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ABSTRACT OF THE DISSERTATION 

 

The impacts of uncertainty/variability in the C8 exposure assessment on serum PFOA 

concentration predictions and the epidemiological association with preeclampsia  

 

By 

 

Raghavendhran Avanasi Narasimhan 

 

Doctor of Philosophy in Environmental Toxicology 

University of California, Irvine, 2016 

Scott M. Bartell, Chair 

 

 

Previous studies produced the C8 exposure assessment which included PFOA  release 

assessment, integrated fate and transport modeling, and dose reconstruction to predict the serum 

PFOA concentration of each individual in the C8 Health Project population from 1951 to 2008. 

The serum concentration predictions were used in various C8 Science Panel epidemiological 

studies to evaluate whether there is a ‘probable link’ between PFOA exposure and health effects. 

One such study analyzed the association with preeclampsia among the participants and found a 

moderate association (Savitz et al., 2012a). For this study, uncertainties in spatiotemporal 

predictions of PFOA water/air concentrations and in individual-level variables used in the dose-

reconstruction and pharmacokinetic models likely resulted in some exposure measurement error, 

potentially affecting the validity of the epidemiological findings.  

The main objective of this dissertation was to analyze the impacts of different sources of 

input parameter uncertainty/variability in the C8 exposure assessment and study the impacts on 

the serum PFOA concentration predictions and the epidemiological association with 
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preeclampsia. Monte Carlo (MC) simulation techniques were used to conduct these uncertainty 

analyses in this exposure assessment-environmental epidemiology model system. 

I found that autocorrelated and shared uncertainty in the PFOA water concentration 

estimates produced a highly variable set of plausible serum PFOA concentrations for study 

participants; however, it had less impact on the AOR of preeclampsia occurrence. Together, 

inter-individual variability and epistemic uncertainty in independent individual-level exposure 

parameters including water ingestion rates, the serum PFOA half-life, and the volume of 

distribution for PFOA impacted the serum PFOA concentration predictions and their association 

with preeclampsia moderately, with a 25% bias towards the null in the AOR of preeclampisa 

occurrence. Geocoding based uncertainty in residential addresses and work history together 

moderately impacted the rank exposure among the participants and caused a 41% bias away from 

the null in the AOR of preeclampsia occurrence.  

Future studies with complex exposure scenarios and multiple sources of 

variability/uncertainty might benefit from our approach of separating out the different kinds of 

uncertainty to better understand their individual impacts on the validity of epidemiological 

associations
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1.1 Background 

1.1.1 The C8 exposure assessment 

Perfluorooctanoic acid (PFOA)  

Ammonium Perfluoroocatanoate (APFO) is a surfactant that was used in the manufacture 

of perfluorinated compounds with multiple applications including non-stick cook ware, stain-free 

carpets and clothing, food contact paper etc. Once in the environment, APFO dissociates into the 

Perfluorooctanoate anion (PFOA) and ammonia. PFOA is also known as ‘C8’, owing to the fact 

that the structure has a per-fluorinated eight carbon backbone with a carboxylate group. This 

unique chemical structure gives the molecule high stability and surfactant properties which 

makes it very useful in consumer and industrial applications (Paustenbach et al., 2007; Post et 

al., 2012). Unfortunately, the stability also makes the chemical highly persistent in the 

environment (Lau et al., 2007). The major sources of PFOA to the environment include direct 

and indirect emissions from manufacturing facilities around the world. As a result, PFOA is 

ubiquitous in various environmental media including surface water, soil, sediment, ground water, 

as well as in biological media including blood samples from wildlife and human beings (Lau et 

al., 2007; Paustenbach et al., 2007; Post et al., 2012).  Exposure sources to humans include 

occupational exposure, contaminated drinking water, air, and food, non-stick cookware, and 

household dust (Lau et al., 2007; Paustenbach et al., 2007). The median blood level of PFOA in 

the non-institutionalized U.S. population (in the NHANES study) was reported to be 5 ppb 

(Calafat et al., 2007). 

PFOA is amphiphilic in nature and is absorbed through oral, inhalational and dermal 

routes of exposure. The distribution of PFOA is highest in the liver, followed by serum proteins 

(primarily albumin), kidneys, lungs and other tissues (Hundley et al., 2006). Once inside the 
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human body, PFOA is not metabolized and the excretion half-life has been estimated at 2.3-3.8 

years (Bartell et al., 2010; Olsen et al., 2007). Renal and fecal elimination are primary routes of 

excretion of PFOA from the human body (Han et al., 2012). In animal models, PFOA has been 

shown to cause benign tumors of the liver, pancreas and the testes through the PPAR-α agonist 

mechanism. PFOA has been shown to cause weight loss, hepatic hypertrophy and necrosis, 

immune suppression, neurobehavioral effects, reproductive effects, and developmental effects 

(Kennedy et al., 2004; Lau et al., 2007; Post et al., 2012). Epidemiological studies have been 

based on occupational and community exposures, and mostly cross-sectional study designs; 

some with modest associations between PFOA exposure and cholesterol, hyperuricemia, and 

elevated liver enzymes, colitis, thyroid disease, kidney and testicular cancer, pregnancy induced 

hypertension/preeclampsia (Steenland et al., 2010; Lau et al., 2007; Post et al., 2012; C8 Science 

Panel, 2011; Steenland et al., 2013; Barry et al., 2013; Savitz et al., 2012a,  Savitz et al., 2012b, 

Lopez-Espinosa et al., 2012; Gallo et al., 2012; Watkins et al., 2013; C8 Science Panel, 2011).  

The C8 Health Project  

The C8 Health Project is a cross-sectional epidemiologic study of 69,030 people who 

lived near a primary U.S. PFOA production facility, located in the Mid-Ohio Valley near 

Parkersburg, West Virginia.  Formed in 2005, the study is a result of a settlement between 

DuPont and local residents who may have suffered adverse health consequences due to their 

PFOA exposures.  C8 Health Project participants constitute the most highly exposed sentinel 

population in the world, with serum PFOA concentrations up to thousands of times larger than 

typically found in the US general population (Frisbee et al., 2009).  APFO was used in the 

manufacture of fluoropolymers at the Mid-Ohio Valley production facility since the 1950s.  For 

decades, large amounts of PFOA were released into the atmosphere through emissions from air 



4 

 

stacks as well as effluent discharge into the Ohio River. The surrounding air, surface soil, surface 

water and subsurface water had been contaminated with PFOA through wet/dry deposition onto 

the surface, leaching through the vadose zone, and transport in the ground water aquifers. As a 

part of the C8 Health Project, a retrospective PFOA exposure assessment was conducted at UCI 

(Shin et al., 2011a, Shin et al., 2011b).   

The C8 exposure assessment included PFOA release assessment, integrated fate and transport 

modeling, and dose reconstruction to predict the exposure dose to each individual in the C8 

Health Project from 1951 to 2008. First, historic PFOA emission rate estimates for the DuPont 

facility were obtained from a previous study conducted by Paustenbach et al. in 2007. Using 

these estimates with the physiochemical properties of PFOA and the historic local 

meteorological and geologic characteristics, a suite of environmental fate and transport models 

including AERMOD, PRZM-3, BreZo, MODFLOW, and MT3DMS were applied to generate 

predicted concentrations of PFOA in the air, surface water and ground water around the facility 

(Shin et al., 2011a). The predicted air and water concentrations were utilized along with 

individual residential/work histories, demographics (age, gender, body weight), standard 

exposure factors (air inhalation rate, drinking water ingestion rate), historical pipe installation 

information of public water supply and a single compartment pharmacokinetic model to 

reconstruct the PFOA exposures of the study population and predict their yearly serum PFOA 

concentrations (Shin et al., 2011b). Among all participants (N = 43,449), the Spearman’s rank 

correlation coefficient between the estimated and the 2005-2006 observed serum PFOA 

concentration (measured as a part of the C8 Health Project) was 0.67 (Shin et al, 2011b). Median 

estimated and observed serum concentrations in 2005-2006 were 13.7 and 23.5 ng/mL, 

respectively. 
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The serum concentration predictions were/are being used in various epidemiological 

studies to evaluate whether there is a ‘probable link’ between PFOA exposure and health effects. 

The C8 Science Panel concluded that the following outcomes may be linked to PFOA exposure 

in the C8 Health Project study population: cholesterol, colitis, uric acid, kidney and testicular 

cancer, thyroid disease, pregnancy induced hypertension/ preeclampsia (Steenland et al., 2013; 

Barry et al., 2013; Savitz et al., 2012a,  Savitz et al., 2012b, Lopez-Espinosa et al., 2012; Gallo et 

al., 2012; Watkins et al., 2013; C8 Science Panel, 2011). 

1.1.2 Perfluorooctanoate exposure and preeclampsia occurrence 

The validity of the C8 Science Panel PFOA-preeclampsia epidemiology study 

One of the C8 Science Panel studies analyzed the association between PFOA serum 

concentrations at the year of pregnancy and preeclampsia among the participants and found a 

moderate association (Savitz et al., 2012a).  Using the estimated historical PFOA serum 

concentrations, Savitz et al. (2012a) evaluated the associations between estimated PFOA serum 

concentrations at pregnancy and self-reported pregnancy related health outcomes, including 

preeclampsia among the C8 Health Project participants from 1990-2006 using generalized 

estimating equation regression models. There are 730 self-reported preeclampsia outcomes 

among the total 10,189 pregnancies. To address potential confounding, they adjusted for 

maternal age, parity, education and maternal smoking status. The adjusted odds ratio (AOR) for 

the continuous exposure variable was 1.13 (95% confidence interval (CI) = 1.00-1.28) for an 

interquartile range (25th to 75th percentile) of log PFOA serum concentration (units of 

nanograms per milliliter).    

However, the validity of this study has been questioned by one group of researchers who 

excluded it from a meta-analysis of PFOA exposure and fetal growth due to the retrospectively 
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modeled exposure assignments with limited validation by measured biomarkers (Johnson and 

Sutton, 2014; Koustas et al., 2014). Also, previous studies have shown that the use of modeled 

pollutant concentrations and self-reported activity patterns can introduce exposure measurement 

error (Sarnat et al., 2010; Wu et al., 2013), as can studies that rely only on a single biomarker 

measurement to characterize each individual's exposure (Bartell et al., 2004; Tsuchiya et al., 

2012; Bradman et al., 2013; Prentice et al., 2013).  For the Savitz et al. (2012a) study, 

uncertainties in spatiotemporal predictions of PFOA water/air concentrations and in individual-

level variables (e.g., water ingestion rates, PFOA half-life, PFOA volume of distribution, 

residential/work addresses) used in the dose-reconstruction and pharmacokinetic models likely 

resulted in some exposure measurement error, potentially affecting the validity of the 

epidemiological findings. 

Possible mechanisms of preeclampsia development due to PFOA exposure  

Hypertensive disorder is one of the most common complications of pregnancy with 6-8% 

prevalence. Pregnancy induced hypertension, preeclampsia, chronic hypertension, and 

preeclampsia super-imposed with chronic hypertension are the four categories of hypertensive 

disorders of pregnancy; gestational hypertension/pregnancy induced hypertension is described as 

a provisional diagnosis for women with new-onset, non-proteinuric hypertension after 20 weeks 

of gestation, and preeclampsia is described as the development of new-onset gestational 

hypertension with proteinuria after 20 weeks of gestation (The National High Blood Pressure 

Education Program Working Group on High Blood Pressure in Pregnancy, 2000). Adverse 

health effects of preeclampsia include pre-term birth, decreased fetal weight; with severe forms 

leading to Hemolysis Elevated Liver enzymes Low Platelet count syndrome (HELLP), eclamptic 

seizure, maternal and neonatal morbidity or mortality (Leeman and Fontaine, 2008; The National 
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High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy, 

2000; Zamorski and Green, 2001). The mechanism by which preeclampsia is caused is still 

unclear (The National High Blood Pressure Education Program Working Group on High Blood 

Pressure in Pregnancy, 2000; Wagner, 2004). Multiple mechanisms of action have been 

proposed (Granger et al., 2001; Leeman and Fontaine, 2008). Risk factors for preeclampsia 

include high Body Mass Index (BMI), first pregnancy,  multiple birth, family history of PIH, age 

(<20, >40), race, smoking, high blood pressure, kidney disease, gestational diabetes (Sibai et al., 

1997; Zamorski and Green, 2001).  

Epidemiological studies associating PFOA exposure and preeclampsia/pregnancy 

induced hypertension have been very limited and have mostly been results of the C8 Health 

Project. Four studies (Nolan et al., 2010; Savitz et al., 2012a; Savitz et al., 2012b; Stein et al., 

2009) were cross-sectional in nature with only one study being a cohort follow-up study (Darrow 

et al., 2013). Three studies used the measured serum PFOA concentration (Nolan et al., 2010; 

Stein et al., 2009; and Darrow et al., 2013), while two studies (Savitz et al., 2012a; Savitz et al., 

2012b) utilized the predicted serum concentrations based on the UCI exposure assessment model 

(Shin et al., 2011b). A recent study by Starling et al., 2014 did not find any increased risk of 

preeclampsia occurrence with increasing exposure to perfluoroalkyl compounds including PFOA 

using data from the Norwegian Mother and Child Cohort study. It should be noted that most of 

the studies are cross-sectional and the resulting association doesn’t necessarily imply causation. 

Also, it is possible that confounders including co-exposures might have been missed in the 

studies. Nevertheless, these are the only published studies looking at the association between 

PFOA exposure and preeclampsia development. It should also be noted that the strength of 

association increased with increased accuracy of the exposure estimates and the results of the 
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only cohort follow-up study (Darrow et al., 2013) showed a stronger positive association with 

adjusted odds ratio (OR) per log unit increase in PFOA of 1.27 (95% CI: 1.05, 1.55). This study 

followed a sub-set of the population after 2005 and utilized the measured serum concentrations, 

corrected for decay over time as the exposure variable. This study is particularly important given 

that there was little ongoing PFOA exposure for study participants after serum measurements 

were obtained in 2005-2006, so the uncertainty stemming from exposure measurement error is 

relatively low compared with the other studies that utilize retrospectively predicted serum PFOA 

concentrations. 

