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Altered Reinforcement Learning from Reward and Punishment in 
Anorexia Nervosa: Evidence from Computational Modeling

Christina E. Wierenga1,*, Erin Reilly2, Amanda Bischoff-Grethe1, Walter H. Kaye1, Gregory 
G. Brown1

1University of California, San Diego, CA, USA

2Hofstra University, Hempstead, NY, USA

Abstract

Objectives: Anorexia nervosa (AN) is associated with altered sensitivity to reward and 

punishment. Few studies have investigated whether this results in aberrant learning. The ability 

to learn from rewarding and aversive experiences is essential for flexibly adapting to changing 

environments, yet individuals with AN tend to demonstrate cognitive inflexibility, difficulty set-

shifting and altered decision-making. Deficient reinforcement learning may contribute to repeated 

engagement in maladaptive behavior.

Methods: This study investigated learning in AN using a probabilistic associative learning task 

that separated learning of stimuli via reward from learning via punishment. Forty-two individuals 

with Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 restricting-type AN were 

compared to 38 healthy controls (HCs). We applied computational models of reinforcement 

learning to assess group differences in learning, thought to be driven by violations in expectations, 

or prediction errors (PEs). Linear regression analyses examined whether learning parameters 

predicted BMI at discharge.

Results: AN had lower learning rates than HC following both positive and negative PE (p < .02), 

and were less likely to exploit what they had learned. Negative PE on punishment trials predicted 

lower discharge BMI (p < .001), suggesting individuals with more negative expectancies about 

avoiding punishment had the poorest outcome.

Conclusions: This is the first study to show lower rates of learning in AN following both 

positive and negative outcomes, with worse punishment learning predicting less weight gain. 

An inability to modify expectations about avoiding punishment might explain persistence of 
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restricted eating despite negative consequences, and suggests that treatments that modify negative 

expectancy might be effective in reducing food avoidance in AN.

Keywords

Eating disorders; prediction error; operant learning; decision-making; cognition; probabilistic 
associative learning

INTRODUCTION

Anorexia nervosa (AN) is a serious eating disorder characterized by severe food avoidance 

and weight loss, an intense fear of gaining weight, and a distorted experience of one’s 

body (American Psychiatric Association, 2000). It is well known that individuals with AN 

tend to be cognitively inflexible and have impaired set-shifting, which may contribute to 

the high rates of chronicity and death (Papadopoulos, Ekbom, Brandt, & Ekselius, 2009; 

Roberts, Tchanturia, Stahl, Southgate, & Treasure, 2007; Roberts, Tchanturia, & Treasure, 

2010; Tchanturia et al., 2012; Wu et al., 2014). Persistent dietary restriction despite negative 

consequences and evidence of altered reward and punishment sensitivity in AN (Bischoff-

Grethe et al., 2013; Glashouwer, Bloot, Veensra, Franken, & de Jong, 2014; Harrison, 

O’Brien, Lopez, & Treasure, 2010; Harrison, Treasure, & Smillie, 2011; Jappe et al., 2011; 

Matton, Goossens, Braet, & Vervaet, 2013) raise the question of whether impaired learning 

from reward and loss might contribute to repeated engagement in maladaptive behavior and 

illness maintenance.

Dysfunction of reward processing in AN is well documented, with reduced subjective 

reward sensitivity and decreased limbic-striatal neural response to rewarding stimuli such 

as food or money (Brooks, Rask-Andersen, Benedict, & Schioth, 2012; Fladung, Schulze, 

Scholl, Bauer, & Gron, 2013; Jappe et al., 2011; Keating, Tilbrook, Rossell, Enticott, & 

Fitzgerald, 2012; O’Hara, Schmidt, & Campbell, 2015; Oberndorfer et al., 2013; Wierenga 

et al., 2014; Wu et al., 2016). Emerging evidence suggests processing of aversive stimuli 

may also be disrupted in AN; individuals with AN demonstrate elevated harm avoidance, 

intolerance of uncertainty, anxiety, and oversensitivity to punishment (Glashouwer et al., 

2014; Harrison et al., 2010; Harrison et al., 2011; Jappe et al., 2011; Matton et al., 2013), 

which may contribute to an altered response to negative feedback or a bias to avoid 

outcomes perceived as aversive (Kaye et al., 2015). Neuroimaging studies support a neural 

dysfunction to loss, with an exaggerated (Bischoff-Grethe et al., 2013) or undifferentiated 

(Wagner et al., 2007) striatal response to monetary losses compared to wins and decreased 

response to aversive taste (Monteleone et al., 2017). However, much of the existing work in 

AN has focused on responsivity to reward and punishment, with less attention to learning 

from both reward and punishment (Bernardoni et al., 2018; Foerde & Steinglass, 2017).

