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Impulsivity is defined as a trait-like tendency to engage in rash actions that are poorly

thought out or expressed in an untimely manner. Previous research has found that

impulsivity relates to deficits in decision making, in particular when it necessitates

executive control or reward outcomes. Reinforcement learning (RL) relies on the ability

to integrate reward or punishment outcomes to make good decisions, and has recently

been shown to often recruit executive function; as such, it is unsurprising that impulsivity

has been studied in the context of RL. However, how impulsivity relates to the

mechanisms of RL remains unclear. We aimed to investigate the relationship between

impulsivity and learning in a reward-driven learning task with probabilistic feedback

and reversal known to recruit executive function. Based on prior literature in clinical

populations, we predicted that higher impulsivity would be associated with poorer

performance on the task, driven by more frequent switching following unrewarded

outcomes. Our results did not support this prediction, but more advanced, trial-history

dependent analyses revealed specific effects of impulsivity on switching behavior

following consecutive unrewarded trials. Computational modeling captured group-level

behavior, but not impulsivity results. Our results support previous findings highlighting the

importance of sensitivity to negative outcomes in understanding how impulsivity relates

to learning, but indicate that this may stem from more complex strategies than usually

considered in computational models of learning. This should be an important target for

future research.

Keywords: impulsivity, reversal learning, working memory, reinforcement learning, computational modeling

INTRODUCTION

Impulsivity, defined as the trait-like tendency to engage in rash, regrettable action (1), has been
considered core to understanding problematic human behavior. Hundreds of studies have focused
on the effects of this pernicious trait on psychopathology, aggression, and suicidality (2).

Not surprisingly, there has been a voluminous literature regarding the potential mechanisms
involved in impulsivity. Self-control, the inverse of impulsivity, rests on the ability to over-ride
reflexive responses to cues of potential reward and to emotional urges, and accordingly, theory
has long focused on the idea that impulsivity might reflect some combination of poor constraint
coupled with dysregulation in responses to reward cues and emotionality (3–5). This has led to
a search for parallel cognitive processes involving executive control and reward processing as
potential correlates of impulsivity.
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Regarding executive control, many studies have considered
response inhibition and working memory capacity as potential
correlates of impulsivity. Response inhibition, defined as the
ability to inhibit motoric responses to prepotent stimuli, has
been theorized to be of import given that emotions and cues of
reward might be considered prepotent stimuli, such that control
is needed to override reflexive, immediate responses. Findings
regarding the link between impulsivity and response inhibition,
though, have been mixed, meta-analytic r < 0.10 (6), with one
meta-analysis observing moderate effects only within clinical
samples (7).

Working memory is the ability to actively and effortfully
maintain a small amount of information (the working memory
capacity) for a short amount of time, and to shield that
information from interference from competing information; it
plays a critical role in self-regulation (8, 9). Although some
research has suggested that Barratt Impulsivity scores (BIS-11)
(10) are related to lower working memory capacity (11), most
authors have observed null effects of the BIS-11 scale with
working memory tasks, including the digit span task (12, 13),
the N-back task (14–16), the CANTAB test of spatial working
memory (11, 17), the O-Span task (18), or a composite of well-
validated working memory tasks (19). In parallel, findings have
been mixed on whether working memory training lowers BIS-11
scores (20, 21).

Some findings suggest that more precision in the
measurement of impulsivity may inform this work. Considerable
research highlights that self-rated dimensions of impulsivity
are only modestly correlated (22–24) and relate differentially to
psychopathology and behavioral outcomes (2). One key form of
impulsivity not captured by the BIS-11 is Negative Urgency, a
subscale of the UPPS scale that captures tendencies to respond
with rash speech and behavior in the face of negative emotion
(25). Negative Urgency is statistically separable from other
self-rated forms of impulsivity, such as lack of Perseverance, lack
of Premeditation, and Sensation-seeking, and it appears much
more robustly tied to psychopathology and behavioral problems
than do those forms of impulsivity (2). A separate subscale of the
UPPS, Positive Urgency, covering tendencies to respond rashly
to positive emotion states, was identified more recently (23),
and also correlates robustly correlations with psychopathology
(2, 26, 27). Large-scale factor analytic and network models
suggest that Positive and Negative Urgency are closely related
and form a higher order factor (22, 28).

When using the UPPS scale, several researchers have found
that lower working memory performance is negatively related to
specific forms of impulsivity. That is, researchers have observed
negative correlations of the Negative Urgency scale with working
memory as assessed using the OSPAN (29), the Digit Span
task (30), and the Operation Word Span task (31). Across two
studies, (lack of) Perseverance has been found to be related
to significantly lower working memory performance, using the
Digit Span Task (30) and the Letter-number Sequence task (32).
Further investigation, though, is warranted as null effects have
been reported for Urgency, (lack of), Perseverance and the other
UPPS scales with working memory indices, including the Digit
Span task (33), the Spatial Working Memory task (34), the

Letter-number Sequence task (35), and a composite of three
working memory tasks (36).

Beyond a focus on working memory, considerable research
has examined how self-rated impulsivity relates to dysregulated
or excessive pursuit of rewards (37, 38). Not all facets of reward
processing, though, appear to be tied to all facets of impulsivity.
Although a preference for immediate over long-term rewards has
often been framed as a behavioral index of impulsivity, findings
relating delay discounting tasks to BIS scores have been mixed,
with positive (39) and null findings (13).

Reinforcement learning (RL) is a cognitive process that uses
rewards and punishments to learn which actions are beneficial
over time (40). Researchers have observed ties between RL and
self-rated impulsivity. For example, researchers have shown that
impulsivity is tied to gambling tasks in which a person must
learn about potential rewards, with negative correlations of the
I7 with the Iowa Gambling task (37), and of premeditation scores
(UPPS-P) on a different gambling task (41). In another study,
Negative Urgency and (lack of) Perseverance, but not Persistence
or Sensation-seeking, significantly related to diminished reward
learning on the IGT (42). To date, these effects appear tied to
learning, in that BIS-11 scores did not correlate significantly with
performance on a card task that provided labels for decks with
short vs. long term rewards (14). Accordingly, we focus here on
reward-seeking tasks that involve learning.

