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ABSTRACT 
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The purpose of this paper is to examine the kinds of data and usage of scientific data­
bases and to identify common characteristics among the different disciplines. Most 
scientific databases do not use general purpose database management systems (DBMSs). 
The main reason is that they have data structures and usage patterns that cannot be 
easily accommodated by existing DBMSs. It is the purpose of this paper to identify the 
special database management needs of scientific databases, and to point out directions 
for further research specifically oriented to these needs. 

In the past, we have studied ''statistical databases", which are databases that are pri­
marily collected for statistical analysis purposes. We have found that the· observations 
and techniques developed for statistical databases are useful for scientific databases. The 
reason that common characteristics exist is that many scientific databases are often sub­
ject to statistical analysis. However, we found that scientific databases have additional 
stages of data collection and analysis that induce more complexity. 

We discuss the different types of scientific databases, and list the properties 
identified for them. Ten examples are then analyzed with respect to the types of data and 
their properties, and summarized in two tables. Conclusions are drawn as to the prefer­
able data management methods needed in support of scientific databases. 

1. INTRODUCTION 

This document is a result of numerous interviews with scientists, mostly from 
Lawrence Berkeley Laboratory. spanning several different scientific disciplines. The pur­
pose of these interviews was to examine the kinds of data and usage of scientific data­
bases in order to identify common characteristics among the different disciplines. 

Most scientific databases do not use general purpose database management systems 
(DBMSs). The main reason is that they have data structures and usage patterns that can­
not be easily accommodated by existing DBMSs. It is the purpose of this document to 
identify the special database management needs of scientific databases, and to point out 
directions for further research specifically oriented to these needs. 

In the past, we have studied "statistical databases", which are databases that are pri­
marily collected for statistical analysis purposes. A summary of work in statistical data­
bases can be found in [Shoshani 82]. We expected that some of the observations and 
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techniques developed for statistical databases will be useful for scientific databases. 
Indeed, we found this to be the case. The similarities are pointed out throughout this 
document where appropriate. It should not be surprising that common characteristics 
exist, because many scientific databases are often subject to statistical analysis. How­
ever, as discussed below, scientific databases have additional stages of data collection and 
analysis that introduce more complexity and challenges. 

In section 2, different types of scientific databases are described. In order to 
describe the common characteristics between several example applications, a list of pro­
perties for the different types of data are given in section 3. In section 4, several exam­
ples of scientific applications are delineated with respect to the list of properties. The 
properties of these example applications are summarized in two tables, which appear at 
the end of this document. In section 5 we discuss the implications of our observations to 
desirable database techniques for scientific databases, and proposes areas for further 
investigation. Section 6 is a short summary section. 

2. TYPES OF' SCIENTIF'IC DATA 

The scientific databases described to us during the interviews were analyzed in order 
to identify similar data structures, data characteristics and data usage among different 
applications. We found it convenient to distinguish between different types of scientific 
data. The important features for each type were identified, and different examples of 
scientific data were categorized accordingly. This categorization helped us to identify the 
most common characteristics and usage of scientific data, and provided the direction for 
future research. In section 4 several examples of scientific applications are described in 
order to demonstrate the different types of scientific data. In this section we describe 
the data types and their main features. 

Most scientific data result from experiments and simulations. Data from experiments 
are usually measurements of some physical phenomena, such as the collision of particle 
beams, or the spectra generated by molecules in a strong magnetic field. Data from 
simulations typically result from complex computations derived by using values from the 
previous time interval. Both experiment and simulation data have similar characteristics. 
and therefore are considered jointly. In order to simplify the terminology used here, we 
refer to such data as ''experiment data", regardless of whether they are experiment or 
simulation data. Experiment data can be classified according to three characteristics: 
regularity, density, and time variation. 

1) Regularity 

This characteristic refers to the regularity of the points or coordinates for which 
values are measured or computed. For example, in physics experiments, detectors are 
placed in a specific configuration. If the configuration describes a regular grid or some 
other geometric structure, the experiment is said to have (spatial) regularity. Similarly, 
many simulations assume some regular grid for which values are computed, and there­
fore have spatial regularity. In addition, if values are measured or computed at regular 
time intervals, then time can be considered as another regular coordinate of the data. 
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In general, regularity implies that a mapping between the coordinates of measured values 
and the storage locations of these values can be made by means of a computation {such 
as "array linearization", which is simply a mapping from multi-dimensional space to linear 
space, similar to FORTRAN array mapping). Therefore, in such cases it is not necessary to 
store the coordinate values with each measured data value, resulting in storage savings 
and fast random access. On the other hand, when spatial irregularity exists it is neces­
sary to enumerate the data points, and store their identifiers with the data values. 

2) Density 

This characteristic indicates whether all the potential data points have actual values 
associated with them. For example, simulation data of fluid motion computed on a regu­
lar grid would have data values (for velocity, direction, etc.) computed for each point of 
the grid, and therefore the data is considered dense. On the other hand, in many experi­
ments a large number of measurements that are below a certain threshold are discarded 
and never recorded. In fact, the level of sparseness can be quite high, i.e. only a small 
fraction of the potential data points have recorded values. For example, in physics exper­
iments of colliding particle beams, the measured data is only for resulting sub-particles, 
which occur over a small portion of the detectors that are distributed in space. 

It is important to identify this characteristic because sparsity implies a large number of 
null values which may be compressed out. The compression technique chosen should 
depend on the access patterns to the data. Access patterns are discussed in the next _ 
section. 

3) Time variation 

This characteristic refers to the change of coordinates over time; i.e. the points for 
which data values are measured or computed change their position from one time unit to 
another. For example, consider some material that is bent in the course of an experi­
ment. Before the experiment starts a set of points is selected for measuring the 
material's behavior {such as stress, voltage, temperature). During the experiment the 
selected points may change their position as a result of the bending action. T"1me varia­
tion is a characteristic found mostly in simulations where a mesh of points are allowed to 
change their position over time during the simulation process. These simulation methods 
are generally called adaptive mesh techniques. 

The reason for considering time variation an important characteristic is that it adds an 
additional requirement. In addition to storing the coordinates of points for every time 
interval, it is necessary ~o maintain the relationships between the points as they existed 
in the original mesh. This is needed in order to be able to reconstruct the time sequence 
of points that correspond to the same original point, and in order to find neighboring 
points to a given point at any given time. 

In addition to the experiment data discussed above, there exist data in support of the 
experiments, and data that are generated from the experiment data Support data fall 
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into two types which we call configuration data and instrumentation data. Similarly, gen­
erated data fall into three types: analyzed data, summary data, and property data These 
types are discussed below. To distinguish these additional data types from the experi­
ment data, we refer to them collectively as "associated data". 

1) Configuration data 

Configuration data are data that describe the initial structure of an experiment or 
simulation. For example, in simulating heat transfer through buildings, the building lay­
out has to be described. Similarly, the configuration of an experiment describes the posi­
tion of different devices and detectors. The configuration layout actually determines the 
regularity (or irregularity) of the experiment data mentioned above. Usually, it does not 
change in the course of the experiment or simulation. However, it can change between 
experiments or simulations. It is important to keep track of these changes and to associ­
ate the correct configuration data with the corresponding experiment data. 

2) Instrumentation data 

Instrumentation data consists of descriptions of the different instruments and sub­
stances used in an experiment, and their changes over time. This data is crucial for the 
correct analysis of the experiment data It includes information such as the pressure and 
temperature of a gas used in an experiment and their changes over time, drift of voltage 
over time, and the characteristics of detectors and devices as measured before each 
experiment or a series of experiments. It also includes the log of experiment operations, 
such as the time that a defective analog-to-digital converter was replaced, and who was in 
charge of it. Unfortunately, some of this information is collected into unrelated files and 
log books, thus making their association with the experiment data a tedious task that is 
prone to errors. 

3) Analyzed data 

The previous two data types are essential in order to support the analysis of experi­
ment data The analysis process produces many databases that also need to be managed 
along with their relationships to the experiment data and to each other. The analysis pro­
cess may require several steps. For example, in physics experiments of colliding particle 
beams, a preliminary histogram over the experiment data can be done in order to esti­
mate parame~ers that are later used to interpret the calibration data in the next step of 
the analysis. For each collision, called an event, the tracks of sub-particles produced are 
reconstructed and kept in a database. From the track data, another database for the 
event data can be derived, describing the kind of sub-particles produced and their 
characteristics. Additional steps use databases from this and earlier stages to generate 
yet more data. It is important to capture the analysis process, the input and output data­
bases of each step, and the relationships between the steps. 

4) Summary data 

Similar to "statistical" databases, which deal with statistical summaries (aggrega­
tions) of data sets, scientific databases are often aggregated. For example, in experi­
ments of heat transfer in buildings, the amount of heat lost or gained can be averaged 
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over several points of a wall, summed over entire rooms, or aggregated over days into 
months. Another example, is the generation of histograms from many experiments to 
determine the likelihood of a certain phenomenon. As in the case of statistical databases, 
there is a need to organize, search and browse collections of summary data, and to 
preserve their relationship to lower level data from which they were derived. 

