UC San Diego
UC San Diego Previously Published Works

Title

Altered Reinforcement Learning from Reward and Punishment in Anorexia Nervosa:
Evidence from Computational Modeling

Permalink
https://escholarship.org/uc/item/48h115cn
Journal

Journal of the International Neuropsychological Society, 28(10)

ISSN
1355-6177

Authors

Wierenga, Christina E
Reilly, Erin
Bischoff-Grethe, Amanda

Publication Date
2022-11-01

DOI
10.1017/s1355617721001326

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/48h115cn
https://escholarship.org/uc/item/48h115cn#author
https://escholarship.org
http://www.cdlib.org/

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.

-, HHS Public Access
«

Published in final edited form as:
J Int Neuropsychol Soc. 2022 November ; 28(10): 1003-1015. doi:10.1017/S1355617721001326.

Altered Reinforcement Learning from Reward and Punishment in
Anorexia Nervosa: Evidence from Computational Modeling

Christina E. Wierengal"”, Erin Reilly2, Amanda Bischoff-Grethel, Walter H. Kayel, Gregory
G. Brown!
1University of California, San Diego, CA, USA

2Hofstra University, Hempstead, NY, USA

Abstract

Objectives: Anorexia nervosa (AN) is associated with altered sensitivity to reward and
punishment. Few studies have investigated whether this results in aberrant learning. The ability

to learn from rewarding and aversive experiences is essential for flexibly adapting to changing
environments, yet individuals with AN tend to demonstrate cognitive inflexibility, difficulty set-
shifting and altered decision-making. Deficient reinforcement learning may contribute to repeated
engagement in maladaptive behavior.

Methods: This study investigated learning in AN using a probabilistic associative learning task
that separated learning of stimuli via reward from learning via punishment. Forty-two individuals
with Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 restricting-type AN were
compared to 38 healthy controls (HCs). We applied computational models of reinforcement
learning to assess group differences in learning, thought to be driven by violations in expectations,
or prediction errors (PES). Linear regression analyses examined whether learning parameters
predicted BMI at discharge.

Results: AN had lower learning rates than HC following both positive and negative PE (p < .02),
and were less likely to exploit what they had learned. Negative PE on punishment trials predicted
lower discharge BMI (p < .001), suggesting individuals with more negative expectancies about
avoiding punishment had the poorest outcome.

Conclusions: This is the first study to show lower rates of learning in AN following both
positive and negative outcomes, with worse punishment learning predicting less weight gain.
An inability to modify expectations about avoiding punishment might explain persistence of
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restricted eating despite negative consequences, and suggests that treatments that modify negative
expectancy might be effective in reducing food avoidance in AN.

Keywords

Eating disorders; prediction error; operant learning; decision-making; cognition; probabilistic
associative learning

INTRODUCTION

Anorexia nervosa (AN) is a serious eating disorder characterized by severe food avoidance
and weight loss, an intense fear of gaining weight, and a distorted experience of one’s

body (American Psychiatric Association, 2000). It is well known that individuals with AN
tend to be cognitively inflexible and have impaired set-shifting, which may contribute to
the high rates of chronicity and death (Papadopoulos, Ekbom, Brandt, & Ekselius, 2009;
Roberts, Tchanturia, Stahl, Southgate, & Treasure, 2007; Roberts, Tchanturia, & Treasure,
2010; Tchanturia et al., 2012; Wu et al., 2014). Persistent dietary restriction despite negative
consequences and evidence of altered reward and punishment sensitivity in AN (Bischoff-
Grethe et al., 2013; Glashouwer, Bloot, Veensra, Franken, & de Jong, 2014; Harrison,
O’Brien, Lopez, & Treasure, 2010; Harrison, Treasure, & Smillie, 2011; Jappe et al., 2011,
Matton, Goossens, Braet, & Vervaet, 2013) raise the question of whether impaired learning
from reward and loss might contribute to repeated engagement in maladaptive behavior and
illness maintenance.