Among reward-seeking tasks that involve learning, reversal
learning tasks, and in particular probabilistic reversal learning
tasks, offer an ideal test-bed for investigating the role of
impulsivity in decision making. Theories of impulsivity have
focused on the importance of the interaction of executive
function in combination with reward-seeking [cf. (4, 31)].
Probabilistic reversal learning tasks necessitate executive
function, for example in the form of response inhibition: when
a negative outcome occurs, participants may need to actively
refrain from switching as it may signal noise rather than
a reversal.

Consistent with theory, multiple studies have shown that
impulsivity is tied to performance on versions of reversal tasks,
most commonly in samples oversampled for clinical conditions
related to impulsivity, such as gambling or alcohol addiction.
Those studies have shown that performance is lower on reversal
learning tasks among those with high impulsivity, as measured
using the I7 (37) or BIS-11 (11, 43–45). In one study, Negative
Urgency, but not other UPPS scales, was significantly correlated
with more perseverative errors on a response reversal task
(46), again highlighting the import of specificity in definitions
of impulsivity.

Much remains unknown, however, regarding links of
impulsivity dimensions with performance in probabilistic
reversal tasks. First, researchers have rarely considered these
links within healthy populations. Second, previous studies that
showed links of impulsivity with reversal performance often
provided deterministic switch information despite probabilistic
outcomes across a range of values (11, 37, 43, 47). Furthermore,
these studies used outcomes of variable amounts, such that
participants needed to consider not only uncertainty but also
expected outcomes, which could account for some of the findings.
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Other studies, such as Clatworthy et al. (44), did test probabilistic
reversal with binary outcome, so that the switch could not be
deterministically observed and had to be inferred, and did not
observe a main effect of impulsivity, but an interaction with
a dopaminergic drug, such that more impulsive participants’
reversal performance benefited more from the drug; however,
there was a single reversal in this task, limiting statistical power.
In a probabilistic learning task, Sali et al. (48) observed that
more impulsive participants were more likely to switch after a
negative outcome and less likely to stay after a positive outcome,
showing more sensitivity to reward; however, this was not in a
switching context, and independent of whether the participants
had experienced switches in task contingencies previously or not.

Thus, the role of impulsivity in probabilistic reversal learning
remains unclear. Here, we use a simple probabilistic reversal
learning task to probe the role of impulsivity in flexible
decision making under uncertainty in dynamically changing
environments. Our design allows us to test the impact of
uncertain feedback on choice stability (or switching behavior)
when participants need to infer if a negative outcome signals
change or noise, in the absence of confounds about outcome
amounts, as often used in gambling tasks. We predicted that
more impulsive participants would be more likely to switch after
a negative outcome [as observed in (48)], and as such, would
have overall worse performance. We also tested whether there
was a link between impulsivity and another form of executive
function (working memory), in another task (not discussed here)
enabling us to identify working memory. Our results do not
support our predictions in probabilistic reversal learning, but
reveal strong, subtler effects of impulsivity on dynamic choice
behavior in probabilistic reversal learning, along with no effect
on working memory contributions to learning.

METHODS

Participants
This research was approved by the University of California,
Berkeley Institutional Review Board. All participants provided
written informed consent. Participants were students who
received partial credit in their psychology classes at the University
of California, Berkeley. Eligible participants were native or fluent
English speakers between the ages of 18 and 40 with no self-
significant history of brain injury, mental/psychiatric illness
such as Parkinson’s disease, OCD, schizophrenia, depression,
ADD/ADHD, or alcohol or drug abuse per self-report. Our
initial sample size was 102. After excluding those who failed
to meet inclusion criteria, did not complete the entire task, or
performed below criterion, our sample size was 86. A subset of
participants did not perform the second block of the task; for
analyses including both blocks jointly, we thus limited analyses
to participants who completed both blocks, for a final sample size
of 70 (age= 20.7± 2.19 years, 75.7% female, 24.3% male).

Probabilistic Switching Task Design
Participants completed two independent learning tasks in a single
1-h session: the RLWM task with a learning and testing phase
(49, 50), and the probabilistic reversal learning task (one or

two blocks, depending on time). Participants first completed
the RLWM learning phase (a deterministic stimulus-action
association learning task); then one block of the probabilistic
reversal learning task, then the testing phase of RLWM, then,
if time remained, a second block of the probabilistic reversal
learning task. Here, we focus on the probabilistic reversal
learning task (see Supplementary Information for methods and
results on the RLWM task).

Participants completed the probabilistic switching task online
and remotely from their own computer (51, 59). The task was
written using the Javascript library jsPsych (52), and the webpage
was hosted by Jetstream (53, 54).

In the task, participants were presented with two boxes on
each side of the screen. We instructed them to find the “magical”
box that would reward them most of the time, and that the
“magical” box would occasionally switch sides throughout the
task (see Supplementary Information for specific instructions).
Participants used the “J” and “K” keys to select the left and
right box, respectively. A given trial proceeded as follows. First,
participants saw both boxes and had 3 s to make a selection. Once
a choice was made, the selected box was shown for 0.2 s, followed
by the outcome (box containing a coin for reward, or an empty
box for no reward) for 1 s. Finally, a fixation cross was shown
for 0.5 s to signal the start of the next trial (Figure 1A). A block
consisted of 150 trials (average of 6.11min), and participants
completed a second block as time permitted. The blocks of the
probabilistic switching task were weaved between the phases of
another task [RLWM from (49)], which will not be discussed in
this paper; participants who completed both blocks did so with a
few minutes of delay in between.

The correct box was always on the left side at the start of a
block, with a reward probability of 75%. The reward probability
of the incorrect box was always 0%. A pre-randomized sequence
of reward outcomes on correctly answered trials was loaded at
the start of the task (i.e., reward outcomes were not sampled
online, to ensure a better match to the true probabilities). Upon
accumulating a certain number of rewards on one side, the
correct box would switch to the other side immediately following
a correct, rewarded choice. The number of required rewarded
trials to switch was sampled randomly from a range of 5–15
uniformly, and this sequence of switch criteria was loaded at the
start of the task (i.e., sampled offline for the same reason listed
above, Figure 1B).We created four versions of each sequence and
randomly assigned them to participants at the start of the task.
Participants who completed two blocks experienced a different
version on each block.