The C8 Science Panel reviewed the existing studies and based on the weight-of-evidence, 

concluded that there is a probable link between PFOA exposure and preeclampsia/pregnancy 

induced hypertension (C8 Science Panel, 2011). The C8 Science Panel review concluded that 

there is a weak to moderate association between PFOA exposure and the occurrence of 

preeclampsia, with an irregular dose-response pattern.  It also noted that the association 

strengthened with increased confidence/accuracy in the exposure estimates (C8 Science Panel, 

2011). However, there is currently little toxicological evidence regarding preeclampsia induction 

following exposure to PFOA.  

 In general, the possible independent mechanisms through which preeclampsia is caused 

are not clearly elucidated (The National High Blood Pressure Education Program Working 

Group on High Blood Pressure in Pregnancy, 2000; Wagner et al., 2004; Granger et al., 2001; 

Leeman and Fontaine, 2008).  Some of the theories of preeclampsia pathogenesis include 

abnormal placental implantation, abnormal angiogenic factors, cardiovascular maladaptation, 

genetic predisposition, immunologic intolerance between fetoplacental and maternal tissue, 

platelet activation, and vascular endothelial dysfunction or damage (Leeman and Fontaine, 
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2008). The possible mechanism through which PFOA exposure can lead to preeclampsia has not 

been studied. One possible mechanism by which PFOA can lead to PIHP is through the 

induction of hyperuricemia. Based on the C8 Health Project, exposure to PFOA has been 

modestly associated to elevated uric acid levels (Steenland et al., 2010). Shankar et al., 2011 

showed that, at background exposure levels in a different study population, PFOA is positively 

associated with elevated uric acid levels. Currently, there are no mechanistic studies looking at 

this association, but, one proposed mechanism of action is the competition between PFOA and 

uric acid for tubular secretion via OAT 1/ OAT 3 transporters. In general, substrates for renal 

OATs include chemically heterogeneous weak acids with a carbon backbone and a net negative 

charge at physiological pH (Anzai et al., 2006). In vitro studies have shown that PFOA can lead 

to the production of ROS in liver cells (Panaretakis et al., 2001; Yao and Zhong, 2005) and 

potentially lead to elevated uric acid levels, given that uric acid is a known antioxidant (Shankar 

et al., 2011a). Hyperuricemia can lead to preeclampsia indirectly through the induction of renal 

micro vascular disease. Strong toxicological evidence suggests that elevated uric acid levels can 

lead to renal micro vascular disease through fibrosis, interstitial collagen deposition, and 

macrophage infiltration; leading to tubulointerstitial injury and renal vasoconstriction. The 

vasoconstriction and ischemic injury has been shown to stimulate the renin-angiotensin system 

and also inhibit the NOS in the macula densa of the kidney and cause hypertension (Mazzali et 

al., 2001). Hyperuricemia has also been shown to cause arteriolopathy and vascular smooth 

muscle cell proliferation in vitro (Mazzali et al., 2002). In humans, hyperuricemia has been well 

established to be an independent risk factor for hypertension (Heinig and Johnson, 2006) and 

also been shown to be strongly associated with endothelial dysfunction; suggested mechanisms 

include inflammation-dependent/ independent pathways (Zoccali et al., 2006). 
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Hyperuricemia has long been used as a marker to diagnose preeclampsia (mostly thought 

to be a secondary effect of preeclampsia through impaired kidney function), but recently, it has 

been proposed to play a direct role in the pathogenesis of the disorder. The proposed mechanism 

includes the promotion of inflammation, oxidative stress and endothelial dysfunction of the 

placental and maternal vasculature (Kang et al., 2004; Bainbridge et al., 2009). It has been 

suggested that vasospasm can occur as a secondary effect of endothelial dysfunction caused by 

elevated uric acid levels and this can lead to ischemic injury. Uric acid has also been suggested 

to impede trophoblast invasion leading to reduced placental perfusion, placental ischemia and 

oxidative stress; eventually promoting a feed-forward loop of increased uric acid production and 

reduced excretion (Bainbridge and Roberts, 2008; Bainbridge et al., 2009). Epidemiological 

studies have shown a strong correlation between hyperuricemia and preeclampsia (Kang et al., 

2004; Laughon et al., 2011). Hence, it is plausible that elevated uric acid levels could be 

responsible for the induction of preeclampsia in pregnant women.  

There could be other mechanisms through which PFOA exposure can lead to 

preeclampsia. PFOA exposure has been epidemiologically associated with kidney disease 

(Shankar et al., 2011b), although the possibility of reverse causation cannot be ruled out 

(Watkins et al., 2013b). Perfluorooctane sulfonate (PFOS) has been shown to induce the 

production of ROS in human microvascular endothelial cells and lead to increased endothelial 

cell permeability (Qian et al., 2010). Increased endothelial cell permeability has been suggested 

to play role in the induction of ischemic acute kidney injury and this can lead to chronic kidney 

disease (Sutton et al., 2010). Kidney disease has been shown to be a risk factor for increased uric 

acid levels and pregnancy-related hypertension (Bainbridge and Roberts, 2008; Darrow et al., 

2013). Although this has not been shown mechanistically with PFOA exposure, it is still 
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biologically plausible. Other unknown mechanisms that explain the association between PFOA 

exposure and the induction of preeclampsia might exist and are yet to be hypothesized/ 

discussed.  

 

 

Figure 1.1: Possible mechanisms of preeclampsia development due to PFOA 

exposure 

To summarize, the current literature seems to suggest a possible causal link between 

PFOA exposure and the induction of preeclampsia, but there are some critical data gaps that need 

to be addressed. Although epidemiological studies suggest an association between PFOA 

exposure and preeclampsia induction, there is a need for mechanistic studies to support the 

association. One possible mechanism is through the induction of hyperuricemia which can 

directly or indirectly lead to preeclampsia. There is sufficient epidemiological evidence linking 
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PFOA exposure to elevated uric acid levels among the population, however, there are no 

mechanistic studies supporting the association and this is a critical data gap that needs to be 

addressed. Strong toxicological and epidemiological evidence support the link between 

hyperuricemia and the induction of preeclampsia through the development of RMVD. Direct role 

of hyperuricemia in the development of preeclampsia has also been proposed, but needs 

mechanistic evidence to support the hypothesis. Another possible mechanism is through the 

induction of ischemic acute kidney disease, but toxicological evidence is lacking. Other 

mechanisms through which PFOA exposure leads to preeclampsia might exist. Given the 

ubiquitous nature of PFOA distribution and the prominent role of preeclampsia in maternal and 

fetal morbidity/mortality; future studies that aim to fill these data gaps are needed. 

1.1.3 Exposure measurement error 

Input parameter uncertainty in exposure estimates contributes to exposure measurement 

error, which can be described as the difference between an individual’s true exposure and the 

assigned exposure estimate (Armstrong, 1998). The difference between true and assigned 

exposure can result from inaccuracies in measurement or model-based estimation of 

environmental chemical concentrations, biomarkers, time-activity patterns, and/or 

pharmacokinetics.  Retrospective fate and transport model estimates may be particularly prone to 

inaccuracies, and integrating multiple models in the process of an exposure assessment can result 

in structural uncertainty, whereby uncertainty in one model gets propagated through the 

following models and can contribute more to the overall uncertainty than all of the individual 

uncertainties combined (Özkaynak et al. 2008). The use of surrogates for pollutant and 

participant-level spatiotemporal input data, such as modeled pollutant concentrations, self-

reported activity patterns or independent (non-shared) exposure factors, pharmacokinetic 
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parameters, or single geographic imputation /geocoding at a coarse spatial resolution, can be 

viewed as a type of exposure measurement error in the assessment (Bartell et al. 2004; Sarnat et 

al. 2010; Shin et al. 2014; Tsuchiya et al. 2012; Henry and Boscoe, 2008; Zandbergen, 2009).  

Exposure measurement error has been shown to introduce bias and random error in 

environmental epidemiological studies (Thomas et al., 1993) and the quality of exposure data has 

been identified as a major determinant of the validity of environmental epidemiology studies 

(Baker and Niewenhuijsen 2008; Rothman et al. 2008). Random exposure measurement error 

can bias the odds ratio and other epidemiological effect estimates, and also diminish the 

precision and power of the epidemiologic studies. As a result, it typically hampers the ability to 

detect an association between the exposure and adverse health effects (Armstrong 1998). 

Although there is a substantial literature on the potential impacts of exposure measurement error 

on epidemiologic studies, much of the literature relies on theoretical examples and/or simplified 

assumptions such as statistically independent measurement errors across participants (Carroll et 

al. 2006; Gustafson 2003; Zeger et al., 2000).  Therefore, there is a need to characterize 

uncertainty in exposure estimates and in turn, to evaluate its potential impacts on reported 

epidemiological associations. 

 

1.2 Rationale for the study 

  The C8 Health Project retrospective exposure assessment model is prone to potential 

exposure measurement error due to 1) the presence of uncertainty in various physiochemical, 

hydrogeological parameters utilized in the environmental models to predict the PFOA air and 

water concentrations, 2) potential variability and epistemic uncertainty in individual-level 

exposure parameters such as self-reported or population-level drinking water ingestion rates, the 
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PFOA elimination half-life, the PFOA volume of distribution, and 3) positional error due to the 

use of ZIP code  centroid geocodes for residential addresses that could not be geocoded to exact 

locations. The uncertainty and variability in these input parameters can impact the accuracy of 

the exposure model predictions and subsequently, the epidemiological study results. This can 

potentially lead to questions on the validity of such epidemiological studies and there is a need to 

study such sources of uncertainty in the C8 exposure assessment.  

 

  1.3 Research objectives 

 The main objective of this dissertation was to analyze the impacts of different sources of 

input parameter uncertainty/variability in the C8 exposure assessment and study the impacts on 

the serum PFOA concentration predictions and the epidemiological association with 

preeclampsia (Savitz et al., 2012a). Specific research objectives are outlined below: 

1) To evaluate the potential impact of systematic and random uncertainty in the shared water 

sources (estimated PFOA drinking water) of the study participants on the predicted serum PFOA 

concentrations and the epidemiological association between PFOA exposure and preeclampsia. 

2) To evaluate the potential impacts of realistic inter-individual variability and more subjective 

epistemic uncertainty in independent (non-shared) exposure factors such as water ingestion rates 

assigned using either self-reported or population-level default values, PFOA half-life, and PFOA 

volume of distribution, on the predicted serum PFOA concentrations and the epidemiological 

association between PFOA exposure and preeclampsia. 

3) To evaluate potential impacts of geocoding uncertainty due to single geographic imputation 

(which may have resulted in mischaracterized water PFOA concentrations experienced by those 
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participants geocoded to ZIP code centroids) on the predicted serum PFOA concentrations and 

the epidemiological association between PFOA exposure and preeclampsia. 

 

1.4 Overview of the dissertation  

In the following three chapters, I present my research work to address the above listed 

specific objectives respectively. In chapter 2, I used Monte Carlo simulation as a screening-level 

uncertainty analysis to study the impact of the shared uncertainty (correlated uncertainty across 

individuals and years) in PFOA water concentration as a surrogate for the uncertainty in various 

fate and transport parameters used in the environmental modeling system. I present the results 

and discussion of this analysis comparing the MC simulation based serum PFOA concentration 

distribution, the rank exposure of participants and the adjusted odds ratio of preeclampsia 

occurrence with the original results of the Savitz et al. (2012a) study. 

In Chapter 3, I studied realistic inter-individual variability and more subjective epistemic 

uncertainty in independent (non-shared) exposure factors such as water ingestion rates, PFOA 

half-life, and PFOA volume of distribution by obtaining realistic variability distributions on 

these parameters from literature. I then used Monte Carlo simulation to determine impacts on the 

predicted serum concentrations and the epidemiological association between PFOA and 

preeclampsia. I present the results of this analysis similar to the chapter two and discuss the 

implications of the results. 

In chapter 4, I studied the impact of geocoding uncertainty in the PFOA exposure 

assessment by using Monte Carlo (MC) simulation to assign alternate geographic locations 

within the reported ZIP code for all residential addresses that were geocoded to a ZIP code 

centroid and the reported work addresses. I present the resulting distributions of serum PFOA 
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concentrations and epidemiological association with preeclampsia and discuss the results in 

detail. 

In the last chapter (chapter 5), I summarize what I learnt from my uncertainty analyses, discuss 

possible directions for future studies and describe the conclusions of my dissertation. 
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2.1 Introduction  

The C8 retrospective exposure assessment included uncertainty in input parameters 

utilized in our PFOA fate and transport models. Out of many input parameters, the soil 

adsorption coefficient (Kd) of PFOA, annual emission rates from the production facility, fraction 

of organic carbon (foc) in the surface soil and unsaturated soil zones, and historical pumping rates 

of public water wells were previously identified as being influential and uncertain due to 

incomplete data (Shin et al. 2011a; Shin et al. 2012). Uncertainty in these and other parameters 

can impact the accuracy of exposure estimates and subsequently, the validity of epidemiological 

study results. However, it is unclear to what extent uncertainties in the exposure estimates 

threaten the validity of those study results and other epidemiologic findings in this study 

population. Critical features of our exposure model include a common exposure pathway for 

people using the same public water source, and linkage of personal residential histories with 

specific public water sources over time.  These model features are important not only as drivers 

of PFOA exposure, since contaminated drinking water is thought to be the predominant exposure 

route for most participants (Shin et al. 2011b), but also as indications that exposure uncertainty is 

unlikely to be statistically independent across participants with the same water source, or across 

years for the same participant.   

In this Chapter, we evaluate the potential impact of systematic and random uncertainty in 

the estimated PFOA drinking water and serum concentrations on the epidemiological association 

between PFOA exposure and preeclampsia. For each of the six public water districts (PWD) in 

the C8 Health Project, we generated multiple plausible year-by-year PFOA drinking water 

concentrations via Monte Carlo simulation (for a range of 2, 5 and 10-fold uncertainty) and used 

these new water concentrations to estimate serum PFOA concentrations using the integrated 
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exposure and pharmacokinetic model. This manuscript evaluates the impact of uncertainty in the 

fate and transport models by specifying probability distributions directly for PFOA drinking 

water concentrations instead of specifying distributions for each of the many input parameters in 

the models; hence it can be considered a screening-level uncertainty analysis. This analysis 

focuses solely on uncertainty in PFOA drinking water concentrations and does not consider 

uncertainty in individual-level parameters (drinking water intake and pharmacokinetics). 