Dysfunction of reward processing in AN is well documented, with reduced subjective
reward sensitivity and decreased limbic-striatal neural response to rewarding stimuli such
as food or money (Brooks, Rask-Andersen, Benedict, & Schioth, 2012; Fladung, Schulze,
Scholl, Bauer, & Gron, 2013; Jappe et al., 2011; Keating, Tilbrook, Rossell, Enticott, &
Fitzgerald, 2012; O’Hara, Schmidt, & Campbell, 2015; Oberndorfer et al., 2013; Wierenga
etal., 2014; Wu et al., 2016). Emerging evidence suggests processing of aversive stimuli
may also be disrupted in AN; individuals with AN demonstrate elevated harm avoidance,
intolerance of uncertainty, anxiety, and oversensitivity to punishment (Glashouwer et al.,
2014; Harrison et al., 2010; Harrison et al., 2011; Jappe et al., 2011; Matton et al., 2013),
which may contribute to an altered response to negative feedback or a bias to avoid
outcomes perceived as aversive (Kaye et al., 2015). Neuroimaging studies support a neural
dysfunction to loss, with an exaggerated (Bischoff-Grethe et al., 2013) or undifferentiated
(Wagner et al., 2007) striatal response to monetary losses compared to wins and decreased
response to aversive taste (Monteleone et al., 2017). However, much of the existing work in
AN has focused on responsivity to reward and punishment, with less attention to learning
from both reward and punishment (Bernardoni et al., 2018; Foerde & Steinglass, 2017).

The core idea of reinforcement learning is that the rate of learning is driven by violations
of expectations, or prediction errors (PES), which are operationalized as the received
outcome minus the expected outcome, and are markers of dopamine activity (Pearce &
Hall, 1980; Rescorla and Wagner 1972; Sutton & Barto, 2018). Learning from experience
occurs through updating expectations about the outcome in proportion to PE, so that the

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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expected outcome converges to the actual outcome. The majority of studies of learning in
AN have focused on passive Pavlovian conditioning (Schaefer & Steinglass, 2021), with
evidence of elevated reward PE signals in the ventral striatum and orbitofrontal cortex in

ill and remitted AN (GK Frank, Collier, Shott, & O’Reilly, 2016; GK Frank et al., 2012).
However, Pavlovian tasks have demonstrated poor behavioral profiles (National Institute of
Mental Health, 2016). Given the importance of choice behavior and decision-making in AN,
instrumental response-outcome learning may be more relevant to psychopathology. Limited
behavioral data (i.e., Acquired Equivalence Task) suggest reduced reward reinforcement
learning in AN (Foerde & Steinglass, 2017; Shott et al., 2012).

To probe the influence of rewarding and punishing outcomes on instrumental reinforcement
learning, we employed a well-studied two-choice feedback-based probabilistic associative
learning task (PALT) that relies on the contingency between a participant’s response and
outcome (i.e., whether or not they won or lost points) to facilitate learning (i.e., to select

the optimal reward-based stimuli and avoid the nonoptimal punishment-based stimuli) (Bodi
et al., 2009; Herzallah et al., 2017; Herzallah et al., 2013; Mattfeld, Gluck, & Stark, 2011;
Myers et al., 2013). The PALT is sensitive to dopaminergic medication effects on reward
and punishment processing in Parkinson’s disease (Bodi et al., 2009), has been applied to
several psychiatric disorders (i.e., substance use, post-traumatic stress, depression (Beylergil
etal., 2017; Herzallah et al., 2017; Myers et al., 2013), and corresponds to functional
specialization within the striatum for reward and punishment PE estimates (Mattfeld et

al., 2011). Moreover, research over the past two decades has shown that the direction and
magnitude of PE may be a marker of altered dopaminergic activity in AN (Glimcher, 2011,
Schultz, Dayan, & Montague, 1997; Schultz, 2016; Steinberg et al., 2013).

Given the link between PE and reinforcement learning, it is tempting to infer group

or individual differences in PE from observable reinforcement learning scores. Such an
inference would be valid only if the observed scores were unidimensional and reflected
PE-based learning. However, if PALT performance involved multiple processes, group or
individual differences in the observed scores would be challenging to interpret because the
differences might be due to any of the several processes that underlie the task (Sojitra,
Lerner, Petok, & Gluck, 2018; Strauss & Smith, 2009). Before comparing AN and healthy
control (HC) participants, we investigated the multidimensionality of data derived from the
PALT by comparing the fits of three computational reinforcement learning models.

All of these models assumed that when a stimulus is presented, participants choose between
two alternatives based on unobserved choice values that reflect the participant’s expectancy
of obtaining a favorable outcome (See Supplement). Once a choice is made, the expectancy
value associated with the choice made is updated based on the PE and PE learning rates,
represented by the parameter n (Figure 1). In expectancy value-based learning models of
this type, the difference between the expectancy values associated with the two-choice
alternatives is multiplied by a logistic regression weight, represented by the parameter §, to
turn the value difference into a probability of choosing a particular alternative (Gershman,
2016); Supplement — Equation 1; Figure 1). Although the logistic regression weight has
been called inverse temperature in some applications (Daw, 2011), it has been described

as an explore-exploit parameter in the psychology literature and reflects how decisively

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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participants make choices based on small differences in the expectancy values (Gershman,
2016; Moustafa, Gluck, Herzallah, & Myers, 2015).