Measure of Impulsivity
To measure impulsivity, we used the Short Version of the UPPS-
P Impulsive Behavior scale, measuring Urgency, Premeditation
(lack of), Perseverance (lack of), Sensation Seeking, and Positive
Urgency (S-UPPS-P) (55). This 20-item self-report questionnaire
has been found to replicate the internally consistency (0.74–
0.88 across subscales) and inter-scale correlations of the original
full 59-item UPPS-P scale Positive Urgency (S-UPPS-P) (55).
Additionally, the S-UPPS-P subscales strongly correlate with the
full UPPS-P subscales: negative urgency (r = 0.69), positive
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FIGURE 1 | (A) Probabilistic Switching task design. Participants saw two boxes at the start of the trial, and had 3 s to choose a box via key press (“J” to select the left,

“K” for the right). After a 0.2 s delay, where only the selected box was shown, the outcome was shown for 0.5 s—a coin if the participant was rewarded, and an empty

box otherwise; points total was updated in the top right corner of the. Finally, a screen with only the fixation cross was shown for 0.5 s to signal the start of the

upcoming trial. (B) Task block structure. The correct box identity reverses unpredictably over a block. Correct box selection leads to a coin with a reward probability

p(rew) = 0.75, while selecting the incorrect box never leads to a coin [p(rew) = 0].

urgency (r = 0.83), lack of perseverance (r = 0.63), lack of
premeditation (r = 0.71), and sensation seeking (r = 0.64) (55).
Items, e.g., “Once I get going on something I hate to stop” and “I
tend to lose control when I am in a great mood,” are rated on a
scale of 1 (strongly agree) to 4 (strongly disagree), with 12 reverse
scored items, such that higher scores reflected more impulsivity.
Total impulsivity scores ranged from 26 to 63 (possible range 20–
80) and were normally distributed (W= 0.98, p= 0.38). The total
scale and subscales showed good internal consistency reliability
(total α = 0.83, negative urgency α = 0.77, premeditation α =

0.83, perseverance α = 0.75, sensation seeking α = 0.78, and
positive urgency α = 0.80).

Behavioral Analysis
Correlations between impulsivity and behavioral measures were
conducted in MATLAB (56). Generalized linear mixed-effects
models were run in R Studio (57) using the lme4 package (58).

We used a logistic mixed effects model to predict trial action
(dependent variable) from positive and negative outcomes up to
three trials in the past (six independent variables), accounting for
random effects across participants. The formula is as follows:

action ∼ pos_1 + neg_1 + pos_2 + neg_2 + pos_3

+ neg_3 +
(

1 | id
)

Trial actions were coded as 0 for selecting the left box, and 1
for selecting the right. For a delay of i, pos_i had a value of −1
if the left box was rewarded on trial t–i, 1 if the right box was
rewarded on t–i, and 0 if a positive outcome did not occur on
that trial. Similarly, neg_i would have a value of−1 if the left box
was unrewarded on t-i, 1 if the right box was unrewarded on t–i,
and 0 if a negative outcome did not occur on that trial.

To comprehensively account for impulsivity and its
interactions with effects of past outcomes, we constructed

the following model using a z-scored total impulsivity score:

action ∼ impulsivity + impulsivity
(

pos_1 + neg_1

+ pos_2 + neg_2 + pos_3 + neg_3
)

+
(

1 | id
)

This model accounts for a main effect of impulsivity, and
six interactions for each past outcome predictor. We chose a
maximum value of i = 3 based on previous research showing
that most variance was accounted for with the last three trials
(Eckstein et al., submitted); however, we obtained similar results
with a higher number of past trials taken into consideration.

Statistical Analysis
For correlation analyses, we used Pearson correlation unless
the variables were not normally distributed according to the
Shapiro–Wilk test at α = 0.05, in which case we used Spearman
correlation. We did not correct for multiple comparisons
for our a priori core hypotheses. For exploratory analysis
of a posteriori behavioral markers, we report where results
survive multiple comparison. For exploratory analysis of
correlations with subscales, we report results uncorrected for
multiple comparisons.

Computational Modeling
We used computational modeling to analyze underlying
cognitive processes behind the task behavior in a way that
qualitative, model-free analyses cannot. To model the behavioral
data of this task, we selected the reinforcement learning (RL)
framework and Bayesian inference (BI) framework, both of
which are grounded in behavior-based theory and generalizable
to various behavioral tasks.

Reinforcement Learning

Reinforcement learning is the process through which an agent
learns about the values of actions and stimuli from their
outcomes. Under this framework, we assume that the agent learns
about choices in an incremental fashion via reward-prediction
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errors and uses a policy that maximizes reward by choosing the
more valuable action.

We used Q-learning to model the value-learning process in
our task. The expected value of an action Q(a) is updated by
the difference between the previous reward outcome r and prior
expectations from the previous time point t. This difference is
called the reward prediction error and is scaled by a learning rate
α between 0 and 1. A learning rate closer to 0 makes for a more
gradual update, while one closer to 1 more heavily weighs the
immediate previous outcome. Specifically, for each action a (pick
left vs. pick right), the update is:

Qt+1(a) = Qt(a)+ α × [rt − Qt(a)]

We calculated probabilities of action selection using softmax and
the inverse temperature parameter β as follows:

Pt(a) =
exp(βQt(a))

exp(βQt(a)+ Qt(aun)))

To capture asymmetrical learning across positive and negative
outcomes, we parameterized feedback-dependent learning
through separate learning rates α for positive outcomes and α−

for negative outcomes:

Qt+1(a) = Qt(a)+ α[rt − Qt(a)], rt = 1

Qt+1(a) = Qt(a)+ α−[rt − Qt(a)], rt = 0

We also considered mechanisms that enable faster learning,
in particular counterfactual updating. Specifically, we
simultaneously updated the value of the unchosen action
aun with the opposite counterfactual outcome. In our winning
model, replicating Eckstein et al. (submitted), we did not use a
separate learning rate for counterfactual learning. Accordingly,
counterfactual updating for aun was:

Qt+1(aun) = Qt(aun)+ α[(1− rt)− Qt(aun)], rt = 1

Qt+1(aun) = Qt(aun)+ α−[(1− rt)− Qt(aun)], rt = 0

To capture stickiness in action selection, a heuristic where the
agent repeats a selected action, we included a sticky choice
parameter st that boosts the value of the previously selected
action before action selection on the current trial. Thus, the
weights passed to the softmax policy were W(a) = Q(a)+st if
a = at−1, and W(a) = Q(a) otherwise. Values of st lie between
−1 and 1, with positive values capturing tendencies to stay with a
choice, and negative values capturing tendencies to switch to the
other choice.

