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Abstract

Disentangling content and speaking style information is essen-

tial for zero-shot non-parallel voice conversion (VC). Our pre-

vious study investigated a novel framework with disentangled

sequential variational autoencoder (DSVAE) as the backbone

for information decomposition. We have demonstrated that si-

multaneous disentangling content embedding and speaker em-

bedding from one utterance is feasible for zero-shot VC. In this

study, we continue the direction by raising one concern about

the prior distribution of content branch in the DSVAE baseline.

We find the random initialized prior distribution will force the

content embedding to reduce the phonetic-structure informa-

tion during the learning process, which is not a desired prop-

erty. Here, we seek to achieve a better content embedding with

more phonetic information preserved. We propose conditional

DSVAE, a new model that enables content bias as a condition

to the prior modeling and reshapes the content embedding sam-

pled from the posterior distribution. In our experiment on the

VCTK dataset, we demonstrate that content embeddings de-

rived from the conditional DSVAE overcome the randomness

and achieve a much better phoneme classification accuracy, a

stabilized vocalization and a better zero-shot VC performance

compared with the competitive DSVAE baseline.

Index Terms: Voice Conversion, DSVAE, Representation

Learning, Generative Model, Zero-shot style transfer

1. Introduction

Voice Conversion (VC) is a technique that converts the non-

linguistic information of a given utterance to a target style (e.g.,

speaker identity, emotion, accent or rhythm etc.), while pre-

serving the linguistic content information. VC has become a

very active research topic in speech processing with potential

applications in privacy protection speaker de-identification, au-

dio editing or sing voice conversion/generation [1–4].

Current VC systems embrace the technological advance-

ments from statistical modeling to deep learning and have made

a major shift on how the pipeline develops [1]. For example, the

conventional VC approaches with parallel training data utilize

a conversion module to map source acoustic features to target

acoustic features, the source-target pair has to be aligned be-

fore the mapping [5]. With the advent of sequence-to-sequence

models even without the alignment prerequisite, better VC per-

formance is reported [6]. For VC with non-parallel data, direct

feature mapping method is difficult. Instead, studies start to ex-

plicitly learn the speaking style and content representations and

train a neural network as a decoder to reconstruct the acoustic

feature, with the assumption that the decoder can also gener-

alize well when the content and speaker style is swapped dur-

ing the conversion. Among the approaches, phonetic posterior-

grams (PPGs) and pre-trained speaker embeddings are widely

∗ Equal Contribution. Work done when Jiachen was an intern at
Tencent AI Lab, Bellevue, WA

used as the content and speaking style representations [7–10].

However, developing such system usually requires a big amount

of external data with rich transcriptions and speaker labels.

The relatively small-footprint AUTOVC and AdaIN-VC em-

ploy encoder-decoder frameworks for zero-shot VC [11, 12].

The encoder decomposes the speaking style and the content

information into the latent embedding, and the decoder gen-

erates a voice sample by combining both disentangled infor-

mation. Nevertheless, these models require supervisions such

as positive pair of utterances (i.e., two utterances come from

the same speaker), and the systems still have to rely on pre-

trained speaker models. Progress has also been made with gen-

erative adversarial networks (GAN) based VC systems [13–16].

This categorical of method usually assumes that the speaker of

source-target VC pair is pre-known, which limits the applica-

tion of such models in the real world. At the same time, bunch

of regularization terms have to be applied in the training pro-

cess, which imposes generalization doubts to such systems for

zero-shot non-parallel VC scenarios.

Our previous study proposed a novel disentangled sequen-

tial variational autoencoder (DSVAE) [17] as a backbone frame-

work for zero-shot non-parallel VC. We designed two branches

in the encoder of DSVAE to hold the time-varying and the time-

invariant components, where balanced content and speaking

style information flow is achieved with the VAE training [18].

We demonstrated that the vanilla VAE [18, 19] loss can be ex-

tended to force strong disentanglement between speaker and

content components, which is essential for the success of chal-

lenging zero-shot non-parallel VC.

In this study, we continue the direction by further improving

the disentangled representation learning in the DSVAE frame-

work. One major concern is raised after we analyzed the con-

tent embedding learned from our DSVAE baseline [17]. We find

that the random initialed prior distribution in the content branch

of the baseline DSVAE is not optimal to preserve the pho-

netic/content structure information. The randomness of con-

tent embedding zc has a negative impact to phoneme classifica-

tion and VC. To cope with this issue, we propose conditional

DSVAE (C-DSVAE), an improved framework that corrects the

randomness in the content prior distribution with content bias.