As shown by Shultz (Schultz, 2016), positive and negative PEs differentially effect
dopaminergic activity. Because differential levels of dopaminergic activity influence amount
of PE learning (Steinberg et al., 2013), positive and negative PE might be associated with
different PE learning rates. All models discussed in this paper assume that separate learning
parameters differentially update expectancy values depending on the positive or negative
valence of the PE (Gershman, 2016). In particular, the No Bias model is composed of the
explore-exploit parameter, B, and two learning rate parameters, one to update expectancy
values when PE is positive, n, the other when it is negative, 1.

The No Bias model assumes that the first choice made to a stimulus is unbiased. However,
global choice biases, the tendency to choose one alternative over another regardless of
previous outcomes, and choice inertia bias, the tendency to repeat choices, are commonly
reported in the choice literature (Fritsche, Mostert, & de Lange, 2017; Garcia-Perez &
Alcala-Quintana, 2013; Gold & Ding, 2013; Linares, Aguilar-Lleyda, & Lopez-Moliner,
2019; Morgan, Dillenburger, Raphael, & Solomon, 2012). It is during experimental
conditions leading to uncertainty that choice biases are most likely to be observed (Morgan
et al., 2012; Urai, Braun, & Donner, 2017). When a stimulus is first presented on the

PALT, participants are doubly uncertain, neither knowing whether the trial is a reward

or punishment trial nor knowing which category to choose. Given this uncertainty, initial
choice biases might be due to a global choice bias or to a choice history bias — the latter
occurring on the initial presentation of subsequent stimuli after the first PALT stimulus is
presented. If choice biases occur on the PALT, they would be unobserved processes that
would obscure the use of observed scores as markers of PE learning. In the First Choice Bias
model, we modeled the impact of choice biases on the expectancy value of a choice when a
stimulus is first presented, which is when uncertainty is likely maximal. This model included
a separately estimated bias parameter, bias(s), for each of the four stimuli, s;, presented on a
trial set in addition to the explore-exploit parameter, B, and the two learning rate parameters,
npand mn,. The First Choice Bias (Singlet) model constrained estimates of the four bias
parameters to be equal to a single estimated value.

Considering the importance of biases in accounting for choice performance, we predicted
that the First Choice Bias model would provide a better fit to the data than would

the Base model. Once the best fitting model was chosen, we tested the hypothesis that
individuals with AN would demonstrate deficient reinforcement learning as evidenced by
worse optimal response accuracy on reward and punishment trials and/or poorer learning
rates, np, associated with positive and negative PEs compared to HCs. Moreover, within
AN, differences between accuracy on reward and punishment trials or positive and negative
PEs would indicate differential sensitivity to learning from rewarding or disappointing
outcomes. Exploratory analyses examined associations between learning rates, size of PEs
and AN symptom severity and clinical outcome.

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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Forty-two individuals meeting criteria for DSM-5 restricting-type AN (4 also endorsed
purging; mean age = 22.8, range = 16-60) were compared to 38 HC volunteers (mean

age = 21.6, range =15-32; Table 1). Individuals with AN were recruited from the
University of California, San Diego Eating Disorders Treatment and Research outpatient
Partial Hospitalization Program (PHP). The PHP uses a blend of family-based treatment
and dialectical behavior therapy adapted for intensive treatment settings. Patients received
treatment 6 to 10 h/day, 6 days/week, including individual, family, group, and multi-family
therapy, nutritional counseling, psychiatric care, and medical monitoring (Brown et al.,
2018; Reilly et al., 2020). AN diagnosis was determined by semi-structured interview
performed by program psychiatrists at treatment admission according to 2010 draft criteria
for the DSM-5 (Hebebrand & Bulik, 2011) and included atypical and partially remitted AN
(BMI range: 14.5-23.8 kg/m?2). HCs were recruited from the San Diego community and
did not have any eating disorder symptomatology or Axis | psychiatric disorder based on

a modified version of the Structured Clinical Interview for DSM-/V-TR Module H (First,
Spitzer, Gibbon, & Williams, 2002) and the Mini International Neuropsychiatric Interview
(Sheehan et al., 1998). See Supplement for additional exclusion criteria.

AN participants completed the PALT on average 19.8 days (SD = 19.9) after treatment
admission. Weight and height, measured via digital scale and stadiometer, were obtained at
admission, within two days of PALT completion, and at discharge for AN, and during the
task visit for HC. Self-report questionnaires to assess anxiety, depression and temperament
traits common in AN (e.g., reward/punishment sensitivity, inhibition, harm avoidance) that
might relate to learning behavior (Table 1) were completed within 16.1 days (SD = 18.9)

of the PALT in AN (Harrison, Treasure, & Smillie, 2011; Jappe et al., 2011; Wagner et

al., 2006). The study was approved by the Institutional Review Board of the University of
California, San Diego, research was completed in accordance with the Helsinki Declaration,
and all participants gave written informed consent and received a stipend.

