Deionized liquid water is supplied into the

fuel stream using a syringe pump. Water and fuel mixtures run through an electric furnace

(maximum heating temperature of (1373 K). The lower nozzle is electrically heated using a

heating band and is thermally insulated. Automated stage-mounted B-type thermocouples

are used to take temperature profiles of the flame with position. To confirm that water is

prevaporized prior to injection at the fuel nozzle exit, temperatures at the electric furnace

entrance and exit, and at the fuel nozzle exit are monitored using K-type thermocouples.
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Figure 3.10: Nondimensional temperature profiles for different water to methane molar ratios
at the fuel inlet. Solid line: Theoretical model. Symbols: Experimental data from [155].
Water-to-fuel mole fraction (a) 0.00 (b) 1.00 (c) 1.20.

A computational code in Python 2.7 and the FORTRAN BVP_SOLVER [140] subroutine

are used to solve the system of ordinary differential equations, Eqs. (3.24) to (3.27). The code

can be used to obtain the solution to nonrotating stagnation flows in both axial and radial

directions since the general conservation equations from Section 2.3.3 are implemented. The

adiabatic flame temperature TS is modified proportionally to the addition of H2O molecules
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following the volume fractions considered in the experiments. Different values are assumed

for the Lewis numbers one the fuel and oxidizer sides, namely, LeF = 0.90 and LeO = 0.98.

Dimensionless temperature profiles, obtained using the physical properties of air for the gas

mixture, are presented together with measured data from [155], for water to methane mole

ratios of 0.00, 1.00 and 1.20 at the fuel inlet, are shown in Fig. 3.10.

It is observed from Fig. 3.10 that the model correlates qualitatively well with the

experiment for all cases. The model is also able to predict the variation of peak

temperature, even though the maximum value is estimated from a simple proportionality

relationship. Experimental data from [155] for the case of zero water addition does not

agree with data from the literature, probably because the temperature profile obtained

through thermocouple measurements still needs to be corrected to account for thermal

losses. Therefore, the temperature data for water to methane molar ratios greater than one

are also not expected to be ideally accurate. This can be confirmed by comparing the

temperature profile for a system based on the experiments of Puri et al. [159], which have

been used to validate nonpremixed counterflow flame simulations. The theoretical model

can indeed predict qualitatively the experimental observations as well as the numerical

prediction obtained numerically using Cantera [99], as shown in Fig. 3.11.
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Figure 3.11: Nondimensional temperature profiles. Solid line: Theoretical model. Dashed
line: Numerical solution. Symbols: Experimental data from [159].
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3.4 Tubular Counterflow Flames Burning Liquid Fuels

The tubular counterflow configuration was proposed by Hu et al. [72], Wang et al. [74] as

means to study the effect of curvature on stretched nonpremixed flames. The geometry and

stability of the flame produced by the combustor allows the three-dimensional time dependent

conservation equations to be described in terms of a system of ordinary differential equations.

A schematic of the configuration is shown in Fig. 3.12.
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Figure 3.12: Schematic of tubular counterflow nonpremixed flame.

Theoretical analyses of the nonpremixed counterflow tubular flame have been presented in

several studies. However, even though hydrogen [72, 74, 80, 81, 160] and gaseous

hydrocarbons [72, 74] have been considered, counterflow tubular flames using fuels in

condensed phase have not been evaluated by theoretical model or experimentally. In this

section, the fundamental modifications to the mathematical model necessary to describe

the combustion of a liquid fueled nonpremixed tubular flame are presented.

The mathematical description of the system is based on the same model employed in the

evaluation of flames produced by gaseous fuels. The system consists of two long concentric

porous tubes through which fuel and oxidizer issue radially as shown in Fig. 3.12. Air is

injected inwardly from the outer tube of radius r0, and liquid fuel evaporates from the inner

tube of radius rf becoming the gaseous fuel source for the combustion reaction. A tubular

stagnation surface is created due to the counterbalance of the opposing momentum forces
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in the radial direction. The flame is located in the annular space between the concentric

porous tubes. The conservation equations, Eqs. (2.25), (2.27), (2.43) and (2.44), can be

nondimensionalized as,

d

dr̂
(ρ̂r̂v̂) + ρ̂r̂Ûr = 0 (3.29)

ρ̂v̂
dÛr
dr̂

+ ρ̂Û2
r −

1
Re0

1
r̂

d

dr̂

(
µ̂r̂
dÛr
dr̂

)
= −Λ̂z (3.30)

ρ̂v̂
dZ

dr̂
= 1
LePe0

1
r̂

d

dr̂

(
ρ̂r̂α̂

dZ

dr̂

)
(3.31)

ρv̂
dH

dr̂
= 1
Pe0

1
r̂

d

dr̂

(
ρ̂r̂α̂

dH

dr̂

)
+ K

Pe0

1
r̂

d

dr̂

(
ρ̂r̂α̂

dZ

dr̂

)
(3.32)

where r̂ ≡ r/r0 is the independent variable scaled by the radius of the outer tube r0. The

term v̂ ≡ v/v0 is the velocity component in the axial direction scaled by the uniform value

at the oxidizer inlet v0, and Ûr ≡ r0Ur/v0 is the nondimensional scaled velocity in the axial

direction. The Reynolds number and the dimensionless eigenvalue are given, respectively, as

Re ≡ r0v0/ν0 and Λ̂z ≡ Λzr
2
0/ρ0v

2
0, where ρ0 and ν0 are the density and kinematic viscosity

at the oxidizer inlet, respectively. The Péclet number is defined as Pe0 ≡ Re0Pr, where Pr

is the Prandtl number.

The main difference between the theoretical description considered herein and the ones in

which gaseous fuels issue outwardly through the inner tube is the mathematical description

of the boundary conditions on the fuel side. Assuming no penetration of other species at the

liquid-vapor interface, Stefan convection and diffusion on the gas side and the convection on

the liquid side are related by†

v̂w+Ŷk,w+ −
1
Pe0

∂Ŷk
∂r̂

∣∣∣∣∣
r̂w+

= v̂w+ŶF,lδk,F (3.33)

†The derivation is presented for a system in which fuel is injected from the inner wall. However,
nonpremixed counterflow-type tubular flames can be established with the fuel inlet at either the inner or the
outer tube.
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Figure 3.13: Representation of the wall interface.

where δ is the delta function and ŶF,l is the mass fraction of fuel in the condensed phase.

Purely inward radial flow is assumed inside the porous medium, which means that we consider

the flow inside the porous matrix not to be affected by the flow in the tube. From mass

conservation, the radial velocity v̂w+ at the outer surface of the inner tube is related to the

fuel velocity in the condensed phase according to v̂w+ = ϕρ̂lv̂w− , in which ρ̂l ≡ ρl/ρ is the

liquid fuel density and ϕ is the porosity of the permeable tube walls. The subscripts − and

+ denote the liquid and gas sides at the tube wall, respectively, as shown in Fig. 3.13. From

a First Law analysis at the interface, assuming that it is nonreacting,

1
Pe0

∂T̂

∂r̂

∣∣∣∣∣
r̂w+

= 1
Pem

∂T̂

∂r̂

∣∣∣∣∣
r̂w−

+ v̂w+L̂ (3.34)

where L̂ ≡ L/cpT0, in which L is the latent heat of vaporization and cp is the specific heat

at constant pressure of the gas mixture. The Péclet number on the porous medium side

is defined as Pem ≡ rwv0/αm, where αm ≡ κm/(ρc)m is the effective thermal diffusivity of

the porous medium, in which κm ≡ ϕκl + (1 − ϕ)κs, and (ρc)m ≡ ϕ(ρc)l + (1 − ϕ)(ρc)s

are, respectively, overall thermal conductivity and the overall heat capacity per unit volume.

The subscripts l and s denote the liquid and solid phases, respectively.

The radial velocity v̂w+ is related to the outer injection velocity at the liquid-porous matrix

interface as (r̂v̂)w+ = ρ̂lϕ(r̂v̂l)in, in which r̂in and v̂l,in are the radius and velocity of liquid

fuel at the inner radius of the tube. The velocity of the liquid fuel at the inner wall v̂w− can
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be written as a function of the injection fuel velocity at the inner surface of the inner porous

tube, (r̂v̂)w− = (r̂v̂l)in. The assumption r̂in ' r̂w is imposed.

Fuel is heated from the injection temperature, T̂ = 0, to a state close to its boiling point

T̂ = T̂b. The amount of heat necessary for that to happen is supplied by the hot gas in

the combustion chamber. Thus, some of the heat generated by the reacting flow is used to

vaporize the fuel, and the remainder is conducted into the permeable wall. It is assumed that

the porous wall is an isotropic medium where radiative effects, viscous dissipation and work

done by pressure changes are negligible, that there is local thermal equilibrium between the

solid and fluid phases, and that heat conduction in both phases takes place in parallel such

that there is no heat transfer from one phase to the other [161]. Moreover, considering the

permeable wall consisting of an interior region at uniform temperature, T̂0, and a thin layer

at the wall surface temperature, T̂w, and neglecting the axial components of the fluid flow

with respect to the the terms in the radial direction, the heat conducted into the interior of

the porous medium is given as,

1
Pem

∂T̂

∂r̂

∣∣∣∣∣
r̂w−

= v̂w+ ĉlT̂w (3.35)

Substituting Eq. (3.35) into Eq. (3.34) and defining an effective latent heat of vaporization

as L̂eff ≡ ĉlT̂w + L̂, where ĉl ≡ cl/cp is the nondimensional specific heat of the liquid phase,

we have,

1
Pe0

∂T̂

∂r̂

∣∣∣∣∣
r̂w+

= v̂w+L̂eff (3.36)

For simplicity (and assuming tacitly that heat conduction is rapid in the porous matrix)

the wall surface temperature is assumed to be equal to the boiling point of the fuel, i.e.,

T̂w = T̂b. This condition prescribes both the temperature and the mass fraction at the walls.

The term v̂w+ becomes an eigenvalue of the problem, specified through the imposition of the
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boundary conditions. Its value is determined by considering an estimated value, which is

corrected until it equals the real value of v̂w+ , obtained by substituting the solution for T̂

into Eq. (3.36). The same relationships are found for the case of liquid fuel issuing outwardly,

as depicted in Fig. 3.12. The boundary conditions required to solve the system of equations

are,

Ûr = v̂ − v̂w+ = Z − Zw = H −Hw, r̂ = r̂w (3.37a)

Ûr = v̂ + 1 = Z = H = 0, r̂ = 1 (3.37b)

At the same time, the fluxes of both conserved scalars at the inner wall are obtained by

substituting Eqs. (2.45a) and (2.45b) into Eqs. (3.33) and (3.36) as,

1
Pe0

∂Z

∂r̂

∣∣∣∣∣
r̂w+

= v̂w+

S(1− ŶF,w)
(S + 1) (3.38a)

1
Pe0

∂H

∂r̂

∣∣∣∣∣
r̂w+

= v̂w+L̂eff (3.38b)

The solution for the system of equations is found by assuming heptane as the fuel. The

experimental peak flame temperature used as reference corresponds to γ ' 4.5.

Experimental measurements are not available for the case of liquid fuels, and, for that

reason, conditions equivalent to the ones for gaseous fuels [75] are assumed. The same

computational code from Section 3.3 is used to solve the system of ordinary differential

equations given in Eqs. (3.29) to (3.32).