5) Property data 

In any scientific field, the summary of information learned over the years is useful to 
the community at large. There is a substantial amount of work devoted to the organiza­
tion and classification of properties of materials, substances, and particles. For example, 
there are several systems devoted to the staorage and retrieval of chemical substance 
properties. Many property databases cannot now be accessed on-line. The data is only 
available in periodically published books, and may not be up-to-date. Property data is 
non-uniform: it contains numeric, text, and bibliographic data, as well as images and 
graphs. This is one of the reasons that for each scientific area special purpose systems 
have been developed. General purpose data management systems that can deal with such 
diversity of data types are not generally available. In addition, because of the complex 
terminology involved with such data, sophisticated search and browsing capabilities are 
needed. 

3. PROPERTIES IDENl'IF'IED FOR &:IENTIFIC DATA 

Using the classifications of data types described in the previous section, it was easier 
to identify common characteristics and usage of the data. For each classification we have 
looked for certain properties that seem to exist across scientific applications. These pro­
perties are described in this section. Since the properties of experiment data are not 
necessarily the same as those of associated data, they are described separately. In the 
next section, we describe example applications in terms of these properties. The terms 
that are used for each property are shown in italics letters in the text below. The reader 
may refer to the leftmost columns of table 1 and table 2 for the list of properties of 
experiment data and associated data, respectively. 

3.1. PROPERI'IES OF' EXPKRI1IENT DATA 

1) ldentitler 

The identifier is that part of the data that identifies each data point uniquely (also 
called a key). In the case of experiment data the identifier is usually a composite key of 
spatial coordinates and a ti.ine coordinate. Since the identifier has multiple dimensions, 
the properties of regularity, sparsity, and time variation, discussed in the previous sec­
tion, apply naturally. The concept of a multi-dimensional identifier is similar to that of 
category attributes in statistical databases [Shoshani 82]. This concept is quite dominant 
in experiment data {as was the case with statistical databases) because the data is mostly 
accessed with respect to its identifier. We expand on .this point below in the section on 
access patterns. 
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The identifier is said to be regular if each of its dimensions are ordered in regular inter:­
vals; it is sparse if only a fraction of the points in the cross product of the dimensions 
have data associated with them; otherwise it is dense. Time variation implies that the 
identifier, regardless whether it is regular or irregular, varies over time. 

2) Access pattern 

Access pattern refers to the most typical forms of data access. For example, an 
analysis program may follow a track of a sub-atomic particle, or a simulation program 
may need its nearest neighbors in order to calculate the next data point. Note that in 
these examples the access of points is relative to the {spatial) identifier coordinates. and 
not the measured or calculated data values. This is typical of the access pattern of 
experiment data The reason for distinguishing between the different types of access pat­
terns is that they imply different requirements for physical data base organizations, as 
discussed in the implications section. 

We distinguish between two aspects of the access pattern. The access type is the type of 
access of a single query (or a step of the computation). The riccess sequence refers to the 
relationship between queries, i.e. whether the selection of a query depends on previous 
queries. 

2a) Access type 

There are three access types that we found useful to identify. An exact match means 
that the identifier of a point was specified precisely in the query, (Usually, a single point is 
identified). A range type implies that a range of possible points were identified. Since the 
identifier is multi-dimensional, each dimension is involved in the specification of the 
range. A prorimity type indicates that the neighboring points around a given point are 
desired. 

2b) Access sequence 

Given a query of a particular type, the access sequence indicates whether the 
identifier(s) of the next query relate to the identifier(s) of the previous query. A local 

access sequence implies that the identifier{s) of the current query are close to the 
identifier(s) of the previous query. For example, following a particle track involves a local 
access sequence, since each successive point is close to the previous point. A nan-local 

access sequence means that there is no relationship between the identifiers of successive 
queries. This means that the points of each query need to be found using a random 
access search. In a linear access sequence, the sequence of the identifiers of successive 
queries follows successive intervals of the dimensions of the identifier. For example, fol­
lowing the points of a mesh according to the regular intervals of the dimensions of the 
mesh is considered a linear access. An arbitrary access sequence indicates that the 
order of processing the data points is unimportant. Such access is usually used when the 
entire data set (or some large subset) need to be processed for analysis or summary 
statistics. 

Access sequence should be thought of in conjunction with access type. For example, 
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searching for a particular point in spaee where this point is not related to points of the 
previous query, implies an exact access type and a non-local access sequence. However, 
searching for a collection of points in the same neighborhood while following a certain 
path, implies a proximity access type and a local access sequence. 

3) Database size 

Experiments are often repeated in order to verify a certain phenomena, to deter­
mine the statistical behavior of the experiment, or to discover a rare event that occurs 
only in a small fraction of the experiments. In many cases the results of each experiment 
can be processed independently. We call each independent part of an experiment a unit. 
An example of an independent unit is a single collision {event) in particle physics, or a sin­
gle time step calculation of a simulation. It is important to identify such units and to 
determine their size because they can be processed independently of other units and 
often in parallel. In addition, if units are small enough they can be processed entirely in 
main memory, rather than brought piecewise from secondary storage. 

Analysis and summarization of experiment data is usually performed over a collection of 
experimental units. The size of a collection is significant because it refers to the quantity 
of data that analysis queries may need to access. Such queries may select a portion of 
the collection, or may process the entire set to derive summaries or statistics. A collec­
tion may be very large, as is the case with experiments that are run over a period of 
months because the desired event is rare, because a large number of runs is desirable for 
statistical analysis, or because extensive parametric studies are desirable. 

There is no logical limit to the total amount of data that can be collected by repeating 
experiments and simulations. The limitations are usually cost and resources. Neverthe­
less, it is interesting to identify the total amount of data that scientists keep active· and 
available. This category is simply referred to as total size. All size ftgures shown in table 
1 are only intended to show order of magnitude. 

4) Associated data 

The different categories of associated data mentioned here: configuration, instru­
mentation, a:nalyzed, and summary, simply indicate whether such data exists for the 
different example applications. Note that property data is not mentioned since property 
data is not usually associated with a single experiment, but rather summarizes data over 
many experiments . 

3.2. PROPERTIES OF ~TED DATA 

We chose to emphasize somewhat different properties for associated data, because 
their structure and usage is different from experiment data. The access pattern and size 
properties are similar to those of experiment data, but the identifier properties are more 
diverse. They are described as part of the data modelling properties. We also added usage 
properties and non-standard data types. 
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1) Access pattern 

The access pattern properties of associated data fall into similar categories as those 
of experiment data. However, while access patterns of experiment data refer to access­
ing data points with respect to their identifiers, the access patterns of associated data 
are with respect to any attributes, whether they are thought of as identifiers or measured 
data. The reason is that in associated data the concept of an identifier (or category attri­
butes) is not so dominant. For example, when the experiment data of a particle physics 
experiment are analyzed, the resulting database represents tracks and events rather 
than the individual data points. The identifiers of the original data points no longer exist 
in the analyzed data. Instead the tracks and events may be given an identifying number 
or some combination of the measured values (such as mass and momentum) may be 
thought of as the identifier. 

The categories assigned to access patterns of experiment data above apply to access pat­
terns of associated data as well. However, we found it necessary to add a partial access 
type, because it is common to access associated data (especially analyzed and summary 
data) by specifying predicates (selection criteria) only on part of the attributes. For 
example, finding all particles with a mass in a certain range that generated a certain 
number of sub-particles. 

2) Data modelling 

The data modelling capabilities chosen here are either common to many examples of 
associated data, or are included because of their importance. Geometric modelling is the 
capability to describe the geometry of an object (such as an airplane wing). or a collec­
tion of objects (such as the position of detectors). The term entities refers to the need to 
distinguish between multiple entities, which is a basic assumption in all database models 
{such as relational, hierarchical, etc.). There are situations where the concepts of enti­
ties are not naturally applicable, such as·with summary data {e.g., a co-variance matrix). 

The terms h:iera:rchical and networks refer to the relationships between entities. A 
hierarchical property obviously implies a one-to-many relationship between entities of 
successive levels of the hierarchy, but also implies the possibility that the identifiers 
{keys) of higher levels propagate down to lower levels. For example, a particle identifier 
usually propagates down to its sub-particles level, and is concatenated with the sub­
particle identifier to form a unique key. A network property indicates the existence of a 
many-to-many relationship between entities. 

We use the term generalization in the sense described in [Smith & Smith 77]. Briefly, it is 
the capability of describing generically the properties that apply to an entire set of 
objects. For example, the common properties that describe all analog-to-digital convert­
ers of a certain type used in a certain experiment should be described only once. Each 
individual converter can have its · own specific characteristics, but the generalization 
capability allows the common properties to be "inherited" by each individual converter. 

The existence of multi-dimensional data was explained before in the context of the 
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identifier of experiment data. Although not as common in associated data, the capability 
to support multi-dimensional data is nevertheless important, especially for analyzed and 
summary data. We refer to this property as N-d:imensional. Meta-data refers to the infor­

mation necessary to describe the data. However, the intent here is to emphasize the 

information that is beyond the usual data definition capability provided by most data 
~nagement systems. An example of such additional information is the source from 
which an analyzed database was derived, and the person who derived it. 