Probabilistic Associative Learning Task

The PALT (Figure 2) involves receiving 25 points when choosing the optimal response on
reward trials, but losing 25 points when choosing the nonoptimal response on punishment
trials (Bodi et al., 2009; Mattfeld et al., 2011; Myers et al., 2013). On each trial, participants
saw one of four stimulus images and were prompted to decide whether it was associated
with one of two categories “A” or “B”, corresponding to different response keys. Two
images were randomly assigned to be “reward” stimuli in that selection of the optimal
category typically produced feedback and a gain of 25 points, whereas selection of the
nonoptimal category typically produced no gain of points. The remaining two images
were “punishment” stimuli in that selection of the nonoptimal category typically produced
feedback and a loss of 25 points, whereas selection of the optimal category typically
produced no loss of points. Reward-learning trials and punishment learning trials were
intermixed within the task with a favorable outcome associated with a gain on reward

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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trials and the avoidance of loss on punishment trials. Unfavorable outcomes led to no
change in points on reward trials and a loss of 25 points on punishment trials. The
participant’s cumulative point tally was shown at the bottom of the screen on each trial
and was initialized to 500 points at the start of the experiment. As done in prior studies
(Bodi et al., 2009; Mattfeld et al., 2011), two task sets were administered, each with a
different set of pictures to increase the number of trials during which participants were
actively learning new associations. The order of stimulus sets was counterbalanced across
participants. Each set contained 160 trials, divided into four 40-trial blocks. Within each
block, each stimulus appeared 10 times; 8 times the optimal response was associated with
the more favorable outcome, whereas two times the nonoptimal response was associated
with the more favorable outcome. For each participant, trial order was randomized within
a block. Trials lasted until the participant responded and were separated by a 2s interval,
during which time the screen was blank. On each trial, the computer recorded whether the
participant made the optimal response, regardless of the actual outcome on that trial. The
task took about 30 min to complete. The experiment was administered on a MacBook Pro,
programmed in MatLab version R2016B.

Computational Reinforcement Learning Models

Like Confirmatory Factor Analysis, computational models of cognitive processes embody
assumptions about a model’s architecture and parameters that determine how observed

data are related to latent processes. Whereas the assumptions fix the architecture of a

model, varying the model’s parameters can fine-tune the model’s functioning (Farrell &
Lewandowsky, 2018). Parameters estimated for each of the three models are listed in

Table 2 and discussed in more detail in the caption of Figure 1 and in Supplemental
Materials. To operationalize PE size, outcome was coded 1 for gains on reward trials, —1

for loss on punishment trials, and 0 for no change in points. Successful learning drives the
expectancy values toward gains, coded 1, on reward trials and toward avoidance of loss,
coded 0, on punishment trials. The No Bias model allowed positive and negative PE learning
rate parameters, n, and n,, and the explore-exploit parameter, 3, to vary and set initial
expectancy values to zero. The First Choice Bias model (Figure 1) allowed 8, npand n,

to vary, but also included four parameters that determined the initial expectancy values of
choices made to each of the four stimuli in order to account for choice biases. Given how
expectancy values are updated, the impact of these biases propagates to subsequent trials.
The First Choice Bias (Singlet) model set the four bias parameters to the same estimated
value. The full First Choice Bias model was selected as the best fitting model as assessed by
deviance information criterion weights (see Supplement).

Parameter estimation—We used the R routine rjags to generate Bayesian estimates of
model parameters based on fits to trial by trial optimal response data for each stimulus
(Plummer, 2017). See Supplement for details and model sensitivity analysis. The predicted
block means for reward and punishment trials based on parameter estimates for the best
fitting model are presented in Figure 3.

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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Statistical Analysis

RESULTS

Behavioral performance—Choice behavior was analyzed using a repeated measures
analysis of variance (rmANOVA) on optimal response accuracy with Group as a between
subjects effect and Block and Set as within subject effects, separately for reward trials and
punishment trials.