Before proceeding with the solution for condensed fuels, the computational code is validated

comparing its solution with the experimental temperature profile for a stretched nonpremixed

diluted methane-air flame (30 % CH4/N2) with stretch rate k = 122 s−1 obtained using

Raman spectroscopy [75]. The dimensionless temperature profile is shown in Fig. 3.14. A

jump in the experimental data the region near the flame is observed in Fig. 3.14, which is due
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Figure 3.14: Nondimensional temperature profiles for 30 % CH4/N2-air flames with stretch
rate k = 122 s−1. Solid line: Theoretical model. Dashed line: Numerical solution from [75].
Symbols: Experimental data from [75].

to the existence of regions where severe interference between C2 Laser Induced Fluorescence

and the Raman signal occur [75]. The data at that region is discarded as a consequence of the

great uncertainty produced by this effect. The model predicts qualitatively the temperature

profile as well as the location of the reaction zone.
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Figure 3.15: Theoretical prediction of nondimensional temperature for liquid fuel-air flames.

The theoretical solution for the case of condensed fuels cannot be validated, because

experiments in which that type of fuel is employed are not available in the literature. The

theoretical prediction obtained through the solution of the conservation
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equations Eqs. (3.29) to (3.32) with boundary conditions Eq. (3.37) is shown in Fig. 3.15.

The temperature profile shows the same qualitative structure as the one from gaseous fuels

flames (Fig. 3.14). The main difference resides in the fuel injection rate, which in the case

of liquid fuels, needs to be of the same order as the vaporization rate to prevent

instabilities or extinction, whereas in the case of fuels in gas phase, a wide range of

injection velocity are possible. The position of the reaction also agrees qualitatively with

the experimental temperature profiles obtained for liquid-pool counterflow flames [45].
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Chapter 4

Swirl-Type Tubular Flames

4.1 Introduction

The axisymmetric tubular flame analysis for liquid fuels is hampered by a lack of

experimental data for such systems. The following chapter introduces an experimental

system that may be suitable for providing some insights into the effectiveness of the model.

Chapter 5 then introduces an analysis motivated by the experiment.

A tubular flame is a classical configuration used in fundamental studies in combustion science.

Their characteristic shape, first observed by Ishizuka [65] as circular in cross section and

long in the perpendicular direction, distinguishes them from other elementary combustion

systems, such as the counterflow, coflow, etc. The most common tubular flame configurations

— the swirl type and the counterflow type — have been applied primarily in the analysis

of premixed systems. However, after the introduction of nonpremixed counterflow tubular

systems [72, 74] interest in tubular combustion configurations has increased due to their

cylindrical nature, which allows the study of the effects of flame curvature and, consequently,
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they are suitable in turbulent combustion modeling for the description of curved flamelets [70,

163].

The nonpremixed counterflow tubular flame is obtained experimentally by using a modified

premixed counterflow tubular burner [67]. One of the reactants is injected outwardly in the

radial direction through a porous cylinder along the center axis [72]. An outer contoured

nozzle issues inwardly the other reactant. As a consequence, the mathematical model of

nonpremixed tubular systems consists of the same conservation equations used to describe

premixed tubular flames [97, 164], but with modified boundary conditions to account for the

injection of reactants into the chamber from the inner porous cylinder [74, 165]. Another

tubular flame configuration in which the reactants are injected separately, the rapidly mixed

burner, has been developed recently [166]. This configuration consists of an injection system

in which reactants are injected tangentially in a tube through four slits located at its closed

end, and a downstream transparent tube allows flame visualization. A Damköhler number

analysis suggests that this type of flame can only be established for mixing times shorter

than the reaction time, i.e., when the system is actually premixed [167].

The majority of the studies on tubular flames are limited to the analysis of systems with fuel

in the gas phase. One of the few exceptions is the liquid film combustor [69]. The liquid film

combustor takes advantage of the fact that for miniature systems a condensed fuel layer can

offer a surface area for vaporization as high as in vaporizing sprays [73]. In this configuration

liquid fuel is injected tangentially onto a tube wall, creating a thin film on its surface. A

swirling air flow is introduced from the closed end of the tube through a swirl generator [83].

The injection of swirling air creates a rotational movement of the flow field which helps to

spread the fuel and stabilize the film on the combustor inner surface [82].

The combustion of liquid fuels requires a phase change before mixing, and hence is much more

complex when compared to combustion of gaseous fuels. In the combustion of condensed

fuels the flame is located in the gas phase, and a portion of the heat generated by the
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chemical reaction is conducted towards the liquid phase to provide the latent heat needed

to vaporize the fuel [168]. At the same time, the gas phase reaction can be accompanied

by a number of complicating parameters such as the pyrolysis of the fuel, formation of

condensed products, heterogeneous reactions, phase transitions, etc., which, consequently,

creates difficulties in developing theoretical models [169]. As a result, the mechanisms

involved in the combustion of liquid and gaseous fuels in a tubular system are very distinct,

even though the configurations are similar. However, notwithstanding the complications

involved in their analysis, most of the fuels used for propulsion are in the liquid phase,

making it necessary to develop tubular flame systems where condensed fuels can be applied.

The nonpremixed swirl-type concept is based on radial injection of fuel, and takes advantage

of the advances in liquid fuel film and classical tubular flame burners. The nonpremixed

swirl-type concept presented herein is based on injection of fuel through porous walls, and

takes advantage of the combined advances in liquid fuel film and classical tubular flame

burners. In this new configuration, instead of developing a layer of liquid on the walls, the

condensed fuel is injected through the permeable burner walls. The condensed fuel vaporizes

and becomes the gaseous fuel source for the chemical reaction with the swirling air coming

from the bottom inlet. The flame is located in the combustion chamber between the burner

walls and the exhaust gas at the core of the chamber. This new configuration, as well as

the liquid film burner, are potential alternatives to the systems that, otherwise, would be

limited by the difficulties inherent to the atomization of condensed fuel. At the same time,

the condensed fuel can offer protection from heat losses and quenching since the temperature

of the walls does not exceed the boiling point of the fuel.

The combustor consists of a system in which a permeable material is used to deliver fuel

to the combustion chamber. Porous materials have been employed in reacting system for

many years. More specifically, in the case of liquid fuels, porous inert media were used in the

development of radiant burners [170], for control of noise and instabilities in a swirl-stabilized
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combustor [171], to examine flame spread over fuel-soaked ground [172], among others.

One of the drawbacks of analyses involving permeable media in combustion is the fact

that the porous matrix prevents optical access to the combustion chamber. Therefore,

flame visualization and, consequently, the discussion of flame structure and stabilizations

mechanisms is not possible with the combustion diagnostic tools currently available.

4.2 Experimental Setup

The system is composed of two concentric cylindrical tubes and an aluminum base used for

alignment and support. The liquid fuel flows into the combustion chamber — the hollow

central region of the tube — through the walls of the inner tube, which are permeable. The

porosity of the walls allows the surface tension to spread the liquid over its volume. The outer

tube is solid, made out of quartz. Air is injected axially from the bottom of the combustion

chamber through swirl vanes with 15◦ swirl angle. A jetted photopolymer rapid prototyping

machine is used to produce the swirl generators. The schematic of the burner is presented

in Fig. 4.1. The porous tube consists of a grade 20 (20 µm) filter element with internal

diameter 12.7 mm. The tube is made out of stainless steel meshes formed into cylinders and

sintered together. A photographic image of the porous tube is shown in Fig. 4.2. The length

of the combustion chamber is 57.5 mm.

The burner is ignited by allowing both air and fuel to flow from their respective feeding lines

into the chamber. A propane torch is used to prevaporize some of the liquid fuel as soon as

it reaches the porous medium by heating up the outer combustor walls. The flame is then

ignited with the propane torch from the downstream region of the burner, above the "Top

Support", shown in Fig. 4.1. Lower air flow rates are used during the ignition process, such

that the initial proportion of fuel and air injected into the chamber is fuel-rich. The choice of

lower air flow rates is made for two reasons. If the cold flow velocity in the chamber was too
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Figure 4.1: Schematic section of the system.

large, it would be difficult for the thermal energy from the propane torch to propagate into

the chamber and anchor the flame inside the burner. A premixed flame would be established

over the top rim, but it would not sustain itself due to quenching effects induced by the cold

flow mixture exiting from the burner. Moreover, if the initial proportion between the flow

rates of air and fuel were excessively fuel-lean, the initial mixture could be close to the lower

flammability limit, and hence, more difficult to ignite.

Figure 4.2: Stainless steel filter element.

Two continuous syringe pumps control the injection rate of liquid n-heptane into the burner

to allow longer operating times. The condensed fuel leaves the pumps and is mixed into

a single line. Before entering the burner, the line is split again. Fuel is delivered to the

porous medium through two orifices (indicated in Fig. 4.1 as "Fuel Inlet") that end in a small

annular gap between the outer and inner tubes. The liquid fuel is then driven upwards in

the small annular space by capillary forces. The volumetric flow rate of fuel is varied from

1 to 2 mL min−1. The flow rate of compressed air is controlled by a rotameter calibrated
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with a bubble flow meter in the range of 8 to 40 L min−1. The volumetric flow rates of air

and fuel are varied independently such that several inlet equivalence ratio proportions are

considered. Namely, lean, stoichiometric and rich conditions.

Two consumer DSLR cameras with 24.2 MP APS-C CMOS sensors are used to capture

photographic images of the overall flame luminosity (mainly due to exited-state CH radicals).

The cameras are positioned at different heights, with their optical axis normal to the

burner centerline. One camera captures images of the flame formed downstream from the

combustion chamber, i.e., the region above the burner rim. The second camera is used to

capture images from the top, with its optical axis aligned with the burner axis. A mirror

is positioned downstream from the flame at a 45◦ angle to prevent the camera from direct

contact with the hot gases from the downstream region of the flame. The temperature of

the outer wall is measured by K-type thermocouples located at the bottom and at the top

regions of the quartz tube. The liquid fuel level in the annular region between the porous

matrix and the outer tube can be also be quantified, as shown in Fig. 4.3. However, only

a qualitative description is considered because the thermocouples need to be taped on the

walls, which can alter the heat exchange characteristics between the outer walls and the

ambient air. That can potentially modify the liquid level and prevent from an accurate

description of the height of liquid-vapor interface at the region close to the tape.

Liquid-vapor interface

Figure 4.3: Observed fuel liquid-vapor interface.
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4.3 Discussion

The porous matrix does not allow the structure of the flame in the combustion chamber to

be imaged along the burner axis. Thus, a detailed analysis of the internal flame

characteristics such as anchoring mechanisms, measurements of chemical species

concentrations and temperature, among others, is not possible. Externally observable

characteristics can be used to evaluate qualitatively the system. The shape of the flames

observed above the top rim (external to the combustion chamber) depends on the inlet

proportions of fuel and air relative to the stoichiometric fuel to air inlet proportions, which

is denoted as the inlet equivalence ratio. Depending on the inlet fuel-to-air ratio the flames

established inside and outside the combustion chamber can correspond to a single structure

with two regions, or to two separate flames.

Measurements of the local outer wall temperature indicate whether the liquid fuel has been

completely vaporized in the annular region between the inner and outer tubes. Temperatures

higher than the fuel dew point correspond to fuel in the vapor phase flowing into the porous

medium. On the other hand, temperature measurements close to the fuel dew point indicate

saturated fuel flowing into the porous matrix at that location. The fuel phase can also

be monitored throughout the outer quartz tube since it allows visual inspection of the fuel

liquid-vapor interface in the annular region. Thermal energy from the downstream zone of the

burner is not expected to diffuse downwards in the combustor axial direction very efficiently

because the mesh acting as the porous tube is made out of stainless steel, a material with

low thermal conductivity. For that reason, large temperature gradients are observed along

the outer walls in the longitudinal direction. At heights where the condensed fuel is observed

in the annular region, the phase change is expected to occur in the walls of the porous tube.