3) Usage 

It is often necessary in the analysis process to change the definition of the database 

schema, such as to add new attributes (columns) or to calculate new attributes from pre­
vious attributes. The ability to support such changes dynamically is referred to here as 
schema variation. Supporting historical data implies the maintenance of the history of 
changes made to the database, and not only the latest updated version. In the implica­

tions section we discuss the different aspects of historical data needed for associated 
data. An important property of a database is its stability, i.e. infrequent updates. In 
physical database design there is usually a trade off between the efficiency of retrieval 
and the efficiency of updating. One can take advantage of stable databases to employ 
more efficient retrieval algorithms in exchange of slower updating. · 

4) Non-standard data types 

The results of the analysis of scientific data are often presented as gra:phs. By text 
we mean not only the usual ability to support character strings of limited size, but also 
the support of unlimited text, such as article abstracts or manual information. The t:i:rne 

series data type is important in scientific databases (as it is for statistical databases) 

because special statistical analysis techniques can be applied to time series. The ability 
to represent the molecular structure of materials is a special requirement of scientific 

data. It cannot be thought of as graphs or images, because it is necessary to be able to 
refer to the details of the structure, such as "double bonds between certain atoms". We 

did not include this category in Table 2 because our examples did not have such a pro­
perty, but it is a well known requirement for chemical property data as can be found in 

many chemical property publications (e.g. The Journal of Chemical Information and Com­
puter Sciences). There is also a need to represent special symbols which requires the 
support of a large character set. By non-scalar data type we mean vectors, matrices, and 
combinations of these. The ability to refer to such objects by name, to refer to element of 
the objects (such as the i,j element), and storing newly generated non-scalar objects as 
part of the database is an essential capability for scientific data. 

Non-standard data types are discussed in [Hampel & Ries 78]. 

5)Databasesize 

The size figures shown in Table 2 are intended to show the amount of associated data 
that is required to support or is generated from a collection (described in section 3.1, 
part 3) above) of experiment data. The bytes figures represent an approximate upper 
bound, and the percentage figures show the approximate size percentage relative to the 
size of the experiment data collection. 
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4. EXAMPLES OF SCIENTIFIC DAT.ABASC3 

In this section we discuss different scientific applications with respect to their pro­
perties as defined in the previous section. For each example there are three parts: 
description, experiment data, and associated data We have tried to select these exam­
ples so that they cover a diverse range of applications. They include simulations, experi­
ments, as well as property data. Some of the applications are described in much detail 
because we felt that they were representative of many similar applications. 

There are ten examples altogether. For the sake of organization, we grouped the 
experiments and simulations into three sections called: regular-sparse, regular-dense, 
and irregular-dense according to their identifier properties. There is no irregular-sparse 
group because such applications are not likely and we did not have such examples. In 
addition to the three groups above, there is a separate section on property data. 

4.1. REGULAR- SPARSE DATA 

4.1.1. Time Projection Chamber 

1) Description 

The Time Projection Chamber (TPC) is a device used in high energy physics experi­
ments to record the sub-particles resulting from particle beam collisions. In a typical 
experiment, two particle beams are accelerated to very high speeds, and made to collide. 
Each such collision, called an event, may produce sub-particles that scatter in different 
directions at different speeds. Often the particles only graze each other and do not pro­
duce the sub-particles desired. Because some events are very rare, and because of the 
need to be statistically accurate, the collision experiment is repeated millions of times. 

It is not important here to describe the details of the TPC device, but it is important 
to understand its operation in order to describe the data generated by it. The TPC is 
essentially a large cylinder filled with ~ certain gas. the collisions occur in the center of 
the cylinder. When particle (or sub-particles) travel through the gas they ionize the gas, 
leaving "tracks" where they pass. In order to distinguish between positive, negative, and 
neutral particles, the TPC is subjected to a magnetic field which causes the charged parti­
cles to travel in circular patterns which depend on their charge. At the two ends of the 
cylinder electrostatic fields are applied and cause the ionized tracks to drift to the ends. 
Special detectors detect the position and time of the drifting tracks, and measure the 
magnitude of ions reaching them. From the position of the detector, the x andy coordi­
nates are determined. From the recorded drift time, the z coordinate can later be calcu­
lated. The data is collected through special hardware in a binary form onto tapes. 

2) The experiment data 

2a) Identifier 

Each data point of the experiment data consists of a pulse measurement of a certain 
detector at a certain time. The identifier of each data point consists, therefore, of the 
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position of the detector and the time. The reasons for considering the identifier as having 

regularity and sparsity are explained next. 

The detectors are placed on the two circles at the ends of the TPC cylinder on con­
centric circles at regular intervals. Because the intervals are regular one can compute 

the actual x-y position of the detectors by knowing the concentric circle number and the 
ordinal number of the detector on the circle. The identifier points are said to be regular, 
because their position can be computed from ordinal numbers, similar to what can be 

done for a mesh of points. 

Readings exist only for the points representing the tracks of the event. Thus, most of 
the detectors readings are null (in reality, below a very low threshold). Only about one 

percent of the potential data points have readings. Thus, the identifier is said to be 
sparse. 

There are several techniques that can be used to store identifier data that is regular 
and sparse. they are discussed in the implications section. the most obvious technique is 
to throw away the null points and to store the identifier of the non-null points with the 
data values. This is indeed what is currently done for the TPC experiment. 

2b) Access pattern 

The first step required before the data can be analyzed is to reconstruct the tracks 
from the experiment data. The method used is to compute each potential track path . 
using physics properties of particle, and to verify that data points exist for it. The pro­
cess of verification involves a search of points along the presumed path. For each such 
point, the neighboring points are also needed because a pulse has a certain width (for 
each pulse about 4-6 neighboring data points exist). 

The above process exhibits the following access pattern. The access type is exact 
match and proximity search, because for each pulse one looks for a particular point and 
a collection of points around it. The access sequence is mostly non-local, because each 
successive collection of points (representing a pulse) are not necessarily close to the pre­
vious search. Once a few point are found, the rest of the points are searched along the 
presumed path. In this case, the access sequence is local, because each successive col­
lection of points would be close to the previous collection. 

2c) Size 

In a typical 6 months period, data about 4 million events are collected. An event is 
run about once per second, and generates an average of about 28k bytes. A (particularly 
interesting) large event may generate about 120k bytes. Thus, the total volume of data 
for this period is about 10 11 bytes. This data is stored on about 1350 magnetic tapes. The 
main difficulty in dealing with such a large volume of data is the mounting and manage­
ment of tapes for processing. A mass storage system would be most useful for such an 
application. 

Since the data for every event can be analyzed independently from the other events, 
they can be considered a separate unit. The process of track reconstruction needs only a 
single unit at a time. However, as discussed later there are other processes that need to 
be nm over a large number of events. 
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3) The associated data 

3a) Configuration data 

Although the configuration data does not explicitly exist as a database, it neverthe­

less exists in the programs analyzing the experiment data. This data corresponds to the 
description of the physical configuration of the detectors on the TPC device. It consists of 
mapping information between the identifiers of detectors as stored with each data value 

and their x-y coordinates. It also includes the mapping of the time measurement to the z 
coordinate. 

3b) Instrumentation data 

The instrumentation data is quite extensive and has many components. There is cali­
bration information for each of the 16,000 channels associated with each of the detectors. 

This information is used to adjust the readings of the detectors. There is other informa­
tion representing the distortions due to imperfections in the magnetic field, the changes 
in the electric fields over time, etc. All this information is necessary in order to calibrate 
the experiment data. 

The total amount of instrumentation data is a few megabytes. It is not very large to 

manage, but it is complex since it contains many components. It is not obvious how to 
best organize such information in a database management environment. 

3c) Analyzed data 

The analysis process has many steps that necessitate a number of passes over the 

experiment data. Each step generates data files that are used in later steps. For exam­
ple, one of the passes generates histograms over the experiment data. These histograms 
are used to determine constants for further analysis. A set of (multi-dimensional) histo­
grams is taken over a collection of about 2000 event, and occupies about 400 kbytes. 
There are about 2000 such sets over the experiment data. These histograms are exam­

ples of non-standard data types that require the capability of managing an entire data set 
as a single item. 

The final result of this analysis process is to produce summaries about tracks that 
belong to events. These summaries form the databases that need to be searched for 
interesting phenomena. Typically, the access type is a range search over some particle 
measures such as mass and. momentum. The access sequence is non-local since there no 
a priori correlation between successive queries. 

3d) Summary data 

Further analysis over the track and event data usually results with graphs and histo­
grams. These files need to be managed as non-standard data types. 
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4.1.2. Limited track recon,stru.ction 

1) Description 

Limited Track Reconstruction (LTR) is another example of a physics experiment that 

produces data whose identifiers are regular and sparse. However, unlike the previous 
Time Projection Chamber example (TPC), where the main interest was in mapping pre­

cisely the tracks of sub-particles, the main interest in this example is to get detailed, 
high resolution measurements on the properties of particles. One can think of these two 

examples being at two ends of a spectrum. TPC records many point along the track, but 
for each point it measures very few parameters (the charge of the ionized gas) in low 
resolution. LTR, on the other hand, takes many measurements (10-30) at high resolution 
at a single point for each sub-particle. Therefore, the processing requirements of the two 

example are different. 

LTR experiments usually involve a particle beam that collides with a stationary tar­
get. The detectors are placed in a configuration of a ball around the point of collision . 