Model-generated parameters—Analyses were performed separately for reward and
punishment trials. To compare groups on learning rate parameters, we performed a
rmANOVA with Group as a between effect and Set and PE learning rates (n, 1) as within
effects. We also performed a Group x Set rmANOVA to investigate group differences in
the B parameter. To investigate the bias parameters, we averaged the two bias values for
reward stimuli and the two bias values for punishment stimuli, then performed a rmANOVA
involving Group x Set. To more completely examine group differences in level of learning
from a PE perspective, we averaged the size of PEs over trials separating values by PE type
(positive or negative) within reward and punishment trials for each set (e.g., mean negative
PE for punishment trials on set 1) and submitted these means to Group x Set x PE type
rmANOVAs.

Exploratory clinical associations—To examine whether standard clinical assessments
are associated with learning in AN, Pearson correlational analyses examined relationships
between 14 reinforcement learning model values (for each set: n, 1, positive and negative
PEs for each trial type, and B) and 9 AN clinical measures (age, admission BMI, EDE-Q
Global score, TCI Harm Avoidance, TCI Novelty Seeking, BIS/BAS, SPSRQ, STAI, BDI)
at time of study. To examine associations with treatment outcome, reinforcement learning
model values were explored as predictors of BMI at discharge using hierarchical linear
regression analyses, controlling for BMI at treatment admission, length of treatment, and
medication status. The hierarchical linear regression analysis was repeated using each self-
reported clinical measure as a predictor. Bonferroni correction for multiple comparisons was
used to determine a family-wise p-value for the 14 learning model values (.004) and the 9
clinical measures (.006) assuming p = .05 for each test.

Sensitivity analyses—To examine the potential impact of low weight and medication
status on our results, we compared AN participants with a BMI below 18.5 kg/m2 (n =

25; 59.5% of sample) to AN participants with a BMI above 18.5 kg/m?2 (n = 17; 41.5% of
sample), and AN participants on medication (n = 25; 61% of sample) to AN participants
not on medication (n = 16; 39% of sample) on clinical measures using Welch’s two sample
t-tests and repeated the rmANOVASs described above for each subsample. Small samples
precluded analysis of medication class (Table 1).

Sample Characteristics

AN and HC groups did not differ in age or education (Table 1). AN had significantly lower
current BMI (p < .001). In AN, there was a significant increase in BMI from treatment
admission to discharge (t(39) = 7.9, p<.001, Cohen’s d = 1.0).

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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Behavioral Performance

A Group x Block x Set rmANOVA on optimal responses for reward trials revealed a main
effect of Block, indicating increased accuracy over time across all participants, consistent
with learning, F(3,225) = 41.482, p< .001, 7;2p =.356 (Figure 3A). We detected a Group x
Block interaction, corresponding to faster learning rates in the HC group compared to AN,
F(3,225) =5.771, p=.001, r}2p =.071. A Group x Set interaction indicated AN were more
accurate than HC on Set 1, but less accurate than HC on Set 2, F(1,75) = 5.556, p=.021, qu
=.069.

For punishment trials, a Group x Block x Set rmANOVA revealed a main effect of Block,
indicating increased accuracy over time, F(3,225) = 3.711, p=.012, nzp =.047 (Figure

3B). A main effect of Group indicated AN performed worse than HC, F(1,75) = 6.833, p=
.011, ,72p =.083. Taken together, both groups demonstrated greater accuracy over time (aka,
learning) for reward and punishment trials; compared to HC, AN had slower overall learning
on reward trials, with better overall accuracy on Set 1 and worse accuracy on Set 2 (possibly
suggesting greater difficulty set-shifting and learning new associations, see (Filoteo et al.,
2014)), and were less accurate across punishment trials.

Model Generated Parameters

Prediction error learning rates (n)—A Group x Set x PE learning rate type (n, vs.
1) rMANOVA revealed a main effect of Group, indicating that AN learned more slowly
than HC following both positive PEs and negative PEs, F(1,75) = 5.521, p=.021, r;zp:
.061 (Table 3; Figure 4A). A main effect of PE type revealed faster learning rates following
positive PEs compared to negative PEs across the entire sample, F(1,75) = 78.792, p< .001,
T]2p= .512. That is, faster learning occurred when the outcomes were better than expected
relative to when the outcomes were worse than expected.

Prediction error size—To directly examine whether groups might have differed in
accuracy as a result of better than or worse than expected outcomes on reward and
punishment trials. Group x Set x PE type rmANOVAs for average PE size revealed no
effects involving Group for reward trials (all nzp <.025) or for punishment trials (all 7]2,0<
.045).

Explore-exploit strategy (B)—A Group x Set rmANOVA for the explore-exploit
parameter, B, revealed a main effect of Group, whereby AN had smaller B values than
HC, F(1,75) = 6.366, p=.014, r;zp:.078 (Table 3; Figure 4B). Since smaller values imply
individuals are exploring more than exploiting stimulus-response-outcome hypotheses,
results indicate AN may less decisively make choices.