In the zone where condensed phase is not present, fuel vapor is expected to flow from the

annular region through the walls of the inner tube.
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Figure 4.4: Measurement of outer wall temperature variation over time at two selected
positions. Volumetric flow rates: 1.4 mL min−1 of fuel and 9.6 L min−1 of air.

Temperature measurements of the outer wall at two selected heights, one close to the bottom

and another next to the top of the burner, help identify whether the inlet equivalence ratio

settings produce a stable or an unstable flame. The variation of temperature at those two

locations for a stable flame, with flow rates of fuel and air 1.4 mL min−1 and 9.6 L min−1,

respectively, is shown in Fig. 4.4. The temperature measurements, recorded for 22 minutes,

show the evolution of local temperature starting from the ignition process. It is observed that

after an initial transient period of about eight minutes, the variation in temperature recorded

by the thermocouple placed at the top region of the burner is not greater than ±1 K, which

is less than the standard uncertainty limits of measurements with K-type thermocouples,

represented in the plot as the shaded area surrounding the lines.

4.3.1 Stable Conditions

The stable flame produced in the nonpremixed swirl-type combustor is characterized by

time invariant overall structure and burner wall temperatures. Small local oscillations are

observed in the flame sitting in the downstream region of the burner. Those local fluctuations

are possibly due to nonuniformities in the stainless steel mesh that potentially modify the

local heat transfer from the flame, which is converted into latent heat of vaporization for the
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liquid fuel, as well as small imperfections in the swirl vanes that produce the rotating flow

field of cold air. Further investigation is necessary to accurately describe the nature of those

small local instabilities. During stable operating conditions, flickering, extinction or abrupt

variations are not observed, neither are steep gradients in the time evolution of the burner

wall temperature. Because of the stability of its observed characteristics but persistent

small local oscillations, the stable flame is denoted quasi-steady. A flame generated in the

nonpremixed swirl burner is assumed to have attained the quasi-steady condition if the

burner outer wall temperature and its overall shape, remains stable for a period longer than

five minutes. Thus, the system characteristics must be observed for at least a few minutes

before any conclusion can be drawn.

The flame shape varies spatially along the burner axis depending on whether the observed

region belongs to the luminous core inside or outside the combustion chamber, i.e., bellow or

above the "Top Support" shown in Fig. 4.1. For fuel-leaner conditions, in the region above

the burner rim, the flame transitions from tubular to inverted conical mainly because of the

radial expansion of the tubular structure in the unconfined region above the burner. Some

of the combustible mixture continues to burn above the rim and some of it reacts with the

outer ambient air, seen as the outer weak zone in Fig. 4.5a, where the tubular flame produced

inside the burner is highlighted. Visual inspection shows no discontinuity when the flame

transitions from tubular to conical shape, as observed in Fig. 4.6a. If the inlet conditions are

fuel-richer, a secondary flame is established above the top rim, which is seen as the outermost

intense luminous region at the bottom of Figs. 4.6b and 4.6c. The unburned gas mixture at

the burner outlet creates a secondary flame structure that reacts with the ambient air. This

secondary reaction zone is indicated in Figs. 4.5b and 4.5c as the outer intense luminous

ring.

As observed in the photographic images taken from the top of the burner, the flame possesses

a shape that resembles the cylindrical structure observed in the counterflow-type [72] and in
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Figure 4.5: Photographic images (top view) of flames produced by the tubular flame
combustor. (a) Single inner flame structure; (b) Dual tubular-secondary flame structure;
(c) Sooty flame.

the inner core of the rapidly mixed [173] tubular flame burners. This structure is identified as

the more intense inner blue luminous region highlighted in Fig. 4.5a. In all existing tubular

flame burners, an intense ring is observed when the tubular flame is imaged from the burner

top, i.e., with its axis aligned with the optical axis of the camera. The ring results from

the optical effect created by the convolution of the reaction zone, which possesses a tubular

shape. However, differently from the conventional tubular flame burners, in which radial or

tangential injection of reactants is employed, the present system utilizes swirl vanes to create

the rotating flow field. The choice of swirl generators is made for flexibility purposes since

it allows the variation of inlet swirl angles. Therefore, instead of a closed luminous ring, in

the present configuration the tubular flame is identified as the discontinuous arcs highlighted

in Fig. 4.5a.

4.3.2 Transient Conditions

The transient period is defined as the time it takes for the system to transition between a

quasi-steady flame and self-adjust to another condition at which the stability is evaluated.

Differently from the initial transient observed after ignition (Fig. 4.4), the length of the
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Figure 4.6: Photographic images (side view) of flames produced by the tubular flame
combustor. (a) Single inverted conical structure; (b) Dual tubular-secondary flame structure;
(c) Sooty flame.

transient period is usually of about three minutes. This is due to the fact that, during the

ignition process, foreign heat is dumped into the system by an external heat source (propane

torch), which increases the time it takes for the heat transfer processes in the combustor to

reach a steady condition. Previous investigations on the liquid film burner do not report

clearly the amount of time necessary for the system to reach an equivalent quasi-steady

condition. Therefore, the observations in that type of burner might still have influence of

the initial heat delivered during ignition by an external heat source. The inlet conditions

are set in each run by fixing the flow rate of fuel, while the volumetric flow rate of air is

varied. Starting from a previously known stable condition, the flow rate of air is modified to

a new selected value, transitioning the system to another condition at which its stability is

evaluated. The new settings can produce either a quasi-steady flame, or an unstable flame,

that eventually extinguishes. During the transient period the flame structure and the height

of the liquid-vapor interface in the annular region between the porous and the quartz tube

can demonstrate noticeable variation.
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When a quasi-steady flame is established, a meniscus is observed at a height around one

quarter of the burner length. For fuel-lean inlet equivalence ratios, the liquid-vapor

interface moves downwards until it is not visible through the burner outer walls anymore,

corresponding to a complete conversion of condensed fuel into vapor near the inlet. This

conversion is confirmed by the temperature recorded by the thermocouple at the bottom of

the combustor, which surpasses the boiling point of the fuel. In the fuel lines, however, the

fuel remains in condensed phase. The temperature recorded at the top region is increased

reaching values as high as 750 K, which is about twice the value recorded during stable

operation at the same location. Higher external burner walls temperatures are due the lack

of phase change in the annular region. A greater amount of the total heat is transfered

from the flame to the fuel as sensible heat, because of the absence of liquid phase in the

annular region, increasing the wall temperature. The luminosity of the external flame is

reduced and its shape, shorter and narrower than a quasi-steady flame, resembles the

premixed low-swirl burner developed at the Lawrence Berkeley National Laboratory [174].

This structure remains visible for not longer than a couple of minutes, after which it finally

extinguishes as a completely lifted flame. The process is shown in the photographic images

of Fig. 4.7. The flame cannot be sustained by the system because the burning rate at the

reaction zone is much greater that the rate at which the fuel is injected into the system.

For fuel-rich equivalence ratios the flame structure is longer and sooty (Fig. 4.6c), and the

secondary flame formed above the burner rim is clearly observed (Fig. 4.5c). If the

equivalence ratios are excessively fuel-rich, the liquid-vapor interface moves upwards in the

annular region between the porous and the quartz wall and the flame blows-off. A stable

flame cannot be sustained because the heat transfer rate from the reacting zone to the fuel

in the porous matrix is smaller than the rate at which the liquid fuel is injected and,

therefore, is insufficient to provide the latent heat of vaporization necessary to prevaporize

the fuel. As a consequence, the liquid fuel level keeps moving upwards, and the inner flame

structure gets quenched.
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Figure 4.7: Photographic images (side view) of the temporal variation of the system with
fuel-lean conditions approaching extinction.

4.3.3 Stability Limits

The system operates in a broad range of inlet equivalence ratios. For quasi-steady conditions,

the flame observed above the top rim of the burner can be of two types. The external

quasi-steady flame is denoted single if its shape results from the smooth transition of the

confined tubular shape into inverted conical in the region above the top support of the

burner. A dual flame is produced if unburned gas mixture at the burner outlet creates a

secondary flame that reacts with the ambient air. The flame is named dual because two

intense luminous reacting zones are observed, as shown Fig. 4.5b. This flame, as well as

its structure, is very similar to the one produced by the miniature liquid film burner [82].

For slightly fuel-richer conditions, some regions of the quasi-steady flame emit orange light

indicating the presence of soot Fig. 4.6c. Those flame are still stable, although not ideal

because of the increased consumption of fuel. Unstable flames are only observed during

transient periods since they cannot self-sustain with time. Those flames are either very

weak, as the ones shown in Fig. 4.7, or very long and completely orange (resembling the

light from a candle), due to the unburned fuel.

In order to identify the operational limits, stability of burning conditions and the observed

flame shapes, the working-limit for the burner is presented in Fig. 4.8, where the abscissa

represents the inlet liquid fuel flow rate and the ordinate the inlet air flow rate. The
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Figure 4.8: Combustor working-limit map.

black line denotes stoichiometric inlet equivalence ratio (φin). The black line separates

the map into lean (upper) and rich operation zones (lower). The map shows that all

measured points lie in the region of rich conditions. The same operational limitation is

observed in the liquid film combustors made out of stainless-steel [84, 87]. Depending on

the amount of air introduced into the chamber it is possible to change the flame shape and

combustion behavior. Three stable regimes, namely, single (Fig. 4.6a), dual (Fig. 4.6b) and

sooty (Fig. 4.6c) are identified by upright triangles, circles and squares, respectively. The

unstable weak regime (Fig. 4.7) is represented by hollow inverted triangles. Single flames

are observed in fuel-leaner regions of the map. Dual and sooty flames are observed as the

proportion of injected fuel is increased. With increasing inlet equivalence ratios, i.e., as the

inlet proportions are adjusted to fuel-leaner conditions, the system becomes unstable and

only weak flames, which eventually extinguish, are observed. Inlet conditions in the area

below those represented in the plot are also unstable, and extinguish by the mechanism

described for excess fuel in the system.

The operation envelope can be extended to the fuel-lean region by employing the same

strategies considered for the liquid film burner, such as the use of different materials and

secondary air injection [84, 87]. These modifications allow the liquid film burner to operate
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stably in a wider range of inlet conditions and as well as with fuel lean inlet equivalence

ratios. If applied to the nonpremixed swirl-type tubular flame burner it could not only

extend the operational conditions of the burner, but also produce a system with potential

practical application as personal power systems [86].
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Chapter 5

Swirl-Type Tubular Flames:

Theoretical Model

5.1 Introduction

The experimental setup described in Chapter 4 motivates the development of a mathematical

model to evaluate and predict theoretically the characteristics of the proposed nonpremixed

swirl-type tubular configuration. In this new configuration, illustrated in Fig. 5.1, instead of

developing a layer of liquid on the inner surface of the combustion chamber, the condensed

fuel is injected through the burner walls, which are permeable. The condensed fuel vaporizes

thereby becoming the gaseous fuel source for the chemical reaction with the swirling air that

is injected axially. The flame is located in the combustion chamber between the burner walls

and the exhaust gas.