We also fit the simpler models in the RL nested model family
(i.e., simplest being one feedback-independent α and one β)
for the sake of model comparison, however, we will not discuss
them here. Model comparison confirmed findings in a recent
study with the same task that this model best accounted for the
data (Eckstein et al., submitted); see model comparison plots
in Supplementary Figure S4B. Thus, our RL model consists of
four parameters.

Bayesian Inference

Behavior in probabilistic reversal tasks has often been described
as an inference problem, rather than a value learning problem
(59, 60). Under this framework, the agent infers latent states in its
environment from what they can observe and uses this to update
their beliefs about the latent states to make better predictions.
In the context of this task, the latent state is Ct (Ct = left or
right), the identity of the “correct” box at time t. The agent
tracks its belief that the correct box is left or right p(Ct =left)
at each trial. To do so, it updates its belief according to Bayes’
rule, based on its prior belief and the likelihood of the observed
evidence at each trial (the outcome rt of a given choice at).
The prior belief reflect the agent’s model of the task, including
knowledge that Ct might change at each trial. Using this model,
the agent calculates the posterior probability over the latent state
via Bayesian updating. Specifically:

P(Ct = i|rt , at ,Ht−1) =
P(rt|Ct = i, at)P(Ct = i|Ht−1)

∑

j P(rt|Ct = j, at)P(Ct = j|Ht−1)

Where Ht−1 is the reward and choice history up to trial t–1, and
i, j are in [left, right]. The likelihood P(rt|Ct = i, at) is defined
according to whether choice matched the latent state:

p(rt = 1|at = i, Ct = i) = preward

p(rt−1 = 1|at 6= i, Ct = i) = ε

Where preward a model parameter indicating the probability that
the correct box will be rewarded, and ε is fixed to a small
value 0.0001 to represent the participants’ knowledge that the
incorrect box never gives reward outcomes, but not to 0 to avoid
model degeneracy.

Before a choice, this posterior belief for the last trial’s correct
box is updated to a prior belief for the upcoming trial according
to model parameter pswitch, the probability that a switch may have
occurred on this trial.

p(Ct+1 = i | Ht) = (1− pswitch) p(Ct = i | Ht)

+pswitch(1− p(Ct = i | Ht))

Choice policy for the BI model is identical to the RL model,
with beliefs replacing learning value. It also includes sticky
choice behavior:

Wi(t + 1) = p(Ct+1 = i | Ht) + st(i = at)

P(at+1 = i) =
exp(βWi(t + 1))

∑

j exp(βWj(t + 1))

Variants of this model with fixed preward and pswitch were explored
in Eckstein et al. (59) and could not account for behavior well.

Model Fitting

We used hierarchical Bayesian modeling to fit models to the
data. Under a hierarchical framework, we assume that subject-
level parameters are drawn from a group-level distribution.
A hierarchical approach helps improve accuracy of subject-
level parameter values (61). In particular, sampling subject-
level parameters from a group-level distribution regularizes the
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process and helps to avoid estimates at extreme parameter
boundaries (e.g., a learning rate of 1).

For the RL model (Supplementary Figure S4), individual
participants’ α and α− parameters were sampled from group-
level beta distributions, and their hyperparameters were sampled
from gamma(1,1); β parameters were sampled from a gamma
distribution, and its hyperparameters were sampled from
gamma(1,1); individual st parameters were sampled from a
group-level normal distribution, with mean µ sampled from
N(0,10) and standard deviation σ from half-Normal(0, 10).

For the BI model, individual parameters preward and pswitch
were sampled from group-level beta distributions, and their
hyperparameters were sampled from gamma(1,1). Individual
parameters β and st and their hyperparameters were sampled in
the same way as their RL model counterparts (see Figure S4A for
graphical model of parameters and priors).

We used Markov Chain Monte Carlo (MCMC) sampling
to estimate parameter values from the posterior distribution,
using the Stan software (62) interacting with MATLAB via
matstanlib (63) and MatlabStan (64). To fit each model, we
ran 4 chains, with 1,000 warm-up trials and 5,000 iterations
for each chain. We verified that there were no divergences,
that all Rhat values were under 1.01, and effective sample
size > 40, ensuring that the posterior distribution over each
parameter was well-approximated (65). We also verified via
generate and recover procedures that the model parameters
were recoverable (66). For model comparison, we calculated the
Watanabe–Akaike Information Criterion [WAIC from (67)] and
compared scores across all models in the RL family to account
for overparameterization. WAIC averages over the posterior
distribution instead of conditioning on a point estimate, which is
what AIC and BIC condition on, and is thus more appropriate for
our hierarchical Bayesian modeling approach (68). Indeed, the
RL model using all 4 parameters described above fit best. Since
the purpose of including the BI model was to replicate previous
findings that a BI model could capture behavior as successfully
as RL could (59), we also compared WAIC scores of the best-
fitting RL model and the BI model, which yielded a much smaller
difference (see Supplementary Materials for details).

To validate our models, we simulated behavioral data for
each participant using the point-estimates of their respective
parameters (expected value), then analyzed the resulting data in
the same way as the empirical data. We verified that the winning
models were able to capture important qualitative patterns in
the data.