The core idea of reinforcement learning is that the rate of learning is driven by violations 

of expectations, or prediction errors (PEs), which are operationalized as the received 

outcome minus the expected outcome, and are markers of dopamine activity (Pearce & 

Hall, 1980; Rescorla and Wagner 1972; Sutton & Barto, 2018). Learning from experience 

occurs through updating expectations about the outcome in proportion to PE, so that the 
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expected outcome converges to the actual outcome. The majority of studies of learning in 

AN have focused on passive Pavlovian conditioning (Schaefer & Steinglass, 2021), with 

evidence of elevated reward PE signals in the ventral striatum and orbitofrontal cortex in 

ill and remitted AN (GK Frank, Collier, Shott, & O’Reilly, 2016; GK Frank et al., 2012). 

However, Pavlovian tasks have demonstrated poor behavioral profiles (National Institute of 

Mental Health, 2016). Given the importance of choice behavior and decision-making in AN, 

instrumental response-outcome learning may be more relevant to psychopathology. Limited 

behavioral data (i.e., Acquired Equivalence Task) suggest reduced reward reinforcement 

learning in AN (Foerde & Steinglass, 2017; Shott et al., 2012).

To probe the influence of rewarding and punishing outcomes on instrumental reinforcement 

learning, we employed a well-studied two-choice feedback-based probabilistic associative 

learning task (PALT) that relies on the contingency between a participant’s response and 

outcome (i.e., whether or not they won or lost points) to facilitate learning (i.e., to select 

the optimal reward-based stimuli and avoid the nonoptimal punishment-based stimuli) (Bodi 

et al., 2009; Herzallah et al., 2017; Herzallah et al., 2013; Mattfeld, Gluck, & Stark, 2011; 

Myers et al., 2013). The PALT is sensitive to dopaminergic medication effects on reward 

and punishment processing in Parkinson’s disease (Bodi et al., 2009), has been applied to 

several psychiatric disorders (i.e., substance use, post-traumatic stress, depression (Beylergil 

et al., 2017; Herzallah et al., 2017; Myers et al., 2013), and corresponds to functional 

specialization within the striatum for reward and punishment PE estimates (Mattfeld et 

al., 2011). Moreover, research over the past two decades has shown that the direction and 

magnitude of PE may be a marker of altered dopaminergic activity in AN (Glimcher, 2011; 

Schultz, Dayan, & Montague, 1997; Schultz, 2016; Steinberg et al., 2013).

Given the link between PE and reinforcement learning, it is tempting to infer group 

or individual differences in PE from observable reinforcement learning scores. Such an 

inference would be valid only if the observed scores were unidimensional and reflected 

PE-based learning. However, if PALT performance involved multiple processes, group or 

individual differences in the observed scores would be challenging to interpret because the 

differences might be due to any of the several processes that underlie the task (Sojitra, 

Lerner, Petok, & Gluck, 2018; Strauss & Smith, 2009). Before comparing AN and healthy 

control (HC) participants, we investigated the multidimensionality of data derived from the 

PALT by comparing the fits of three computational reinforcement learning models.

All of these models assumed that when a stimulus is presented, participants choose between 

two alternatives based on unobserved choice values that reflect the participant’s expectancy 

of obtaining a favorable outcome (See Supplement). Once a choice is made, the expectancy 

value associated with the choice made is updated based on the PE and PE learning rates, 

represented by the parameter η (Figure 1). In expectancy value-based learning models of 

this type, the difference between the expectancy values associated with the two-choice 

alternatives is multiplied by a logistic regression weight, represented by the parameter β, to 

turn the value difference into a probability of choosing a particular alternative (Gershman, 

2016); Supplement – Equation 1; Figure 1). Although the logistic regression weight has 

been called inverse temperature in some applications (Daw, 2011), it has been described 

as an explore-exploit parameter in the psychology literature and reflects how decisively 
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participants make choices based on small differences in the expectancy values (Gershman, 

2016; Moustafa, Gluck, Herzallah, & Myers, 2015).

As shown by Shultz (Schultz, 2016), positive and negative PEs differentially effect 

dopaminergic activity. Because differential levels of dopaminergic activity influence amount 

of PE learning (Steinberg et al., 2013), positive and negative PE might be associated with 

different PE learning rates. All models discussed in this paper assume that separate learning 

parameters differentially update expectancy values depending on the positive or negative 

valence of the PE (Gershman, 2016). In particular, the No Bias model is composed of the 

explore-exploit parameter, β, and two learning rate parameters, one to update expectancy 

values when PE is positive, ηp, the other when it is negative, ηn.