The mathematical description of the system is based on the two classical models for pipes

flows. The fuel injection is described by the theory of laminar pipe flows with porous

walls. The solution of the Navier-Stokes equations for fully developed flows in channels
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Figure 5.1: Representation of the physical system.

with rectangular permeable walls were first presented by Berman [175]. A constant flow

velocity inside the porous wall was assumed, and the conservation equations transformed

using a stream function defined in terms of a similarity variable. The analysis was extended

to circular pipe flows by Yuan and Finkelstein [176], and was extensively investigated in

several studies by a number of groups [177–182]. The study of rotating porous pipes

was also considered, but with the assumption that swirl velocity was constant along the

pipe [183–186]. Details of the published work on laminar flows in porous ducts has been

presented recently in an in-depth review [187]. The theory for laminar pipe flows with

porous walls was extended by Yuan and Finkelstein [188] for the investigation of the heat

transfer problem for a steady fully developed laminar flow developed by Graetz [189]. The

conservation equations for energy and species were modified by the introduction of velocity

components from the solution of the momentum equations for laminar pipe flows with porous

walls. Their work was followed by a number of investigations that accounted for injection

and extraction of mass [190], different boundary conditions [191], mass transfer cooling [192],

and internal heat sources [193]. The analysis of the flow field in the system is performed on

the basis of the theory developed for swirling laminar flows. Among early relevant analytical

descriptions of this type of flow are those of Collatz and Görtler [194] and Talbot [195],

who analyzed analytically the decay of swirl in tubes with impermeable walls. Collatz and

Görtler [194] presented a solution for the tangential velocity field, but it did not account for

concomitant disturbances of the axial and radial velocity fields. On the other hand, Talbot

[195] presented a study in which the disturbances of the axial and radial velocities were
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considered using a momentum integral equation. Deka [196, 197] and Lavan et al. [198]

obtained an equivalent solution to problems in which the downstream section of the tube

rotates and the upstream region is stationary by employing integral transforms. Kreith and

Sonju [199] extended the analysis to study the swirl decay in turbulent flows, modifying the

swirl equations through the introduction of an eddy-diffusivity term. Kinney and Sparrow

[200] extended the analytical solution of the swirl decay in tubes by combining it with the

theory of laminar pipe flows with porous walls to account for tubes with surface mass transfer.

The assumption in their analysis is similar to the ones from Deka [196, 197] and Lavan et al.

[198], and consisted of a porous pipe with a downstream rotating porous wall where the swirl

is generated and an upstream stationary permeable pipe where mass is injected (or removed)

and the swirl decays. Lee et al. [201] used the same framework as Talbot [195] to obtain the

velocity field for the growing swirl in a rotating tube. The resultant mixing induced by the

fluid flow in the presence of molecular diffusion and chemical reactions was characterized.

The analysis herein combines the effect of swirl decay in tubes with heat and mass transfer

in laminar pipe flows with porous walls. Although considered separately in the prior work

cited above, these effects have not before been combined in the analysis of reacting nor

nonreacting flows in pipes. The model is used to predict important flame characteristics

in a nonpremixed system, in which the oxidizer is introduced through a swirling flow from

one end and fuel is supplied from the walls of the burner. The conservation equations for

energy and species are transformed using the Shvab-Zel’dovich approach, so that the solution

methods used in the study of convective heat and mass transfer in confined flows can also

be applied. The model can provide theoretical support and general design guidelines to the

development of nonpremixed swirl-type tubular systems such as those shown experimentally

in Chapter 4.
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5.2 Theoretical Model

The conservation equations Eqs. (2.6) to (2.11) are nondimensionalized in order to simplify

the evaluation of the terms. The dimensionless axisymmetric steady state conservation

equations of mass, momentum in the axial, radial and tangential directions, energy and

species for the gas phase, considering it an incompressible flow with constant physical

properties throughout the whole domain, are given by,

1
Re0

∂û

∂ẑ
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r̂

∂

∂r̂
(r̂v̂) = 0 (5.1)
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∂ẑ2
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− ŵ2

r̂
= −∂p̂

∂r̂
+ 2
Re0

[
1
r̂

∂

∂r̂

(
r̂
∂v̂

∂r̂

)
− v̂

r̂2 + 1
Re2

0

∂2v̂

∂ẑ2
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r̂2 + 1
Re2

0

∂2ŵ
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where û ≡ u/U0, v̂ ≡ v/U0 and ŵ ≡ w/U0 are the velocity components in the axial,

radial and circumferential directions scaled by the average velocity at the inlet U0. The

other dependent variables, p̂ ≡ p/ρU2
0 and Ŷk ≡ Ŷk/Ŷk,ref are pressure and mass fractions

of species k, respectively, for k = F, O, CO2 or H2O, scaled by their respective reference

values, with ρ representing the gas density. The temperature T̂ is defined as in Section 2.3.5.

The independent variables r̂ ≡ r/rw and ẑ ≡ z/rwRe0 are scaled by the internal radius

of the tube, rw, and the Reynolds number, Re0 ≡ 2rwU0/ν, where ν is the gas kinematic

viscosity. The term ˆ̇mF ≡ rwṁF/ρU0 represents nondimensional the rate of consumption

of fuel mass. The flows considered are laminar with large axial Reynolds numbers Re0,

therefore, diffusion in the streamwise direction is negligible since it scales with 1/Re2
0. Besides
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the condition of equal diffusion speed between all species, unity Lewis numbers are assumed,

i.e., equal mass and heat diffusion, denoted by D and α, respectively. Péclet number is

defined Pe0 ≡ 2rwU0/α. The stoichiometric mass ratios are defined as S ≡ sYF,w/YO,0,

SH2O ≡ sH2OYF,w and SCO2 ≡ sCO2YF,w and the heat release γ ≡ qcYF,w/cpT0(S + 1), where

qc is the amount of heat released per unit mass of fuel burnt and cp is the specific heat at

constant pressure of the gas phase. Buoyancy, heat transport by radiation, and Soret and

Dufour effects are neglected in the analysis. Fick’s law is used to describe diffusion velocities

of the species.
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Figure 5.2: Representation of the wall interface.

The mathematical formulation for porous boundary conditions discussed in Section 3.4 is

considered to describe the permeable tube walls. However, following the notation from the

wall interface represented in Fig. 5.2. As a consequence of the prescribed boiling temperature

boundary condition, the mass and energy fluxes at the walls are allowed to vary in the

axial direction. In order to further simplify the model, an average value V̂w is used in the

conservation equations as an approximation to the absolute value |v̂w− | of the velocity at the

wall. The term V̂w becomes an eigenvalue of the problem, specified through the imposition

of the boundary conditions. Its value is determined by considering an estimate value V̂w,

which is corrected until it equals the average of |v̂w−|, obtained by substituting the solution

for T̂ into Eq. (3.36). The boundary conditions at the internal surface of the tube are given
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as,

∂û

∂r̂
= v̂ = ŵ = ∂Ŷk

∂r̂
= ∂T̂

∂r̂
= 0, r̂ = 0 (5.7a)

û = v̂ + V̂w = ŵ = T̂ − T̂b = ŶF − ŶF,w = ŶO = 0, r̂ = 1 (5.7b)

û− û0 = v̂ = ŵ − ŵ0 = T̂ = ŶF = ŶO − 1 = 0, ẑ = 0 (5.7c)

In this analysis, a swirl velocity ŵ0, with a maximum intensity Ŵ0 ≡ W0/U0, is imposed at

the flow inlet satisfying the condition Ŵ0 � 1. Therefore, the swirl component in the flow

field can be considered as a perturbation, which permits the use of series expansion to solve

the problem. The condition of a long tube with a very small ratio of radius to length is

considered. The oxidant injected through one of the tube ends is limited by the conditions

of a laminar Reynolds number Re0. However, the amount of injected fuel can be as large as

the tube length permits, which, at some position along the tube, can create excessively rich

regions that result in local flame extinction. Under some conditions, the flame can reignite

and maintain itself for a certain length, establishing “flame-streets” as defined by Mohan

and Matalon [202]. This combustion regime will not be included in the analysis.

The linear combination of energy and mass fraction conservation equations eliminates the

reaction terms through the introduction of two conserved scalars, namely, the mixture

fraction Z, and the excess-enthalpy H, as proposed by Liñán et al. [4], as defined

in, Eqs. (2.45a) and (2.45b), respectively. The conservation equations for the conserved

scalars are given by,
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The boundary conditions for Eqs. (5.8) and (5.9) are obtained by combining Eqs. (2.45a),

(2.45b) and (5.7),

∂Z

∂r̂
= ∂H

∂r̂
= 0, r̂ = 0 (5.10a)

H −Hw = Z − Zw = 0, r̂ = 1 (5.10b)

H = Z = 0, ẑ = 0 (5.10c)

At the same time, the fluxes of both conserved scalars at the walls are obtained by

substituting Eqs. (2.45a) and (2.45b) into Eqs. (3.33) and (3.36) as,

2
Pe0
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∂r̂

∣∣∣∣∣
r̂=1

= v̂w−

S(1− ŶF,w)
(S + 1) (5.11a)
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∂r̂
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r̂=1

= v̂w−L̂eff (5.11b)

5.2.1 Flow Field

The model is based on the theory of internal laminar swirling flows with surface mass and heat

transfer. Due to the swirling nature of the gas flow, the equations of motion are represented in

a form that allows the rotating field to be taken into account by superimposing a laminar swirl

flow on a Poiseuille flow in a straight pipe. The flow through the tube is two-dimensional,

axisymmetric, laminar and the physical properties do not vary with temperature. The

velocity components are represented in the form [196],

û = ûo(ẑ, r̂) + ε2û∗(ẑ, r̂) +O
(
ε3
)

(5.12a)

v̂ = v̂o(r̂) + ε2v̂∗(ẑ, r̂) +O
(
ε3
)

(5.12b)

ŵ = εŵ∗(ẑ, r̂) +O
(
ε2
)

(5.12c)
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in which the superscript o represents O(ε0) terms, i.e., velocities of undisturbed flow field

and the velocity downstream, where perturbations have dissipated and the velocity field

has attained a fully developed profile. Since axisymmetric conditions are imposed on the

problem, the circumferential velocity perturbation ŵ∗ has an influence on the species and

temperature field through the other velocity components, û and v̂. By considering ŵ

as a perturbation of O(ε), from Eq. (5.3), it is observed that its effect is to induce a

O(ε2) perturbation to the velocity components û and v̂. The model does not account for

perturbations other than the one due to the swirl, therefore O(ε) terms are not included

in the axial and radial velocities expansions in Eq. (5.12). The term Ŵ0 is assumed as the

magnitude of the swirl perturbation. Consequently, in Eq. (5.12), for Ŵ0 � 1, ε = Ŵ0. The

swirl angle θ is related to Ŵ0 by,

Ŵ0 = tan θ (5.13)

The procedure employed to obtain the velocity components of the flow field in this section

follows closely the derivation presented by Kinney and Sparrow [200].

5.2.1.1 Fully Developed Velocity Profile

With the assumption of steady burning, the mass flow rate of fuel from the porous walls

is constant. In the fully developed region of such flows, it has been shown [176] from the

overall mass conservation that the flow field can be described in terms of the nondimensional

stream function,

Ψ̂(ẑ, r̂) = 1
2 r̂G(r̂)Û(ẑ) (5.14)
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in which G(r̂) is an unspecified function of r̂, and the function Û(ẑ) = (1 + 2Rewẑ) is the

flow local mean axial velocity [194], where the wall injection Reynolds number is defined as,

Rew ≡ 2rwVw/ν = V̂wRe0 (5.15)

The velocity components in the axial and radial directions can be written, respectively,

as [178],

ûo(ẑ, r̂) = U(ẑ)F (r) (5.16a)

v̂o(r̂) = −V̂wG(r̂) (5.16b)

The term F (r̂) is a function of r̂ yet to be determined. Substituting ûo and v̂o from Eqs. (5.12)

and (5.16) into Eqs. (5.1) and (5.2), we obtain a system of differential equations for F and

G, namely,

2F −G′ − G

r̂
= 0 (5.17a)

Rew
(
2F 2 −GF ′

)
− 2

(
F ′′ + F ′

r̂

)
= −Λ̂ (5.17b)

where,

Λ̂ = 1
Û

∂p̂

∂ẑ
(5.18)

is an eigenvalue of the problem. The prime (′) represents differentiation with respect to r̂.