RESULTS

Group-Level Switching Behavior
Behavior across both blocks was comparable (Figure 2). Thus,
for further analyses, to increase within-participant power, we
focused on 70 participants who completed two blocks of the
task and analyzed behavior from both blocks jointly (Figure 2).
Participants exhibited switching behavior consistent with group-
level findings from previous versions of the task: they adjusted
their action selection within 2–3 trials following a switch trial

and achieved asymptotic performance around 75% accuracy after
successfully switching (Figure 2A).

To investigate the effect of previous outcomes on action
selection, we analyzed p(stay|- - -), the probability that the
selected action on trial t is the same action on trial t–1,
based on outcomes from the past two trials (coded as a
sequence of 2 characters; “+” = reward, “–” = no reward,
first symbol = outcome at t–2, and second symbol = outcome
at t−1). Participants almost always stayed with an action, if
it was previously rewarded, and tended to switch after two
negative outcomes. However, after a single negative outcome, the
choice policy was much more variable, with equal probability
of staying and switching, as observed in previous research
(Supplementary Figure S1).

To quantitatively investigate how past outcomes affected
action selection, we used a mixed effects logistic regression
analysis predicting action selection from the past three outcomes
(see section Methods for details). All predictors had significant
main effects, with stronger effects of positive than negative
outcomes (Figure 2D; Table 1). Effects of past trials decreased
with distance to the current trial. These results suggest that past
positive outcomes, especially at t–1, drive repeating an action,
while past negative outcomes drive switching behavior.

No Effect of Impulsivity on a Priori

Measures
To test our a priori hypotheses, we correlated total impulsivity
scores with two key behavioral measures of interest: overall task
performance (number correct/total trials answered in a block)
and the probability of switching given that the previous trial was
unrewarded. Correlations yielded no significant correlation for
either behavioral measure (Figure 3B, Pearson r = 0.089, p =

0.46; Figure 3C, Spearman ρ = 0.086, p= 0.50).
We also constructed a logistic mixed effects model with

normalized impulsivity score as a predictor that also interacted
with each of the outcome predictors (Table 1). There was a
significant effect of impulsivity on neg_1, such that the effect of
negative feedback was stronger inmore impulsive participants, in
line with our main hypothesis, but conflicting with the previous,
simpler analysis (Figure 4A). We further explore this finding in
the next section.

In exploratory analyses, we tested whether our core behavioral
measures were correlated with impulsivity subscale scores.
The correlation between lack of Perseverance scores and
task performance was significant (Spearman ρ = 0.25,
p = 0.035), but did not survive multiple comparisons
correction at p < 0.01; remaining correlations were not
significant (all ps > 0.05; see Supplementary Figure S2 and
Supplementary Tables S1, S2 for subscale score distributions
and correlations).

Exploratory Trial History-Dependent
Analyses Reveal Effects of Impulsivity
Our analyses thus far did not consider longer trial history
or potential interactions between past trial outcomes. Thus,
we performed exploratory analyses to investigate their effect.
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FIGURE 2 | Group level switching behavior. Joint block behavior (solid line) is comparable to behavior from only block 1 (dashed line) and only block 2 (dotted line).

Data points are averaged over all participants, bars represent standard error of the mean. (A) Probability of selecting the correct box [p(cor)] surrounding a switch trial

(t = 0). (B) Comparison of regressor weights from GLME predicting an action based on reward outcomes from up to three trials past (t−3). Past positive outcomes

(pos_i, light) are more likely to induce selecting the same action; a negative outcome (neg_i, dark) at t−1 has the greatest effect to induce a switch. (C) Probability of

repeating the previous trial’s choice [p(stay|- - -)] as a function of three trial-back reward histories [t−3, t−2, and t−1]. (D) Probability of selecting an action a at trial t

given that was selected two trials ago (t−2), across all possible action and reward outcomes on t−1 [t−2, t−1]. “b” indicates selection of the other action; lower/upper

case indicates whether the action was rewarded/unrewarded.

We first conducted a 3-trial back analysis, computing staying
behavior as a function of sequences of outcomes over the past
three trials (Figure 2C). Consistent with our logistic mixed
effects model results, staying behavior was highest after a
reward on trial t–1, and driven by a reward on t–2 when t–1
was unrewarded.

We conducted correlations between total impulsivity score
and conditional p(stay|- - -) from the new 3-trial back analysis
(51, 59). There was a significant effect of impulsivity on p(stay|-
- -) in the—condition, such that more impulsive participants
were more likely to switch after three consecutive unrewarded
outcomes (Figure 4B; Pearson r = −0.34, p = 0.0046; this
survived a Bonferroni correction for eight analyses at p = 0.05).
To better visualize this effect, we used a median split to form low
and high impulsivity groups, and plotted 3-trial back behavior
for each group (Figure 4E). Indeed, p(stay|- - -) was lower for
the high impulsivity group, confirming that more impulsive

participants were more likely to switch after being unrewarded
three times in a row.

A caveat of the 3-trial back analysis is that it overlooks what
actions were specifically selected in those past trials. Consider
the cases where a participant is unrewarded for (A) switching
from an unrewarded action, vs. (B) choosing to stay with an
unrewarded action. The reward history is the same in both cases
(unrewarded twice in a row), but decision contexts are different
in that A may be a direct employment of the win-stay lose-switch
strategy, while B could indicate more caution or sticky behavior.

To account for interactions between past trial outcomes and
the actions resulting in those outcomes (i.e., whether switching in
previous trials affects switching on trial t), we further subdivided
trial history into categories that distinguish conditions not only
by outcome, but also by action (69). Because we only have
up to 300 trials per participant, we limited the scope of this
action-based analysis, henceforth referred to as the aB analysis,
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TABLE 1 | Statistical output from the GLME model with impulsivity interactions fit

over both blocks jointly across participants (n = 70).