Choice bias parameters—To assess whether groups differed in the degree to which
early reward and punishment reinforcement trials reflected choice biases, the Group x Set
interaction for bias values was significant only for reward trials, indicating that HC had a
greater bias against making the optimal choice on Set 1, whereas AN had a greater bias
against making the optimal choice on Set 2, F(1,75) = 10.651, p=.002, n2p= .124 (Table
3; Figure S10). This is consistent with the behavioral response data indicating that AN

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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outperformed HC on Set 1 and performed worse than HC on Set 2 on reward trials. No
significant effects of choice bias were detected for punishment trials (all T]2p< .018).

Exploratory Clinical Associations

No associations between reinforcement learning model parameters and clinical variables
were detected in AN (uncorrected p < .05). Separate hierarchical linear regression models
indicated the size of positive PE and of negative PE on punishment trials in Set 1
significantly added to the prediction of discharge BMI controlling for admission BMI,
treatment length, and medication status (positive PE: multiple R2 = .62, F_change(1,34) =
9.528, p=.004; negative PE: multiple RZ = .56, F_change(1,34) = 15.901, p< .001). Both
models remained significant after Bonferroni correction.

To test whether both positive and negative PE predicted a portion of the change in BMI with
treatment, we entered both into the regression model (multiple R? = .64, F_change(2,33) =
8.546, p=.001). Negative PE (Beta = —.348, t = —2.475, p=.019) more potently predicted
discharge BMI than did positive PE (Beta = —.141, t = -1.063, p=.296) (Figure 4C). In
other words, AN with smaller negative PE on punishment trials on Set 1, i.e., values closer
to —1.0, gained the most weight. Negative PE will approach —1 on punishment trials when
successful performers learn to expect outcomes that are close to the favorable outcome,
coded 0, but instead receive an unfavorable outcome, coded —1. The eight AN participants
with negative PE between —.85 and —1.0 in fact had an average expectancy of 0.013 on
punishment trials when negative PE occurred (range for entire sample: —.467 to .545) (see
Supplement). Moreover, on punishment trials where negative PE occurred, the regression of
expectancy values onto negative PE produced a significant negative regression weight (b =
-.419, p=.048), implying that AN participants with larger negative PE (i.e. closer to zero)
had more negative expectancies about avoiding loss.

Sensitivity Analyses

As expected, the low weight group had lower BMI at admission, time of study, and
discharge (all ps <.001, all Cohen’s ds > 1.0), and showed greater change in BMI during
treatment (p= .01, Cohen’s d = 1.1), but weight status groups did not differ on any other
clinical measure. Medication status groups did not differ on any clinical measure, including
BMI, change in BMI during treatment, length of treatment, or self-report questionnaires.
The rmANOVA results from the full sample reported above were observed in the subsample
contrasts. Regression results (PE on punishment trials predicting discharge BMI) were
observed only in the low weight sample. Overall, sensitivity analyses suggest weight and
medication status did not appreciably contribute to the full sample results.

DISCUSSION

This is the first study to apply computational models of reinforcement learning to assess
learning from both reward and punishment in restricting-type AN using an instrumental
probabilistic associative learning task. A unique aspect to this study is that we distinctly
examined differences in instrumental reinforcement learning from better or worse than
expected outcomes by deriving trial-specific PE estimates for both reward and punishment

J Int Neuropsychol Soc. Author manuscript; available in PMC 2022 November 01.
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conditions. We then modeled and compared learning based on positive and negative PEs
separately for reward and punishment trials to examine learning rate when a positive PE
occurs (unexpectedly favorable outcome) and when a negative PE occurs (unexpectedly
disappointing outcome). Model-based results indicated that both HC and AN learn

better following positive PEs compared to negative PEs. Consistent with our hypotheses,
individuals with AN have lower learning rates for positive and negative PEs compared to
HC. This indicates that AN learn less than HCs from the same PE, slowing their learning
of favorable choices. This deficit in learning to predict the most favorable choice was

also evidenced in their optimal choice performance by a flatter learning curve on reward
trials and by fewer optimal responses on punishment trials. These results are consistent
with previous work showing poorer learning performance from reward-based feedback in
ill AN (Foerde & Steinglass, 2017) and extends these findings to learning from loss-based
feedback. Deficits in learning from punishment could help explain the rigid persistence of
disordered eating behaviors despite negative consequences.