The boundary conditions, Eq. (5.7), can be modified, namely,

F ′ = G = 0, r̂ = 0 (5.19a)

F = G− 1 = 0, r̂ = 1 (5.19b)
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in order to determine the functions F and G together with the pressure gradient term Λ̂. For

the special case of impermeable walls, in which Rew = 0, the solution of Eq. (5.17) yields the

Poiseuille parabolic profile F = 2(1− r̂2), with the dimensionless pressure gradient Λ̂ = 16.

5.2.1.2 Axial Decay of Swirl Velocity

Substituting the expressions from Eq. (5.12) into Eq. (5.4), collecting terms of order O(ε)

and neglecting higher order terms one obtains,

ûo

Re0

∂ŵ∗
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Substituting the expressions for ûo and v̂o from Eq. (5.16) into Eq. (5.20), one finds,
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Both sides of Eq. (5.21) are functions of only one independent variable, thus its solution can

be found by a separation of variables in the form,

ŵ∗(ẑ, r̂) = ψ(ẑ)φ(r̂) (5.22)

which can be substituted into Eq. (5.21), yielding,
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= U

ψ
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dẑ
= −λ (5.23)

The solution for the axial direction is obtained by integrating the equation for ψ(ẑ) as,

ψ(ẑ) = c1Û
−λ/(2Rew) (5.24)
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where c1 is the constant of integration. The equation for φ(r̂) is given by,
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dr̂
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)
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r̂
+ λ

F

2 φ = 0 (5.25)

which can be cast into Sturm-Liouville form through the introduction of an integrating factor,

qφ(r̂) = exp
[∫ (

RewG

2 + 1
r̂

)
dr̂
]

(5.26)

yielding,

d
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qφ
dφ
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)
+
[
qφ
r̂

(
RewG

2 − 1
r̂

)]
φ+ λσφφ = 0 (5.27)

where the weight function σφ(r̂) is given by,

σφ(r̂) = qφF/2 (5.28)

The swirl velocity ŵ∗ must vanish at the tube wall (r̂ = 1) and at the symmetry axis (r̂ = 0).

These conditions must be satisfied for all ẑ, such that, φ(0) = φ(1) = 0. In order to solve

Eq. (5.27) numerically a starting estimate and a condition for the eigenvalues λ are necessary.

The later is obtained from the orthogonality condition, which requires that, for orthonormal

eigenfunctions,

∫ 1

0
φm(r̂)φn(r̂)σφ(r̂)dr̂ = δmn||φn||2 (5.29)

The solution for the special case Rew = 0 can be used as the starting estimate to the one for

any Rew. Such an educated guess is appropriate because the solution for the problem with

surface mass transfer at the walls presents a relatively small deviation from the special case of
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impermeable walls. The solution for Rew = 0 can be obtained using the transformation [195],

φ0(τ) = τ 1/2 exp(−τ/2)g(τ), such that τ =
√
λ r̂2 (5.30)

which yields,

τ
d2g

dτ 2 + (2− τ)dg
dτ
−
(

1−
√
λ

4

)
g = 0 (5.31)

which is the confluent hypergeometric differential equation [203]. The solution of Eq. (5.31),

which is regular at τ = 0, is given by

g(τ) = 1F1(a, b, τ) =
∞∑
k=0

a(k)τ k

b(k)k! (5.32)

where the superscript (k) represents the rising factorial (Pochhammer symbol). If φ0
n(r̂)

denotes the eigenfunctions n = 1, 2, 3, ... for the special case Rew = 0, the complete solution

can be written using

φ0
n(r̂) = λ1/4

n r̂ exp
(
−
√
λn
2 r̂2

)
1F1

(
1−
√
λn
4 , 2,

√
λnr̂

2
)

(5.33)

Using φ0
n(r̂) as the initial guess to the solution of Eq. (5.27), the swirl velocity ŵ∗(ẑ, r̂) for

any Rew, is obtained by,

ŵ = εŵ∗ = Ŵ0

∞∑
n=1

cnφnÛ
−λn/(2Rew) (5.34)

For the special case of tubes with impermeable walls, the swirl velocity is given by,

ŵ = Ŵ0

∞∑
n=1

cnφ
0
n exp(−λnẑ) (5.35)
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The boundary condition at r̂ = 0 is automatically satisfied, and the remaining boundary

condition at r̂ = 1 is used to determine the eigenvalues λn. The constants cn are determined

such that ŵ∗(ẑ, r̂) equals the boundary condition at ẑ = 0, ŵ∗0(r̂). Hence,

cn = 1
||φn||2

1∫
0

ŵ∗0(r̂)φn(r̂)σφ(r̂)dr̂ (5.36)

where the norm ||φn||2 is defined in Eq. (5.29). The inlet swirl velocity ŵ∗0(r̂) is assumed to

behave as a Rankine vortex, i.e.,

ŵ∗0(r̂) =


r̂/r̂0, r̂ 6 r̂0

(r̂0/r̂)(1− r̂)/(1− r̂0), r̂ > r̂0

(5.37)

where r̂0 is the radial location where the swirl velocity transitions from forced to free vortex.

5.2.1.3 Axial and Radial Perturbations Velocities

The perturbation velocities û∗ and v̂∗ can be determined by combining the momentum

equations for the axial and radial directions into an equation for the tangential component

of vorticity. By differentiating Eq. (5.2) with respect to r̂ and Eq. (5.3) with respect to

ẑ, and subtracting one from the other [200], the dependence of the conservation on the

pressure gradient is removed. This term describes the vorticity production via the baroclinic

mechanism, which occurs when the density and pressure gradients are misaligned, and is often

important in flames produced in rotating flows [204]. A single equation can be written in

terms of the nondimensional tangential component of vorticity ω̂. Neglecting the streamwise

diffusion terms,

û

Re0

∂ω̂

∂ẑ
+ v̂

∂ω̂

∂r̂
− v̂ω̂

r̂
− 1
Re0

∂

∂ẑ

(
ŵ∗2

r̂

)
= 2
Re0

(
∂2ω̂

∂r̂2 + 1
r̂

∂ω̂

∂r̂
− ω̂

r̂2

)
(5.38)
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The tangential component of vorticity can also be expanded as,

ω̂ = ∂v̂

∂ẑ
− ∂û

∂r̂
=
(
∂v̂o

∂ẑ
− ∂ûo

∂r̂

)
+ ε2

(
∂v̂∗

∂ẑ
− ∂û∗

∂r̂

)
= ω̂o + ε2ω̂∗ (5.39)

Substituting Eq. (5.39) together with Eq. (5.12) into Eq. (5.38), and retaining second-order

terms only,

û∗

Re0

∂ω̂o

∂ẑ
+ ûo

Re0

∂ω̂∗

∂ẑ
+ v̂∗

∂ω̂o

∂r̂
+ v̂o

∂ω̂∗

∂r̂
− v̂∗ω̂o

r̂
− v̂oω̂∗

r̂
− 1
Re0

∂

∂ẑ

(
ŵ∗2

r̂

)
=

1
Re0

(
∂2ω̂∗

∂r̂2 + 1
r̂

∂ω̂∗

∂r̂
− ω̂∗

r̂2

)
(5.40)

which can be further simplified if one notes that, from the continuity equation for the velocity

perturbations,

O
(
∂2v̂∗

∂ẑ∂r̂
+ 1
r̂

∂v̂∗

∂ẑ

)
= O

(
1
Re0

∂2û∗

∂ẑ2

)
(5.41)

The equality in Eq. (5.41) shows that the gradient of the perturbed radial velocity in the

scaled axial direction is of the same order of terms that have already been neglected in the

analysis. Moreover, by the definition in Eq. (5.16), v̂o(r̂) is a function of r̂ only. Therefore,

ω̂o = −∂û
o

∂r̂
and ω̂∗ = −∂û

∗

∂r̂
(5.42)

Substituting the expressions for ω̂o, ω̂∗, ûo and v̂o into Eq. (5.40), we obtain,

∂3û∗

∂r̂3 +
(
Rew

2 G+ 1
r̂

)
∂2û∗

∂r̂2 −
ÛF

2
∂2û∗

∂ẑ∂r̂
−
(
Rew
2r̂ G+ 1

r̂2

)
∂û∗

∂r̂
−

RewF
′û∗ + Re0

2 Û

(
F ′

r̂
− F ′′

)
v̂∗ = 1

2r̂
∂

∂ẑ
(ŵ∗)2 (5.43)
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Equation (5.43) must be solved together with the continuity equation for the perturbed

velocities,

1
Re0

∂û∗

∂ẑ
+ 1
r̂

∂

∂r̂
(r̂v̂∗) = 0 (5.44)

The boundary conditions are obtained from Eq. (5.7) and Eq. (5.12),

∂û∗

∂r̂
= v̂∗ = 0, r̂ = 0 (5.45a)

û∗ = v̂∗ = 0, r̂ = 1 (5.45b)

û∗ = v̂∗ = 0, ẑ →∞ (5.45c)

To solve the system composed of Eqs. (5.43) and (5.44) we assume [200],

û∗ =
5∑

n=0
an(ẑ)r̂n (5.46)

In addition to the two boundary conditions on û∗ with respect to r, one more can be obtained

upon integrating Eq. (5.44),

∫ 1

0
û∗r̂dr̂ = 0 (5.47)

Furthermore, the polynomial û∗ is required to satisfy Eq. (5.43) at the wall and at the

symmetry axis,

[
∂3û∗

∂r̂3 +
(
∂2û∗

∂r̂2 −
∂û∗

∂r̂

)(
1 + Rew

2

)]
r̂=1

= 0 (5.48a)[
∂3û∗

∂r̂3 +
(
∂2û∗

∂r̂2 −
1
r̂

∂û∗

∂r̂

)
1
r̂

]
r̂=0

= 0 (5.48b)

The conditions from Eqs. (5.45), (5.47) and (5.48) are sufficient to allow the elimination of

five of the polynomial coefficients which can be written in terms of a0, given in Eq. (5.53).
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The perturbed axial velocity can be expressed in terms of the multiplication between an

unknown function of the scaled axial coordinate a0(ẑ) as,

û∗ = a0(ẑ)P (r̂) (5.49)

where

P (r̂) = 1− 20(38 + 3Rew)
158 + 11Rew

r̂2 + 105(10 +Rew)
158 + 11Rew

r̂4 − 56(8 +Rew)
158 + 11Rew

r̂5 (5.50)

From the continuity equation Eq. (5.1), the perturbation velocity v̂∗ is given by,

v̂∗ = − 1
Re0

da0

dẑ
Q(r̂) (5.51)

where,

Q(r̂) = 1
r̂

∫
r̂P (r̂)dr̂ (5.52)

The expressions for û∗ and v̂∗ can be substituted into Eq. (5.43), yielding,

(r̂P ′F +QF ′ − r̂QF ′′) Û da0

dẑ
+[

Rew (2r̂F ′P +GP ′ − r̂GP ′′) + 2
(
P ′

r̂
− P ′′ − r̂P ′′′

)]
a0 = − ∂

∂ẑ
(ŵ∗)2 (5.53)

In order to solve Eq. (5.53), the solution for ŵ∗, given in Eq. (5.34), must be squared. This

operation results in products of mixed eigenfunctions that can be eliminated through the

application of the orthogonality property from Eq. (5.29) [200]. Multiplying Eq. (5.53) by

the weight function σφ(r̂), defined in Eq. (5.28), and integrating with respect to r̂,

da0

dẑ
+ C2

C1Û
a0 = 1

C1

∞∑
n=1

BnÛ
−(2+λn/Rew) (5.54)
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which is a linear, non-homogeneous, ordinary differential equation for a0 with solution,

a0 = A1Û
−C2/(2C1Rew) +

∞∑
n=1

BnÛ
−(1+λn/Rew)

C2 − 2C1(Rew + λn) (5.55)

where the constant of integration A1 vanishes, since for ŵ∗0 = 0, the axial and radial

perturbations induced by the tangential velocity component should vanish, i.e., û∗ = v̂∗ = 0.