The No Bias model assumes that the first choice made to a stimulus is unbiased. However, 

global choice biases, the tendency to choose one alternative over another regardless of 

previous outcomes, and choice inertia bias, the tendency to repeat choices, are commonly 

reported in the choice literature (Fritsche, Mostert, & de Lange, 2017; Garcia-Perez & 

Alcala-Quintana, 2013; Gold & Ding, 2013; Linares, Aguilar-Lleyda, & Lopez-Moliner, 

2019; Morgan, Dillenburger, Raphael, & Solomon, 2012). It is during experimental 

conditions leading to uncertainty that choice biases are most likely to be observed (Morgan 

et al., 2012; Urai, Braun, & Donner, 2017). When a stimulus is first presented on the 

PALT, participants are doubly uncertain, neither knowing whether the trial is a reward 

or punishment trial nor knowing which category to choose. Given this uncertainty, initial 

choice biases might be due to a global choice bias or to a choice history bias – the latter 

occurring on the initial presentation of subsequent stimuli after the first PALT stimulus is 

presented. If choice biases occur on the PALT, they would be unobserved processes that 

would obscure the use of observed scores as markers of PE learning. In the First Choice Bias 

model, we modeled the impact of choice biases on the expectancy value of a choice when a 

stimulus is first presented, which is when uncertainty is likely maximal. This model included 

a separately estimated bias parameter, bias(sj), for each of the four stimuli, sj, presented on a 

trial set in addition to the explore-exploit parameter, β, and the two learning rate parameters, 

ηp and ηn. The First Choice Bias (Singlet) model constrained estimates of the four bias 

parameters to be equal to a single estimated value.

Considering the importance of biases in accounting for choice performance, we predicted 

that the First Choice Bias model would provide a better fit to the data than would 

the Base model. Once the best fitting model was chosen, we tested the hypothesis that 

individuals with AN would demonstrate deficient reinforcement learning as evidenced by 

worse optimal response accuracy on reward and punishment trials and/or poorer learning 

rates, ηp|n, associated with positive and negative PEs compared to HCs. Moreover, within 

AN, differences between accuracy on reward and punishment trials or positive and negative 

PEs would indicate differential sensitivity to learning from rewarding or disappointing 

outcomes. Exploratory analyses examined associations between learning rates, size of PEs 

and AN symptom severity and clinical outcome.
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METHOD

Participants

Forty-two individuals meeting criteria for DSM-5 restricting-type AN (4 also endorsed 

purging; mean age = 22.8, range = 16–60) were compared to 38 HC volunteers (mean 

age = 21.6, range =15–32; Table 1). Individuals with AN were recruited from the 

University of California, San Diego Eating Disorders Treatment and Research outpatient 

Partial Hospitalization Program (PHP). The PHP uses a blend of family-based treatment 

and dialectical behavior therapy adapted for intensive treatment settings. Patients received 

treatment 6 to 10 h/day, 6 days/week, including individual, family, group, and multi-family 

therapy, nutritional counseling, psychiatric care, and medical monitoring (Brown et al., 

2018; Reilly et al., 2020). AN diagnosis was determined by semi-structured interview 

performed by program psychiatrists at treatment admission according to 2010 draft criteria 

for the DSM-5 (Hebebrand & Bulik, 2011) and included atypical and partially remitted AN 

(BMI range: 14.5–23.8 kg/m2). HCs were recruited from the San Diego community and 

did not have any eating disorder symptomatology or Axis I psychiatric disorder based on 

a modified version of the Structured Clinical Interview for DSM-IV-TR Module H (First, 

Spitzer, Gibbon, & Williams, 2002) and the Mini International Neuropsychiatric Interview 

(Sheehan et al., 1998). See Supplement for additional exclusion criteria.

Procedure

AN participants completed the PALT on average 19.8 days (SD = 19.9) after treatment 

admission. Weight and height, measured via digital scale and stadiometer, were obtained at 

admission, within two days of PALT completion, and at discharge for AN, and during the 

task visit for HC. Self-report questionnaires to assess anxiety, depression and temperament 

traits common in AN (e.g., reward/punishment sensitivity, inhibition, harm avoidance) that 

might relate to learning behavior (Table 1) were completed within 16.1 days (SD = 18.9) 

of the PALT in AN (Harrison, Treasure, & Smillie, 2011; Jappe et al., 2011; Wagner et 

al., 2006). The study was approved by the Institutional Review Board of the University of 

California, San Diego, research was completed in accordance with the Helsinki Declaration, 

and all participants gave written informed consent and received a stipend.