 

2.2 Methods 

2.2.1 Retrospective exposure assessment 

To estimate historical PFOA serum concentrations for participants in the C8 Health 

Project, we previously conducted a retrospective exposure assessment (Shin et al. 2011a, Shin et 

al. 2011b) which includes PFOA release assessment, integrated fate and transport modeling, dose 

reconstruction, and estimation of historical serum PFOA concentrations for each participant.  

The major steps in that exposure assessment are summarized in the following paragraph.   

First, historical PFOA emission rate estimates from the DuPont facility were obtained 

from a previous study conducted by Paustenbach et al. (2007). Second, we applied a suite of 

established environmental fate and transport models to estimate the concentrations of PFOA in 

the air, groundwater and six municipal water supply wells around the facility for the years of 

1951-2008. Input parameters of these environmental models include historical emission rate 

estimates, physicochemical properties of PFOA, and local meteorological and hydrologic data. 

The six PWDs that are involved in the C8 Health Project included the City of Belpre, Little 

Hocking Water Association, Tuppers Plains Chester Water District, the Village of Pomeroy 

Water District, Lubeck Public Services District, and Mason County Public Service District. 
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Figure 2.1 shows the model estimated PFOA water concentrations in the six PWDs over time 

from 1951 to 2008. Third, the estimated yearly air and water concentrations from environmental 

modeling were utilized to estimate historical PFOA exposures along with individual 

residential/work histories, demographic information (age, gender, body weight), standard 

exposure factors (air inhalation rate, drinking water ingestion rate), and historical pipe 

installation information of public water supply. Last, a single-compartment pharmacokinetic 

model was used to estimate year-by-year serum PFOA concentrations for each individual. 

Among all participants (N = 43,449), the Spearman’s rank correlation coefficient between the 

estimated and the 2005-2006 observed serum PFOA concentration (measured as a part of the C8 

Health Project) was 0.67 (Shin et al, 2011b). Median estimated and observed serum 

concentrations in 2005-2006 were 13.7 and 23.5 ng/mL, respectively. 

In the present manuscript we did not change the first or second steps of the exposure 

assessment, but repeated the third and lasts steps many times using alternative water 

concentration estimates in order to gauge the potential impacts of uncertainties in PFOA drinking 

water concentrations (uncertainties in the exposure assessment/pharmacokinetic models were not 

considered) on estimated serum concentrations and epidemiologic results.    
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Figure 2.1 Estimated annual average PFOA water concentrations in the six public water 

districts (adapted from Shin et al., 2011a).  Concentrations are shown in log (base 10) 

micrograms/liter 

2.2.2 Previous epidemiological analysis 

Using the estimated historical PFOA serum concentrations, Savitz et al. (2012a) 

evaluated the associations between estimated PFOA serum concentrations at pregnancy and self-

reported pregnancy related health outcomes, including preeclampsia among the C8 Health 

Project participants from 1990-2006 using generalized estimating equation regression models. 

There are 730 self-reported preeclampsia outcomes among the total 10,189 pregnancies. To 
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address potential confounding, they adjusted for maternal age, parity, education and maternal 

smoking status. The adjusted odds ratio (AOR) for the continuous exposure variable was 1.13 

(95% confidence interval (CI) = 1.00-1.28) for an interquartile range (25th to 75th percentile) of 

log PFOA serum concentration (units of nanograms per milliliter).    

We obtained approval (HS#2013-9421) from the Institutional Review Board at the 

University of California, Irvine, to work with the human subject data in this current study. We 

modified the original analysis by excluding 40 pregnancies of 25 mothers who had work 

histories in the DuPont PFOA production facilities. These participants might have additional 

occupational exposure to PFOA before and during pregnancy, which sometimes exceeds the 

contribution from residential drinking water ingestion.  Excluding these pregnancies changes the 

AOR (95% CI) to 1.11 (0.99-1.24) with 725 preeclampsia outcomes among 10,149 pregnancies.   

2.2.3 Monte Carlo simulation 

In the Monte Carlo uncertainty analysis, because public well water was a primary 

exposure route for our study population (Shin et al. 2011b), we selected year-by-year PFOA 

drinking water concentrations for each of the six PWDs (output from the retrospective fate and 

transport model) as primary uncertain input parameters and AOR for preeclampsia (output from 

the epidemiological model) as the output of Monte Carlo simulations. We assumed that PFOA 

drinking water concentrations are log-normally distributed, because contaminant concentrations 

are non-negative (Limpert et al., 2001; Morgan et al. 1990).
 

  
For each of the six PWDs, we used the following equation to generate multiple simulated 

drinking water concentrations (n = 500, using Monte Carlo simulation) by multiplying the 

originally estimated average PFOA drinking water concentrations (Shin et al. 2011a) by three 

multiplicative uncertainty factors, U1, U2, and U3:  
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Ci,j,k = C0,i,j  ×  U1i,j,k  ×  U2i,k ×  U3k                                              

         [1] 

where Ci, j, k is the simulated PFOA drinking water concentration for a PWD i for a year j for the 

k’th iteration. C0,i,j is the previously estimated average PFOA drinking water concentration for a 

PWD i for a year j.U1i, j, k is the random uncertainty factor for a PWD i for a year j for the k’th 

iteration not specific to any source and it varies the PFOA concentration by PWD by year by 

iteration. Log U1i, j, k follows a multivariate normal (MVN) distribution (corresponding to each 

year of exposure) with a mean of 0 for every year, a correlation matrix of Σ, and a constant 

variance across years, σ
2
, i.e., log U1i, j, k ~ MVN (0, Σ σ

2
). We chose off-diagonals of the 

correlation matrix to stipulate first order autocorrelation of uncertainties across years, with an 

auto-correlation factor φ. Thus, sampled uncertainty factors for closer years are similar compared 

to those that are far apart. For example, the sampled PFOA concentrations that are 3 years apart 

will be correlated by a factor of φ
3
.         

U2i, k is the systematic uncertainty factor for a PWD i for the k’th iteration due to mis-

characterized PFOA transport in the unsaturated soil zone and groundwater aquifers within the 

groundwater catchment area of each PWD and thus the PWD-specific uncertainty factor is 

applied during the time period public water was a primary drinking water source. Log U2i, k 

follows a normal distribution with a mean of 0 and variance of σ
2
, i.e., log U2 i, k ~ N (0, σ

2
). An 

example to describe U2 is the role of a parameter like the wind direction/speed. Any uncertainty 

in the wind direction/speed will impact the atmospheric transport and the deposition location of 

PFOA, systematically influencing each estimated PWD PFOA concentration for all years but 

with a different magnitude and/or direction for each PWD. For example, mischaracterization of 

the wind speed and direction due to reliance on off-site meteorological data might be expected to 
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systematically increase the PFOA deposition in some water districts for all years, and to decrease 

the PFOA deposition in other water districts for all years because a different prevailing wind 

direction would increase PFOA deposition rates for downwind water catchment basins but 

decrease deposition rates for other catchment basins.    . 

U3k is the global uncertainty factor for the k’th iteration and includes systematic error that 

affects all PWDs and all years in the same way, such as systematic under- or over-estimation of 

the PFOA emission rates. Log U3k follows a normal distribution with a mean of 0 and variance 

of σ
2
, i.e., log U3 k ~ N (0, σ

2
).  

Because U1, U2, and U3 are generated independently of the original water concentration 

assignments C0,i,j, this model simulates additional classical (as opposed to Berkson) 

measurement error in the drinking water concentrations. 

We repeated the analysis for four different hypothetical values of φ (which applies only 

to U1): 0, 0.5, 0.9, and 0.95 (chosen in order to represent a range starting with no correlation 

between adjacent years to a high correlation between adjacent years).  The medians of U1, U2 

and U3 are each set to 1 (giving equal probability for any randomly selected value to be higher or 

lower than 1), which corresponds to a log mean of µ = 0. A range of log variances (σ
2
): 0.13, 

0.67, and 1.38, which corresponds to 95% probability intervals of 2-, 5- and 10-fold uncertainties 

respectively (chosen to represent low, medium, and high levels of uncertainty) are simulated 

with the same value of σ
2
 used to specify the distributions of U1, U2, and U3.  Thus, a total of 12 

different Monte Carlo simulations were conducted corresponding to the various combinations of 

the log variance parameter σ
2 

(0.13, 0.67, and 1.38, each applied to U1, U2, and U3) and φ (0, 

0.5, 0.9, and 0.95, applied to U1 only).  
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MATLAB (The Mathworks Inc., Natick, MA, 2000) and R (http://www.r-project.org/) 

programming languages were used to run Monte Carlo analyses.  For each of the 500 Monte 

Carlo iterations, we applied simulated drinking water concentrations to our integrated exposure 

and pharmacokinetic model to estimate serum concentrations and reanalyzed the association 

between newly simulated PFOA serum concentrations and the odds of preeclampsia occurrence. 

The AOR was computed per inter-quartile range (IQR) of serum PFOA concentrations using 

multiple logistic regression, with recalculation of the IQR and a new regression for each Monte 

Carlo iteration. 

We charactered overall uncertainty in the epidemiologic association using the Law of 

Total Variance:  var(b) = E(var(b|X)) + var(E(b|X)), where b is the log odds parameter estimate, 

E refers to the expectation and X is the collection of personal exposure estimates.  The first term 

in the summation is the contribution of participant sampling uncertainty, and is estimated by the 

mean value of the log odds parameter variance across 500 iterations of the logistic regression.  

The second term in the summation is the contribution of exposure uncertainty, and is estimated 

by the variance of the log odds point estimate across 500 iterations.  The standard error of the log 

odds is the square root of the total variance, and is used to produce 95% probability intervals 

summarizing the Monte Carlo simulation results. The percent contribution of exposure 

uncertainty to total uncertainty is given by var(E(b|X)) / var(b). 
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2.3 Results   

2.3.1 Illustrative examples  

We begin by showing plots with results from individual iterations, using 5 Monte Carlo 

iterates as an illustrative example.  Although 5 iterations are insufficient to generate a reliable 

sample for propagation of uncertainty, we find the plots helpful for visualizing the complex 

exposure patterns produced by our three-level uncertainty factors (U1, U2, and U3).  In order to 

illustrate the combined effect of the three uncertainty factors, we randomly selected five sets of 

values (“iterations”) for U1, U2, and U3 from the appropriate probability distributions, and then 

computed PWD water concentrations for each iteration using Equation 1.  Figure 2.2 shows 

PFOA concentrations in Pomeroy PWD (micrograms/liter) in log 10 scale over time for five 

iterations, with the upper panel representing the Monte Carlo simulation using uncertainty 

factors U1, U2, and U3, (φ = 0.95, σ
2 

= 0.13) and the lower panel representing the Monte Carlo 

simulation using uncertainty factors U1, U2, and U3, (φ = 0, σ
2 

= 0.13). The black line 

corresponds to the original estimated PFOA drinking water concentrations and the other five 

colored lines correspond to each of the Monte Carlo iteration obtained by multiplying the 

original PFOA concentration by the uncertainty factors. This example was chosen to visually 

show how the Monte Carlo simulation looks for the scenario when there is a low level of 

uncertainty in PWD concentration and high correlation versus no correlation between sampled 

uncertainty factors for adjacent years (U1). The Monte Carlo simulated PWD PFOA 

concentration curves are smoother over time with φ = 0.95, as expected. φ = 0 corresponds to no 

correlation between the random values sampled (from the multivariate lognormal distribution 

U1) for adjacent years; for those simulations, the Monte Carlo simulation curves are more 

jagged. Adjacent year PFOA drinking water concentrations are expected to be correlated and the 
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PFOA concentration curves are smooth over time, since changes in PFOA flux to the surface soil 

will tend to be smoothed over time as PFOA travels through the subsurface into the groundwater 

table.   

 

Figure 2.2 PFOA drinking water concentrations in Pomeroy PWD over time- comparing 

original estimates with Monte Carlo iterations using uncertainty factors with parameter 

values of σ
2 
= 0.13 and either (a) φ = 0.95 for high autocorrelation or (b) φ= 0 for no 

autocorrelation.  Concentrations are shown in log (base 10) micrograms/liter 
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2.3.2 Full Monte Carlo simulation 

Next we present results for Monte Carlo simulation with 500 iterations for each of the 12 

simulations (Table 2.1) using the full uncertainty model with U1, U2, and U3 (with σ
2
 = 0.13, 

0.67, or 1.38, and φ = 0, 0.5, 0.9, or 0.95). Figure 2.3 is a plot of mean and 95% probability 

interval (the 2.5
th

 and 97.5
th

 percentiles) over 500 iterations of rank correlation between the 

simulated and original serum PFOA concentration estimates for all the Savitz et al. (2012a) study 

participants between the years 1990 and 2006, for the Monte Carlo simulation using uncertainty 

factors U1, U2, and U3 (φ = 0.95, σ
2
 = 1.38). Although only one simulation is plotted here, it is 

the simulation with the highest impact of uncertainty on the serum prediction estimates (i.e., the 

other 11 simulations produce higher rank correlations). 
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Table 2.1 The mean and the 95% probability interval of the mean, median, 25
th

 and 75
th

 percentile serum concentrations at 

birth (ng/mL), across 10,149 participants for each of the 12 Monte Carlo simulations 

Simulation Mean Median 25
th

 percentile 75
th

 percentile 

Original 51.06 9.42 5.09 32.45 

 (σ
2
=0.13, φ=0) 60.20 (27.07-132.37) 9.73 (7.69-13.15) 5.09 (4.94-5.27) 36.35 (19.72-71.53) 

 (σ
2
=0.13, φ=0.50) 60.57 (25.80-121.72) 9.73 (7.52-12.56) 5.09 (4.91-5.26) 36.74 (18.98-64.36) 

 (σ
2
=0.13, φ=0.90) 57.58 (27.27-120.46) 9.56 (7.75-12.17) 5.08 (4.95-5.20) 34.67 (20.26-62.98) 