The degree to which cognitive inflexibility and difficulty set-shifting in AN contribute to
altered reinforcement learning remains to be determined; assessing reversal learning may
inform this issue. The lower explore-exploit  values observed in the AN group suggest
that poor learning was not due to perseverative responding, as lower B values indicate

that individuals with AN were less decisive about exploiting what they had learned and
continued to explore stimulus-response outcomes rather than employing the same strategy
across all trials, regardless of whether they were aware of the strategy employed. Clinically,
AN is characterized by increased sensitivity to uncertainty (Kesby, Maguire, Brownlow, &
Grisham, 2017). It is possible that diminished certainty in exploiting what they learned is
secondary to uncertainty in the task contingencies, although this was not directly tested.

In addition to comparing groups on response accuracy and rate of learning, we also
examined the size of PE as a determinant of learning level. Counter to our hypotheses,

no group differences in magnitude of positive and negative PEs within reward or punishment
trials were detected. However, within the AN group, the magnitude of negative PE when
punishment was possible was most strongly associated with treatment outcome. Moreover,
larger negative PEs were associated with more negative expectations on punishment trials,
suggesting that AN individuals who gained the least amount of weight during the course

of treatment held negative expectancies about avoiding loss on punishment trials. This
negative expectancy is consistent with reports of elevated punishment sensitivity, increased
lose-shift behavior on a reversal learning task (Geisler et al., 2017), negative interpretation
bias for ambiguous social stimuli that involve the risk of rejection, and tendency to resolve
ambiguity in a negative manner in AN (Cardi, Di Matteo, Gilbert, & Treasure, 2014; Cardi,
Di Matteo, Corfield, & Treasure, 2012; Cardi et al., 2017). No other learning parameter or
clinical measure predicted BMI change during treatment, and PEs were not associated with
self-report measures of sensitivity to reward or punishment, suggesting that this learning
metric may be a particularly sensitive prognostic indicator.

Other studies have observed a relationship between reward PE brain response and weight
gain in AN (DeGuzman, Shott, Yang, Riederer, & Frank, 2017; GKW Frank et al., 2018);
for example, elevated absolute PE (positive and negative PE combined) response in the
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caudate, orbitofrontal cortex and insula has been associated with less weight gain during
inpatient treatment. Taken together, our behavioral findings further support the role of
altered PE in the pathophysiology of AN, extending prior findings to include operant
learning in response to both reward and punishment, and are consistent with the hypothesis
that a failure to appropriately modify expectancies may contribute to poor outcome.

Strengths of this study include novel aspects and refinements of the reinforcement learning
model, that included modeling segregating learning for each of the four stimuli within a set,
adding parameters to account for choice biases rapidly acquired on early trials, performing
Bayesian estimates of model parameters for each subject, and modeling separate positive
and negative PE learning rate parameters. However, reinforcement learning models are
inherently limited by the parameters included in the model. While our models demonstrated
good fit to the behavioral data, future work may consider testing models with additional
parameters, such as a stickiness (or perseveration) parameter (Palminteri, Khamassi, Joffily,
& Coricelli, 2015). To increase generalizability, we did not exclude for medication use

and co-morbidities. Prior studies in major depressive disorder (MDD) report worse learning
to reward (Herzallah et al., 2017), and that SSRI antidepressants impair learning from
negative feedback (Herzallah et al., 2013). Notably, 50% of our sample was prescribed
antidepressants, and 20% of our sample had a comorbid MDD diagnosis. Although

our sensitivity analysis suggests medication status did not contribute to overall results,
larger, controlled studies are needed to examine the effects of these clinical variables on
reinforcement learning. We also do not have neuropsychological data to characterize the
general cognitive function of participants; however, groups did not differ on reaction time on
the PALT (see Supplement), suggesting the AN group did not have slowed processing speed
indicative of cognitive impairment or medication effects. Thus, it is unlikely that differences
in reward/punishment learning in AN are reflective of broader cognitive impairment. Lastly,
change in BMI is just one metric of treatment outcome; limited data on cognitive symptoms
prevented analysis of other outcome measures.

Conclusions

Results suggest that both AN and HC groups learned better following unexpected

favorable outcomes (positive PESs) than unexpected disappointing outcomes, suggesting that
maximizing positive PEs may potentiate learning in general. Moreover, individuals with
AN demonstrated slower learning from both positive and negative experience compared

to HC. Additionally, negative PEs on punishment trials were associated with worse
treatment outcome. Treatments that modify negative expectations about avoiding loss,

or the perceived value of the outcomes themselves, either with medication or cognitive-
behavioral strategies, may be effective in promoting recovery. Overall, findings support the
potential of applying computational approaches to reinforcement learning in AN to enhance
mechanistic explanations of behavior, identify new neurobehavioral constructs relevant to
psychopathology and advance treatment development through target identification.
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(A) Bias Parameters and Priors (B)  Learning Rate and Explore-Exploit
Parameters and their Priors
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Fig. 1.