Probabilistic Associative Learning Task

The PALT (Figure 2) involves receiving 25 points when choosing the optimal response on 

reward trials, but losing 25 points when choosing the nonoptimal response on punishment 

trials (Bodi et al., 2009; Mattfeld et al., 2011; Myers et al., 2013). On each trial, participants 

saw one of four stimulus images and were prompted to decide whether it was associated 

with one of two categories “A” or “B”, corresponding to different response keys. Two 

images were randomly assigned to be “reward” stimuli in that selection of the optimal 

category typically produced feedback and a gain of 25 points, whereas selection of the 

nonoptimal category typically produced no gain of points. The remaining two images 

were “punishment” stimuli in that selection of the nonoptimal category typically produced 

feedback and a loss of 25 points, whereas selection of the optimal category typically 

produced no loss of points. Reward-learning trials and punishment learning trials were 

intermixed within the task with a favorable outcome associated with a gain on reward 
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trials and the avoidance of loss on punishment trials. Unfavorable outcomes led to no 

change in points on reward trials and a loss of 25 points on punishment trials. The 

participant’s cumulative point tally was shown at the bottom of the screen on each trial 

and was initialized to 500 points at the start of the experiment. As done in prior studies 

(Bodi et al., 2009; Mattfeld et al., 2011), two task sets were administered, each with a 

different set of pictures to increase the number of trials during which participants were 

actively learning new associations. The order of stimulus sets was counterbalanced across 

participants. Each set contained 160 trials, divided into four 40-trial blocks. Within each 

block, each stimulus appeared 10 times; 8 times the optimal response was associated with 

the more favorable outcome, whereas two times the nonoptimal response was associated 

with the more favorable outcome. For each participant, trial order was randomized within 

a block. Trials lasted until the participant responded and were separated by a 2s interval, 

during which time the screen was blank. On each trial, the computer recorded whether the 

participant made the optimal response, regardless of the actual outcome on that trial. The 

task took about 30 min to complete. The experiment was administered on a MacBook Pro, 

programmed in MatLab version R2016B.

Computational Reinforcement Learning Models

Like Confirmatory Factor Analysis, computational models of cognitive processes embody 

assumptions about a model’s architecture and parameters that determine how observed 

data are related to latent processes. Whereas the assumptions fix the architecture of a 

model, varying the model’s parameters can fine-tune the model’s functioning (Farrell & 

Lewandowsky, 2018). Parameters estimated for each of the three models are listed in 

Table 2 and discussed in more detail in the caption of Figure 1 and in Supplemental 

Materials. To operationalize PE size, outcome was coded 1 for gains on reward trials, −1 

for loss on punishment trials, and 0 for no change in points. Successful learning drives the 

expectancy values toward gains, coded 1, on reward trials and toward avoidance of loss, 

coded 0, on punishment trials. The No Bias model allowed positive and negative PE learning 

rate parameters, ηp and ηn, and the explore-exploit parameter, β, to vary and set initial 

expectancy values to zero. The First Choice Bias model (Figure 1) allowed β, ηp and ηn 

to vary, but also included four parameters that determined the initial expectancy values of 

choices made to each of the four stimuli in order to account for choice biases. Given how 

expectancy values are updated, the impact of these biases propagates to subsequent trials. 

The First Choice Bias (Singlet) model set the four bias parameters to the same estimated 

value. The full First Choice Bias model was selected as the best fitting model as assessed by 

deviance information criterion weights (see Supplement).

Parameter estimation—We used the R routine rjags to generate Bayesian estimates of 

model parameters based on fits to trial by trial optimal response data for each stimulus 

(Plummer, 2017). See Supplement for details and model sensitivity analysis. The predicted 

block means for reward and punishment trials based on parameter estimates for the best 

fitting model are presented in Figure 3.
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Statistical Analysis

Behavioral performance—Choice behavior was analyzed using a repeated measures 

analysis of variance (rmANOVA) on optimal response accuracy with Group as a between 

subjects effect and Block and Set as within subject effects, separately for reward trials and 

punishment trials.

Model-generated parameters—Analyses were performed separately for reward and 

punishment trials. To compare groups on learning rate parameters, we performed a 

rmANOVA with Group as a between effect and Set and PE learning rates (ηp, ηn) as within 

effects. We also performed a Group x Set rmANOVA to investigate group differences in 

the β parameter. To investigate the bias parameters, we averaged the two bias values for 

reward stimuli and the two bias values for punishment stimuli, then performed a rmANOVA 

involving Group × Set. To more completely examine group differences in level of learning 

from a PE perspective, we averaged the size of PEs over trials separating values by PE type 

(positive or negative) within reward and punishment trials for each set (e.g., mean negative 

PE for punishment trials on set 1) and submitted these means to Group × Set × PE type 

rmANOVAs.