 (σ
2
=0.13, φ=0.95) 61.38 (26.65-135.05) 9.66 (7.65-12.67) 5.09 (4.91-5.25) 36.11 (19.99-68.27) 

 (σ
2
=0.67, φ=0) 124.43 (17.73-477.59) 11.27 (6.66-23.65) 5.14 (4.88-5.75) 55.16 (14.52-181.99) 

 (σ
2
=0.67, φ=0.50) 118.07 (15.19-490.83) 10.89 (6.67-26.49) 5.12 (4.81-5.80) 54.57 (13.93-209.57) 

 (σ
2
=0.67, φ=0.90) 124.00 (16.82-578.14) 10.61 (6.43-21.34) 5.10 (4.78-5.61) 53.73 (12.96-218.77) 

 (σ
2
=0.67, φ=0.95) 128.44 (12.85-641.07) 10.77 (6.38-26.59) 5.11 (4.80-5.77) 55.79 (12.69-222.65) 

 (σ
2
=1.38,φ=0) 267.18 (14.73-1595.08) 13.84 (6.14-39.71) 5.19 (4.77-5.92) 95.98 (11.42-451.10) 

 (σ
2
=1.38, φ=0.50) 455.98 (13.90-2600.70) 14.27 (6.18-57.83) 5.16 (4.78-6.10) 102.68 (11.82-620.82) 

 (σ
2
=1.38, φ=0.90) 390.51 (11.50-3075.62) 13.67 (5.86-51.01) 5.14 (4.72-6.11) 102.90 (11.19-565.64) 

 (σ
2
=1.38, φ=0.95) 396.66 (10.03-2686.75) 12.47 (5.72-35.71) 5.12 (4.69-6.03) 83.63 (10.48-433.71) 



 

 

3
0

 

 

σ
2
 = Log variance of the uncertainty distributions U1, U2, and U3 

φ = autocorrelation factor of uncertainty distribution U1 
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Figure 2.3 An example plot of the mean and the 95% probability interval of the correlation 

coefficient between the estimated serum concentrations for each Monte Carlo iterate and 

the original estimated serum concentrations, for all the participants, over time (U1, U2, and 

U3 with φ = 0.95, σ
2
 = 1.38) 

The mean, median, 25-75 percentile serum concentrations at birth (ng/mL), across 10149 

participants were calculated and their mean  and 95% probability interval among 500 iterations 

are shown in the Table 2.1, along with those of the original epidemiology analysis. The mean 

and 95% probability interval for the AOR associating serum PFOA concentrations and 

preeclampsia for each simulation are shown in Table 2.2.  The percent contribution of exposure 
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uncertainty to total uncertainty is tabulated in Table 2.3. Exposure uncertainty contributed 

anywhere between 5 and 31 % to the total uncertainty in this analysis.  

Table 2.2 The AOR (and 95% probability interval computed from the total standard error 

which includes participant sampling variability and exposure uncertainty) when applying 

all uncertainty factors (U1, U2, and U3) simultaneously in Monte Carlo simulations.  The 

AOR (and 95% confidence interval computed from participant sampling variability only) 

using the original exposure assignments is 1.11 (0.99, 1.24) 

 

 φ      σ
2
 0.13 0.67 1.38 

0 1.11(0.99, 1.25) 1.11 (0.98, 1.26) 1.12 (0.97, 1.28) 

0.5 1.11 (0.99, 1.25) 1.11(0.98, 1.26) 1.11 (0.97, 1.27) 

0.9 1.11 (0.99, 1.24) 1.11 (0.98, 1.25) 1.10 (0.96, 1.27) 

0.95 1.11 (0.99, 1.25) 1.11 (0.97, 1.26) 1.10 (0.96, 1.26) 

 

σ
2
 = Log variance of the uncertainty distributions U1, U2, and U3 

φ = autocorrelation factor of uncertainty distribution U1 
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Table 2.3 Percent contribution of participant exposure uncertainty to the total uncertainty 

for the combined effect of participant sampling variability and exposure uncertainty 

 φ          σ
2
 0.13 0.67 1.38 

0 5 % 18 % 29 % 

0.5 5 % 19 % 30 % 

0.9 5 % 19 % 31 % 

0.95 5 % 21 % 30 % 

 

σ
2
 = Log variance of the uncertainty distributions U1, U2, and U3 

φ = autocorrelation factor of uncertainty distribution U1; not applicable to uncertainty factors U2 

or U3. 

2.4 Discussion 

 Although incorporating autocorrelated and shared uncertainty in our water concentration 

estimates produced a highly variable set of plausible serum PFOA concentrations, it had less 

impact on the rank order of estimated serum PFOA concentrations during pregnancy.  Moreover, 

these changes in estimated serum PFOA had a negligible impact on the mean AOR for 

preeclampsia and only modestly increased its total standard error, likely because the regression is 

more sensitive to the rank order of participant exposures than it is to absolute exposure 

assignments.  The existing epidemiological literature suggests that adding independent, non-

differential classical exposure measurement error will tend to bias the effect estimate towards the 

null hypothesis (Armstrong 1998).  However, we observed no substantial bias in our Monte 

Carlo simulations.  This may be due to our focus on potential errors in characterizing PWD water 
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concentrations, which are shared exposure sources, rather than simulating independent exposure 

measurement errors.  As a brief test of that explanation, we ran two additional simulations 

without U1, U2, or U3, but now adding a new lognormal uncertainty factor for individual 

drinking water ingestion rates, with 10-fold and 100-fold uncertainty (100 iterations each).  

Mean AORs in these simulations were 1.09 and 1.07, respectively, indicating greater sensitivity 

of the epidemiologic results to independent exposure errors than to shared exposure errors.  The 

weak association between PFOA and preeclampsia may also make it appear less sensitive to both 

shared and independent exposure uncertainties (e.g., a change of the AOR from 1.11 to 1.07 

appears small but actually constitutes a 35% decrease in the log odds parameter).  PFOA water 

concentrations in the contaminated region differed by several orders of magnitude across PWDs 

and across years (Shin et al. 2011a), which may explain why perturbing the exposure estimates 

with as much as 10-fold uncertainty contributed only modestly to the total standard error and 

negligibly to bias.  Indeed, using regression calibration (Rosner, 2010) treating the Monte Carlo 

simulation as a simulated reproducibility study and assuming independent measurement errors 

across participants, we compute for the simulation with φ = 0.95 and σ
2
 = 1.38 an intra-class 

correlation coefficient of r1 = 0.25 and a corrected AOR of 1.72 (95% confidence interval: 1.04, 

2.87).  The independence assumption is clearly unwarranted here, but this exercise illustrates that 

potential inaccuracies in our historical water concentration estimates may pose a far lesser threat 

to the validity of previously published epidemiologic associations between PFOA and 

preeclampsia in the C8 Health Study than suggested by traditional models for exposure 

measurement error. 

 At the selected exposure uncertainty variances (σ
2
), varying the autocorrelation parameter 

(φ) had little impact on the output AOR distribution, only slightly increasing the total standard 
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error.  Although the direction of the effect is reasonable because a multi-year increase or multi-

year decrease in water concentrations is more likely with higher autocorrelation and produces a 

larger change in serum concentration than a mix of yearly increases and decreases, we expected 

the total standard error to be more strongly affected by this parameter than it was.  This is 

somewhat reassuring considering that it is more difficult to interpret and choose a reasonable 

value of φ than σ
2
.   

 The contribution of correlated exposure uncertainty to the overall uncertainty in an 

epidemiologic analysis of PFOA exposure and preeclampsia is estimated here. Traditional 

confidence intervals only account for participant sampling variance, not the effects of exposure 

uncertainty.  In this specific PFOA exposure assessment-environmental epidemiology analysis, 

fate and transport model uncertainty seems to contribute only modestly to the overall uncertainty 

in the relationship between PFOA exposure and preeclampsia.  Although these results cannot be 

generalized to other settings, the methods could be applied to other epidemiological analyses 

including studies of PFOA and other health effects in this population. This may be particularly 

important in weighing disparate findings from studies that utilize different methods of exposure 

assessment (e.g., fate and transport models, questionnaires, and/or biomarkers). Although meta-

analysis provides a method for combining disparate study findings, it traditionally weighs studies 

only by their estimated parameter variances (i.e., sampling variability) and does not address the 

quality of exposure assessment or other study design characteristics.    

Drinking water ingestion is a major exposure route (versus inhalation or dermal 

exposure) for our study population in all years, except for the participants who consumed water 

from Little Hocking before 1974 and those who consumed water from Belpre before 1990 (Shin 

et al. 2011b). Given this, and the fact that the epidemiological analysis included pregnancies 
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occurring only between 1990 and 2006, we chose to model uncertainty only for the drinking 

water concentrations in this analysis, not perturbing the original inhalation exposure estimates 

for each Monte Carlo iteration. Private well water has been used by participants in the study over 

their residential history in the area and can be a potential source of uncertain PFOA exposure to 

the participants. However, only 9.6% of the Savitz et al. (2012a) study participants had at least 

one source of private water consumption between the years 1985 and 2006. Therefore, we did 

not consider the uncertainty in the private well PFOA concentrations in our analysis as we 

deemed it to be negligible compared to the PWD PFOA contribution to the total exposure. 

Another relatively minor source of PFOA exposure is through the consumption of vegetables 

that were either grown locally or home grown; however due to the sparseness of data specific to 

the individual participant vegetable consumption, the original model did not consider this route 

of exposure (Shin et al. 2011a). We also did not assess independent sources of error such as 

individual variations/uncertainty in ingestion rates and pharmacokinetics of PFOA. These 

uncertainties are likely to produce Berkson-like error structures in the individual exposure 

assignments (Berkson 1950; Heid et al. 2004), because group-level pharmacokinetic and water 

ingestion rates were assigned in the absence of individual-level data.  Incorporation of these 

components into the uncertainty analysis would likely cause an increase in the apparent 

contribution of exposure uncertainty to uncertainty in the epidemiologic findings.     

Our uncertainty analysis explores the impact of changing the original PFOA exposure 

assignments by simulating additional measurement error, but it does not “correct” or “adjust” for 

errors in exposure assignment.  Regression calibration (Rosner 2010) can be used to correct 

AORs to account for a simple exposure measurement error structure, but would have to be 

adapted for use with complex simulations such as our setting.  Regression calibration includes 
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three important assumptions that are not valid in our study: 1) the measurement errors are 

normally distributed, 2) the errors are statistically independent of the surrogate exposure and 

independent across individuals, and 3) the other covariates in the regression model are measured 

without error.  In our study the measurement error components are lognormally distributed and 

strongly correlated among individuals with the same water source, and covariates such as 

smoking status were likely measured imperfectly due to the use of self-reports.    

2.5 Conclusions 

The Monte Carlo uncertainty analysis described here can be considered a screening-level 

uncertainty analysis, since we are characterizing uncertainty in the environmental model 

estimated PWD PFOA concentrations as a surrogate for hundreds of parameters in the suite of 

fate and transport models used to estimate the PWD PFOA concentrations.  Using separate U1, 

U2, and U3 uncertainty components allows for specification of correlations in exposure 

measurement errors across years and across individuals with shared exposure sources, in contrast 

to standard epidemiologic models that assume independence of the measurement errors 

(Armstrong 1998; Rosner 2010). Due to the complexity of this particular suite of fate and 

transport models, which take days to weeks to run for a single set of input parameters, a 

parameter-based Monte Carlo uncertainty analysis would require a prohibitive amount of 

computer time.  Our screening-level assessment suggests that correlated exposure measurement 

error may produce dramatic changes in PFOA serum estimates yet contribute only modestly to 

overall uncertainty regarding the epidemiologic association between PFOA  and preeclampsia. 

As a next step, exploring the impact of individual-level uncertainties in the exposure assessment 

and pharmacokinetic model will provide more insight regarding the effects of exposure 

uncertainty on this epidemiological association. Future epidemiologic analyses might benefit 
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from simulation studies or other techniques for evaluating the impacts of uncertainties in 

complex exposure models.     
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3.1 Introduction 

In this Chapter, we determine the potential impacts of individual-level input parameter 

uncertainties on the PFOA serum concentration predictions and the association between PFOA 

and preeclampsia. The input parameter uncertainties included in this study are realistic inter-

individual variability and more subjective epistemic uncertainty in independent (non-shared) 

exposure factors such as water ingestion rates assigned using either self-reported (Frisbee et al., 

2009) or population-level default values (U.S.EPA, 2011), PFOA half-life, and PFOA volume of 

distribution. It has been previously identified that distinguishing these two types of uncertainty is 

important and commonly missed.  

Variability differs from epistemic uncertainty in a way that it represents heterogeneity in 

a parameter of interest, while epistemic uncertainty arises out of our lack of 

knowledge/understanding of the value of a parameter or its variability (Morgan et al., 1990; 

Finley and Paustenbach, 1994; Burmaster and Anderson, 1994). We obtained realistic variability 

distributions on these parameters from literature wherever possible. We then used Monte Carlo 

simulation to determine impacts on the predicted serum concentrations and the epidemiological 

association between PFOA and preeclampsia. 

3.2 Materials and methods  

3.2.1 Environmental fate and transport model  

            The historical PFOA air and groundwater concentrations used in the exposure assessment 

were predicted by an integrated fate and transport model system (Shin et al., 2011a). This 

modeling system included a series of linked environmental contaminant transport models to 

predict the yearly PFOA air and groundwater concentrations for the years 1951 - 2008, for the 

area that covers the communities that consented to the C8 Health Project (includes participants 
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from the six public water districts- the City of Belpre, Little Hocking Water Association, 

Tuppers Plains Chester Water District, the Village of Pomeroy Water District, Lubeck Public 

Services District, and Mason County Public Service District). These models utilized information 

on historical release rates of PFOA, local meteorological and hydrogeological data, and PFOA 

physiochemical properties. More details on the modeling and the calibration methodology are 

described by Shin et al. (2011a).  