The terms Bn, C1, and C2 are given, respectively, by,

Bn = 2λn
||φn||2

[∫ 1

0
w∗0φnσφdr̂

]2
(5.56a)

C1 =
∫ 1

0

[
r̂P ′F +Q (F ′ − r̂F ′′)

]
σφdr̂ (5.56b)

C2 =
∫ 1

0

[
Rew (2r̂F ′P +GP ′ − r̂GP ′′) + 2

(
P ′

r̂
− P ′′ − r̂P ′′′

)]
σφdr̂ (5.56c)

In the special case of tubes with impermeable walls, the solution to ordinary the differential

equation for a0, Eq. (5.54), is given by,

a0
0 =

∞∑
n=1

Bn exp (−2λnẑ)
C2 − 2C1λn

(5.57)

The final form for velocity components is obtained substituting the expressions from

Eqs. (5.16), (5.49) and (5.55) into Eq. (5.12),

û = ûo + ε2û∗ = Û

[
F + Ŵ 2

0P
∞∑
n=1

BnÛ
−(2+λn/Rew)

C2 − 2C1(Rew + λn)

]
(5.58a)

v̂ = v̂o + ε2v̂∗ = −V̂w
[
G− 2Ŵ 2

0Q
∞∑
n=1

(1 + λn/Rew)BnÛ
−(2+λn/Rew)

C2 − 2C1(Rew + λn)

]
(5.58b)

The effect of the perturbation induced by the swirl velocity can be estimated by

simplifying Eq. (5.58). At the centerline where, from Eq. (5.50), P attains its maximum

value P (0) = 1, Eq. (5.58) shows that the axial perturbation velocity u∗cL(ẑ) can be scaled
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by,

û∗cL/Û =
∞∑
n=1

BnÛ
−(2+λn/Rew)

C2 − 2C1(Rew + λn) (5.59)

The left side of Eq. (5.59), corresponds to the ratio between the maximum intensity of the

perturbation induced by the swirl flow in the axial direction and the maximum intensity of

the initial swirl squared. From the choice of perturbation orders, this ratio must be of order

O(ε0) or lesser, i.e.,

O
(
û∗cL/Û

)
= O

[ ∞∑
n=1

BnÛ
−(2+λn/Rew)

C2 − 2C1(Rew + λn)

]
6 O

(
ε0
)

(5.60)

The analysis is valid in the portion of the tube where Eq. (5.60) is satisfied.

5.2.2 Scalar Field

The analysis considers a non-dissipative, constant property flow. The conserved scalars can

be represented in a form similar to the one used for the velocity components as,

Z = Zo + ε2Z∗ +O(ε3) (5.61a)

H = Ho + ε2H∗ +O(ε3) (5.61b)

in which the subscript o denotes O(ε0) terms, i.e., the values of scalars obtained for the

undisturbed flow field and the values of the scalars far downstream, where perturbations

have dissipated. The terms ε2Z∗ and ε2H∗ are perturbations to the conserved scalars, O(ε2)

terms. The procedure used to solve the conservation equations for both conserved scalars is

equivalent. Thus, without loss of generality, the development only for the excess enthalpy is

presented completely.
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5.2.2.1 Undisturbed Scalar Field

The undisturbed scalar field is obtained through the solution of the conservation equation

for the conserved scalar, Eq. (2.43), retaining only order zero terms, which is given by,

ûo

Re0

∂Ho

∂ẑ
+ v̂o

∂Ho

∂r̂
= 2
Pe0

[
1
r̂

∂

∂r̂

(
r̂
∂Ho

∂r̂

)]
(5.62)

Substituting the velocity components given in Eq. (5.16) into Eq. (5.62),

2
F

[
∂2Ho

∂r̂2 +
(
Pew

2 G+ 1
r̂

)
∂Ho

∂r̂

]
= ÛPr

∂Ho

∂ẑ
(5.63)

in which Pr ≡ ν/α is the Prandtl number. Introducing Eq. (5.61) into Eq. (5.10), the

boundary conditions for Eq. (5.62) read,

∂Ho

∂r̂

∣∣∣∣∣
r̂=0

= Ho(1, ẑ)−Hw = Ho(r̂, 0) = 0 (5.64)

and the flux of Ho at the wall, from Eq. (5.11), can be obtained from,

2
Pe0

∂Ho

∂r̂

∣∣∣∣∣
r̂=1

= v̂w−L̂eff (5.65)

The boundary conditions in the radial direction for H and, consequently, Ho are not

homogeneous. For the case of non-zero prescribed excess enthalpy value or flux at the wall,

a new dependent variable Θ(ẑ, r̂) is introduced in order to simplify the calculations. Both

sides of Eq. (5.63) are functions of only one independent variable. However, the boundary

conditions for H in the radial direction are not both homogeneous. Introducing the

transformation,

Θ = −(Ho −Hw)/Hw (5.66)
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the conservation equation Eq. (5.62) becomes,

2
F

[
∂2Θ
∂r̂2 +

(
Pew

2 G+ 1
r̂

)
∂Θ
∂r̂

]
= ÛPr

∂Θ
∂ẑ

(5.67)

with boundary conditions,

∂Θ
∂r̂

∣∣∣∣∣
r̂=0

= Θ(ẑ, 1) = Θ(0, r̂)− 1 = 0 (5.68)

The solution is obtained by the separating Θ(ẑ, r̂) as,

Θ(ẑ, r̂) = X(ẑ)R(r̂) (5.69)

Substituting Eqs. (5.66) and (5.69) into Eq. (5.62),

2
FR

[
d2R

dr̂2 +
(
Pew

2 G+ 1
r̂

)
dR

dr̂

]
= ÛPr

1
X

dX

dẑ
= −β2 (5.70)

The solution for the axial direction is obtained by integrating the equation for X(ẑ) as,

X(ẑ) = b1Û
−β2/Pew (5.71)

where b1 is a constant of integration. The equation for R(r̂) is given by,

d2R

dr̂2 +
(
Pew

2 G+ 1
r̂

)
dR

dr̂
+ β2F

2 R = 0 (5.72)

which can be cast into Sturm-Liouville form through the introduction of an integrating factor,

qR(r̂) = exp
∫ (

Pew
2 G+ 1

r̂

)
dr̂ (5.73)
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yielding,

d

dr̂

(
qR
dR

dr̂

)
+ β2σRR = 0 (5.74)

where the weight function σR(r̂) is given by,

σR(r̂) = qRF/2 (5.75)

such that the orthogonality property of the eigenfunctions Rn(r̂) is given by,

∫ 1

0
Rm(r̂)Rn(r̂)σR(r̂)dr̂ = δmn||Rn||2 (5.76)

The undisturbed conserved scalar is given by,

Ho = Hw(1−Θ) (5.77)

in which,

Θ =
∞∑
n=1

bnRnXn (5.78)

The solution of Eq. (5.72) for the special case Rew = 0,

R0
n(r̂) = exp

(
−βn2 r̂

2
)

1F1

(
1
2 −

βn
4 , 1, βnr̂

2
)

(5.79)

can be used as the initial guess to the solution of Eq. (5.72). For the special case of tubes

with impermeable walls,

Θ =
∞∑
n=1

bnR
0
n exp(−β2

nẑ/Pr) (5.80)
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The boundary condition at r̂ = 0 is automatically satisfied, and the remaining boundary

condition at r̂ = 1 is used to determine the eigenvalues β2
n. The constants bn are determined

such that Ho equals the boundary condition at ẑ = 0. Hence,

bn = 1
||Rn||2

1∫
0

RnσRdr̂ (5.81)

where the norm ||Rn||2 and the weight function σR are defined in Eqs. (5.75) and (5.76),

respectively.

5.2.2.2 Axial and Radial Perturbations to the Scalar Field

Substituting the expressions for the velocity components from Eq. (5.16) and for the

excess-enthalpy from Eq. (5.61) into Eq. (2.43), and retaining only second-order terms,

ûo

Re0

∂H∗

∂ẑ
+ v̂o

∂H∗

∂r̂
− 2
Pe0

1
r̂

∂

∂r̂

(
r̂
∂H∗

∂r̂

)
= −

(
û∗

Re0

∂Ho

∂ẑ
+ v̂∗

∂Ho

∂r̂

)
(5.82)

where the terms on the right-hand side of the equality are known. Equation (5.82) is a

nonhomogeneous partial differential equation that satisfies the boundary conditions,

∂H∗

∂r̂

∣∣∣∣∣
r̂=0

= H∗(1, ẑ) = H∗(r̂, 0) = 0 (5.83)

The solution to Eq. (5.82) is sought through the eigenfunction expansion method. The

perturbation to the scalar field H∗ is given in terms of the eigenfunctions Rn(r̂), which are

the eigenvectors of the Sturm-Liouville system obtained from the solution of the associated

homogeneous problem to Eq. (5.82) as,

H∗(ẑ, r̂) =
∞∑
n=1

X∗n(ẑ)Rn(r̂) (5.84)
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The associated homogeneous problem to Eq. (5.82) has the same form of Eq. (5.62). For

that reason, the eigenfunctions used in the expansion Eq. (5.84) are the same as the ones

in Eq. (5.78). Substituting the velocity components given in Eq. (5.16) into Eq. (5.82) and

using transformed dimensionless coordinates,

1
F

{
2
Pr

[
∂2H∗

∂r̂2 +
(
Pew

2 G+ 1
r̂

)
∂H∗

∂r̂

]
−
(
û∗
∂Ho

∂z
+Re0v̂

∗∂H
o

∂r̂

)}
= Û

∂H∗

∂ẑ
(5.85)

The last two terms on the left hand side of the conservation equation for the perturbed scalar

field Eq. (5.85) are known and can be expanded by,

û∗

F

∂Ho

∂ẑ
= a0

P

F

∂Ho

∂ẑ
= −Hw

∞∑
n=1

û∗n(ẑ)Rn(r̂) (5.86a)