. Many types of detectors are used at each detection point on the ball. Different detectors 
are needed for the different types of particles that may be produced. The different detec­
tors at each detection point are put into a structure called a "telescope". Each sub­
particle reaches a single telescope, and all measurements for that sub-particle are taken 
by the detectors in the telescope. The reason for the label "Limited Track Reconstruc­

tion", is that a track is determined from information gathered at one point only by the 
corresponding telescope. 

2) The experiment data 

The telescopes are placed in a regular configuration on the ball. Data is kept only for 
the telescopes that sub-particles reached. Thus, the data is regular and sparse. However, 
each data point has many measurements associated with it. 

Since there are no tracks to follow there is no need for exact or proximity access 
types as observed in TPC. Similarly, there is no locality in the access sequence. Most of 
the processing can be done for each of the events in an arbitrary order. There is some 
level of ra:nge access type when events with certain characteristics are searched. 

The size of the data is estimated at an order of magnitude smaller than TPC because 
the number of points measured is smaller. 

3} The associated data 

The configuration data is fairly simple ·because of the regularity of data points. How­
ever, the instrumentation data is complex since there are many variables that change 
over time and need to be recorded and managed. These time dependent variables include 
currents in some 50 magnets, pressure in the target chamber, slow drift in voltage and 
temperatures, and drift in the calibration of detectors and other instruments. The 
analyzed data consists of tracks, events, and their properties. Since there is a large 
number of measurements for each sub-particle and each event, the analysis pf the data 
involves range access type over multi-dimensional space, where each dimension is a cer­

tain measurement such as energy, charge, mass, etc. Summary data is similar to TPC. 
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4.2. REGULAR- DENSE DATA 

4.2.1. Hydrodynamics - Ditlerence Methods 

1) Description 

Hydrodynamics calculations are concerned with modelling the flow of fluids (liquids 
or gases). Such problems arise in combustion modelling, magneto-hydrodynamic calcula­

tions of laser and magnetic fusion, turbine modelling, air pollution simulation, nuclear 
weapons simulation, ICBM reentry vehicle design, weather modelling, aircraft design, etc. 

Typically these problems involve the numerical solution of certain partial differential 
equations. This is usually done by repeatedly calculating the values of the fluid flow on a 
set of points defined by a spatial grid (mesh) at short time intervals. Some subset of the 

calculated data i.9 saved on disk for subsequent post-processing. 

The post-processing typically consists of generating various plots describing some 
portion of the solution. Typically the plots have lower dimensionality than the problem 
(i.e., 2-dimensional vs. 3-dimensional + lime). 

Various hydrodynamic computations may be distinguished by the types of meshes 

they employ. The value of the fluid flow at each mesh point is calculated from the values 
of the flow at the previous time step at the same and adjoining mesh points. We refer to 
the adjacency relations of the mesh points as the "logical" structure of the mesh. The 

"spatial" characterization of the mesh refers to the relationship of the mesh points to 
"real world" spatial coordinates. During the computation the logical structure of the 
mesh is exploited to access adjoining mesh points needed to perform the calculation. The 
classification of meshes is described below in terms of their logical and spatial structures. 

Data management for hydrodynamics is extensively discussed in [Bell 83]. 

2) Experiment Data 

2a) Identifier 

Since meshes have both logical and spatial structures, the identifiers of mesh points 
are expressed in both terms. 

The simplest hydrodynamic mesh structure is a spatially uniform. mesh. It is logi­
cally regular. 

If we continuously deform the mesh, e.g., by wrapping it around an airfoil, then the 
resulting mesh is spatially non--uniform, but still logically regular, i.e., the adjacency 

relationships of the mesh points have been preserved. Logical regularity facilitates 
nearest neighbor searches, without requiring the examination of spatial coordinates. 

If we apply finer grained mesh patches to the original mesh to enhance the computa­
tional accuracy in certain regions, then the logical structure of the resulting mesh is 
locally regular. As before, the spatial structure may be either uniform or non-uniform. 

If we permit mesh points to move with a turbulently flowing fluid, then the original 
adjacency relationships will not be preserved. Hence the resulting mesh is logically irreg­
ular. 
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Hydrodynamics data is dense, i.e., there are non-null data values associated with all 

defined mesh points. 

Mes-hes may either remain fixed over time or they may move (e.g. with the flow). 
Spatial movement increases data storage requirements and complicates retrieval based 
on spatial coordinates (during postprocessing). Time variation of the mesh always affects 
the spatial structure of the mesh. It may or may not affect the logical structure of mesh. 
If the logical structure is not affected (and was initially regular) the logical regularity of 
the mesh can be used to efficiently access nearest neighbors. 

2b) Access Pattern 

During the computation phase the access pattern consists of a sequence of clusters 
of spatially proximate references (all the nearest neighbors of a point). Regularity in the 
mesh permits nearest neighbors to be accessed via simple array index calculations. If 
the logical structure of the mesh is irregular but time invariant, then the nearest neigh­
bors of each point can be found (by means of nearest neighbor searches on the spatial 
coordinates) and recorded by means of pointers. Hence subsequent accesses can be per­
formed by following a pointer (i.e., constant time). If the logical structure is both irregu­
lar and time varying then the nearest neighbors must be determined dynamically, by 
means of repeated nearest neighbor searches over the spatial coordinates. 

In some types of computations the sequence with which mesh points are updated is 
crrbitrary, in others there is spatial locality in the reference sequence. 

There are several difrerent types of postprocessing accesses. Usually these accesses 
are framed in terms of the spatial and temporal coordinates. Often they consist of 
requests for a spatial or temporal cross-section of the data. If the data points do not 
exist on the cross-section, interpolation from adjacent grid points is necessary. This gen­
erates special types of proximity searches, e.g. nearest neighbors of a plane (rather than 
a point). 

One way of portraying the tluid flow is to simulate the effect of injecting a dye into 
the fluid at a particular point. The dye would be carried along with the tluid flow. Since 
the path of the dye particles is continuous in space and time, the simulation generates 
proximity searches on the spatial and temporal coordinates. 

All of these data acces~es characteristically exhibit locality of reference in the coor~ 
dinates of the problem (space and time). 

There is some interest in accesses which would identify regions of turbulence or 
shock waves. Such queries ask about the values of the flow field (curl for turbulence, gra­
dient for shock wave.). This is an unusual example of a search on the data values (instead 
of the identifiers). 

2c) Size 

Typically a single hydrocode run might generate one billion words (B bytes each) of 
data (i.e., a 1 million word mesh run for 1 thousand time steps). Hence the data size per 
time step (unit) is about 107 bytes. Often, if the data is only being stored for graphical 
post-processing it will be stored in reduced precision (i.e., 2-3 bytes per word instead of 
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8). Thus the data size is generally 109 to 1010 bytes per problem (caUection). Often only a 
fraction (5 to 20 percent, i.e., 108 to 109 bytes) of the time steps will be saved, due to 
storage constraints. One problem might consume a few hours of CPU time on a powerful 
machine such as a Cray or Cyber 205. A large site might generate as many as 20 such 
runs per day, keeping the complete results for several days. Hence the total size of the 
database {1011 to 1012 bytes), and sampled results for several months {100 days), i.e., 1010 

to 1011 bytes. 

3) Associated Data 

3a) Configuration Data 

The geometry, boundary conditions, initial conditions, and initial mesh geometry 
constitute the configuration data These data may change from one experiment (simula­
tion run) to another. 

3b) Instrumentation Data 

There is no instrumentation data 

3c) Analyzed data 

The analyzed data consist of the graphics post-processing output. In a two­
dimensional computation this would consist of a sequence of contour maps of scalar vari­
ables (e.g., pressure), vector plots of velocity vector fields, and streamline plots {e.g., 
generated from dye injection studies). Sometimes a sequence of plots will be combined to 
make a movie. 

3d) Summary data 

Conservation of mass, energy, and momentum are checked by keeping track of the 
total mass, energy, and momentum in the system at each time step. While the total mass, 
energy, and momentum in the calculation is conserved, users are often interested in the 
transfer of energy {or mass, momentum) between portions of the system. Often users will 
conduct parametric studies of various phenomena, studying how certain figures of merit 
of some system varies as function of initial or boundary conditions. Examples of sum­
mary statistics used in such parametric studies include: 

{1) drag coefficients of airplane wings, 

(2) location of shock waves on airplane wings, 

(3) yields of nuclear explosions, 

(4) growth coefficients (e.g. rate of growth of plasma instabilities), 

(5) rate of movement of fluid interfaces, 

{6) amount of energy transferred into a laser fusion target. 
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4.2.2. Two Dimensional N:MR Spectroscopy 

1) Description 

Nuclear Magnetic Resonance (NMR) spectroscopy is a technique for investigating 
chemical structures. A sample is placed in a strong magnetic field so that the magnetic 
dipoles of the atomic nuclei of the sample are aligned. A radio-frequency (RF) signal is 
then applied to the sample, causing the nuclear magnetic dipoles to rotate (at their pre­
cession (or resonant) frequencies). The RF signal is removed and the RF generated by the 
rotating magnetic dipoles in the sample is measured (periodically sampled in the time 
domain). · The spectrum is then obtained by applying a Fast Fourier Transform (FFT) to 
the measured RF time series. The RF spectrum generated by the sample has peaks at the 
natural resonant frequencies of of the sample. These resonant frequencies are affected 
by the nuclear and chemical structure of the sample, and can thus be used to investigate 
these structures. 