3.2.2 Exposure-reconstruction and pharmacokinetic model 

The predicted PFOA air and groundwater concentrations were then used in a dosimetry 

model to predict yearly PFOA exposure doses through inhalation and ingestion for each of the 

participants (Shin et al., 2011b). This exposure-reconstruction model utilized information on: 

self-reported participant demographics such as age, gender, body weight; residential/work 

histories; standard (recommended mean) inhalation rates (U.S. EPA, 2009); standard (self-

reported, if available) water ingestion rates; and information on the historical pipe distribution 

systems of each of the six public water districts, to predict yearly total exposure doses (combined 

inhalation and ingestion doses) for each of the participant. Self-reported water ingestion rates 

(number of cups per day) were available for ~50 % of the C8 Health Study participants (Shin et 

al., 2011b) and were used when available. For the self-reported participants, the model also 

assumed a constant water consumption rate for each individual over the entire exposure period. 

A one-compartment pharmacokinetic model (PK) was used to predict yearly PFOA 

serum concentrations in the study participants, based on their individual yearly total PFOA dose 

estimates and assuming 100% absorption by both exposure routes (Shin et al., 2011b).  The total 

PFOA serum concentration was computed as the sum of PFOA serum concentration due to 

emissions from the Washington Works plant and PFOA serum concentration due to background 
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exposure from other exposure sources (Shin et al., 2011b). By default, the model used age- and 

gender-specific PFOA volume of distribution (based on previously recommended volume of 

distribution per unit body weight derived from a monkey model by Butenhoff et al. (2004). The 

PFOA excretion half-life in the PK model was fixed at 3.5 years for all participants based on 

follow-up of retired workers by Olsen et al., 2007. 

3.2.3 Epidemiological analysis 

The Savitz et al. (2012a) epidemiological analysis of self-reported preeclampsia in 

association with PFOA utilized the retrospective predicted PFOA serum concentrations at the 

year of birth among 10,189 pregnancies occurring between 1990 and 2006 in the C8 Health 

Project population. Among these pregnancies, 730 occurrences of preeclampsia were reported 

and the analysis adjusted for confounding by parity, maternal age, education level and smoking 

status. The original reported adjusted odds ratio (AOR) for the occurrence of preeclampsia was 

1.13 (1.00-1.28) per interquartile range (IQR) of PFOA serum concentration in log (natural 

logarithm) scale (nanograms per milliliter-ng/mL). We restrict our analysis to 10,149 

pregnancies (725 preeclampsia cases) by removing those mothers with previous work history in 

the Washington Works facility, thereby focusing only on PFOA contribution from non-

occupational sources of exposure. The modified analysis yielded an AOR of 1.12 (1.00-1.26). 

We received approval from the Institutional Review Board at the University of California, Irvine 

(HS#2013-9421) to conduct our analyses.  
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3.2.4 Methodology: Monte Carlo simulation I 

In the first MC simulation, we study the impact of variability in the individual-level input 

parameters introduced in section 1.1. We used the outputs from the fate and transport models- 

the PFOA air and water concentrations and ran multiple iterations of the dosimetry and the 

pharmacokinetic models. For each iteration, individual-level independent exposure parameters 

including the standard tap water ingestion rates or the self-reported water ingestion rates, the 

PFOA half-life, and the PFOA volume of distribution were varied by randomly sampling from 

variability distributions developed based on our literature survey described below.  

Variability in standard/self-reported water ingestion rates 

In the original exposure model, for the participants who did not provide a self-reported 

tap water ingestion rate (~30 % of the Savitz et al., 2012a study participants), default water 

ingestion rates recommended by the EPA Exposure Factors Handbook (Shin et al., 2011b; U.S. 

EPA, 2009) were used. These were mean survey-based community water ingestion rates for 

different age categories (for the U.S. population) and included estimates of water ingested 

directly as a beverage and water used in preparing various food/beverages. Percentile estimates 

of these water ingestion rate distributions are also available for each age category in the 

Exposure Factors Handbook. In order to account for inter-individual variability in the MC 

analysis, we assumed the water ingestion rate to be log-normally (LN) distributed and calculated 

the log-normal parameters (the log mean, µa and the log standard deviation, σa) based on the 

mean and 95
th

 percentile values for each age category (Table 3.1).  
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Table 3.1 The parameters µa and σa of the log-normal distribution for all age categories of 

standard water ingestion rates (mL/day) recommended by the U.S. Environmental 

Protection Agency in the Exposure Factors Handbook (U.S. EPA, 2009) 

Age category 

(years) 

Mean 95
th

 Percentile µa σa 

1 to < 2  308 893 -1.5697 0.8855 

2 to < 3 356 912 -1.3044 0.7370 

3 to < 6 417 1099 -1.1702 0.7688 

6 to < 11 480 1251 -1.0199 0.7562 

11 to < 16 652 1744 -0.7365 0.7859 

16 to < 18 792 2002 -0.4941 0.7224 

18 to < 21 895 2565 -0.4897 0.8704 

> 21 1183 2848 -0.0571 0.6709 

> 65 1242 2604 0.0719 0.5381 

 

In the MC analysis, for each iteration, the percentile of the water ingestion rate for any specific 

individual was randomly sampled from a uniform distribution and used throughout the 

individual’s lifetime to compute the water ingestion rate from the age-specific log-normal 

variability distributions as shown.  

p ~ U(0,1)           [1] 

IRi = F
-1

(p)  

Where,  

p is the sampled percentile for individual i, 
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F
-1

 is the inverse distribution function (or “quantile function”) for LN (µa, σa),  

IRi is the computed water ingestion rate for individual i,  

µa is the log mean specific to individual i’s age category and, 

 σa is the log standard deviation specific to individual i’s age category.  

Holding the water ingestion rate constant throughout the lifetime for any iteration 

simulated the effect of consistently high or low water consumption, e.g., an individual assigned 

to the 92
nd

 percentile of water consumption would remain at that percentile within each age 

group, throughout his or her lifetime, for that MC iteration.      

For the participants who had self-reported tap water ingestion rates (~ 70 % of the 

participants), in the form of choosing one of six categories of the number of cups of water 

consumed in a day: 0-1, 1-2, 3-4, 5-6, 7-8, > 8 cups, the original exposure model had used the 

median of each category (except for the > 8 cups category, 9 cups was used as representative of 

range) as the water ingestion rate. These rates were held constant throughout the individual’s 

lifetime.  

In the MC analysis, to account for the variability within each category, for any individual, 

we randomly sampled a value of water ingestion rate based on a uniform distribution shown 

below, instead of the median value (as used in the original model) and used it throughout all 

years of the individual’s lifetime.  

  mi ~ U (Li, Ui)          [2] 

Where, 

mi is the sampled self-reported water ingestion rate for individual i, 

Li and Ui are the lower and upper bounds of the uniform distribution.  
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For example, mi ~ U (1.183, 1.4196) L/d for an individual who reported 5-6 cups per day of tap 

water ingestion. 

Variability in the PFOA elimination half-life 

In the original model, the PFOA half-life used in the pharmacokinetic model was fixed at 

3.5 years for all individuals based on a study by Olsen et al. (2007).  This study followed 26 

retired fluorochemical production workers, over five years and estimated individual PFOA 

elimination half-lives. In order to account for inter-individual variability in PFOA half-life, we 

assumed it to be log-normally distributed and calculated the log-normal parameters (µh = 1.247 

and σh = 0.399) based on the reported arithmetic mean and standard deviation of the PFOA half-

life among the 26 subjects in the Olsen et al. (2007) study.  

In the MC analysis, for each iteration, the PFOA half-life for any specific individual was 

randomly sampled from the log-normal variability distributions as shown below and used 

throughout each year of the individual’s lifetime.   

T ½ i ~ LN (µh, σh)   [3] 

Where, 

T ½ i is the PFOA half-life for individual i, 

µh is the log mean of the PFOA half-life and, 

σh is the log standard deviation of the PFOA half-life. 

Variability in the PFOA volume of distribution 

The PFOA volume of distribution per weight used in the original model (female = 0.198 

L/Kg) was based on a study in cynomolgus monkeys by Butenhoff et al., 2004. This volume of 

distribution was held constant for all the participants in the original model (Shin et al., 2011b). 

To account for inter-individual variability in the volume of distribution, we assumed it to be log-
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normally distributed and calculated the parameters (µv = 5.2453 and σv = 0.3540) based on the 

reported arithmetic mean and standard deviation of the PFOA volume of distribution among the 

3 female monkey subjects in the study. 

In the MC analysis, for each iteration, the PFOA volume of distribution for any specific 

individual was randomly sampled from the log-normal variability distributions shown below and 

used throughout the individual’s entire lifetime.   

VD i ~ LN (µv, σv)    [4] 

Where, 

VD i is the PFOA volume of distribution for individual i, 

µv is the log mean of the PFOA volume of distribution and, 

σv is the log standard deviation of the PFOA volume of distribution. 

 

3.2.5 Monte Carlo simulation II: Epistemic uncertainty in self-reported water ingestion rates, 

PFOA half-life and PFOA volume of distribution 

In addition to studying the impact of variability in the self-reported water ingestion rates 

as described in section 2.4.1., in a separate MC simulation (II), we studied the impact of 

epistemic uncertainty in the three individual-level parameters. For uncertainty regarding the 

validity of each self-reported water ingestion rate, we use a log-normal distribution shown 

below.  

IRi ~ LN (µi, σi) [5] 

µi = log (mi)  [6] 

Where,  

IRi is the sampled water ingestion rate for individual i, 
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 µi is the individual specific log mean and, 

 σi is the log standard deviation reflecting potential inaccuracy in the self-reported water 

ingestion rates.  

This was a two-level analysis evaluating both uncertainty in the self-reported water 

ingestion rate category and, as described in section 2.4.1, variability within each selected 

category. The median of the log-normal distribution was sampled randomly from a uniform 

distribution as described in equation 2. The standard deviation (σi = 0.446) was computed from 

the confidence interval of the mean difference between a questionnaire (self-reports) and 3-day 

diary based on water ingestion rates studied by Shimokura et al., (1998). This standard deviation 

represents the uncertainty in self-reported water ingestion rates as a surrogate for true rates. 

We also included the epistemic uncertainty in PFOA half-life and PFOA volume of distribution 

in the MC simulation II. The PFOA half-life used in the study was based on a study (Olsen et al., 

2007) of mainly older (ranged between 55-75 years) males (24 males and 2 females) and may not 

be representative of the participants in the Savitz et al., 2012a study, which were mainly women 

of child-bearing age (ranged between 14-45 years). Therefore, we included epistemic uncertainty 

by increasing the log standard deviation of the log-normal distribution in equation 3 to 0.798 (2-

times the original value in the half-life estimate used in the MC simulation I). Because only three 

monkeys were used in the Butenhoff et al., 2004 study to calculate the PFOA volume of 

distribution for females, and monkeys were used as a surrogate for humans in our analysis (Shin 

et al., 2011b), there could be additional uncertainty in the parameter. To address these sources of 

uncertainty we added epistemic uncertainty in the volume of distribution by multiplying the log 

standard deviation by a factor of 5 (1.77).  In MC simulations II, the same variability 
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distributions from MC simulation I and these three epistemic uncertainties (self-reported water 

ingestion rates, PFOA half-life and PFOA volume of distribution) were all included in the model.  

The MC simulations (300 iterations each) were run using MATLAB (The Mathworks 

Inc., Natick, MA, 2000) programming language and R (http://www.r-project.org/) programming 

language was used to reanalyze the epidemiological association between the estimated serum 

PFOA concentrations and preeclampsia. For each MC iteration of the exposure model, the serum 

PFOA concentrations were estimated and multiple logistic regression was used to compute the 

AOR per IQR of the estimated serum concentrations. The yearly rank exposure of the 

participants (among all 300 iterations) was also compared with the original model predicted rank 

exposure for each MC simulation. The contribution of inter-individual variability/epistemic 

uncertainty to the total uncertainty in the epidemiological association (including participant 

sampling uncertainty) was calculated for each MC simulation using the law of total variance as 

described in our previous study (Avanasi et al., 2016a). Briefly, if b is the log odds parameter 

estimate and X is a collection of individual exposure estimates, the total variance (as a measure 

of uncertainty) in b is given by var(b) = E(var(b|X)) + var(E(b|X)). The first and the second 

terms in the summation correspond to the participant sampling variability and the inter-

individual variability/epistemic uncertainty respectively. The formula var(E(b|X)) / var(b) gives 

the relative contribution of the inter-individual variability/epistemic uncertainty to the total 

uncertainty.  

 

 

 

 

http://www.r-project.org/
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3.3 Results 

3.3.1 Impact on predicted serum concentrations 

The summary statistics (mean, median 25-75 percentile across 10149 participants) of the 

predicted serum concentrations (ng/mL) were calculated for each iteration and their mean and 

95% probability interval among 300 iterations for each MC simulation were calculated (Table 

3.2), along with the corresponding values for the modified original data. Across the 300 

iterations of the two MC simulations, the IQR of the log serum PFOA concentrations varied 

minimally with the 95% probability interval of the IQR ranging between 1.32 and 2.29 for MC 

simulation I and between 0.96 and 2.86 for MC simulation II. The mean and the 95% probability 

interval for the IQR for the two simulations (including the original IQR) are given in Table 3.3.  