Re0
v̂∗

F

∂Ho

∂r̂
= −da0

dẑ

Q

F

∂Ho

∂r̂
= −Hw

∞∑
n=1

v∗n(ẑ)Rn(r̂) (5.86b)

such that the coefficients û∗n(ẑ) and v∗n(ẑ) are obtained through the the application of the

orthogonality property of Rn(r̂), Eq. (5.76), to Eq. (5.86), yielding,

û∗n(ẑ) = 1
2 ||Rn||2

a0

∞∑
k=1

bk
dXk

dz

∫ 1

0
PRkRnqRdr̂ (5.87a)

v∗n(ẑ) = − 1
2 ||Rn||2

da0

dẑ

∞∑
k=1

bkXk

∫ 1

0
Q
dRk

dr
RnqRdr̂ (5.87b)

Substituting the expansions Eq. (5.86), the velocity components defined in Eq. (5.16), and

the transformed coordinates into Eq. (5.82) yields,

2
FRn

[
∂2Rn

∂r̂2

(
PewG

2 + 1
r̂

)
∂Rn

∂r̂

]
X∗n + PrHw(û∗n + v̂∗n) = ÛPr

dX∗n
dẑ

(5.88)
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The term multiplying X∗n is can be replaced by the eigenvalues βn correspondent to the

solution of the associated homogeneous problem to Eq. (5.82). Each term in the sum satisfies,

dX∗n
dẑ

+ β2
n

ÛPr
X∗n = Hw

û∗n + v∗n
Û

(5.89)

Equation (5.89) is an ordinary differential equation in X∗n with solution,

X∗n(ẑ) =
∞∑
n=1

Û−β
2
n/(2Pew)

{
b∗n +Hw

∫ ẑ

0
[û∗n(t) + v̂∗n(t)][Û(t)]−1+β2

n/(2Pew)dt

}
(5.90)

where the constants b∗n vanish, because of the boundary condition at ẑ = 0. This is justified

from the assumption of perturbations to the scalar field being due solely to the axial and

radial velocity perturbations induced by the tangential velocity component. Therefore, the

solution of the homogeneous version of Eq. (5.82) (i.e., for the case in which the right-hand

side of Eq. (5.82) vanishes) is H∗ = 0. The perturbed scalar field is given, in its final form,

for any Rew, assuming (for simplicity of representation) the same number of terms in the

sums for Ho Eq. (5.77) and H∗ Eq. (5.84) as,

H(ẑ, r̂) = Hw

1−
∞∑
n=1

RnÛ
−β2

n/(2Pew)

×
[
bn − Ŵ 2

0

∫ ẑ

0
[û∗n(t) + v̂∗n(t)][Û(t)]−1+β2

n/(2Pew)dt

] (5.91)

The perturbed temperature field can be obtained by substituting back the result of the

conserved scalar field from Eq. (5.91) into Eq. (2.45b). Fuel and oxidizer mass fraction fields

can be obtained by replacing H with Z in Eq. (5.91) and substituting back the result into

Eq. (2.45a).

98



5.3 Discussion

The solution to the undisturbed velocity field in a porous tube has been extensively discussed

by several authors [see 176–180]. It has been observed that different injection velocities

at the wall alter significantly the dynamic behavior and the existence of solutions for the

fluid flow [see 180, 205–210]. The wall Reynolds number Rew depends on the liquid fuel

evaporation rate, which is a characteristic of the fuel considered. Therefore, the choice of

different fuels results in different balances between Stefan convection and diffusion (on the gas

side) and convection (on the liquid side). The axial Reynolds number Re0 and the swirl angle

θ also influence the flow field. Sufficiently large Re0 guarantees that streamwise diffusion is

negligible compared to diffusion in the radial direction as long as the flow remains laminar.

The axial Reynolds number also controls the length of the developing region through the

scaled axial coordinate ẑ — which is equivalent to the inverse Graetz number multiplied by

Pr — that depends on Re0. Small swirl angles are necessary for the validity of the model,

while providing the circumferential velocity component to the flow field. The influence

of those parameters on a non-reacting system is evaluated before proceeding with the full

solution, where the combination of all physical effects on the system is examined.

5.3.1 Wall Reynolds Number

The similarity variable F = ûo/Û defined in Eq. (5.16), regarded as the fully developed

velocity profile, is a function of the radial coordinate r̂ only. Figure 5.3 presents the

profiles for ûo/Û for several wall Reynolds numbers. A small change occurs in the profiles,

with the nondimensional centerline velocity varying from about 1.6 for a wall with large

injection to 2.0 for no injection of mass. For the case of a wall with no injection, the

Poiseuille parabolic profile is obtained. These results agree with the ones reported in the

literature [177–180, 190, 191].
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Figure 5.3: Fully developed velocity profiles for wall Reynolds numbers 0, 1, 10 and 100.

It is worth noting that, as in Prandtl’s boundary layer theory, the similarity variable F is

a function of the radial coordinate stretched in the longitudinal direction. For that reason,

the boundary condition at the tube inlet for different values of Rew is not equivalent to the

Poiseuille parabolic profile, but of a Berman [175] flow type [211]. Consequently, close to the

inlet, the velocity field obtained through Eq. (5.17) is not expected to match experimental

measurements in which the flow is allowed to attain a Poiseuille velocity profile before

entering the porous walled tube, but in the downstream region it would asymptotically

approach the observations [212].
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Figure 5.4: Axial velocity component profile at different ẑ for selected wall Reynolds numbers.
(a) Rew = 1; (b) Rew = 10; (c) Rew = 100.
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The wall Reynolds number is defined in terms of the dimensional wall injection velocity V̂w.

Equivalently, it can also be described by the axial Reynolds number, as shown in Eq. (5.15).

Therefore, the wall Reynolds number provides complete characterization of the dimensionless

velocity field of a fluid in a tube with mass injection at the walls. The radial distribution of

the axial velocity profiles for different axial positions ẑ is shown in Fig. 5.4, where the effect

of increasing Rew is observed.

5.3.2 Swirl Velocity

The decay of the inlet distribution of the swirl velocity component for different axial positions

ẑ is shown in Fig. 5.5, where the effect of increasing Rew is observed. It is assumed that the

position where the transition from forced to free vortex occurs is r̂0 = 0.9. The plots show

the influence of the swirl velocity on the fluid flow without (Fig. 5.5a) and with (Figs. 5.5b

and 5.5c) injection of mass through the wall. It is observed that the decay of the swirl

velocity with z decreases with increasing values of the wall injection Reynolds number. This

effect is shown more clearly in Fig. 5.7a where the maximum value of the swirl velocity is

plotted as a function of the scaled axial coordinate ẑ for the same values of wall injection

Reynolds numbers. As observed by Kinney and Sparrow [200], the decay of swirl velocity

has a boundary layer character that confines the retarding action of the tube wall to the

inner region (a layer adjacent to the wall surface) and the initial swirl distribution to the

outer region. Figure 5.5 shows that the thickness of the inner layer is a function of the wall

injection Reynolds number Rew.

Following previous analyses in which the axial and radial perturbations induced by the

swirl velocity were calculated, only the first term in the series in Eq. (5.58) is taken into

account [195, 200]. The first term in the series is dominant at axial locations ẑ > 10−2. If all

terms in the expansion were included the decay of the perturbation induced by the swirl to
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Figure 5.5: Tangential velocity component profile at different ẑ for selected wall Reynolds
numbers. (a) Rew = 0; (b) Rew = 1; (c) Rew = 10.

the axial velocity would not be monotonic for all Rew, which is consistent mathematically

but not physically. Each mode Kn in the sum in Eq. (5.59), where,

Kn ≡
BnÛ

−(2+λn/Rew)

C2 − 2C1(Rew + λn) (5.92)

has a varying influence on the total because of their different dependency on Rew. Hence,

from Eq. (5.59), each mode decays monotonically, as observed in Fig. 5.6 for n from 1 to 5,

but their sum need not behave the same way. Therefore, the decay of each term represents

correctly the influence of the swirl perturbation on other velocity components, but the sum

does not. This behavior is mainly due to the lack of higher order terms that would include

corrections for the diffusion of the induced perturbation.

The perturbation due to the swirl influences the axial and radial velocity components.

Therefore, as the initial swirl decays so does the effect it induces in the other velocity

components. The maximum swirl intensity and the perturbation induced by the swirling

flow in the axial velocity at the center line are shown in Fig. 5.7 for selected Rew as a

function of the scaled axial coordinate ẑ. The results from Fig. 5.7b should be taken with

care. It is important to point out that the axial and radial perturbations due to the swirl are
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Figure 5.6: Modes Kn as functions of ẑ for selected wall Reynolds numbers. (a) Rew = 0;
(b) Rew = 1; (c) Rew = 10.

O(ε2) effects and that the mass injection through the walls creates an increase in the mean

axial velocity several orders of magnitude greater than the swirl induced perturbation.

The effect of the inlet swirl intensity can also be evaluated. It is observed from Fig. 5.7b

that the axial perturbation is strongly influenced by the magnitude of the injection of mass

through the tube walls. Therefore, as Rew increases, a larger Ŵ0 is needed for the radial and

axial velocity components to be affected by the perturbations due to the swirl. At the same

time, Eq. (5.60) imposes a limiting restriction to the model at the inlet. In the vicinity of

that region, the swirl intensity is maximum, and the magnitude of the induced perturbation

is limited by its order. From Fig. 5.7b, it is observed that Eq. (5.60) is indeed satisfied,

i.e., O(û∗cL/U) 6 O(ε0). The maximum intensity W0 is assumed to be around 0.5†, which

corresponds to an inlet flow swirl angle θ of approximately 27◦. As observed from Fig. 5.7b,

the chosen Ŵ0 induces axial perturbations of absolute values as large as 0.48, 0.16 and 0.02

for Rew = 0, 1 and 10, respectively.

A prescribed inlet swirl velocity distribution ŵ∗0, given in Eq. (5.37), is considered. For

such velocity distribution, the maximum intensity of the swirl is not solely responsible for
†This value for the maximum swirl intensity minimally satisfies the constraints imposed by the

perturbation orders.
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Figure 5.7: Peak values of the velocity components as a function of ẑ for selected wall
Reynolds numbers. (a) Swirl velocity; (b) Axial perturbation velocity.

the perturbation, even though it defines its order. The term Bn, defined in Eq. (5.56a),

which can be seen as a projection of the function ŵ∗0, represents the normalized inlet swirl

radial profile squared. Therefore, the magnitude of the perturbation is also influenced by

the radial distribution of ŵ∗0. The effect of different values of r̂0 on û∗cL at ẑ = 0 is presented

in Fig. 5.8. For the position where the transition from forced to free vortex occurs r̂0 greater

than 0.7, which would correspond to commonly observed conditions, the influence of the

position where the swirl velocity transitions from forced to free vortex is reduced. At the

same time, the larger the injection, the smaller will be the effect of the inlet swirl distribution

on the axial induced perturbation. The results in Fig. 5.8 also show that larger perturbation

is created for r̂0 ' 0.6. This parameter could be considered in the design of swirl vanes that

are intended to induce larger perturbations.

5.3.3 Perturbed Scalar Field

Before proceeding to the analysis of the system, the solution for the scalar field is presented.

Since it is assumed that the boundary condition at the wall is of the first-type, i.e., a
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Figure 5.8: Maximum intensity of the axial perturbation induced by the swirl flow at the
inlet versus r̂0 for wall Reynolds numbers 0, 1, 10.

prescribed value for the conserved scalar, the solution for both the mixture fraction Z and

excess enthalpy H can be scaled in terms of the function Θ, defined in Eq. (5.78). The

solution for the perturbed fields for wall Reynolds numbers 1 and 10, for selected radial

positions, as a function of the scaled axial coordinate ẑ is presented in Fig. 5.9. The solution

for the case of impermeable walls (Rew = 0) is not shown in Fig. 5.9 because in the present

model fuel evaporates from the wall, so Rew is always greater than zero.
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Figure 5.9: Variation of Θ with ẑ at selected radial positions for wall Reynolds 1 and 10.