(A?) Rather than setting all expectancy values, V, to zero on the first trial a stimulus, s; is
presented, as in the No Bias model, they are set either to a bias value, bias(s), or to zero
in the First Choice Bias model. The bias(s,) values are sampled from a normal distribution
with mean zero, indicating no bias, and a precision = 10, where precision = 1/variance. If
the sampled bias value for stimulus s is positive, the choice that would yield the optimal
long-term outcome is favored and its expectancy value for trial 1, Vl(copt|s ), Is set to the

sampled bias value, bias(s;), whereas the expectancy value for the nonoptimal response,
Vl(cNonopt|sj), is set to zero. If the sampled bias value is negative the nonoptimal choice is
favored and the expectancy value for the nonoptimal choice is set to the absolute value of the
bias, whereas the expectancy value for the optimal choice is set to zero. For the First Choice
Bias (Singlet) model, the bias parameters for each stimulus is set to the same estimated
value bias(s.). (B) The expectancy value for trial ¢+ 7 associated with the choice ¢;made to
stimulus sjon trial t, V; ;. 1(cils ). is the expectancy value on trial t updated by the product

of a learning rate with the prediction error. Different learning rates, v, are estimated

for positive or negative prediction errors, PE, | ,. Learning rates are sampled from a beta
distribution using values of the a and p parameters listed in Table 2 (Also see Supplement).
A logistic equation maps the differences between the expectancy value of the choice made
on trial t, V,(c;|s ), and the value of the choice not made, V(¢;[S ), to the probability Py(ci|s;)
of making the chosen response c; given that stimulus s;was presented on trial Z The logistic
regression weight p is sampled from a gamma distribution using values of the shape and rate
parameters presented in Table 2 (Also see Supplement).
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Positive PE

Unexpected
reward
(+25 points)

Omission of
punishment
(O points)

Probabilistic associative learning task (copied with permission from (Mattfeld et al., 2011)).

Negative PE

Omission of
reward
(0 points)

Unexpected
punishment
(-25 points)
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Solid black line = observed
Dotted line = 95% CI
= = predicted

Plots of the observed and predicted mean probability of selecting the optimal choice for AN
and HC groups across the four blocks by trial type (reward, punishment) and picture set. We
calculated for each participant the predicted block means for reward and punishment trials
based on the participant’s full First Choice Bias model parameter estimates and present the
average of these means for AN and HC groups for the two picture sets as black squares.

As can be seen, in every instance the model derived means are within the 95% confidence
interval of the observed means, and most cover the data means, supporting the prediction
model. (A) For observed data, on reward trials, results indicate improved performance

over time across all participants, consistent with learning, [main effect of Block, F(3,225)

=41.482, p<.001, ;121, = .356], and the HC group had a greater learning rate overall

than the AN group [Group x Block interaction, F(3,225) = 5.771, p=.001, ﬂzp =.071].
However, AN performed better than HC on Set 1 and worse than HC on Set 2 [Group x Set
interaction, F(1,75) = 5.556, p=.021, 2, = .069]. No other main effects or interactions were

significant for reward trials, ps > .3. No other main effects or interactions were significant
for reward trials, ps > .3. (B) On punishment trials, performance improved over time across
all participants [main effect of Block, F(3,225) = 3.711, p=.012, ;121, =.047], and HC

performed better than AN [main effect of Group, F(1,75) = 6.833, p=.011, n2p =.083]. No

other main effects or interactions were significant for punishment trials, ps > .1.
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(A) Mean Learning Rate by Prediction Error Type and Group (B) Explore-Exploit Value by Group and Set (C)
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Fig. 4.

(A) Plot of the mean learning rate by prediction error type and group collapsed across set
demonstrating the main effect of Group resulting from the Group x Set x PE type ANOVA.
The main effect of Group indicated that AN learn more slowly than HC following both
positive PEs and negative PEs. A main effect of PE type revealed faster learning rates
following positive PEs compared to negative PEs across the entire sample. Neither the
main effect of Set nor any interactions were significant (all ;72,, <.039). (B) Plot of explore-
exploit values by group and set showing a main effect of Group. AN had lower § values
than HC. Smaller values imply individuals are still exploring stimulus-response-outcome
hypotheses and are less certain about exploiting learned rules. The main effect of Set was
not significant, nor was the interaction of Group x Set (all nz,, <.030). (C) Plot of the change
in BMI from admission to discharge with size of negative PE on punishment trials of Set 1.
Error bars represent standard error of the mean; *p < .05, **p < .01, ***p < .001.
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