Exploratory clinical associations—To examine whether standard clinical assessments 

are associated with learning in AN, Pearson correlational analyses examined relationships 

between 14 reinforcement learning model values (for each set: ηp, ηn, positive and negative 

PEs for each trial type, and β) and 9 AN clinical measures (age, admission BMI, EDE-Q 

Global score, TCI Harm Avoidance, TCI Novelty Seeking, BIS/BAS, SPSRQ, STAI, BDI) 

at time of study. To examine associations with treatment outcome, reinforcement learning 

model values were explored as predictors of BMI at discharge using hierarchical linear 

regression analyses, controlling for BMI at treatment admission, length of treatment, and 

medication status. The hierarchical linear regression analysis was repeated using each self-

reported clinical measure as a predictor. Bonferroni correction for multiple comparisons was 

used to determine a family-wise p-value for the 14 learning model values (.004) and the 9 

clinical measures (.006) assuming p = .05 for each test.

Sensitivity analyses—To examine the potential impact of low weight and medication 

status on our results, we compared AN participants with a BMI below 18.5 kg/m2 (n = 

25; 59.5% of sample) to AN participants with a BMI above 18.5 kg/m2 (n = 17; 41.5% of 

sample), and AN participants on medication (n = 25; 61% of sample) to AN participants 

not on medication (n = 16; 39% of sample) on clinical measures using Welch’s two sample 

t-tests and repeated the rmANOVAs described above for each subsample. Small samples 

precluded analysis of medication class (Table 1).

RESULTS

Sample Characteristics

AN and HC groups did not differ in age or education (Table 1). AN had significantly lower 

current BMI (p < .001). In AN, there was a significant increase in BMI from treatment 

admission to discharge (t(39) = 7.9, p < .001, Cohen’s d = 1.0).
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Behavioral Performance

A Group × Block × Set rmANOVA on optimal responses for reward trials revealed a main 

effect of Block, indicating increased accuracy over time across all participants, consistent 

with learning, F(3,225) = 41.482, p < .001, η2
p = .356 (Figure 3A). We detected a Group × 

Block interaction, corresponding to faster learning rates in the HC group compared to AN, 

F(3,225) = 5.771, p = .001, η2
p = .071. A Group × Set interaction indicated AN were more 

accurate than HC on Set 1, but less accurate than HC on Set 2, F(1,75) = 5.556, p = .021, η2
p 

= .069.

For punishment trials, a Group × Block × Set rmANOVA revealed a main effect of Block, 

indicating increased accuracy over time, F(3,225) = 3.711, p = .012, η2
p = .047 (Figure 

3B). A main effect of Group indicated AN performed worse than HC, F(1,75) = 6.833, p = 

.011, η2
p = .083. Taken together, both groups demonstrated greater accuracy over time (aka, 

learning) for reward and punishment trials; compared to HC, AN had slower overall learning 

on reward trials, with better overall accuracy on Set 1 and worse accuracy on Set 2 (possibly 

suggesting greater difficulty set-shifting and learning new associations, see (Filoteo et al., 

2014)), and were less accurate across punishment trials.

Model Generated Parameters

Prediction error learning rates (η)—A Group × Set × PE learning rate type (ηp vs. 

ηn) rmANOVA revealed a main effect of Group, indicating that AN learned more slowly 

than HC following both positive PEs and negative PEs, F(1,75) = 5.521, p = .021, η2
p = 

.061 (Table 3; Figure 4A). A main effect of PE type revealed faster learning rates following 

positive PEs compared to negative PEs across the entire sample, F(1,75) = 78.792, p < .001, 

η2
p = .512. That is, faster learning occurred when the outcomes were better than expected 

relative to when the outcomes were worse than expected.

Prediction error size—To directly examine whether groups might have differed in 

accuracy as a result of better than or worse than expected outcomes on reward and 

punishment trials. Group × Set × PE type rmANOVAs for average PE size revealed no 

effects involving Group for reward trials (all η2
p < .025) or for punishment trials (all η2

p < 

.045).

Explore-exploit strategy (β)—A Group × Set rmANOVA for the explore-exploit 

parameter, β, revealed a main effect of Group, whereby AN had smaller β values than 

HC, F(1,75) = 6.366, p = .014, η2
p=.078 (Table 3; Figure 4B). Since smaller values imply 

individuals are exploring more than exploiting stimulus-response-outcome hypotheses, 

results indicate AN may less decisively make choices.