The effect of the perturbations induced by the swirl velocity on the scalar field are prominent

in the inner region, i.e., in the zone close to the wall surface. That occurs because the swirl
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improves mixing in the inner region, while in the outer region, where a free vortex like

structure exists, mixing is not favored. As a consequence, in the inner zone, the transport

from the walls is increased in comparison to the undisturbed case.

5.4 Results

The theoretical model is employed in analyzing the structure of nonpremixed swirl-type

tubular flames. The generality of the formulation allows it to be applied to various conditions.

However, we will limit some parameters in order to analyze systems for which experimental

studies would be of interest.

The flows considered in this analysis are laminar, such that their Reynolds numbers are of

the order of hundreds, or a few thousands. Consequently, the range of values for the scaled

axial coordinate ẑ of interest does not extend up to higher values. Results are discussed

considering Re0 = 500 and the burner axial length ẑmax = 0.02. This choice does not limit

the application of the theoretical model, but allows a physical interpretation that matches

existing small-scale tubular flame systems, in which the length of the burner is commonly not

greater than ten times its inner radius. The evaluation of the solution for a smaller portion

of the domain also allows the analysis to be focused on the region where the influence of the

swirling flow is more prominent, as observed in Fig. 5.7. It also means that, at the exit port

of the burner, a swirling flow would still be found.

The intensity of Stefan convection, i.e., the vaporization rate of the fuel from the porous

walls, determines the range of Rew, which can be estimated roughly from an overall mass

conservation at the flame, assuming stoichiometric burning. If all the entraining air and

injected fuel up to the axial location ẑmax were completely consumed at the flame sheet, the

106



mass flow rates of air and fuel necessary for the stoichiometric burning would be,

2SRewẑmax = 1 (5.93)

which can be employed to determine the values of V̂w used as a starting estimate for

the Stefan convection velocity. It is worth noting that Eq. (5.93) shows that for a fuel

burning stoichiometrically, longer tubes would require lower wall injection Reynolds numbers.

Assuming the maximum length of the tube as ẑmax, the choice of fuel will influence the

conserved scalar field through Rew, via its latent heat of vaporization L̂, and the amount of

heat release from the chemical reaction though γ. These parameters do not vary significantly

for alkanes found in condensed phase in standard conditions. From Eq. (5.93), the values of

Rew for hexane, heptane and octane are, approximately, 1.7. At the same time, for those

hydrocarbons, experimental peak flame temperatures are T̂S ' 4.5 which corresponds to

γ ' 4.5. For that reason we will consider a single condition, which would correspond to any

of those alkanes in liquid phase at ambient temperature.

In order to determine V̂w the procedure described in Section 5.2 is employed. An initial

guess is considered to calculate the excess enthalpy field, and Eq. (5.11b) is used to correct

V̂w until its value is equal to the average of v̂w− over the length of interest. The axial

distance ẑ over which the mean value is obtained spans the final 80% of the tube. The

approximation of v̂w− by a constant value V̂w corresponds to its zeroth order, and can be

relaxed by employing a formulation in which a nonuniform Rew is assumed, for example, by

considering a local pressure-dependent injection [211, 213]. With the correct approximation

for Rew, the perturbed vector and scalar fields can be sought.

Contours of the nondimensional temperature field and mass fractions are presented

in Figs. 5.10a and 5.10b, respectively. The flame position, obtained as the location where

the mixture fraction satisfies Eq. (2.46), is highlighted. The contour levels represent the
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Figure 5.10: Contours of dimensionless scalar fields. The dashed line represents the flame
sheet. (a) Temperature; (b) Mass fraction.

nondimensional temperature. The fuel side and the oxidizer side are indicated in Fig. 5.10b

by ŶF and ŶO, respectively, where the levels represent the nondimensional mass fractions

on each side. It is observed that, even though the flame gets closer to the axis of the tube

in the downstream region, the tube is not long enough for the flame sheet to close before

the tube outlet. The calculated wall injection Reynolds number is approximately 9. That

corresponds to a fuel rich condition, considering the stoichiometric value 1.7 obtained from

relation Eq. (5.93). Even though the stoichiometric and the calculated Rew are of the same

order of magnitude, it is important to point out that the solution does not incorporate

other thermal losses that could be added to the effective latent heat of vaporization to

reduce the estimated fuel injected using Eq. (5.11b). At the same time, effects such as finite

rate chemistry, variations of transport and thermodynamic properties with temperature or

concentration, radiation losses, nonequilibrium temperature effects between the porous

matrix and the liquid phase, radial or axial temperature variations in the wall, axial heat

transfer in the porous matrix, spatial variation of the vaporization rate, among several

others are not considered in the solution. Therefore, given the approximations involved,

the analytical result is expected to predict only qualitatively flame characteristics, similarly
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to the solution obtained by the Burke-Schumann model for coflow flames. Indeed, the

nonpremixed flame established in this configuration resembles the latter solution for the so

called underventilated case. In this condition, the flame is established above a coflow

burner from which the amount of air issued is smaller than that necessary to burn all the

injected fuel, and the flame extends into the oxidizer region. The nondimensional

temperature and species contours in Fig. 5.10 possess the same characteristics.
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Figure 5.11: Variation of nondimensional temperature with r̂ at selected axial positions.

The fuel-rich inlet conditions and the results from Fig. 5.10b indicate that a mixture of

unburned fuel and products is found at the burner outlet. This condition resembles the

experimental observations for the miniature liquid film burner [82]. Results in the

downstream region of the combustion chamber, i.e., after the exit port, cannot be predicted

by the model, but the characteristic of the external flame can be qualitatively estimated.

As a consequence of the absence of tube walls that constrain the flow and act as a fuel

source to the chemical reaction at axial positions greater than the burner length ẑmax, the

flame would expand outwardly in the radial direction due to the centrifugal force, and

would not possess a tubular shape anymore, but would be conical. The external flame

shape would also be due to the excess air found in the environment reacting with the

mixture of hot unburned fuel and products if the burner is exposed to normal ambient

conditions.
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Figure 5.12: Variation of nondimensional mixture fraction profiles at selected axial positions.
(a) ẑ = 10−4; (b) ẑ = 10−3; (c) ẑ = 10−2.

Dimensionless temperature and mixture fraction profiles are shown, respectively, in Figs. 5.11

and 5.12 for selected axial positions as a function of the radial coordinate r̂. The variation

of the temperature and mixture fraction along the radial direction resembles the profiles

obtained in nonpremixed counterflow configurations for axial locations near the inlet as

expected for a nonpremixed system. The flame is located, for each of the axial positions ẑ as

the temperature peak, in Fig. 5.11, and as the minima, in Fig. 5.12. The effect of the flame

sheet extending into the oxidizer region for larger axial locations is clearly observed.

5.5 Model Validation

The assumptions considered in the theoretical model can be confronted with the

experimental observations. Although simplified, some of the overall characteristics of the

system are well mathced with the analytical findings. The burning working-map obtained

experimentally from Fig. 4.8 can be nondimensionalized considering the scaling parameters

defined in Section 5.2. The measured points are shown in Table 5.1.
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Table 5.1: Nondimensional stable conditions.

Re0 Rew

Theoretical 500 9.0
Experimental 795 1.7 to 2.4

990 1.7 to 2.7
1180 2.0 to 2.6

The calculated value for the wall Reynolds number (Rew ' 9) obtained theoretically captures

the order of magnitude of the experimental observation. It is observed that the model

predicts that a stable flame is established for fuel-rich inlet conditions. At the same time, the

measured wall temperatures for quasi-steady flames show that the assumption of prescribed

temperature at the fuel boiling point for the boundary condition at the tube surface seems

to adequately represent the system. For conditions in which a stable flame is obtained, the

maximum wall temperature is relatively close to the boiling point of the fuel. The theoretical

model also predicts that the tubular flame produced inside the combustor continues to burn

with the ambient air above the rim, even though its structure cannot be fully described.
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Chapter 6

Conclusions

This manuscript includes analysis and some supporting experiments to understand important

canonical flame configurations in which fuel and oxidizer are not premixed. The dissertation

concentrates on novel orientations where stagnation flows are important and further explores

the potential for tubular flames as a characteristic flame system. In all cases, the analyses,

though simplified in their chemistry and physical properties, give good insights into several

dominant flame behaviors.

Classical theoretical models are extended in order to analyze nonpremixed flames stabilized

between an axisymmetric coflow burner and a downstream plate that produces a stagnating

flow field. Two approaches previously developed as extensions to the Burke-Schumann theory

are modified in order to be applied in the analysis: the Extended Roper (ER) model and

the Stream Function as a Coordinate (SFC) model. The semi-analytical models are used

to determine the distance between the impinging plate and the burner tip on a methane-air

flame. The solutions are compared with experimental data for different vertical positions for

the stagnation plate with respect to the burner port. The results show that both models can

be employed to estimate flame shapes and the position at which the flame transitions from
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a closed tip configuration to an open tip one. The results obtained with the SFC model are,

overall, in better agreement with the experimental data. The ER model seems to suffer from

the approach considered to account for temperature variations of the physical properties

from the burner port to the flame region. The models obtained in this study are not limited

to the conditions discussed herein. Situations in which body forces are important, such as

the case of a flame in an electric or magnetic field can be also analyzed.

The simplified solutions for water-laden nonpremixed counterflow flames and opposed-flow

tubular flames show good agreement with both numerical and theoretical results. Accurate

experimental results are still needed for the validation of water-lade flames. At the same

time, experimental results also necessary for complete characterization of the proposed

nonpremixed counterflow tubular flame burning liquid fuels.

The nonpremixed counterflow-type tubular flame configuration was proposed and its solution

presented in a simplified framework. The development of an experimental system is still

necessary for model validation.

The porous based nonpremixed tubular burner demonstrates very promising combustion

behavior as compared to mesoscale film combustors. Operating limits are expanded and the

burner walls remain cool. Further details of combustion efficiency, emissions, as well as the

use of materials with different thermal conductivity are recommended for future work.

A theoretical model for nonpremixed swirl-type tubular flames burning condensed fuels

with unity Lewis numbers was presented. The formulation allows the determination of the

velocity, temperature and species fields. The solution is presented considering a similarity

variable transformation for axisymmetric incompressible viscous flow fields. Axial decay of

the initial swirl velocity, its induced axial and radial perturbations to the flow, temperature

and species field together with surface mass and heat transfer from the porous walls were

considered through the superposition of laminar swirling flow on a Berman flow with uniform
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mass injection in a straight pipe. The flame structure was obtained assuming infinitely fast

conversion of reactants into products and unity Lewis numbers, allowing the application

of Shvab-Zel’dovich variables. Results from the perturbation analysis consider constant

temperature at the walls, more specifically, at the fuel boiling point. The balance between

the amount of energy necessary for the fuel to be heated from the injection temperature to

its boiling point and the energy released by the reaction show that the system operates in

fuel rich conditions. The flame extends towards the oxidizer region as it is observed in the

underventilated case for the Burke-Schumann model.

The theoretical models presented in this manuscript can provide qualitative guidelines to the

design of the discussed systems, such as the influence of inlet or dimensional parameters on

flame position, flame confinement as well as overall system temperature and heat transfer.

The analytical expressions presented herein, which are developed in a simplified framework,

allow a fast and comprehensive description of the temperature, species and flow fields for all

systems.
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