In NMR spectroscopy it is customary to wait for a period of time (called the evolution 
time) after the RF excitation has been applied to the sample (and turned off) for the sam­
ple to "evolve". Then the RF generated by the sample is repeatedly measured at fixed 
time intervals, called the detection times. In two-dimensional (2D) NMR spectroscopy a 
set of NMR spectra are repeatedly taken at fixed increments of the evolution time. A 
two-dimensional spectra is formed by first applying an FFT to each RF time series (i.e., 
rows of the data matrix) producing a second matrix (each of whose rows now contains the 
NMR spectra for a particular evolution time). Then a second FIT is applied to the result­
ing columns, each of which contains the same frequency component for all evolution 
times. The resulting two-dimensional spectrum provides information on the "evolution" of 
the sample, i.e., how energy is transferred between resonances. 

2) Experiment Data 

2a) Identifier 

The experiment data consists of the a set of time series of RF measurements taken 
at fixed time increments of detection time. A separate RF time series is taken at each 
increment of evolution time. Hence the identifiers of the experiment data consist of the 
detection times and the evolution times. 

Because of fixed sampling intervals in detection time and evolution time the experi­
ment data is entirely regular, comprising a completely full (dense) rectangular array of 
data. 

2b) Access Pattern 

Before any FITs are performed the input is smoothed by computing moving averages 
of the each detection time series of RF measurements (row). This entails linear access to 
the data, row-wise. Then an FFT is done on each row, then on each column of the result. 
Each FFT generates a local access sequence on a different dimension, i.e., first local to a 
row, then local to a column. Hence, if the array will not fit into memory, the computa­
tions consists of performing row-wise FFTs, then transposing the array, and performing 
the second set of FFTs. The transposition generates non-local access sequences. At 
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present the data analysis is disk bound, i.e., limited by the disk accesses required to tran­
spose the array. 

2c) Size 

Currently a typical experiment consists of 256 by 256 data points where each data 
point is comprised of a complex number {i.e., two scalar values) measured by 10 bit 
analog-to-digital converters. Currently each scalar value is stored in 16 bits {2 bytes). 
Thus the experiment data occupies 216 bytes (.25 MB) per experiment (collection). An 

experimenter might conduct an average of one experiment per day. Data acquisition is 
presently constrained by analysis capabilities {see below), not experiment equipment. It 
is expected that future experiments will go to 2K by 2K data points, i.e., 224 bytes (16MB). 
It is commonplace to keep hundreds (perhaps a thousand) of such spectra, so that the 
total size of the spectral data will range from 106 to 1010 bytes. 

3) Associated Data 

3a) Configuration Data 

The configuration data consists of a specification of the sample (its chemical compo­
sition, temperature, etc.), the excitation RF pulse sequence, and the repetition rate for 
the spectral measurements. 

3b) Instrumentation Data 

The instrumentation data consists of calibration data for various analog-to-digital 
converters, RF probes, temperature probes, etc. 

3c) Analyzed data 

The analyzed data consist of the two-dimensional spectra. This data is comparable in 
size to the input data It is usually reported as plots, either contour maps or tree­
dimensional drawings. Such graphical data constitute non-standard data types. However, 
at present such graphics are not stored digitally. Instead they are redrawn when needed 
from the stored spectra. 

3d) Summary data 

Often curves will be fitted to spectral peaks, and the location, height, and width 
(scale parameter) recorded as summary statistics. A sequence of experiments with vary­
ing chemical conditions or excitation sequences may be reported {via tables or graphs) in 
terms of the effect on the fitted parameters of various spectral peaks. 
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4.3. IRREGULAR- DENSE DATA 

4.3.1. Heavy Ion Spectrometer System 

1) Description 

The Heary Ion Spectrometer System (HISS) is a device used in nuclear physics to 
study the nucleus break up process in catastrophic collision involving heaVy ions. A heavy 
ion particle beam is accelerated to a high speed, focused, and aimed at a stationary tar­
get. Each collision between heavy ions, called an event, produces fragments that are sub­
ject to a strong magnetic field and scattered in different spirals depending on their 
charge, mass, and velocity. Each spiral is detected by two detectors, called drift 
chambers. Each drift chamber is filled with gas and has a fine mesh of electronic sensors 
which can detect the ionized gas caused by the passage of the fragments. The sensors 
can detect the x and y positions of the fragments, as well as their charge. A device, called 
the "time of tlight wall", is put next to the drift chambers to detect the fragments after 
they leave the drift chambers. The speed of each fragment is determined by the time-of­
flight-wall. The data, which include the x, y from the two chambers, speed, charge, and 
other information is recorded and stored on tapes. A limited track of each fragment can 
be reconstructed from three points: the x, y of the two chambers and the collision target 
position. 

2) The experiment data 

2a) Identifier 

The way data is generated in HISS is similar to TPC in that each data point consists of 
a measurement of charge by a certain sensor. However, we classify the HISS data as spa­
tially irregular due to the fact that the drift chambers can be placed in arbitrary loca­
tions from experiment to experiment or even during experiments. Since each chamber 
generates a single x, y position for each fragment, the data is classified dense. 

2b) Access pattern 

The track reconstruction process in HISS is much simpler than TPC since only two 
points are detected for each fragment. The access type if exact match because the 
points which are used for track reconstruction are discrete in space. Since the recon­
struction can start at any one of the three points, the access sequence is classified as 
non-local access. 

2c) Size 

Each experiment typically runs for a few months for a total of 100 to 150 hours of 
experiment time. During experiments, a beam is shot at the target every 5 seconds for 
the duration of one second. During that 1 second period, lOOK words of data are col­
lected. There are on the average 100 collisions in a second. Each collision is an indepen­
dent event, therefore the unit size is 103 words. From the above figure, a collection size 
(over the few months) is in the order of 1010- 11 bytes. About 10 such collections are kept 
available for a total of 1012 bytes. 
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3) The associated data 

3a) Configuration data 

The configuration data of HISS consists of the physical layout of the instruments. This 

includes the physical position and kind of target, the physical positions of the drift 
chambers, the kind of gas, its pressure and temperature, the position of the magnet, the 
time of flight walls, etc. The configuration data is typically small and rather stable. The 

data is currently embedded directly into the logic of the analysis programs. One impor­

. tant requirement is to isolate this data from the analysis programs in order to remove the 
redundancy of having the same data appear in each analysis program. Also, this will pro­
vide an opportunity to model the data in a more uniform manner. 

3b) Instrumentation data 

A large part of the instrumentation data for HISS consists of calibration data for the 
1200 sensors in the drift chambers. There are also hundreds of power sources, magnetic 
field and voltage variations, etc., which have to be maintained to calibrate the experiment 

data. Textual information is also needed to document unusual happenings such as failure 
of certain instruments. The instrumentation data in HISS is fairly dynamic. As a result, 
the association of this data with the experiment data is very difficult to handle if the 

instrumentation data is part of the analysis programs. 

3c) Analyzed data 

Different groups of physicists produce different sets of event data from the raw track 
data. Each set is called a "physics file". A physics file, on the average, contains about 109 

bytes, usually stored on tapes. The access type on these physics files is typically range 
search on the number of tracks, charge of fragments, etc. 

3d) Summary data 

Histograms and scatterplots are generated from the analyzed data in order to look 
for statistically interesting event types. These summary data are subject to further mani­
pulation to confirm, predict, or reject nucleus theories. 

4.3.2. Passive Solar 

1) Description 

The passive solar experiment involves a large simulation code of heat transfer to 
study the sun energy performance in actual buildings such as residences and industry. 
The input to the code consists of two files, a weather file which describes the initial 
weather conditions, and a physical building file which specifies for each building, the 

zones (which can be thought of as rooms), the surfaces of each zone (such as a wall), and 
parts of surfaces (such as windows and doors). A typical building consists of lO's of zones, 
30 to 40 surfaces per zone for residential buildings, lOO's of surfaces per zone for com­

mercial building. The code is typically run on thousands of time steps where at each time 
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.. 

step, all data associated with each surface in each zone is calculated based on the data of 
its neighbors. 

2) The experiment data 

2a) Identifier 

There is no regular mesh of data points in this experiment, since the placement of 
data points depends on the building configuration. The identifiers of the data points have 
to be enumerated by their positions in the building, hence they are classified as irregular. 

Since every data point always has values associated with it for all time steps, the data is 
classified as dense. 

2b) Access pattern 

The computation of a point in a particular time step requires the access of all its 
nearest neighbors. Hence the access type is proximity search. The access sequence of 
data points, however, is arbitrary, since the order of access of data points is not predeter­
mined. 

2c) Size 

A typical run of the simulation generates a collection of 10 million numbers, and con­
sists of 9000 time steps. The unit size is in the order of 104 -5 bytes. Such simulations are 
run up to several thousand times a year. So the total data size is in the order of 1010- 11 

bytes per year. 

3) The associated data 

3a) Configuration Data 

The configuration data consists of the weather file (about 105 bytes), representing the 
boundary conditions of the simulation, and building description file (about 104 bytes). 

3b) Analyzed data 

Subsets of the simulation results are stored primarily to avoid having to rerun the 
simulation up to a certain time step. But sometimes it may be less costly to rerun the 
simulation than to save the intermediate data generated because of the number of time 
steps in each simulation run . 