Choice bias parameters—To assess whether groups differed in the degree to which 

early reward and punishment reinforcement trials reflected choice biases, the Group × Set 

interaction for bias values was significant only for reward trials, indicating that HC had a 

greater bias against making the optimal choice on Set 1, whereas AN had a greater bias 

against making the optimal choice on Set 2, F(1,75) = 10.651, p = .002, η2
p = .124 (Table 

3; Figure S10). This is consistent with the behavioral response data indicating that AN 
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outperformed HC on Set 1 and performed worse than HC on Set 2 on reward trials. No 

significant effects of choice bias were detected for punishment trials (all η2
p < .018).

Exploratory Clinical Associations

No associations between reinforcement learning model parameters and clinical variables 

were detected in AN (uncorrected p < .05). Separate hierarchical linear regression models 

indicated the size of positive PE and of negative PE on punishment trials in Set 1 

significantly added to the prediction of discharge BMI controlling for admission BMI, 

treatment length, and medication status (positive PE: multiple R2 = .62, F_change(1,34) = 

9.528, p = .004; negative PE: multiple R2 = .56, F_change(1,34) = 15.901, p < .001). Both 

models remained significant after Bonferroni correction.

To test whether both positive and negative PE predicted a portion of the change in BMI with 

treatment, we entered both into the regression model (multiple R2 = .64, F_change(2,33) = 

8.546, p = .001). Negative PE (Beta = −.348, t = −2.475, p = .019) more potently predicted 

discharge BMI than did positive PE (Beta = −.141, t = −1.063, p = .296) (Figure 4C). In 

other words, AN with smaller negative PE on punishment trials on Set 1, i.e., values closer 

to −1.0, gained the most weight. Negative PE will approach −1 on punishment trials when 

successful performers learn to expect outcomes that are close to the favorable outcome, 

coded 0, but instead receive an unfavorable outcome, coded −1. The eight AN participants 

with negative PE between −.85 and −1.0 in fact had an average expectancy of 0.013 on 

punishment trials when negative PE occurred (range for entire sample: −.467 to .545) (see 

Supplement). Moreover, on punishment trials where negative PE occurred, the regression of 

expectancy values onto negative PE produced a significant negative regression weight (b = 

−.419, p = .048), implying that AN participants with larger negative PE (i.e. closer to zero) 

had more negative expectancies about avoiding loss.

Sensitivity Analyses

As expected, the low weight group had lower BMI at admission, time of study, and 

discharge (all ps < .001, all Cohen’s ds > 1.0), and showed greater change in BMI during 

treatment (p = .01, Cohen’s d = 1.1), but weight status groups did not differ on any other 

clinical measure. Medication status groups did not differ on any clinical measure, including 

BMI, change in BMI during treatment, length of treatment, or self-report questionnaires. 

The rmANOVA results from the full sample reported above were observed in the subsample 

contrasts. Regression results (PE on punishment trials predicting discharge BMI) were 

observed only in the low weight sample. Overall, sensitivity analyses suggest weight and 

medication status did not appreciably contribute to the full sample results.

DISCUSSION

This is the first study to apply computational models of reinforcement learning to assess 

learning from both reward and punishment in restricting-type AN using an instrumental 

probabilistic associative learning task. A unique aspect to this study is that we distinctly 

examined differences in instrumental reinforcement learning from better or worse than 

expected outcomes by deriving trial-specific PE estimates for both reward and punishment 
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conditions. We then modeled and compared learning based on positive and negative PEs 

separately for reward and punishment trials to examine learning rate when a positive PE 

occurs (unexpectedly favorable outcome) and when a negative PE occurs (unexpectedly 

disappointing outcome). Model-based results indicated that both HC and AN learn 

better following positive PEs compared to negative PEs. Consistent with our hypotheses, 
individuals with AN have lower learning rates for positive and negative PEs compared to 
HC. This indicates that AN learn less than HCs from the same PE, slowing their learning 

of favorable choices. This deficit in learning to predict the most favorable choice was 

also evidenced in their optimal choice performance by a flatter learning curve on reward 

trials and by fewer optimal responses on punishment trials. These results are consistent 

with previous work showing poorer learning performance from reward-based feedback in 

ill AN (Foerde & Steinglass, 2017) and extends these findings to learning from loss-based 

feedback. Deficits in learning from punishment could help explain the rigid persistence of 

disordered eating behaviors despite negative consequences.