Action

Predictors Estimate SE z p

(Intercept) −0.10 0.03 −3.08 0.002

imp_score_z 0.00 0.03 0.09 0.931

pos_1 2.27 0.04 54.44 <0.001

neg_1 −0.35 0.02 −14.16 <0.001

pos_2 0.65 0.04 17.19 <0.001

neg_2 −0.16 0.03 −5.54 <0.001

pos_3 0.21 0.03 6.36 <0.001

neg_3 0.10 0.03 3.42 0.001

imp_score_z * pos_1 0.02 0.04 0.44 0.660

imp_score_z * neg_1 −0.10 0.03 −3.90 <0.001

imp_score_z * pos_2 0.04 0.04 1.03 0.304

imp_score_z * neg_2 0.00 0.03 0.02 0.985

imp_score_z * pos_3 0.02 0.04 0.70 0.486

imp_score_z * neg_3 0.02 0.03 0.82 0.414

Random effects

σ2 3.29

τ00 id 0.05

ICC 0.02

N id 70

Observations 20,937

Marginal R2/Conditional R2 0.557/0.564

There was a significant main effect of impulsivity on neg_1 (negative outcome at t−1).

to 2-trial back history (3-trial back would lead to bins with
too few trials each). We calculated p(a), the probability that
the selected action on trial t is the same as that on trial t–2,
conditioned on the outcomes of t–1 and t–2 and whether a switch
occurred at t–1, over all possible 2-trial history permutations
(“aa,” “ab,” “aA,” “aB,” “Aa,” “Ab,” “AA,” and “AB”) (Figure 2D).
Letter case indicates reward outcome, and “b” indicates a switch
on t–1. Indeed, this analysis visualizes well the interaction
between outcome and choice at t–1; for example, the considerable
difference between p(a|aA) and p(a|aB) is consistent with the
win-stay lose-switch strategy but would not appear in the 3-trial
back analysis.

To clarify whether intermediate switching contributed to the
impulsivity-driven differences seen in p(stay|- - -), we focused
on the cases p(a|aa) and p(a|ab) (i.e., being unrewarded again
for staying with an unrewarded action vs. being unrewarded
for switching from an unrewarded action). Correlations of
total impulsivity score and each measure revealed a significant
correlation of impulsivity and p(a|ab) (Figure 4C; Pearson r
= 0.30, p = 0.015, survives Bonferroni correction for two
comparisons at p < 0.05), but not of impulsivity and p(a|aa)
(see Supplementary Materials). This analysis excluded three
participants who had outlier values of p(a|ab) = 0, i.e., they
never returned to action a after a 2-back history of “ab”;
inclusion of those three participants strengthened the statistical
result. Indeed, applying the previous median split for the aB

analysis showed a higher p(a) for the higher impulsivity group
(Figure 4F), suggesting that following an unrewarded switch,
more impulsive participants are more likely to reselect the action
from trial t–2, effectively committing a double switch, rather than
sticking with their previous decision to explore another side.

We fit our logistic mixed effects model across each subgroup
to better visualize the interaction of neg_1 and impulsivity score
(Figure 4D). Indeed, neg_1 is lower for the high impulsivity
group, suggesting that a negative outcome at t−1 has greater
influence in more impulsive subjects’ switching behavior.

To investigate whether the switching measures above are
related to specific dimensions of impulsivity, we performed the
correlation analyses described above with each subscale score.
Significant correlation with p(a|ab) was strong in Sensation
Seeking (Pearson r=−0.29, p= 0.038 uncorrected); there was no
correlation with the other subscales. There was a significant but
weak correlation of p(stay|- - -) with Positive Urgency (Spearman
ρ = −0.24, p = 0.045) and Sensation Seeking (Pearson r =

−0.24, p= 0.049) (see Supplementary Table 1 for all correlations
between subdimensions and key behavioral measures).

We also conducted five additional logistic mixed effects
models with outcome interactions, each using an S-UPPS-
P subscale score in place of total impulsivity score (see
Supplementary Table 2 for interactions between each subscale
and neg_1). The impulsivity subscale interaction with neg_1 was
strongest for Positive Urgency (B = −0.12, SE = 0.025, and
p < 0.05 uncorrected) and Sensation Seeking (B = −0.10, SE
= 0.024, and p < 0.05), weaker in Negative Urgency (B =

−0.071, SE = 0.025, and p < 0.05) and Lack of Perseverance
(B = 0.048, SE = 0.024, and p < 0.05), and not significant
for Lack of Premeditation (B = 0.0019, SE = 0.025, and p
= 0.94).

While ad hoc and exploratory, these more fine-grained,
trial history-dependent analyses reveal effects of impulsivity
on switching behavior under more specific sequences of trial
history and survive multiple comparison correction. They
indicate that the effect of impulsivity in probabilistic switching
may be subtle, and related to multi-trial decision-making
sequences, rather than to simple reactions to a single choice
and outcome.

Computational Modeling Captures
Group-Level Behavior, but Not Impulsivity
Effects
We used computational modeling to capture the underlying
cognitive processes driving task behavior. We fit a reinforcement
learning model (RL) with four parameters (learning rates
α and α−, sticky parameter st, and inverse temperature β),
and a Bayesian inference model (BI) with four parameters
(preward, pswitch, sticky parameter st, and inverse temperature
β). WAIC score comparison showed that the chosen RL
model was the best performing model within the RL model
family. Both models successfully captured group-level
switching behavior (Figure 5A), as well as other patterns of
behaviors. Parameter recovery was successful for each model.
However, there was no significant correlation between overall
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FIGURE 3 | Total impulsivity score does not relate to a priori behavioral measures. (A) Task performance [p(cor)] around a switch trial plotted across low (blue) and

high (orange) impulsivity groups (assigned via median split). (B) Total impulsivity score vs. overall task performance (r = 0.09, p = 0.46). (C) Total impulsivity score vs.

probability of staying after an unrewarded trial (ρ = 0.09, p = 0.47).