3c) Summary data 

Summary data is generated from the raw data. Several levels of summarization 
exist. They range from a low level of summarization where the average temperature is 
determined for each time step, each building, and each zone, to the high level of summar­
ization where the total energy needed to heat or cool a building is computed. 
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4.3.3. Vortex modelling of turbulent flow 

1) Description 

Random vortex modelling is an unusual method in that it does not use a predeter­
mined geometry such as a mesh. This technique was developed for modelling turbulence 
flow because this phenomena is so complex that regular techniques which solve the 
appropriate set of differential equations require such mass of data and computation that 
overwhelms any computer capability available currently. Such a modelling method is 
very important because nearly every physical phenomena, e.g cloud motion, ocean waves, 
engine combustion, water flow, etc., involves turbulence. 

. It is not necessary here to understand the method; it suffices to know that the 
method models a collection of vortices in space. Each vortex is modeled as a point in 
space with values that represent the vorticity of that point along with other measure­
ments such as temperature. 

2) The experiment data 

The experiment data consists of the vortex points. These points are placed in space 
in a pattern that is irregulr:rr. In areas where the turbulence is high (e.g. near walls, or 
where fluid is injected) there is a large number of vortices in order to represent the tur­
bulence more accurately. In low turbulence areas only a small number of vortices is 
required. As the simulation progresses the vortices move around. Thus, the vortex points 
are time varyi:ng. 

The computation of points for the next time step requires looking for neighboring 
vortices. Thus the access type is proximity. At times a certain region of the space is 
needed for further analysis, and a ra:nge search is performed. The analysis of flow 
involves techniques such as simulating "dye injection" {described previously in the Hydro­
dynamics example), where the imaginary movement of the dye is followed. Such tech­
niques imply a Local access sequence because each successive step needs points that are 
close the the points of the previous step. 

The size of the database is limited by practical considerations of cost and processing 
time. It is always possible to refine the simulation by introducing more points. The size 
of an entire simulation (collection) is in the order of 108 bytes. there are 100-1000 time 
steps, but because of space limitations only part of the steps are stored. The size of a 
time step (unit) is about 106 bytes. The total amount data kept is in the order of 1010. 

3) The associated data 

The configuration data can be quite complex depending on the shape of the boun­
daries assumed. Since it is a simulation there is no instrumentation data. The Analyzed 
data consists of results representing the flow movement. The results are best displayed 
in a graphical form. and require the ability to store such images. Even a greater need is 
the display of the movement of flow in real time. This cannot currently be done because 
of the large amount of data that has to be fed to the display and because of cost limita­
tions. 
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4.3.4. Laser Isotope Separation 

1) Description 

The purpose of the Laser Isotope Separation experiment is to develop a technique for 
recovering the reusable isotopes from nuclear waste materials. The nuclear waste 
material is ionized and vapors come off. A laser beam is directed into the vapor and 
causes the reusable isotopes to separate from the non-usable isotopes. There are sensors 
that measure the properties of the isotopes after they were separated. Each sensor is 
connected to an analog-to-digital converter. Each converter can handle several sensors. 
Measurements are taken every second, and a typical experiment runs for 12 hours. 

2) The experiment data 

The data collected from the sensors make up the experiment data. The sensors can 
be placed in any position desired by the experimentor. Therefore, the identifier is con­
sidered i:rregular. The data from all the sensors is recorded continuously. Thus, the data 
is dense. 

A typical analysis of the data consists of selecting a subset, looking for trends, and 
interpolating results. The selection of subsets implies a range access type. In order to 
support the interpolation a nearest neighbor search is performed. This suggests a prox­
imity access type and a local access sequence. 

There is no size per unit in this example because the experiment is not made up of 
independent units. The size of a single experiment, running over a 12 hour period, is 
about 107- 8. There are scores of experiments in total, so the total size is in the order of 
1010 bytes. 

3) The associated data 

The ·configuration data consists of the positions of the sensors and the information of 
the converters that they connect to. Both can change within an experiment. The sensors 
can be moved around to achieve better readings, and they may be moved from one con­
verter to another if a malfunction occurs. This requires that the history of changes is 
recorded carefully, and available during the analysis process. 

The instrumentation data is fairly extensive. It consists of the information about 
each sensor and each converter (e.g. bias and amplification). This information is continu­
ously monitored and recorded in order to insure the proper adjustments of the measured 
data. The experiment data is subjected to repeated analysis and summary. 

4.4. PROPERTY DATA 

4.4.1. Particle Data 

1) Description 

The Particle Data Group (PDG) is a member of the international High Energy com· 
munity whose purpose is to compile data and information in a highly evaluated and 
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summarized form. The best known of these compilations is the Review of Particle Proper­
ties. Other compilations include the current experiments in elementary particle physics, 
and a large bibliographic database containing data in elementary particle physics. In 
addition to the common database management requirements such as retrieval, data 
definition, and data manipulatiqn, there are needs for efficient literature-searching capa­
bility, sophisticated text processing with mathematical symbols and fonts that are main­
tained by the database system, and very high quality phototypesetting for their publica­
tions. 

2} Access patterns 

The access to the database is a mixture of exact and partial match. An example of 
the former is to look for all the data associated with a particular particle; an example of 
the latter is to retrieve the citations in the database containing some relevant keywords. 
Another access type is hierarchical browsing where the database is traversed to look for 
desired items. The access sequence is typically non-local. Publication of particle pro­
perty data involves primarily linear access sequences. 

3} Data modelling 

Particle properties data is primarily hierarchical. An example is that a particle can 
have several deflecting angles called branching ratios, and each branching ratio can have 
multiple decay modes. There are also many-to-many network relationships among data 
items. An example is the relationship between publications and particles, since one publi­
cation can include data on many particle properties, and data on one particle property 
can appear in many publications. Another example is the relationship between decay 
modes and branching ratios which represents a many-to-many relationship. 

4} Non-standard data types 

The dominant data type is the variable-length text for the bibliographical data. 
Other data types include special symbols for the mathematical notations and graphs for 
storing data such as scatterplots. 

5} Usage 

The usage of the particle property data includes interactive user access, literature 
searching, analysis program access, update of particle data, appending of new data, and 
data transfer to text processing systems. 

6} Size 

Particle data is relatively small. The bibliographic database is about 75 ME. The par­
ticle property data is only about 4 MB. 

• 
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4.4.2. Nuclear Structure Data 

1) Description 

These activities are concerned with recording, evaluating, and tabulating data about 
the structure of atomic nuclei, the allowable states of the nuclei, and the reactions by 
which nuclei decay from one state to another (possibly different nuclei). 

The database consists of three types of data: 

( 1) raw nuclear data 

(2) evaluated nuclear data 

(3) bibliographic citations. 

Much of the activity of the database maintenance and publication consists of evaluat­
ing the various experiment data to construct a "best estimate" of various data values. 
The evaluation process is partly subjective, and partly statistical. 

The compilation of nuclear structure data is used for research in the systematics of 
nuclear properties, to study particular reactions, and for nuclear engineering {reactor 
and waste disposal calculations). 

Until recently the primary form of dissemination consisted of printed publications, 
which remain important. Recently interactive access to the database has been provided 
to general users. 

In addition to the need for data management functions, this project requires efficient 
literature-searching capability, sophisticated text processing with mathematical symbols 
and fonts that are maintained by the database system, and very high quality photo­
typesetting for their publications. 

2) Access pattern 

There are three types of queries: 

( 1) finding the value of some property of a particular isotope, 

(2) spectral matching -given an observed set of decay products, identify the isotope, 

(3) and bibliographic searches. 

Property retrievals are usually either exact or partial match on the isotope and property 
name. Identification searches, in which one attempts to identify nuclear isotopes from 
decay products, lead to proximity searches (nearest neighbors) or range queries (fixed 
radius neighbor searches). Bibliographic searches are typically partial match on authors, 
keywords, or exact match on citation (accession numbers listed with experimental data). 

Browsing access tends to generate non-local access sequences. Linear access 
sequences are generated by some evaluation and tabulation (for publication) activities. 

3) Data modeling structures. 

Nuclear data is primarily hierarchical. However, there are also many-to-many net­
work relationships among data items similar to those found in the particle data discussion 
above. Such relationships exist between publications and nuclear properties, and between 
decay modes and branching ratios. 
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4) Non-standard data types 

Non-standard data types include textual annotations, bibliographic citations, and 
graphs. The textual data includes special symbols, e.g .. Greek and mathematical nota­

tion. 

5) Size 

The database size is approximately 40 MB. 

5. IMPLICATIONS 

The implications derived in this section can be best followed by referring to Table 1 

for experiment data and Table 2 for associated data. The organization of these tables was 
designed after the information on the different applications was collected in order to clar­

ify its presentation. However, we believe that these table structures can be used to clas­

sify additional applications. Once the appropriate entries are filled for an application, one 
could quickly draw conclusions on its requirements and the possible data management 

techniques to support it, along the lines discussed below. 

5.1. EXPERIMENT DATA 

We discuss the entries of table 1 by referring to its rows because the rows represent 

observations about each property. The sections below are organized according to the row 
groups in the tables. The first section labeled "experiment/simulation" is merely to iden­

tify whether each example is an experiment or simulation for later reference and for clar­

ity. 