 

Table 3.2 The mean and the 95% probability interval (PI) of the mean, median, 25th and 

75th percentile serum concentrations at birth (ng/mL), across 10149 participants for each 

of the 2 Monte Carlo simulations (300 iterations per simulation) 

 

Simulation Median (95% PI) Mean (95% PI) 25
th

 percentile 

(95% PI) 

75
th

 percentile 

(95% PI) 

Modified original 9.42 51.06 5.09 32.45 

MC simulation I 9.4 (6.8, 12.5) 58.4 (32.6, 

93.0) 

5.1 (4.9-5.2) 33.2 (18.3, 51.3) 

MC simulation II 8.7 (5.3, 13.3) 267.6 (63.5, 

578.8) 

4.9 (4.6-5.1) 44.8 (12.0, 89.3) 
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Table 3.3 The mean and 95% probability interval (PI) of the IQR of the log serum PFOA 

concentration (ng/mL) across the 300 iterations for each of the 2 MC simulations 

Simulation Mean IQR (95% PI) 

Modified original 1.85 

MC simulation I 1.85 (1.32, 2.29) 

MC simulation II 2.09 (0.96, 2.86) 

 

 

The rank correlation between the simulated and original serum PFOA concentration 

estimates for the 10,149 participants between the years 1990 and 2006 was calculated. The plot 

of the mean and 95% probability interval over 300 iterations of the rank correlation for the 

Monte Carlo simulation I is presented in Figure 3.1. A similar plot for MC simulation II is shown 

in Figure 3.2. For the MC simulation II, as seen in Figure 3.2, we find that the estimated and the 

original predicted serum concentrations are well correlated, around 0.92 (in the year 1990), but 

over time, this reduces (due to the addition of variability/uncertainty) and the lowest mean rank 

correlation was 0.77 (for the years 2003, 2004 and 2005). This represents the simulation with the 

maximum impact of variability/epistemic uncertainty on the rank exposure, with the other 

simulation (the Monte Carlo simulation I) producing higher rank correlations (as shown in 

Figure 3.1) with the original serum PFOA concentrations. 
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Figure 3.1 A plot of the mean and the 95% probability interval of the correlation 

coefficient between the estimated serum concentrations for each Monte Carlo iterate and 

the original estimated serum concentrations, for all the participants, over time- MC 

simulation I (analysis of the impact of variability in independent input parameters) 
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Figure 3.2 A plot of the mean and the 95% probability interval of the correlation 

coefficient between the estimated serum concentrations for each Monte Carlo iterate and 

the original estimated serum concentrations, for all the participants, over time -MC 

simulation II (analysis of the impact of variability as well as epistemic uncertainty in 

independent input parameters) 
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3.3.2 Impact on the epidemiological association 

The mean (95% probability interval) AOR for each simulation was calculated and is 

presented in Table 3.3. The percent contribution of the variability/epistemic uncertainty to the 

overall uncertainty is also presented in Table 3.4. We find that the addition of epistemic 

uncertainty to variability increases the contribution of exposure uncertainty to the total 

uncertainty (including sampling variability) in the epidemiological association by 21%.  The 

impact of variability/epistemic uncertainty on the AOR of preeclampsia occurrence is also 

reduced from 1.11 to 1.09. As previously reported in the literature (Armstrong, 1998), the 

increasing variability/epistemic uncertainty in independent exposure factors resulted in 

increasing bias of the AOR towards the null and increased the contribution of exposure 

uncertainty to overall uncertainty. 

Table 3.4 The mean and the 95% probability interval (PI) of the AOR and the percent 

contribution of exposure uncertainty to total uncertainty for each of the three MC 

simulations. The AOR (and 95% confidence interval computed from participant sampling 

variability only) using the original exposure assignments is 1.12 (1.00, 1.26) 

 

Simulation Mean AOR (95% PI)   Percent contribution of 

exposure uncertainty 

MC simulation I 1.12 (1.00, 1.25) 6.9% 

MC simulation II 1.09 (0.97, 1.23) 32.7% 
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3.4 Discussion 

From the results of MC simulation I, we found that realistic inter-individual variability 

(determined based on our literature review) in independent exposure parameters such as the 

water ingestion rates, PFOA half-life, and PFOA volume of distribution impacted the absolute 

serum PFOA concentration predictions (Table 3.2) and the rank order of estimated serum PFOA 

concentrations only mildly (the lowest mean rank correlation between the estimated and the 

original predicted serum concentrations was 0.95 for the years 2003, 2004 and 2005 as seen in 

Figure 3.1), without causing any change to the mean AOR of preeclampsia occurrence among 

the participants (within rounding error). The overall contribution of exposure uncertainty to total 

uncertainty (including participant sampling variance) was low, around 7%.  

In contrast, in the MC simulation II, when epistemic uncertainty is added along with the 

inter-individual variability in the same exposure parameters, both the absolute serum PFOA 

concentration predictions (Table 3.2) and the rank order of estimated serum PFOA 

concentrations (the lowest mean rank correlation between the estimated and the original 

predicted serum concentrations was 0.77 for the years 2003, 2004 and 2005 as seen in Figure 

3.2) were moderately impacted. The mean AOR was reduced by 25% (from 1.12 to 1.09). The 

total contribution on exposure uncertainty to the total uncertainty also increased to nearly 33%. 

These results support previous literature that suggests that non-differential variability and 

epistemic uncertainty in independent parameters of individual-level exposure reconstruction 

models and pharmacokinetic models can lead to bias in the effect estimates of environmental 

epidemiological studies towards the null and reduce the power as well as the precision of these 

studies (Thomas et al., 1993; Armstrong, 1998).   
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Although the probability distributions for each of the exposure parameters in MC 

simulation I were derived from empirical evidence/self-reported values (percentile estimates of 

water ingestion rate distributions for standard water ingestion rates based on the self-reported 

ranges of the number of cups of water consumed in a day, PFOA half-life based on the Olsen et 

al., 2007 study, and PFOA volume of distribution based on the Butenhoff et al., 2004 study), the 

choice of probability distributions reflecting epistemic uncertainty in MC simulation II for the 

PFOA half-life (two times the log standard deviation of the variability distribution) and PFOA 

volume of distribution (five times the log standard deviation of the variability distribution) were 

based on subjective judgments, with less clear interpretability. For example, the 95% probability 

interval (PI) of the half-life epistemic uncertainty distribution is 1.59-7.61 years and that of the 

volume of distribution is 0.006-6.09 L/Kg. As a sensitivity analysis, we also looked at an 

uncertainty distribution for the volume of distribution with a log standard deviation which is 10 

times that used in the variability analysis. The 95% probability interval for this analysis is 

between 0.0002-195.6 L/Kg, resulting in a 50% decrease (from 1.12 to 1.06) in the mean AOR, 

but the analysis produced an implausible serum PFOA concentration predictions with a mean of 

23604.6 (95% PI: 4643.9-151368.5) ng/mL, orders of magnitude larger than 2005-2006 

measured serum PFOA concentrations among consented C8 Health Project participants  

(n=48998) for which the 95% PI was 4.3-530.4 ng/mL. An epistemic uncertainty distribution for 

the volume of distribution with five times the standard deviation of the variability distribution is 

more plausible considering the resulting mean (95% PI) PFOA serum concentrations among the 

300 iterations was 267.6 (63.5, 578.8). It is to be noted that there is a data gap with respect to 

PFOA volume of distribution in humans, with the Butenhoff et al., (2004) monkey study being 

the only source of this information. Other existing PK models (Andersen et al., 2006; Tan et al., 
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2008;Loccisano et al., 2012;Loccisano et al., 2013)of  PFOA in rats, monkeys and humans have 

all used the volume of distribution results of the Butnhoff et al. (2004) study to examine the 

kinetics of PFOA. However, choosing the appropriate epistemic uncertainty distributions (for 

half-life and volume of distribution) for MC simulation II is inherently subjective, as epistemic 

uncertainty refers to unmeasured attributes. 

Our previously published uncertainty analysis study in the PFOA exposure assessment 

modeling system on the C8 Heath Project/C8 Science panel study population (Avanasi et al., 

2016a) focused on correlated exposure uncertainty in the environmental fate and transport model 

predicted public water district PFOA water concentrations (correlated within each participant 

over the years and between participants with a shared drinking water source).  Despite larger 

uncertainties in the fate and transport models, the impact of correlated exposure uncertainty on 

the epidemiological association is negligible compared to the impact of variability/epistemic 

uncertainty in independent exposure parameters seen here.  Our previous study (Avanasi et al., 

2016a) showed that shared uncertainty, substantially impacted the absolute PFOA serum 

concentration predictions, but only mildly impacted the rank order of estimated serum PFOA 

concentrations (the lowest mean rank correlation between the estimated and the original 

predicted serum concentrations was 0.89) and did not impact the mean AOR between PFOA and 

preeclampsia. These results seemed counter-intuitive, considering that large changes to exposure 

assignments might be expected to cause large change in the epidemiological results. Together, 

these two studies suggest that in the PFOA exposure assessment modeling system, independent 

sources of error are more likely to change the rank order of exposure of participants and in turn 

impact the AOR of association than correlated uncertainty arising out of shared exposure 

sources.  This may be due to relatively large differences (spanning several orders of magnitude) 
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in PFOA concentrations between water districts for the C8 Science Panel study area (Shin et al., 

2011a), so that the rank order of exposure among participants is mostly preserved despite large 

changes to the PFOA groundwater concentration for each water district.       

Because MC simulation evaluates the impact of adding parameter variability/uncertainty 

to an analysis rather than “correcting” for it, the AORs reported in Tables 3.3 and 3.4 reflect the 

sensitivity of the epidemiologic results to exposure uncertainty rather than corrected values.  

Thus, the true AOR for the epidemiological association between PFOA and preeclampsia in this 

study population may be higher than 1.12, with a wider confidence interval than originally 

estimated. Nonetheless, the epidemiological association between PFOA and preeclampsia in this 

study population is not very sensitive to variability/uncertainty in the retrospective exposure 

assignments.  Notably, a prospective analysis of the same study population reported an AOR of 

1.27 (95% CI: 1.05, 1.55) for PFOA and pregnancy-induced hypertension using measured serum 

concentrations and 2005-2010 birth records instead of modeled exposure assignments and self-

reported health outcomes (Darrow et al., 2013).  Preeclampsia is a type of pregnancy-induced 

hypertension that also includes proteinuria; the presence or absence of preeclampsia was not 

recorded on the birth certificates and pregnancy-induced hypertension was not included on the 

C8 Health Project questionnaire (C8 Science Panel, 2011).  Together, the retrospective and 

prospective studies show consistent associations between PFOA and pregnancy-induced 

hypertension in this study population, with low sensitivity to exposure uncertainty.         
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3.5 Conclusions 

In the uncertainty analysis presented here, we studied the impact of realistic inter-

individual variability/epistemic uncertainty in independent exposure parameters including the 

standard and self-reported water ingestions rates, PFOA half-life, and PFOA volume of 

distribution on the predicted serum PFOA concentrations and the association between PFOA and 

preeclampsia in the participants of the C8 Health Project. Analysis of variability and epistemic 

uncertainty in these independent parameters changes the rank exposure among the study 

participants enough to cause a 25% bias towards the null. This result is in line with the previous 

literature which suggested that independent exposure measurement error can bias the effect 

estimate of an epidemiology study and suggests that the true AOR of association between PFOA 

and preeclampsia in the C8 Health Project/C8 Science Panel study population might be higher 

than originally reported with a wider confidence interval considering the effects of exposure 

uncertainty. We found it useful to study the impacts of these two types of exposure uncertainty 

(independent vs. correlated) separately. We think that future epidemiology studies with complex 

exposure scenarios and multiple sources of variability/uncertainty can separate out the two kinds 

of uncertainty and study them separately to better understand their potential impacts and to what 

extent, if any, they threaten the validity of epidemiological studies.  
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4.1 Introduction 

Geographic Information Systems (GIS) have been used in numerous environmental 

health studies for assessing the exposure of participants to contaminants of interest via proximity 

analysis, integration of environmental monitoring data, individual-level exposure estimation, 

design of exposure metrics, and reconstructing exposure through activity patterns (Ali et al., 

2002; Bell et al., 2001; Bellander et al., 2001; Beyea and Hatch, 1999; Elgethun et al., 2003; 

Floret et al., 2003; Nuckols et al., 2004; Reynolds et al., 2003; Rull and Ritz, 2003; Shin et al., 

2011a; Vieira et al., 2010; Vieira et al., 2013). The use of GIS in environmental exposure 

assessment can improve our understanding of the associations between environmental exposures 

and adverse health outcomes (Beyea and Hatch, 1999; Nuckols et al., 2004).  

Geocoding, the process of matching addresses to geographic locations (latitude and 

longitude), is an important step in using GIS for exposure assessment (Bonner et al., 2003). One 

primary application of geocoding is to assign individual-level environmental exposures based on 

their location in an exposed geographic area (Elgethun et al., 2003; Shin et al., 2011a; Vieira et 

al., 2013; Ward et al., 2005). Partial matching of addresses, such as a street name without the 

house number or a ZIP code without a specific street, or errors in geocoding can lead to 

positional errors in the exposure assessment, potentially leading to exposure mischaracterization. 

This can impact the validity of the epidemiological studies that use the resulting exposure 

estimates (Bonner et al., 2003; Elgethun et al., 2003; Vieira et al., 2010; Vieira et al., 2013). 

Researchers and the National Institutes of Health have called for more investigation into the 

potential impacts of geocoding uncertainty on the results of epidemiological studies (Henry and 

Boscoe, 2008; US Department of Health and Human Services, 2014; Zandbergen, 2009).  A 

recent report from a Health and Environmental Sciences Institute (HESI) workshop also 
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recommended the characterization and evaluation of uncertainty in environmental epidemiology 

studies to better understand the potential sources of bias and to utilize results from 

epidemiological analyses for risk assessment (Burns et al., 2014). 

           The C8 Science Panel studies investigated associations of perfluorooctanoate (PFOA) 

serum concentrations predicted by a GIS-based exposure assessment (Shin et al., 2011a, b) with 

a variety of adverse health outcomes such as ulcerative colitis, kidney and testicular cancer, 

pregnancy outcomes, abnormal thyroid function, and abnormal kidney function (Barry et al., 

2013; C8 Science Panel, 2011; Lopez-Espinosa et al., 2012; Savitz et al., 2012a;  Savitz et al., 

2012b; Steenland et al., 2013; Watkins et al., 2013). Predicted serum PFOA concentrations for 

2005-2006 were well correlated (rs = 0.68) with measured serum PFOA concentrations in the 

same year. Geocoding was used to locate participant residential addresses geographically to 

assign air and water PFOA concentrations for each year, over 58 years-1951 to 2008. This was 

done by spatially joining the addresses with the pipe distribution networks of the six participating 

public water districts (PWDs) to which all the consented participants of the C8 Health Project 

belonged (Shin et al., 2011b; Vieira et al., 2013). About 12% of the addresses (mostly rural 

addresses) with ZIP codes within the six PWDs could not be geocoded and thus population 

weighted ZIP code centroids were used to assign PWDs and the corresponding PFOA water 

concentrations. The assignment of population weighted ZIP code centroids for addresses that 

could not be geocoded to the street level can be considered as a single geographic imputation 

method (analogous to a mean imputation method). Such imputation or geocoding at a coarse 

spatial resolution can introduce geographic bias/positional errors in the exposure classification 

(Henry and Boscoe, 2008; Zandbergen, 2009). Also, it has been noted that there is greater 
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potential for positional errors when geocoding rural addresses compared to geocoding urban 

addresses (Vieira et al., 2010; Ward et al., 2005).  