FIGURE 4 | Trial history-dependent analyses reveal effects of impulsivity on staying behavior following unrewarded trials. Pearson correlations were conducted for

normally distributed measures. (A) Total impulsivity score vs. normalized neg_1 (negative outcome at t−1) regressor weights, obtained by fitting a multinomial logistic

regression over data by participant. (B) Total impulsivity score is significantly related to p(stay|- - -), the probability of staying following three unrewarded trials. (C) Total

impulsivity score is significantly related to p(a|ab), the probability of returning to a previously unrewarded action following an unrewarded switch. Unfilled data points

represent outlier participants. (D–F) Visualizations of impulsivity effects via median split (low impulsivity = blue, high impulsivity = orange). For (D,E), highlighted

columns of plots correspond to the scatterplot directly above. (D) Comparison of neg_i (dark) and pos_i (light) regressor weights (1 ≤ I ≤ 3) with median split for

visualization. A negative outcome on t−1 has a greater effect on switching for the high impulsivity group. (E) Three-back analysis with median split for visualization. (F)

aB analysis with median split for visualization.

impulsivity score and fit parameter values in either model
(Figure 5B), and validation simulations were not able to
replicate observed group differences, highlighting a failure in
capturing individual differences in the model, despite satisfactory
group-level modeling.

DISCUSSION

The purpose of our study was to elucidate the relationship

of trait-like impulsivity with decision-making in an uncertain,

volatile environment, and to consider whether these effects varied
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FIGURE 5 | Computational modeling results of best-fitting models, RL (brown) and BI (teal). (A). Comparison of behavior simulated from best fitting models RL and BI,

and real participant behavior (black). Both models capture group-level switching behavior. (B) Total impulsivity score vs. fit parameter values of RL (left) and BI (right)

(all ps > 0.05).

for specific dimensions of impulsivity. Based on previous studies,
we had predicted that more impulsive participants would show
poorer performance, and in particular a higher tendency to
switch after a negative outcome (48). While our results did not
support our a priori predictions, we did observe an effect of
impulsivity on switching behavior in the context of multiple
past negative outcomes. That is, more impulsive participants
were more likely to switch their past trial’s choice after three
consecutive unrewarded outcomes. This suggests that impulsivity
may play a role in how negative outcomes, and in particular the
compounded effects of multiple negative outcomes in sequence,
drive decision-making. A simple interpretation of this result is
that impulsivity reduces the amount of evidence needed to switch
after negative outcomes. Obtaining three negative outcomes in a
row, however, could be the result of different choice strategies
(such as sticking with the previously correct choice long after
a reversal, or switching away from the correct choice after
an unrewarded correct choice), which should be interpreted
differently. Another interpretation could be that participants
with different levels of impulsivity may have understood the

task differently; however, we think this interpretation is unlikely,
given that the behavior of participants who were more impulsive
was comparable in most measures to that of those less impulsive
(Figure 3).

The results of the aB analysis suggest a slightly different
interpretation. We found that more impulsive participants
were more likely to return to an unrewarded action if their
switch was also unrewarded, showing less “commitment” to
testing out the other option after a switch. While both
actions could be unrewarded back-to-back, one action must
be correct; because correct reversals are always rewarded, an
unrewarded switch indicates that action was correctly answered
(but simply unrewarded due to stochasticity). Thus, impulsivity
may contribute to misreading noise as a signal for reversal,
leading more impulsive individuals to produce multiple switches,
and to less extended periods of “hypothesis testing” after a switch.
Although impulsivity did not relate to overall performance or
simple win-stay lose-switch behavior, our results did reveal an
increased sensitivity to negative outcome in the context of multi-
trial sequences of choices and outcomes, making it likely that this
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relates to participants’ strategies in the task. This is consistent
with previous findings of higher switching behavior following
unrewarded stimuli in a task involving learning to detect hidden
probabilistic rewards (48).

We note that it is not necessarily surprising to observe a
lack of significant correlation in overall task performance with
impulsivity, despite more subtle differences in strategy brought
to light with more advanced analyses. In the “ab” context, high
impulsivity participants are more likely to switch back and forth
between actions, but this switching is not necessarily detrimental:
in the case where action a was correct but unrewarded, returning
to a, instead of staying with the incorrect b, would increase the
chances of obtaining a reward. Thus, if interactions between
impulsivity and negative outcomes at t–1 are driven by a double
switch in “ab” that does not always delay point accrual, more
impulsive participants would still be able to progress through the
task at a pace comparable to their less impulsive counterparts,
whose strategy may be to stay with an unrewarded choice to
confirm a true reversal has occurred, then switch and fully
commit to the other action. Staying with the unrewarded choice
prevents immediate reward but ensures later reward in the long
run, in line with the general idea that impulsivity is associated
with immediate reward-seeking, even at the risk of incurring
long-term negative consequences. A Spearman correlation of
impulsivity score and the average number of reversals per block
was not significant (ρ = 0.079, p = 0.52), indicating that both
strategies are carried out by comparable numbers of trials, which
also serve as a proxy for performance (task progression is
determined by the participant).

The absence of a main effect of impulsivity on our a priori
measures of overall task performance was unexpected, given
prior findings. For example, contrary to Sali et al. (48), we
found that more impulsive participants were equally likely as
less impulsive participants to stay when the previous trial was
rewarded and equally likely to switch when the previous trial
was unrewarded. Indeed, past research shows mixed results,
with some reward-based learning studies revealing association
of self-reported impulsivity with reward-based task behavior
(45), whereas others found no such association (70). One
main limitation of our study is our reliance on undergraduate
students, who showed relatively low S-UPPS-P scores [see
Supplementary Figure S2 for score distributions of overall
impulsivity and subscales; cf, UPPS-P mean scores from (33)].
The score distributions of both impulsivity groups in our study
(low: M = 34.4, SD = 4.22; high: M = 47.0, SD = 5.08)
are consistently lower than those of other studies, such as
Fernández-Serrano et al. (46), who used a 59-item UPPS-P
scale (low: M = 111.7, SD = 13.3; high: M = 141.7, SD =