1) Identifier 

Identifiers whose dimensions have a regular structure are quite common. The main 

reason is that simpler algorithms can be developed for them, and that the data can be 

organized in an orderly fashion. The simplest case exists when the configuration of the 
experiment or simulation forms a multi-dimensional mesh. In such a case there is no 
need to store the identifiers of the data because the position of each data point can be 
calculated using the "array linearization" technique mentioned in section 2. Indeed, the 
array capabilities of programming languages have been used extensively by scientific 
application. This suggests that an array linearization access method would be most desir­
able in a scientific data management system. The advantages of such an access method 
is that it requires no storage for the identifiers and provides a very efficient random 
access {a simple computation) to the data points. 

The situation is more complex when the configuration is not simple, such as 

representing an airplane wing or the shape of a combustion chamber. In such cases a 
mesh that covers the entire configuration can be imposed, and all the points outside the 

configuration boundaries are considered null. This approach introduces a certain level of 
sparsity in the data points. We will discuss sparsity below. 
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Other forms of regularity may exist. One is the regular placement of points along 

some geometric shape, such as concentric circles. Another occurs when two kinds of reg­
ular structures co-exist, such as having a finer mesh in certain regions of the 

configuration. In such cases the mapping algorithm of logical points into a linear 
sequence is more complex than array linearization, but they still provide storage savings 

and more importantly a fast random access to the data points. 

As can be seen from Table 1 there are several examples of irregular identifiers. 

Irregular identifiers do not necessarily have to be explicitly stored with each correspond­
ing data value. Rather, the irregular dimensions {such as th_e_different walls of a building) 
can be stored once and enumerated. Thereafter, the identifiers can be calculated using 

array linearization over the enumerations. Irregular dimensions are most common in sta­
tistical databases (such as state, race, sex, and cause of death for mortality data), where 
the enumeration of each dimension and array linearization over them is a most effective 
method. 

Data sparsity means that only a fraction of the points in the full cross product of the 
dimensions have actual values associated with them. There are basically two options: 
either to store the identifiers of the valid data points. or to compress out the non-valid 
(null) data points. Compression methods, such as run length encoding {which introduce a 

count into the data stream in place of each sequence of null points) can be quite effective, 
especially when the null points are clustered to form long sequences. However, such 
compression methods (as is the case with storing the identifiers) require sequential scan­
ning of the data in order to select a particular point randomly. Indexing methods require 
too much space for large databases and may be prohibitive. 

In [Eggers & Shoshani 80] a compression technique, called header compression. 
which provides fast (logarithmic) access was proposed for statistical databases. It basi­
cally organizes the run length counts into a separate header, in such a way that the 
header can be searched in logarithmic time with respect to the number of counts. This 
technique can be applicable for sparse scientific data as well, since it used effectively with 
multi-dimensional data. 

When the identifiers are time varying there is no choice but to store them, since they 
change from one time step to the next. In the case that the data is also regular, there is 
an additional requirement that the original relationship between the points is maintained. 
To see this point, one can imagine a mesh of points connected by rubber strings. The 
entire structure can then be stretched and compressed in successive time steps. The 
maintenance of these relationships can be achieved with techniques applicable to regular 
data. When data is irregular and time varying. the relationship between the data points 
changes from one time step to the next, and has to be deduced from the stored 
identifiers. 

Time varying applications are not as common as other applications, but they 
represent an important class of modelling techniques. 
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2) Access pattern 

From Table 1 it can be seen that the access types of exact match and proximity 
search are important. Exact match implies, in general, the need to access specific data 
points randomly. To accommodate such a requirement some kind of an indexing or a 
hashing technique is required. Fortunately, one can take advantage of the multi­
dimensionality of the data. The mapping of multi-dimensional space to linear space dis­
cussed above (e.g. array linearization) provides a key-to-address mapping that is 
equivalent to hashing. In addition, some multi-dimensional to linear mappings provide 
advantages for proximity search as discussed below. 

To support proximity search it is necessary to preserve logical locality in physical 
storage. That is when points are logically close to each other in the multi-dimensional 
space, it is desirable that they are physically close in physical space. This suggests the 
organization of physical storage into cells along the dimensions of the identifier. The data 
points within a cell will satisfy the proximity requirement. For elements on the borders of 
cells it is necessary to access adjacent cells, and therefore the placement of cells in phy­
sical storage is also important. The mapping of multi-dimensional space to linear space 
mentioned above works well with such a cellular organization because it does not disturb 
the logical proximity of the data points. An arbitrary hash mapping would place data 
points into cells (buckets) which would not necessarily preserve logical proximity. 

The range access type does not seem to be as important. Nevertheless, the cell 
organization should benefit range access because the data is organized according to the 
dimensions for which ranges are specified. 

Referring again to Table 1 it seems that local access sequence is also important. The 
cell organization is also helpful here because local points are likely to be in the same cell. 
The question of how to organize the cells arises here again. If the paths of local access 
sequences are known or predictable, then the cells should be organized along these paths. 
The benefits of such ideas need to be investigated. 

Nan-local access sequence is not as prevalent as local access sequence. However, it 
can be supported well with cell organization. The reason is that it complements the 
requirements of exact match, since it implies the need for a random access of the data 
points. Li:n.ea:r access sequence contlicts with the idea of a cell organization, because the 
linear sequencing of the data is broken. However, it does not seem to be an important 

· requirement. If data was organized "linearly" to accommodate this requirement, proxim­
ity search and local access sequence will be performed less efficiently. 

An arbitrary access sequence is quite common. It usually implies that the entire 
data set needs to be processed. and that the order of points is irrelevant. This suggests 
that parallel processing can be performed over the data. This only complements the cell 
organization approach, since the cells could be placed on parallel devices for parallel pro­
cessing. 

In summary, it seems that the cell approach is most desirable since it accommo­
dates the most important requirements. The organization of cells should be along the 
dimensions of the identifier, since they preserve logical locality. The approach of map­
ping the multi-dimensional space into linear space only complements this cell organiza­
tion. There are several papers that discuss the organization of data into cells [e.g. 
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Nievergelt et al 84]. They mostly emphasize the compression of sparse data into cells. 
While such an approach is important for sparse data, it is unclear how well such methods 
will work far the access requirement mentioned here, such as proximity search and local 

access sequence. 

3) Size 

The most important observation that can be made from the size figures in Table 1, is 
that although scientific databases are large, they can often be partitioned into small 
independent uniis. The units are small enough that much of the processing can be done 
in main memory. In general, experimental units can be processed in parallel, since they 
are independent of each other. Simulation units {time steps), on the other hand, usually 
follow each other in sequence. Note that simulation units are typically larger than experi­
mental units. 

Unit processing is only one part of the analysis process. Other types of processing 
need to search and access entire coUections. Ail can be seen from the collection figures 
in Table 1, some collections are so large that they cannot be practically stored on mag­
netic disks. In such cases, the data is currently stored on tapes and the mounting of 
those tapes becomes a major problem. Current solutions are to process the data sequen­
tially once, to collect interesting subsets, or to break the data into redundant smaller 
sections. It is obvious that larger secondary storage devices {such as optical disks) could 
be helpful. 

4) Associated data 

Associated data is discussed in the next section. The different types of associated 
data were included in Table 1 in order to point out their importance and prevalence. 
Nearly all applications have all types of associated data. The obvious exception is that 
simulations do not have instrumentation data. 

5.2. MSlCIATED DATA 

Table 2 summarizes our observations on the different types of associated data. We 
could discuss these observations by row for each class of properties or by column for 
each type of associated data. A close observation of the table reveals that there are many 
similarities between the configuration and instrumentation columns, and between 
analyzed data and summary data columns. This is not very surprising since these two 
groups represent support data and generated data and should have similar characteris­
tics. In fact, early on we did not make this finer distinction, but later we found that it 
helped sorting out the different aspects of scientific data. 

Accordingly, we will discuss properties in Table 2 in three parts: the support data 
{configuration and instrumentation data), the generated data {analyzed and summary 
data), and property data. 

-29-



1) Support data 

The access type for support data is mostly exact match. A typical access involves 
finding a particular configuration point and the particular instrument associated with it. 
Proximity search is sometimes needed. For example, if a certain instrument failed, the 
configuration data may be consulted to find the instruments in neighboring locations. The 
access sequence is mostly non-local, which indicates that successive queries are unre­
lated. Thus, the access requirement for support data is mainly random access. 

The data modelling requirements are fairly conventional, i.e. modelling of entities 
that have hierarchical or network rela,tionships. The relationships between the different 
instruments and detectors are part of the configuration data. Generalization is an impor­
tant modelling tool for instruments, as generic information can be represented once and 
inherited by each particular instrument in that class. 

An important exception to the conventional modelling requirements mentioned 
above is geometric modelling of configuration data. In many examples the geometry is 
quite regular and could probably be modelled with simple types {points, lines, circles, 
etc.). However, geometric shapes may be complex enough to require special modelling 
techniques similar to those required in engineering databases [Lorie 82]. 

Another major requirement is for the support of historical data. Instrumentation 
data change continuously over time, and the entire history of changes has to be recorded. 
In addition, logs of the operation, such as when an instrument failed, who was in charge at 
the time, etc. need also be recorded. The time element can be thought of as another 
dimension orthogonal to the structure of the database. It requires special storage tech­
niques and special operators such as "after" and "during". Several recent works have 
dealt with this topic [e.g. Anderson 81, Bolour et al 82]. The history of configuration data 
changes also needs to be recorded, but not as often as instrumentation data because they 
usually occur only between experiments. 