Alternative content biases extended from unsupervised learn-

ing, supervised learning and self-supervised learning are ex-

plored in this portion of study. The VC experiments on VCTK

dateset demonstrate a clear stabilized vocalization and a sig-

nificantly improved performance with the new content embed-

dings. Phoneme classification with zc also justifies the effec-

tiveness of the proposed model in an objective way.

2. The DSVAE Baseline

2.1. Related Work

DSVAE [19] was proposed as a sequential generative model

that disentangles the time-invariant information from the time-

variant information in the latent space. The original DSVAE

http://arxiv.org/abs/2205.05227v2


Eshare

ES

EC

sampling

sampling

Decoder Vocoder

1. DSVAE 

prior model

zs

zc

2. C-DSVAE

prior model

content bias conditioned 

to the prior model 

Figure 1: The system diagram of conditional DSVAE.

model [19] and its early variants [20, 21] achieved limited suc-

cess in speech disentanglement. Recently, we extended the

DSVAE by balancing the information flow between speaker and

content representations and it achieved the state-of-the-art per-

formance for zero-shot non-parallel VC [17]. To be unified, we

refer to DSVAE as the baseline we developed in [17], although

it is already very different from the previous systems [19–21].

2.2. Baseline Overview

The DSVAE baseline adopted here is shown in Fig. 1. De-

note X, X̂, zs, zs, θ as input melspectrogram, reconstructed

melspectrogram, speaker embedding, content embedding and

model parameters, respectively. The shared encoder Eshare

takes X as input and outputs a latent representation, with the

speaker encoder ES and the content encoder EC modeling the

posterior distribution qθ(zs|X) and qθ(zc|X) subsequently. zs
and zc are then sampled from qθ(zs|X) and qθ(zc|X). In the

next stage, the decoder takes the concatenation of zs and zc, and

passes them into decoder D to reconstruct the melspectrogram

X̂ , i.e. X̂ = D(zs, zc). The vocoder then converts X̂ into

waveform. Both the prior distribution pθ(z) and the posterior

distribution qθ(z|X) are designed to follow the independence

criterion, which is similar to [17, 19–21]. Specifically, they can

be factorized as Eq. (1) and Eq. (2). Note that we use qθ(zct|X)
to model the content posterior since the content encoder con-

sists of BiLSTM modules, which is slightly different from the

streaming posterior qθ(xct|X< t) described in [19, 20], where

they adopt unidirectional LSTM or RNN.

pθ(zs, zc) = p(zs)pθ(zc) = p(zs)
∏T

t=1 pθ(zct|zc< t) (1)

qθ(zs, zs|X) = qθ(zs|X)qθ(zc|X) = qθ(zs|X)
∏T

t=1 qθ(zct|X) (2)

2.3. Training and Inference

During training, the model takes fixed length of X as input and

optimizes with three objectives: LREC , LKLDs
and LKLDc

,

as Eq. (3) (4) (5). LREC is the reconstruction loss, which is im-

plemented as the negative log likelihood. LKLDs
and LKLDc

denote the KL divergence for speaker and content respectively.

LREC = Ep(X)Eqθ(X|zs,zc)[−log(qθ(X|zs, zc))] (3)

LKLDs
= Ep(X)[KLD(qθ(zs|X)||p(zs))] (4)

LKLDc
= Ep(X)[KLD(qθ(zc|X)||pθ(zc))] (5)

Given X1 as the source utterance and X2 as the target utterance

for VC inference, the transferred sample is simply D(zs2, zc1),
where zs2 and zc1 are sampled from qθ(zs|X2) and qθ(zc|X1).
We use a vocoder to convert the mel spec to the waveform.

2.4. Implementation Details

Table. 1 provides detailed descriptions of each module of the

DSVAE baseline. For shared encoder and decoder, the instance

normalization [22] is applied on both time and frequency axis.

For speaker encoder ES , content encoder EC and the content

prior model pzc , two dense layers are used to model the mean

and standard deviation of the q(zs|X), q(zct|X), p(zct|zc< t)
respectively. For the prior models, p(zs) is the standard nor-

mal distribution and pθ(zc) is modeled by an autoregressive

LSTM: at each time step t, the model generates p(zct|zc< t),
from which zct is sampled and taken as the input for next time

step. Note that pθ(zc) is independent of the input data X . The

decoder consists of a prenet and postnet, which is introduced

in [11]. We use HiFi-GAN V1 [23] instead of WaveNet [24] as

vocoder since HiFi-GAN results in better speech quality with

much faster inference speed. The vocoder is pretrained with

VCTK [25] and is not involved in the training.