The degree to which cognitive inflexibility and difficulty set-shifting in AN contribute to 

altered reinforcement learning remains to be determined; assessing reversal learning may 

inform this issue. The lower explore-exploit β values observed in the AN group suggest 

that poor learning was not due to perseverative responding, as lower β values indicate 

that individuals with AN were less decisive about exploiting what they had learned and 

continued to explore stimulus-response outcomes rather than employing the same strategy 

across all trials, regardless of whether they were aware of the strategy employed. Clinically, 

AN is characterized by increased sensitivity to uncertainty (Kesby, Maguire, Brownlow, & 

Grisham, 2017). It is possible that diminished certainty in exploiting what they learned is 

secondary to uncertainty in the task contingencies, although this was not directly tested.

In addition to comparing groups on response accuracy and rate of learning, we also 

examined the size of PE as a determinant of learning level. Counter to our hypotheses, 

no group differences in magnitude of positive and negative PEs within reward or punishment 

trials were detected. However, within the AN group, the magnitude of negative PE when 

punishment was possible was most strongly associated with treatment outcome. Moreover, 

larger negative PEs were associated with more negative expectations on punishment trials, 

suggesting that AN individuals who gained the least amount of weight during the course 

of treatment held negative expectancies about avoiding loss on punishment trials. This 

negative expectancy is consistent with reports of elevated punishment sensitivity, increased 

lose-shift behavior on a reversal learning task (Geisler et al., 2017), negative interpretation 

bias for ambiguous social stimuli that involve the risk of rejection, and tendency to resolve 

ambiguity in a negative manner in AN (Cardi, Di Matteo, Gilbert, & Treasure, 2014; Cardi, 

Di Matteo, Corfield, & Treasure, 2012; Cardi et al., 2017). No other learning parameter or 

clinical measure predicted BMI change during treatment, and PEs were not associated with 

self-report measures of sensitivity to reward or punishment, suggesting that this learning 

metric may be a particularly sensitive prognostic indicator.

Other studies have observed a relationship between reward PE brain response and weight 

gain in AN (DeGuzman, Shott, Yang, Riederer, & Frank, 2017; GKW Frank et al., 2018); 

for example, elevated absolute PE (positive and negative PE combined) response in the 
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caudate, orbitofrontal cortex and insula has been associated with less weight gain during 

inpatient treatment. Taken together, our behavioral findings further support the role of 

altered PE in the pathophysiology of AN, extending prior findings to include operant 

learning in response to both reward and punishment, and are consistent with the hypothesis 

that a failure to appropriately modify expectancies may contribute to poor outcome.

Strengths of this study include novel aspects and refinements of the reinforcement learning 

model, that included modeling segregating learning for each of the four stimuli within a set, 

adding parameters to account for choice biases rapidly acquired on early trials, performing 

Bayesian estimates of model parameters for each subject, and modeling separate positive 

and negative PE learning rate parameters. However, reinforcement learning models are 

inherently limited by the parameters included in the model. While our models demonstrated 

good fit to the behavioral data, future work may consider testing models with additional 

parameters, such as a stickiness (or perseveration) parameter (Palminteri, Khamassi, Joffily, 

& Coricelli, 2015). To increase generalizability, we did not exclude for medication use 

and co-morbidities. Prior studies in major depressive disorder (MDD) report worse learning 

to reward (Herzallah et al., 2017), and that SSRI antidepressants impair learning from 

negative feedback (Herzallah et al., 2013). Notably, 50% of our sample was prescribed 

antidepressants, and 20% of our sample had a comorbid MDD diagnosis. Although 

our sensitivity analysis suggests medication status did not contribute to overall results, 

larger, controlled studies are needed to examine the effects of these clinical variables on 

reinforcement learning. We also do not have neuropsychological data to characterize the 

general cognitive function of participants; however, groups did not differ on reaction time on 

the PALT (see Supplement), suggesting the AN group did not have slowed processing speed 

indicative of cognitive impairment or medication effects. Thus, it is unlikely that differences 

in reward/punishment learning in AN are reflective of broader cognitive impairment. Lastly, 

change in BMI is just one metric of treatment outcome; limited data on cognitive symptoms 

prevented analysis of other outcome measures.