16.4), and Xiao et al. (42), who used a 45-item UPPS scale
(low: M = 100.3, 11.7; M = 110.7, SD = 11.7). Our range
of scores was similar to Nebe et al. (70) who used the BIS-11
scale, but also found no significant effect of impulsivity; studies
that have found associations with impulsivity have distributions
spanning a higher range for more impulsive scores (37, 45,
48). Previous studies that have reported effects of impulsivity
on reward-learning tasks included high-risk groups, such as
those with substance use or gambling concerns. In the broader

literature, correlations of impulsivity with other laboratory
tasks, such as response inhibition, are systematically higher in
clinical studies, which tend to have more severe impulsivity
concerns, as compared to community or student samples (7).
Beyond the sample, cross-study discrepancies could relate to
the difference in experimental protocol. Sali et al. (48) used a
probabilistic task with binary outcomes, as we did, but the link
between impulsivity and “behavioral stability” (win-stay/lose-
switch behavior) was observed in the stable portion of the task
with sparse reward outcomes, which may, again, have elicited
very different strategies. Many earlier studies [e.g., (37)] focused
on the role of impulsivity in addiction, and for that reason, used
gambling-like protocols, including variants of the Iowa gambling
task or other gambling-like reversal tasks. These protocols
require participants to integrate uncertain outcomes across
multiple possible values, which may elicit different processes
than in our task. Although our null effects conflict with some
previous work, it is important to note that others have found that
the link between impulsivity and probabilistic reversal learning
is contingent on other variables, such as a dopaminergic drug
manipulation (71).

Overall, subtly different reward learning tasks may elicit
vastly different cognitive strategies. In large-scale work,
individual differences in the Reinforcement Learning
Working Memory task (RLWM) do not mirror those in
the probabilistic switching task (72). Indeed, we chose
these two tasks to index fairly separate and complementary
influences of learning and executive function in adaptive
behavior. Findings here highlight the import of considering
this in relation to impulsivity. More specifically, while we
found that impulsivity affected participants’ strategy in
the probabilistic reversal learning task, we found no effect
of impulsivity in RLWM (see Supplementary Results,
Supplementary Figure S5). In RLWM, participants learn
stimulus-action associations from reward outcomes across
blocks varying in set-size; learning varies as a function of set-size
due to differences in use of reinforcement learning, reliance on
working memory, and interactions between the two cognitive
systems (49).

We had hypothesized that higher impulsivity would predict
lower overall task performance, and drawing on theory about
the import of executive function in interaction with reward-
seeking, we predicted impulsivity effects would be specific to
high set-size blocks with multiple stimuli to learn. However,
our results showed no effects of impulsivity on performance
in any set size, during either learning or retention. Despite
the numerically better asymptotic training performance on ns
= 6 blocks of the high impulsivity group (M = 0.867, SE =

0.022) compared to that of the low impulsivity group (M =

0.819, SE = 0.022), there was no significant effect of impulsivity
[Welch’s t-test, t(77) = −1.53, p = 0.129; Hedges’ g = −0.343].
Further tests on smaller set sizes and other behavioral measures
consistently indicated no effect of impulsivity. Computational
modeling also revealed no differences in the two processes
supporting learning. In particular, there was no significant
correlation of the parameter WM capacity K, our measure
of working memory, and impulsivity. Our findings fit with
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a growing body of work that WM is not consistently tied
to impulsivity [cf. (39)]. Future work would do well to
consider different forms of executive function in interaction
with reward-seeking, such as response inhibition.WM influences
are also likely to vary substantively across different tasks,
thus interacting with impulsivity differently. Stated differently,
impulsivity effects might emerge in conditions with high working
memory demand that differ from the ones we tested here (i.e.,
uncertainty in the form of probabilistic feedback, or when
reversals occur).

Our computational modeling results were also mixed. On
the positive side, both models could adequately capture group-
level behavior in the probabilistic reversal side. However,
both models failed to capture individual differences as
indexed by impulsivity: simulated model behavior with fit
parameters did not reproduce impulsivity effects, and individual
fit parameters did not correlate with impulsivity. Our RL
model parameterized feedback-dependent learning (α, α−),
counterfactual updating of unchosen actions, value sensitivity
(β), and sticky behavior (st). Even though Q-learning should
slowly update expected values of actions, the additional
parameters enabled cognitive flexibility and learning even
from stochastic feedback. Our BI model differed from RL in
the use of preward and pswitch for Bayesian inference, but also
incorporated the same β and st parameters. Similarly, it was also
successful in capturing real switching behavior and asymptotic
performance (Figure 5A; Supplementary Figure S3). Indeed,
previous work using computational models to describe behavior
in a binary-choice RL task found associations between high
impulsivity, as measured by BIS-11, and two parameters
encoding uncertainty-dependent mechanisms of belief updates
(73). In contrast, we did not find significant correlations of
our fitted model parameters with impulsivity; that neither
model could capture the specific effect of impulsivity suggests
that both may lack some parameter specifically accounting
for a noise vs. reversal signal judgment. One possibility is
that impulsivity reflects multiple cognitive factors, which may
differ across individuals. This modeling limitation warrants
future investigation.

One of our goals was to examine specific dimensions of
impulsivity, particularly given previous work that suggested that
Negative Urgency was more powerfully tied to perseverative
errors on response reversal task (46), and that Negative Urgency
and (lack of) Perseverance were tied to diminished reward
learning on the IGT (42), and that (lack of) Premeditation
was correlated with outcomes in a different gambling task
(41). Our findings did not mirror these effects, in that we
found significant effects of Positive Urgency and Sensation
Seeking on p(stay|- - -) and Sensation Seeking on p(a|ab), but
not Negative Urgency, Perseverance, or Premeditation. In one
meta-analysis of delay of gratification, researchers observed the
Urgency scale was only correlated with delay of gratification in
those studies using contingent delay of gratification (i.e., where
actual money was involved), and not in those using hypothetical
rewards (6).

CONCLUSION

Our study aimed to understand the role of impulsivity, quantified
using the S-UPPS-P scale, in learning and decision-making
in a probabilistic switching task. We tested effects using a
task that allows us to measure and think about response
inhibition, and our computational models successfully captured
group-level behavior. Nonetheless, we observed null effects of
impulsivity in our a priori analyses of general behaviors such
as task performance and switching behavior. In exploratory
analyses, we also could not identify effects of impulsivity in
computational models. Rather, exploratory analyses indicated
that impulsivity plays a nuanced role in the judgment of negative
outcomes resulting from stochastic noise vs. reversal signal that
motivate switching behavior. Given the import of impulsivity
for many psychopathology outcomes, expanding approaches
to understanding behavioral and computational aspects of
impulsivity is an important goal.
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