Shared Encoder Eshare

(Conv1D(256, 5, 2, 1)→ InstanceNorm2D→ ReLU)×3

Speaker Encoder ES Content Encoder EC

BiLSTM(512, 2)→ Pooling BiLSTM(512, 2)→RNN(512, 1)

Dense(64) Dense(64)

Decoder-PreNet DPre

(InstanceNorm2D→ Conv1D(512, 5, 2, 1)→ ReLU)×3

LSTM(512, 1) → LSTM(1024, 2) → Dense(80)

Decoder-PostNet DPost

(Conv1D(512, 5, 2, 1)→ tanh→ InstanceNorm2D)×4

Vocoder D: HiFiGAN-V1

Prior p(zc) Prior p(zs)
LSTM(256, 1)→Dense(64) N(0,I)

Table 1: Detailed DSVAE architecture. For Conv1D, the con-

figuration is (output channels, kernel size, padding, stride). For

LSTM/BiLTSM/RNN, the configuration is (hidden dim, layers). For

Dense layer, the configuration is (output dim).

3. Conditional DSVAE

3.1. Conditional Prior Distribution

Ideal disentanglement requires zs to carry speaking style infor-

mation and zc to carry content information without losing the

phonetic structure. One problem for the vanilla DSVAEs [17,

19–21] is that the prior distribution is randomly initialized, thus

it does not impose any constraint to regularize the posterior dis-

tribution. We argue that such randomness on the content prior

distribution pθ(zc) impedes the content embedding zc from



learning the phonetic structure information. Since the phonetic

structure is explicitly modeled by qθ(zc|X), according to Eq. 5,

one of the objective is to minimize the KL divergence between

qθ(zc|X) and pθ(zc). Thus, we expect that content embedding

will be significantly influenced by the prior pθ(zc) during VAE

training. In that sense, the learned phonetic structure qθ(zc|X)
for all utterances will also follow the prior distribution, which

does not reflect the real phonetic structure of the utterance. Such

phenomenon can be observed in Fig. 2(a) and Fig. 2(c) which

gives the t-SNE [26] visualization of zc comparing the learned

content embeddings from the pretrained DSVAE [17] and the

raw melspectrogram of the same utterances. It is observable

that DSVAE representations are not phonetically discrimative

in comparison to melspectrogram and they actually follow the

random distribution. The aforementioned problem is detrimen-

tal to disentanglement and will generate discontinuous speech

with non-stable vocalizations.

Our solution is that, instead of modeling pθ(zc), we will

model the conditional content prior distribution pθ(zc|Y (X))
such that the prior distribution is meaningful in carrying the

content information. We call Y (X) as the content bias. The ex-

pectation is that, by incorporating the content bias into the prior

distribution pθ(zc), the posterior distribution qθ(zc|X) will re-

tain the phonetic structure of X .

3.2. Proposed C-DSVAE

Based on the aforementioned discussion, we introduce

four conditional DSVAE candidates: C-DSVAE(Align), C-

DSVAE(BEST-RQ), C-DSVAE(Mel) and C-DSVAE(WavLM)

based on different content bias source.

C-DSVAE(Align) In order to let zc or qθ(zc|X) to keep the

phonetic structure of the speech data X , the content bias Y (X)
is expected to carry the fine-grained phonetic information. One

natural choice is to let Y (X) be the forced alignment of X .

To do so, we employ the Kaldi toolkit [27] to train a mono-

phone model with 42 phonemes to obtain the forced alignment.

The training portion of the VCTK dataset is used in the HMM

training (see Sec. 4.1 for dataset split). We denote this bias

as YAlign. As an example showing in Fig. 1, the content bias

YAlign for the current utterance is the forced alignment labels

[1 1 5 5 34 34 2 5 5 5]. In the next step, the one-hot vectors are

derived based on these labels for each frame, and are concate-

nated with the original inputs of pθ(zc) at each time step so that

the new content prior becomes pθ(zc|Y (X)). Such conditioned

content prior is still factorized in a streaming manner, which is

described as Eq. 6.

pθ(zc|Y (X)) =

T∏

t=1

Pθ(zct|z<t, Y (Xt)) (6)

Note that YAlign is derived in the supervised manner, which has

to reply on the audio-transcription pairs. However, transcription

is not always available in practical usage. We present a few

unsupervised labeling methods as the content bias candidates.

We note all these methods as Pseudo Labeling (PL), which is

also mentioned in [28]. The essence of PL is to derive closed-

set discrete acoustic units given continuous speech input.