Conclusions

Results suggest that both AN and HC groups learned better following unexpected 

favorable outcomes (positive PEs) than unexpected disappointing outcomes, suggesting that 

maximizing positive PEs may potentiate learning in general. Moreover, individuals with 

AN demonstrated slower learning from both positive and negative experience compared 

to HC. Additionally, negative PEs on punishment trials were associated with worse 

treatment outcome. Treatments that modify negative expectations about avoiding loss, 

or the perceived value of the outcomes themselves, either with medication or cognitive-

behavioral strategies, may be effective in promoting recovery. Overall, findings support the 

potential of applying computational approaches to reinforcement learning in AN to enhance 

mechanistic explanations of behavior, identify new neurobehavioral constructs relevant to 

psychopathology and advance treatment development through target identification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Rather than setting all expectancy values, V, to zero on the first trial a stimulus, sj, is 

presented, as in the No Bias model, they are set either to a bias value, bias(sj), or to zero 

in the First Choice Bias model. The bias(sj) values are sampled from a normal distribution 

with mean zero, indicating no bias, and a precision = 10, where precision = 1/variance. If 

the sampled bias value for stimulus sj is positive, the choice that would yield the optimal 

long-term outcome is favored and its expectancy value for trial 1, V1(cOpt sj), is set to the 

sampled bias value, bias(sj), whereas the expectancy value for the nonoptimal response, 

V1(cNonOpt sj), is set to zero. If the sampled bias value is negative the nonoptimal choice is 

favored and the expectancy value for the nonoptimal choice is set to the absolute value of the 

bias, whereas the expectancy value for the optimal choice is set to zero. For the First Choice 

Bias (Singlet) model, the bias parameters for each stimulus is set to the same estimated 

value bias(s.). (B) The expectancy value for trial t + 1 associated with the choice ci made to 

stimulus sj on trial t, Vt + 1(ci sj), is the expectancy value on trial t updated by the product 

of a learning rate with the prediction error. Different learning rates, ηp|n, are estimated 

for positive or negative prediction errors, PEp ∣ n. Learning rates are sampled from a beta 

distribution using values of the α and β parameters listed in Table 2 (Also see Supplement). 

A logistic equation maps the differences between the expectancy value of the choice made 

on trial t, Vt(ci sj), and the value of the choice not made, Vt(ci Sj), to the probability Pt(ci sj)
of making the chosen response ci given that stimulus sj was presented on trial t. The logistic 

regression weight β is sampled from a gamma distribution using values of the shape and rate 

parameters presented in Table 2 (Also see Supplement).
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Fig. 2. 
Probabilistic associative learning task (copied with permission from (Mattfeld et al., 2011)).
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Fig. 3. 
Plots of the observed and predicted mean probability of selecting the optimal choice for AN 

and HC groups across the four blocks by trial type (reward, punishment) and picture set. We 

calculated for each participant the predicted block means for reward and punishment trials 

based on the participant’s full First Choice Bias model parameter estimates and present the 

average of these means for AN and HC groups for the two picture sets as black squares. 

As can be seen, in every instance the model derived means are within the 95% confidence 

interval of the observed means, and most cover the data means, supporting the prediction 

model. (A) For observed data, on reward trials, results indicate improved performance 

over time across all participants, consistent with learning, [main effect of Block, F(3,225) 

= 41.482, p < .001, η2p = .356], and the HC group had a greater learning rate overall 

than the AN group [Group × Block interaction, F(3,225) = 5.771, p = .001, η2p = .071]. 

However, AN performed better than HC on Set 1 and worse than HC on Set 2 [Group × Set 

interaction, F(1,75) = 5.556, p = .021, η2p = .069]. No other main effects or interactions were 

significant for reward trials, ps > .3. No other main effects or interactions were significant 

for reward trials, ps > .3. (B) On punishment trials, performance improved over time across 

all participants [main effect of Block, F(3,225) = 3.711, p = .012, η2p = .047], and HC 

performed better than AN [main effect of Group, F(1,75) = 6.833, p = .011, η2p = .083]. No 

other main effects or interactions were significant for punishment trials, ps > .1.
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Fig. 4. 
(A) Plot of the mean learning rate by prediction error type and group collapsed across set 

demonstrating the main effect of Group resulting from the Group × Set × PE type ANOVA. 

The main effect of Group indicated that AN learn more slowly than HC following both 

positive PEs and negative PEs. A main effect of PE type revealed faster learning rates 

following positive PEs compared to negative PEs across the entire sample. Neither the 

main effect of Set nor any interactions were significant (all η2p < .039). (B) Plot of explore-

exploit values by group and set showing a main effect of Group. AN had lower β values 

than HC. Smaller values imply individuals are still exploring stimulus-response-outcome 

hypotheses and are less certain about exploiting learned rules. The main effect of Set was 

not significant, nor was the interaction of Group x Set (all η2p < .030). (C) Plot of the change 

in BMI from admission to discharge with size of negative PE on punishment trials of Set 1. 

Error bars represent standard error of the mean; *p < .05, **p < .01, ***p < .001.
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