The aim of this study is to evaluate the potential impacts of geocoding uncertainty on the 

estimated serum PFOA concentrations of participants in the C8 Health Project. Specifically, we 

examine the impacts of single geographic imputation, which may have resulted in 

mischaracterized water PFOA concentrations for those participants geocoded to ZIP code 

centroids.  We also examine the corresponding impact on the association between the estimated 

serum PFOA concentrations and the occurrence of preeclampsia (Savitz et al., 2012), an 

epidemiological analysis that has been discounted for the use of modeled rather than directly 

measured serum PFOA concentrations (Johnson and Sutton, 2014; Koustas et al., 2014). We use 

Monte Carlo (MC) simulation to assign alternate geographic locations within the reported ZIP 

code for all residential addresses that were geocoded to a ZIP code centroid and the reported 

work addresses, and recalculate the prediction of serum PFOA concentrations and the 

epidemiological association with preeclampsia for each set of alternate geographic locations. 

4.2. Materials and methods 

4.2.1. PFOA exposure assessment 

The PFOA exposure assessment by Shin et al. (2011a, b) had two distinct modeling 

components. The first part of the PFOA exposure assessment used a suite of environmental fate 

and transport models to predict yearly PFOA outdoor air and groundwater concentrations for 

1951-2008 in the region surrounding the Washington Works facility and the six impacted PWDs. 

Detailed explanation of the PFOA fate and transport modeling can be found in Shin et al. 

(2011a). Briefly, the modeling system utilized yearly PFOA release rates from the Washington 

Works facility, along with PFOA physicochemical properties, local meteorology, and 
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hydrogeology to predict the yearly air and water concentrations of PFOA for the area serviced by 

the six PWDs: the City of Belpre, Little Hocking Water Association, Tuppers Plains Chester 

Water District, the Village of Pomeroy Water District, Lubeck Public Service District, and 

Mason County Public Service District. The model also estimated PFOA exposure for shallower 

private drinking water wells located in the study area. 

Next, an integrated exposure and pharmacokinetic model system was used to predict the 

yearly serum PFOA concentrations for all consented participants in the C8 Health Project study. 

This model system utilized the predicted yearly PFOA air and water concentrations (Shin et al., 

2011a), standard inhalation and standard/self-reported tap water ingestion rates (U.S. EPA, 

2009), PWD pipe distribution networks, along with self-reported participant information 

collected through a questionnaire as part of the C8 Health Project (Frisbee et al., 2009). These 

included detailed participant residential/work histories and participant demographics such as age, 

gender, and body weight. Based on the self-reported information, the drinking water source at 

each residential history was categorized as public, private, bottled water, or mixed. GIS was then 

used to link participant residential addresses with modeled air and water PFOA concentrations 

and predict yearly combined inhalation and ingestion (total) exposure doses for all the 

participants. A one-compartment pharmacokinetic model was then applied to estimate the yearly 

serum PFOA concentrations based on a single elimination half-life. More details on the exposure 

reconstruction/pharmacokinetic modeling are described by Shin et al. (2011b). 
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4.2.2. GIS  

GIS methods were used to assign historical outdoor air and groundwater concentrations 

for each participant. With respect to ingestion exposure, GIS was used first to map the pipe 

distribution systems of the six PWDs included in the exposure modeling system (Shin et al., 

2011b). Next, the participant residential addresses were geocoded using TeleAtlas and 

ArcView/NAVTEQ (Vieira et al., 2010). Among the residential addresses with ZIP codes in any 

of the six PWDs, approximately 12% of the addresses could not be geocoded to the street level 

(Shin et al., 2011b; Vieira et al., 2013) and hence, a population-weighted ZIP code centroid was 

used to assign environmental concentrations instead of the street level geocode. Later, within the 

GIS, the geocoded addresses were spatially joined with the PWD pipe distribution system to 

assign PWD-specific annual average PFOA water concentrations to those addresses that were 

serviced by any specific PWD. As described in the text and Figure 1 of the Shin et al. (2011b) 

study, based on the participant’s geocoded residential address, the PFOA water concentrations 

were assigned for each reported residence for each participant. Any discrepancies between the 

self-reported water sources and the geocoded water sources (~ 9% of the addresses) were 

reviewed manually to determine the most likely source. For the participant work histories, the 

PFOA water concentrations were assigned based on self-reported public water sources. Street 

level addresses were not available for work histories but ZIP codes were reported for over half 

(55%) the work locations. 54.3% of the pregnancies had at least one reported work location 

during the year of pregnancy; this statistic was 54.8%, 52.5% and 41.1 % for 1 year, 2 years and 

5 years previous to the year of the pregnancy. For participants with both residential and work 

histories, 70% of drinking water was assumed to come from the home and 30% from the work 

location (Shin et al., 2011b). For inhalation exposure, the participant’s geocoded address and ZIP 
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centroid were used to assign PFOA outdoor air concentrations based on the annual average air 

concentration predictions (Shin et al., 2011a). For most of the study participants, drinking water 

ingestion was the major exposure route during the period of epidemiological investigations 

described below (Shin et al., 2011b; Vieira et al., 2013; Vieira et al., 2010). 

4.2.3. Epidemiological study 

One of the C8 Science Panel epidemiological studies focused on pregnancy outcomes 

including preeclampsia among 10,189 pregnancies (730 preeclampsia cases) that occurred 

between 1990 and 2006 in this population (Savitz et al., 2012a). The analysis used generalized 

estimating equations to estimate the association between preeclampsia and estimated serum 

PFOA in the year of pregnancy, adjusting for confounding by parity, maternal age, education 

level and smoking status. The study reported an adjusted odds ratio (AOR) of 1.13 (95% 

confidence interval (CI): 1.00, 1.28) per interquartile range (IQR) of log (natural) serum PFOA 

concentrations (nanograms per milliliter-ng/mL). We obtained approval from the Institutional 

Review Board (HS#2013-9421) at the University of California, Irvine to use those study data to 

conduct our MC analyses. We restricted our analysis to 10,149 pregnancies with 725 

preeclampsia cases, by removing 25 mothers who had previously worked at the Washington 

Works facility.  The resulting modified AOR per IQR was similar: 1.12 (95% CI: 1.00, 1.26).  

We utilized the same PFOA exposure assessment model system, the same 

epidemiological model, and MC simulation to evaluate the potential impact of positional errors 

due to the use of population weighted ZIP code centroids (instead of the actual known address 

geocodes) on the estimated serum PFOA concentrations and the association with preeclampsia. 

MATLAB (The Mathworks Inc., Natick, MA, 2000), R (http://www.r-project.org/), and ArcGIS 

(ESRI) were used to perform these analyses. 

http://www.r-project.org/
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4.2.4. MC simulations I and II  

In order to evaluate the impact of mischaracterized exposure due to geocoding 

uncertainty on PFOA serum concentration predictions and epidemiological associations with 

preeclampsia, we conducted two types of Monte Carlo (MC) simulations:  (1) simulation I using 

residential addresses only and (2) simulation II using residential and work addresses.  

In the MC simulation I, the geocodes (latitude and longitude coordinates) of those residential 

addresses that were originally assigned to a ZIP code centroid were varied, and the serum PFOA 

concentration predictions and the epidemiological association with preeclampsia were re-

calculated using the same exposure, pharmacokinetic, and epidemiological models. In each of 

200 MC iterations (n= 200 was chosen based on the Monte Carlo error being < 1%), every 

residential address that had used a ZIP code centroid was reassigned a randomly selected 

alternate geocode within the same ZIP code (thereby reassigning the PFOA water concentrations 

according to the new geocoded location). In the secondary analysis (MC simulation II), in 

addition to handling residential addresses as described in MC simulation I, for each work address 

we reassigned a randomly selected alternate geocode within the reported ZIP code and the 

corresponding PFOA water concentrations were assigned. The exposure assessment model and 

the epidemiological analysis were repeated for each MC iteration to obtain plausible new serum 

PFOA concentration predictions and the AOR for the association of PFOA and preeclampsia. 

Approximately 7.6 % (n= 2,046) of the residential addresses reported by our study 

participants had originally been geocoded to a ZIP code centroid.  First, the ZIP codes (n=37) 

that were serviced by one of the 6 PWDs and the pipe distribution networks of the 6 PWDs are 

projected in the North American Datum of 1983 (NAD83) projection as shown in Figure 4.1. 

Then, a grid of points was created using the ZIP code extent (each ZIP code had at least 15 grid 
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points and up to 489 grid points). The grid points were on average 905 meters apart in the 37 ZIP 

codes. Then during each iteration for MC simulation I, for each residential history address that 

used a ZIP code centroid, a grid point was randomly sampled from within the corresponding ZIP 

code and the drinking water source and PFOA water concentration were re-assigned with those 

corresponding values from the sampled grid point. The random grid point represents a possible 

location (within the ZIP code for the specific residential history) of the participant's residence. In 

the MC simulation II, in addition to residential geocoding uncertainty discussed above, for each 

participant’s work address a grid point was randomly sampled from within the corresponding 

ZIP code and the drinking water source and PFOA water concentration were re-assigned using 

the corresponding values from the sampled grid point. In the MC simulations, we studied the 

impact of geocoding uncertainty on the PFOA exposure only through drinking water ingestion 

and not through inhalation of contaminated air. Therefore, the inhalation exposures for the 

participants were not varied in the MC simulations I and II. 
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Figure 4.1: The image of the ZIP codes that is supplied by the pipe networks belonging to 

the 6 participating PWDs in the PFOA exposure assessment 



 

70 

 

To illustrate the MC methodology, consider a participant who had a residential address in ZIP 

code of 45769, but a ZIP code centroid was used due to insufficient address information. In our 

analysis, we created a grid of 335 points evenly spaced across this ZIP code area as seen in 

Figure 4.2 (panel a). This ZIP code is serviced by two different participating PWDs (Tuppers 

Plains and Pomeroy) and some parts of the ZIP code are not served by any of the participating 

PWDs and therefore treated as private wells as shown in Figure 4.2 (panel b). In the MC 

simulation, suppose a grid point ‘A’ was randomly sampled in the first iteration and used as the 

new residential address for that participant. PFOA water concentrations for Pomeroy PWD were 

then used in assigning the exposure for that iteration. For iteration 2, suppose a grid point ‘B’ 

was sampled and used as the new residential address for that participant.  PFOA water 

concentrations for Tuppers Plains PWD would then be used to assign that participant's exposure 

for iteration 2. Alternately, if a grid point ‘C’ was sampled, the water source was treated as 

private and PFOA water concentrations from a shallow drinking water well in that location were 

assigned. Hence, for any participant with a residential address in ZIP code of 45769, there are 

three different possible assignments of PFOA water concentrations. The PFOA air 

concentrations were not varied, but were assigned as discussed in the GIS methodology section.  
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Figure 4.2: Outline of ZIP code 45769 with panel (a) showing the grid created for MC 

simulation and panel (b) illustrating the MC simulation methodology 

       

Following the reassignment of geocodes and ingestion exposure via new water 

concentration assignment, participant serum PFOA concentrations for each MC iteration were 

computed and the epidemiological model was fit to obtain the AOR of preeclampsia occurrence 

(per IQR), for each of the 200 iterations of the MC simulation. Summary statistics for the serum 

PFOA concentrations for the 10,149 participants were calculated for each MC simulation. We 

then compared the serum PFOA concentrations from the MC simulation with the originally 

assigned serum PFOA concentrations by plotting the rank correlation between them for the 

10,149 participants between the years 1990 and 2006.  We also calculated summary statistics for 

the epidemiological results from the MC simulations (200 iterations) and compared them with 

the original AOR.  
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We also computed a measure of the relative contribution of geocoding uncertainty (uncertainty 

due to potential positional errors in the use of ZIP code centroids versus street address geocodes) 

to the total uncertainty in the epidemiological association of PFOA with preeclampsia (in 

addition to the participant sampling variability calculated as part of the confidence interval of the 

epidemiological association) using the law of total variance as described in our previous 

uncertainty analysis (Avanasi et al., 2016a). In brief, the contribution of the geocoding 

uncertainty is calculated by the formula var(b) = E(var(b|X)) + var(E(b|X)). In this formula, b 

corresponds to the log odds parameter estimate, X is a collection of individual exposure 

estimates, E is the expected value and var is the variance. The relative contribution of geocoding 

uncertainty to the total uncertainty was calculated by the formula var(E(b|X)) / var(b). 

4.3. Results 

The impact of the geocoding uncertainty on the serum PFOA concentration predictions 

(ng/mL) was studied by calculating median, mean, and 25
th

 and 75
th

 percentiles of each MC 

iteration for both MC simulations. These statistics were calculated for the subset of pregnancies 

with at least one residential history with a ZIP code centroid (centroid subset, n = 3,266) and for 

all the 10,149 study participants in MC simulations I and II. The mean and 95% probability 

intervals (PI) of the above mentioned summary statistics among the 200 MC iterations in 

comparison with the modified Savitz et al. (2012a) serum PFOA concentrations are shown in 

Table 4.1. We found minimal to no impact on the serum PFOA concentration predictions due to 

the presence of the geocoding uncertainty in MC simulation I, while there was a moderate impact 

in MC simulation II (with the mean serum PFOA concentrations among all the participants 

increasing from 51.1 ng/mL in the modified original analysis to 55.5 ng/mL).  
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Table 4.1: The mean and the 95% probability interval (PI) of the median, mean, 25th and 

75th percentile serum concentrations at birth (ng/mL), for the study participants, for each 

of the 2 Monte Carlo simulations (200 iterations per simulation) 

Simulation Median (95% PI) Mean (95% PI) 25
th

 percentile 

(95% PI) 

75
th

 percentile 

(95% PI) 

Modified original 9.4 51.1 5.1 32.5 

Modified original 

Centroid Subset (n= 

3,266) 

8.3 50.3 5.0 27.1 

MC simulation I 

Centroid Subset (n= 

3,266) 

7.4 (7.3, 7.5) 49.9 (48.7, 51.0) 5.1 (5.1, 5.2) 24.1 (23.1, 25.2) 

MC simulation I 

(n= 10,149) 

9.1 (9.0, 9.1) 51.9 (51.5, 52.2) 5.1 (5.1, 5.1) 32.3 (31.8, 32.7) 

MC simulation II 

(n= 10,149) 

10.9 (10.8, 11.0) 55.5 (55.1,55.9) 5.2 (5.2, 5.2) 40.1 (39.3, 40.8) 

 

For the MC simulation I, we calculated the rank correlation between the simulated and 

the original serum PFOA concentrations for the centroid subset between the years 1990 and 2006 

and the mean (95 % probability interval) over the 200 MC iterations was obtained for each year. 