C-DSVAE(BEST-RQ) Given the continuous representations

as input, VQ-VAE [29] will derive the corresponding quantized

vector as well as discrete indices by looking up in a closed-

set codebook. We adopt BEST-RQ [30] to extract pseudo la-

bels. Specifically, the melspectrogram is linearly projected into

frame-wise vectors, and then nearest-neighbour search is per-

formed within a codebook to derive pseudo labels. Both the

projection matrix and codebook are randomly initialized and

then fixed during training. We denote this bias as YBEST−RQ.

C-DSVAE(Mel) BEST-RQ [30] is more like an online clus-

tering algorithm that generates the pseudo labels without see-

ing the entire dataset. In contrast, kmeans is an offline method

that embraces more global information. We directly perform

kmeans on the offline melspectrogram features on the whole

training data. After that, the index of cluster center is used as

the pseudo label. This is consistent with the first step of Hu-

BERT [28]. We denote this bias as YMel.

C-DSVAE(WavLM) The problem in C-DSVAE(Mel) is that

melspectrogram is noisy and not linguistically discriminative.

To handle this problem, we attempt to apply kmeans on the pre-

trained features. Specifically, we use the pre-trained WavLM

features for kmeans clustering [31]. The advantage of WavLM

is that the aforementioned bias from melspectrograms will be

alleviated via iterative clustering and the masked prediction

training process. The other point is that WavLM acts as a

teacher model so that the phonetic structure knowledge can be

transferred from a larger corpus, which potentially improves the

robustness and generalization capacity. We denote this bias as

YWavLM . We use the WavLM Base model, which is pretrained

with 960 hours of Librispeech data [32].

Kmeans++ [33] is employed for implementing clustering.

The number of cluster is set as 50 for all experiments. We still

keep speaker prior p(zs) to be a Gaussian prior p(zs), which is

actually a common assumption in speaker recognition.

3.3. Training Objective

The content conditioned KL divergence loss is shown in Eq. 7.

The overall loss is shown in Eq, 8, where α and β are the factors

that balances the disentanglement [17].

LKLDc−cond
= Ep(X)[KLD(qθ(zc|X)||pθ(zc|Y (X)))]

(7)

LC−DSVAE = LREC + αLKLDs
+ βLKLDc−cond (8)

Following [17], we use the same training configuration for all

experiments: the ADAM optimizer is used with the initial learn-

ing rate of 5e-4 [34]. Learning rate is decayed every 5 epochs

with a factor of 0.95. Weight decay is 1e-4, the batch-size is

256. Both speaker embedding and frame-wise content embed-

ding are 64-D. α = 0.01 and β = 10 are kept the same as [17].

4. Experiments

4.1. Dataset

We use VCTK corpus for experimental study [25]. 90% of the

speakers are used for training and the remaining 10% are used

for evaluation [17]. Melspectrogram is used as acoustic feature

with the window size/hop size of 64ms/16ms, and the feature

dimension is 80. We randomly select segments of 100 frames

(1.6s) from the whole utterances for training.

4.2. Experimental Results

4.2.1. Content embedding and phoneme Classification

Fig.2 demonstrates the t-SNE [26] visualizations of the content

embeddings zc from 6 different content embeddings. The pur-

pose of this portion of study is to show how much the underlying



distribution of zc matches the (almost) ground truth phonetic

structure. As shown in Fig. 2, content embeddings from the

DSVAE baseline follow a random uniform distribution. Such

distribution is detrimental to preserve the phonetic structure

of raw speech. At the same time, melspectrogram captures

phone-dependent information due to continuous speech signal

nature. C-DSVAE(BEST-RQ) employs a random labelling pro-

cess for content biasing, thus it justifies that constraint is needed

for better performance. C-DSVAE(Mel), C-DSVAE(Align) and

C-DSVAE(WavLM) deliver much desired content distributions

which successfully result in phonetically discriminative embed-

dings. The phonetic structure of raw speech is retained and bet-

ter disentanglement is expected.

We also perform phoneme classification to evaluate content

embeddings in an objective way. The phoneme classifer is men-

tioned in Sec. 2.4. The consistent conclusion could be drawn

that DSVAE and C-DSVAE(BEST-RQ) give lower accuracy.

The reason for which C-DSVAE(Mel), C-DSVAE(Align) and

C-DSVAE(WavLM) outperform melspectrogram is that the lat-

ter contains the coarse-grained phonetic structure which can be

improved via offline clustering. C-DSVAE(Align) is better than

C-DSVAE(Mel) since alignment is obtained with a supervised

alignment model. C-DSVAE(WavLM) gives the best result be-

cause the masked language modeling and iterative clustering

tend to capture better phonetic structure where the knowledge

can also be transferred from the larger corpus.