Support data may have some text that describe procedural instructions or 
configuration descriptions. Instrument data are usually polled at regular time intervals, 
and could benefit from a time series data type. The size of the data is relatively small, 
and constitutes only about 1% of the experiment data 

In conclusion, we believe that support data can be managed for the most part with 
conventional data management systems. The databases are relatively small. The require­
ment for random access can be accommodated with conventional indexing methods such 
as hashing. The two most important exceptions that require special attention are histori­
cal data support and geometric modelling. 

2) Generated data 

The access pattern of generated data is similar to statistical databases. That is, it is 
mostly range and partial match queries. As with statistical databases, the generated data 
is repeatedly analyzed in order to discover patterns, statistical behavior, or a rare event. 
Many subsets are generated and need to be kept track of. The access sequence is mostly 
non-local, although locality exists when analysts refine their queries. From time to time 
an entire set of analyzed data is processed to generate summaries. This is indicated as 
an arbitrary access sequence in Table 2. 
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The most prominent data modelling property is that generated data is multi­
dimensional. Unlike experiment data where the dimensions are mostly spatial coordi­
nates, the dimensions of generated data are the properties of the data (e.g. charge, tem­
perature, mass). Thus, the number of dimensions can be in the order of ten, which 
presents a special challenge for its efficient support. In some instances it is useful to view 
analyzed data as entities and hierarchical relationships (for example, events and their 
corresponding sub-particles). 

Another important modelling requirement is for meta-data. The requirements of 
meta-data management include data definition facilities not only for field descriptors 
(such as type, size, and acronym), but also the description of the origin of the data, how it 
was collected, when it was generated or modified, and the identity of the person responsi­
ble for its collection. It should be able to describe complex data types such as times 
series, matrices, and multi-dimensional categorical data. 

It is necessary to organize and manage meta-data, just as is the case with data. One 
should be able to retrieve and search meta-data, index keywords, and browse through the 
meta-data structures. 

Meta-data is also necessary for keeping track of the different subsets produced, 
dates of their creation, methods used, etc. The management of subsets also requires that 
their historical aspects are maintained. It is necessary to record and maintain the ances­
tors of each subset produced. The analysis process, similar to statistical analysis, can be 
modelled as a tree structure. The analyst can generate subsets, observe their patterns, 
and choose to go back to a previous set and follow another path of analysis. The above 
requirements are similar to many aspects of the meta-data management for statistical 
databases [McCarthy 82]. 

It is often useful in the analysis process to add new fields to the database or to com­
pute new fields from other fields. This is referred to in Table 2 as schema variation. How­
ever, except for such additions during the analysis process, the generated databases are_ 
quite stable. The support of non-standard data types is most important. Generated data 
can be expressed as graphs, vectors, matrices, and time series. Finally, the size of the 
data is substantial, and although it is limited to fit on disks, it is large enough to benefit 
fromdata management techniques that minimize disk storage and access time. The total 
amount of generated data may be of the same order of magnitude as the experiment data 
it was derived from, because a large number of subsets are usually produced. 

In conclusion, generated data have many properties in common with statistical data­
bases. We believe that special techniques for the management of multi-dimensional data 

1 developed for statistical databases could be applied to support analyzed data 

3) Property data 

Since property data is a summary over many experiments and general knowledge of 
a subject area, it has properties more akin to bibliographic databases. However, in addi­
tion to managing bibliographic data on books, articles, authors, etc. they contain sum­
maries of information extracted from the articles. Many property databases are 
presently only available in periodic publications. 
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All access types are needed. An exact match may be required to locate a specific 
entry. A range query (which may be partial) could be used to find a desirable subset of 
the data. A proximity search will locate entries with properties as close as possible to the 
specified parameters. The access sequence is usually non-local. Linear access sequence is 
needed for generating the periodic reports, or some other requested report. In the exam­
ples that we observed it is not possible to issue ad-hoc queries or to browse the database 
for information since the databases are not available on-line. An on-line version should 
provide such facilities. 

The databases are organized logically as entities and mostly hierarchical relation­
ships between them (for example, particles with a certain mass at the top level of the 
hierarchy, and their derivatives at lower levels). There are some network relationships 
(permitting a many-to-many association between the entities) such as the relationship 
between papers and particles. A single paper may describe many particles and a particle 
may be described in many papers. 

Property databases contain graphs and text which complicate their management a 
great deal. They also have to have a representation for special symbols that are unique to 
the scientific field. The total size of the example databases that we observed is not very 
large and can fit on disk storage. However, property databases can be quite large, as is 
the case with chemical property databases. 

In conclusion, the main difficulties that property databases have stem from the 
diversity of data. This is probably the reason that only special purpose systems have been 
developed for the different disciplines. Conventional data management systems cannot 
support the combination of numeric, character, text, and graphs data. 

6. SUMMARY 

In this paper we examined the data management requirements and typical usage of 
several scientific applications. The data used and generated by these applications was 
classified into types, and a list of properties for describing their characteristics was 
developed. Different applications were then described in terms of this list of properties. 
A summary of properties of the different types of scientific data provided the basis for 
inferring desirable database management techniques for- scientific databases. 

Some of the more important conclusions are: 

· ( 1) Multi-dimensional data are prevalent in scientific databases. Methods for efficiently 
managing, accessing, and compressing multi-dimensional data are desirable. 

(2) Scientific databases are frequently accessed via proximity searches and successive 
queries often exhibit locality of reference. Techniques of partitioning the data into 
cells (or grids) along the coordinates of its dimensions seem to be the most promis­
ing for efficiently supporting these needs. 

(3) Although scientific databases are usually very large, they can be often partitioned 
into small independent units during early data reduction. This implies that parallel 
processing can be applied. 
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{ 4) Scientific databases include a variety of support data that describe the instruments 
and the configuration of experiments. Often this data is not explicitly organized but 
rather made part of application programs, a practice that tends to cause many 
difficulties. The requirements of such support data can be handled for the most part 
with conventional database techniques, but need to be integrated with the data that 
result from experiments. Some configuration data need special capabilities found in 
engin'eerinng database systems. 

(5) The analysis of scientific data generates many summary data sets which need to be 
managed. Special techniques for handling analyzed data and summary data are 
required in order to manage their metadata, to keep track of numerous data sets, 
and to handle non-scalar data types {such as vectors and matrices). 

{6) Historical aspects of scientific databases are important. They range from time series 
of the measured data, to logs of instruments variation over time, to the historical 
sequence of generating different summaries of the data 

(7) There are many aspects of scientific databases that are similar to statistical data­
bases; in particular, supporting the multi-dimensional aspects of the data and the 
handling of summary data. 
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Table 1: Summary of Properties of Experiment Data 

Regular Regular Irregular 
S_j)_arse Dense Dense 

Limited Turbu-
Time Track NMR lent Laser 

.,., Projection Recon- Hydro- Spec- Heavy Passive Flow Isotope 
Properties Chamber struction Dynamics troscopy Ion Solar (Vortex) Separation 

EXPERIMENT I 
SIMULATION E E s E E s s E 

IDENTIFIER (KEY) 

Regular • • • • 
Dense • • • • • • -
Time Variation (_~ • 

ACCESS PATTERN 

Access Type 
Exact • • • • • 
Range (•) (•) (•) (•) 

Proximity • • • • (•) 

Access Sequence 
Local (•) (•) (•) (•) (•) 

Non-Local (•) (•) • 
Linear (•) (•) 

Arbitrary • • (-}_ • (•) 

SIZE {bytes) 

Per Unit 10"-5 103 ...... 107 - 103-4 10"-5 lOS -
Per Collection 1011 1010 10S-9 105-7 1010-11 107-8 loB 107-8 

Total 1012 1011 1011-12 10S-10 1012 1010-11 1010 1010 

ASSOCIATED DATA 

Configuration • • • • • • • • 
Instrumentation • • • • • 
Analyzed • • • • • • • 
Summa a • • • • • • • 

• - applies often 
( •) - applies sometimes 
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Table 2: Summary of Properties of Associated Data 

Contig- Instru- Analyzed Summary Property 
Properties uration mentation Data Data Data 

ACCESS PAITERN 

Access Type 
Exact • • • 
Range • • • 
Proximity (•) (•) 
Partial • • • 

Access Sequence 
Local {_•) (•} (•) 
Non-Local • • • • • 
Linear • 
Arbitrary (•) 

-
DATA MODELING 

Geometric • 
Entities (•) • (•) • 
Hierarchical (*) (*) • 
Network (•) (•) 
Generalization • - (*) 
N-Dimensional • • 
Meta-Data • • 

USAGE 

Schema Variation • • 
Historical (*) • • • 
Stability • • • 

NON-STANDARD 
DATA TYPES 

Graphs (•) • • 
Text (•) (*) • 
Time Series • (•) (*) 
Special Symbols • 
Non-Scalar • * 

SIZE 

Bytes 108 107 10S-9 108 107-8 

Percent~e 1% 1% SQ-100% 1-10% 

• - applies often 
( •) - applies sometimes 
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