Setting Phn ACC %

DSVAE 30.2

C-DSVAE(BEST-RQ) 35.6

Melspectrogram 44.1

C-DSVAE(Mel) 48.2

C-DSVAE(Align) 51.1

C-DSVAE(WavLM) 52.8

Table 2: Phoneme Classification with content embeddings.
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(f) C-DSVAE(WavLM)

Figure 2: Visualizations of learned content embeddings.

4.2.2. Voice conversion1

We also conduct a mean opinion score (MOS) test to evaluate

our system. The evaluation corpus setup is the same as [17].

The listener needs to give a score for each sample in a test case

according to the criterion: 1 = Bad; 2 = Poor; 3 = Fair; 4 =

Good; 5 = Excellent. The final score for each model is calcu-

1Samples of voice conversion can be found at
https://jlian2.github.io/Improved-Voice-Conversion-with-Conditional-
DSVAE.

lated by averaging the collected results. Table 3 shows the MOS

results of different models.

As illustrated in the table, HiFi-GAN [23] based DSVAE

outperforms the WaveNet [24] with the same acoustic features.

Except for C-DSVAE(Mel), our proposed C-DSVAEs outper-

form the DSVAE baseline by a large margin in terms of natural-

ness and similarity under both seen to seen and unseen to unseen

scenarios, and the MOS results are consistent with phoneme

experiments as introduced in Sec 4.2.1. The only exception

is C-DSVAE(Mel), which achieves worse naturalness than C-

DSVAE(BEST-RQ) and worse similarity than DSVAE base-

line, the potential reason is that speaker embeddings learned

in C-DSVAE(Mel) are not as discriminative as those in either

DSVAE baseline or other C-DSVAEs.

seen to seen unseen to unseen
model naturalness similarity naturalness similarity

AUTOVC [17] 2.65±0.12 2.86±0.09 2.47±0.10 2.76±0.08
AdaIN-VC [17] 2.98±0.09 3.06±0.07 2.72±0.11 2.96±0.09

DSVAE [17] 3.40±0.07 3.56±0.06 3.22±0.09 3.54±0.07

DSVAE(HiFi-GAN) 3.76±0.07 3.83±0.06 3.65±0.07 3.89±0.05
C-DSVAE(BEST-RQ) 3.88±0.06 3.93±0.07 3.82±0.08 3.98±0.07

C-DSVAE(Mel) 3.86±0.10 3.65±0.07 3.78±0.05 3.58±0.08
C-DSVAE(Align) 4.03±0.04 4.12±0.07 3.93±0.06 4.06±0.07

C-DSVAE(WavLM) 4.08±0.06 4.17±0.06 3.98±0.07 4.12±0.05

Table 3: The MOS (95% CI) test on different models.

4.2.3. Speaker verification

We consider speaker verification as an objective measure to

evaluate the VC performance. The speaker verification accu-

racy measures whether the transferred voice belongs to the tar-

get speaker. For this purpose, we generate 200 source-target

pairs and produce 400 target trials from the test set. A state-

of-the-art ECAPA-TDNN [35] based speaker verification sys-

tem is used to verify the speaker identity from the transferred

voices. Please refer to [36] for more details. We employ the

cosine distance scoring method to perform verification and use

0.42 as the threshold, which is determined by a third-party test

set [36]. As shown in Table 4, voice transferred from system

C-DSVAE(WavLM) achieved the best speaker verification ac-

curacy. The trend is similar to the phoneme classification and

VC MOS test, which indicates that stable content embeddings

with more phonetic structure information boost the VC perfor-

mance in both subjective and objective evaluations.

Setting ACC %

DSVAE 85.0

C-DSVAE(BEST-RQ) 86.3

C-DSVAE(Mel) 83.8

C-DSVAE(Align) 91.5

C-DSVAE(WavLM) 92.3

Table 4: Test accuracy for transferred voice verification across

different models.

5. Conclusion

This paper proposes C-DSVAE, a novel voice conversion sys-

tem that introduces the content bias to the prior modeling to

enforce the content embeddings to retain the phonetic struc-

ture of the raw speech. The VC experiments on VCTK dateset

demonstrate a clear stabilized vocalization and a significantly

improved performance with the new content embeddings. With

these contributions and progress, our C-DSVAE achieves state-

of-the-art voice conversion performance.
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