The lowest mean rank correlation for the centroid subset (n=3,266) was that of year 1999: 0.92 

(0.92, 0.93). On the other hand, the lowest mean rank correlation for all participants (n=10,149) 

was for the year 2002: 0.97 (0.96, 0.97), suggesting little change in the rank exposure among 
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centroid subset participants after accounting for geocoding uncertainty. For the MC simulation 

II, the addition of geocoding uncertainty in work addresses caused a reduction of rank correlation 

compared with the MC simulation I. The lowest mean rank correlation for all the 10,149 

participants was for the year 1999: 0.93 (0.92, 0.93).  

The impact of geocoding uncertainty in the residential addresses (MC simulation I) on 

the AOR of preeclampsia occurrence was minimal with the mean and the 95% probability 

interval of AOR being 1.12 (1.00, 1.25). This 95% probability interval includes the contribution 

of both the sampling variability among the participants and the geocoding uncertainty propagated 

in the MC simulation. Comparing it to the modified original analysis, the AOR per IQR (95% 

confidence interval) was 1.12 (1.00, 1.26). The contribution of the geocoding uncertainty in 

residential addresses only to the total uncertainty was found to be 1.1%. For the MC simulation 

II (geocoding uncertainty in both residential and work addresses), the AOR of preeclampsia 

occurrence increased with the mean and 95% probability interval of AOR was 1.17 (1.04, 1.32), 

which is a 41% bias away from the null, when compared with the AOR of 1.12 (1.00, 1.26) in 

the original modified analysis. The contribution of the geocoding uncertainty to the total 

uncertainty was found to be 2.6%. 

 

4.4. Discussion 

Geocoding uncertainty due to the use of ZIP code centroids for exposure assessment had 

little impact on the serum PFOA concentration predictions of the participants in the Savitz et al. 

(2012a) study as seen in Table 4.1. The mean rank correlation between the MC simulation I 

predicted serum PFOA concentrations and the original modified serum PFOA concentration 

predictions was high (0.97), suggesting little change in the rank exposure among the participants. 
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Subsequently, there was negligible impact on the association with preeclampsia. The 

contribution of geocoding uncertainty to total uncertainty (including participant sampling 

variability) was minor (1.1%). These results suggest that the use of ZIP centroids versus street 

level residential addresses does not substantially impact the validity of the reported association 

between serum PFOA concentrations and the occurrence of preeclampsia in the C8 Health 

Project population.  

Interestingly, in MC simulation II, when we accounted for geocoding uncertainty in 

workplace addresses, there was a moderate increase in the mean and the 75
th

 percentile serum 

PFOA concentrations (as seen in Table 4.1), and also a moderate decrease in the rank exposure 

among participants compared to that in MC simulation I. This indicates a bias away from the null 

for the association of PFOA and preeclampsia – a mean AOR (95% probability interval) of 1.17 

(1.04, 1.32) compared to the original AOR of 1.12 (1.00, 1.26). For participants with reported 

work histories, addition of uncertainty in the spatial location of a work history within the self-

reported ZIP code resulted in a 41% increase in the AOR of preeclampsia occurrence. Because 

MC simulation explores the impact of adding positional uncertainty to the geocodes rather than 

correcting for it (Gryparis et al., 2009; Avanasi et al., 2016a; Avanasi et al., 2016b), these results 

suggest that if we had more accurate locations of participant work addresses the AOR of 

preeclampsia occurrence might have been lower than previously reported. Previous literature 

suggests that positional error due to inaccurate geocoding or geocoding rural route addresses can 

potentially lead to exposure mischaracterization and bias in epidemiological study results (Vieira 

et al., 2010; Vieira et al., 2013; Elgethun et al., 2003; Bonner et al., 2003; Ward et al., 2005). We 

further investigated this bias away from null result since previous literature suggests that non-

differential exposure mischaracterization causes a bias towards the null (not away from the null) 
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in epidemiological studies (Armstrong, 1998). In this specific epidemiological analysis, we 

found a different proportion of work addresses among cases (64.3%) compared to controls 

(53.5%) in the year of pregnancy. We think that this difference could potentially be responsible 

for a differential mischaracterization (instead of non-differential), with respect to the uncertainty 

in the work history of participants, resulting in a bias away from the null. In addition, from Table 

4.1, we find that the mean serum PFOA concentrations among all the participants has increased 

from 51.1 (ng/mL) in the modified original analysis to 55.5 (ng/mL) for the MC simulation II, 

thereby contributing more to the potential differential exposure mischaracterization. 

The relatively mild impact of residential address geocoding uncertainty can be expected 

as the residential addresses were usually available at the level of street address, and because the 

geocoded and self-reported water source assignments were manually crosschecked using GIS. In 

addition, only 7.6% of the participant residential histories used a ZIP code centroid in this study. 

In contrast, more participants (as discussed in the GIS section earlier) had geocoding uncertainty 

in work histories due to the lack of street addresses. Alternative work location geocodes appear 

to be able to change participant water sources enough to modify the rank order of exposure and 

cause a bias in the AOR of preeclampsia.  

We had previously studied other sources of uncertainty in this PFOA exposure 

assessment model (Shin et al., 2011a, b) including shared uncertainty in the PFOA water 

concentrations (Avanasi et al., 2016a) and inter-individual variability/epistemic uncertainty in 

independent exposure parameters such as the standard and self-reported water ingestions rates 

and pharmacokinetic parameters including PFOA elimination half-life and PFOA volume of 

distribution (Avanasi et al., 2016b). Our previous studies found that correlated uncertainty 

(shared uncertainty in the PWD PFOA water concentrations due to uncertainties in source 
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emissions and our fate and transport model) had negligible impact on the rank order of exposure 

among participants and the AOR of association with preeclampsia, although it had substantial 

impact on the serum PFOA concentrations. In contrast, independent sources of error in water 

ingestion rates and pharmacokinetic parameters moderately influenced the rank exposure and 

caused a bias towards the null in the association with preeclampsia. Together with these two 

studies, the geocoding uncertainty analysis yields a detailed understanding of potential impacts 

of various sources of uncertainty in the PFOA exposure assessment modeling system on the 

specific epidemiological association with preeclampsia.  

4.4.1. Limitations 

Epidemiological studies of other health outcomes that were part of the C8 Science Panel 

studies might or might not have a similar result as they include different sets of participants with 

different residential and work histories. In addition, it has been suggested that the impact of 

errors in geocoding on exposure assessment depends on spatial variation of the exposure (Wards 

et al., 2005). Therefore, the results presented here can inform judgments about the reliability of 

the Savitz et al. (2012a) preeclampsia findings but may not be generalizable to the impact of 

geocoding uncertainty on other C8 Science Panel epidemiological studies, or other 

environmental epidemiological studies that used ZIP code centroid geo-coordinates to represent 

non-geocoded addresses in their exposure assessment. Also, the current analysis investigates the 

impact of geocoding uncertainty (residential and work addresses) only on the PFOA exposure 

through drinking water ingestion. We did not consider inhalation route of exposure because the 

contribution of inhalation exposure to overall exposure for participants in the Savitz et al., 2012a 

study (between the years 1990 and 2006) was minimal as discussed in the Avanasi et al. (2016a) 
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study.  However, its inclusion could result in slight increases in the total uncertainty attributed to 

geocoding.  

Our findings are also limited by sampling alternate residential and work locations from 

throughout the entire identified ZIP codes.  Importantly, road maps of the region suggest that not 

all areas are developed or inhabited. Future analyses using MC simulation could restrict the grid 

to areas that are highly likely to be developed or inhabited, such as areas within a fixed distance 

of roadways, thereby assigning more realistic alternate residential and work locations for 

participants.       

Our results for MC simulation II are likely to be sensitive to the proportion of drinking 

water obtained from residential versus work addresses.  Although the assumption that 30% of 

drinking water came from work addresses provided valid predictions of PFOA serum 

concentrations (Shin et al., 2011b), the actual proportion likely differs widely among 

participants.  Future studies in this population or in other populations with contaminated drinking 

water might benefit from more attention to water sources at participants' workplaces, and to the 

extent to which each participant consumes tap water while at work.   

 

4.4.2. Conclusions 

In the MC simulation study presented here, we studied the potential impact of geocoding 

uncertainty due to the missing street level residential addresses and self-reported ZIP codes of 

work addresses (for the PFOA exposure assessment participants in the Savitz et al. (2012a) 

study) by assigning alternate geographic locations within the reported ZIP code and recalculating 

the serum PFOA concentrations. We repeated the epidemiological study associating these 

estimated serum PFOA concentrations with the occurrence of preeclampsia (Savitz et al., 2012a) 
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to examine if the use of alternate residential/work locations has any impact on the study results. 

We found that geocoding based uncertainty in residential addresses did not have any significant 

impact on the serum PFOA concentration predictions and the epidemiological association with 

preeclampsia seems to be robust, with little bias. The addition of geocoding based uncertainty in 

work history moderately impacts the rank exposure among the participants and causes a 41% 

bias away from the null in the AOR of preeclampsia occurrence. The analysis presented here is 

one approach to estimating the potential impacts of positional errors in a geocoding-based 

exposure assessment on exposure estimates and epidemiological study results. Future exposure 

studies and epidemiological studies that rely on participant locations could benefit from explicit 

analysis of the impacts of geocoding-based uncertainties. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 
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5.1 Summary of findings 

For my dissertation research, I evaluated the different sources of input parameter 

uncertainty/variability as causes of exposure measurement error in the C8 exposure assessment 

and studied their impacts on the serum PFOA concentration predictions and the epidemiological 

association with preeclampsia among the C8 Health Project population. I used MC simulation 

methodology for the different uncertainty analysis, presented and discussed my results in each 

chapter. 

In Chapter 2, I used a three-component MC simulation methodology to characterize 

random and systematic uncertainty in the PFOA PWD water concentrations allowing for 

specification of correlations in exposure measurement errors across years and across individuals 

with shared exposure sources. The incorporation of autocorrelated and shared uncertainty in our 

water concentration estimates produced a highly variable set of plausible serum PFOA 

concentrations; however, it had less impact on the rank order of estimated serum PFOA 

concentrations among the study participants and also the AOR of preeclampsia occurrence. 

Exposure uncertainty contributed anywhere between 5 and 31 % to the total uncertainty 

(including regression parameter variance) in this analysis. 

In Chapter 3, I utilized Monte Carlo simulation to propagate inter-individual 

variability/epistemic uncertainty in other key factors in the exposure assessment and reanalyzed 

the epidemiological association. Inter-individual variability in independent exposure parameters 

including water ingestion rates, the serum PFOA half-life, and the volume of distribution for 

PFOA mildly impacted the serum PFOA concentration predictions and there was a negligible 

impact on the epidemiological association with preeclampsia and the contribution of variability 

to the total uncertainty including sampling variability was 7%. However, when epistemic 
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uncertainty was added along with the inter-individual variability, serum PFOA concentration 

predictions and their association with preeclampsia were moderately impacted (the mean AOR of 

preeclampsia occurrence was reduced from 1.12 to 1.09 (a 25% bias towards the null), and the 

contribution of exposure uncertainty to the total uncertainty was increased up to 33%. 

In Chapter 4, I examined the impacts of single geographic imputation of addresses 

geocoded to ZIP code only, rather than to street address, which may have resulted in 

mischaracterized water PFOA concentrations experienced by those participants. I used Monte 

Carlo (MC) simulation to assign alternate geographic locations within the reported ZIP code for 

all work addresses and residential addresses geocoded to ZIP code only, rather assigning the ZIP 

code centroid. I found that geocoding based uncertainty in residential addresses did not have any 

significant impact on the serum PFOA concentration predictions and the epidemiological 

association with preeclampsia. Interestingly, the addition of geocoding based uncertainty in work 

history moderately impacted the rank exposure among the participants and caused a 41% bias 

away from the null in the AOR of preeclampsia occurrence.  If the exposure model assumption is 

correct that 30% of drinking water exposure comes from work for employed participants, these 

results suggest that future studies of this type should obtain more detailed information on work 

histories, allowing for street-level geocoding.   
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5.2 Conclusions 

 The use of uncertain PWD PFOA water concentrations as a surrogate for uncertainty in a 

number of potential uncertain/variable parameters used in the suite of environmental models 

(Shin et al., 2011a) was due to the complexity of the suite of fate and transport models used, 

which takes many days to run. A Monte Carlo uncertainty analysis for each uncertain parameter 

would require an impractical amount of computer time and was avoided based on our results of 

the first uncertainty analysis (Chapter 2). Our screening-level assessment suggests that correlated 

exposure measurement error produced by parameters affecting water concentrations may 

produce substantial changes in PFOA serum estimates but contribute only modestly to overall 

uncertainty regarding the epidemiologic association between PFOA and preeclampsia; thus we 

chose not to follow up with more detailed uncertainty analysis for those parameters.  

Realistic inter-individual variability and epistemic uncertainty in the selected independent 

parameters (water ingestion rates, the serum PFOA half-life, and the volume of distribution) 

change the rank exposure among the study participants enough to cause a 25% bias in the AOR 

towards the null. This result supports the previous literature which suggested that independent 

exposure measurement error can bias the effect estimate of an epidemiology study. Thus the true 

AOR of association between PFOA and preeclampsia in the C8 Health Project population might 

be higher than originally reported (with a wider confidence interval), considering the effects of 

exposure uncertainty.  

The potential impact of geocoding uncertainty in street level residential addresses and 

self-reported ZIP codes of work addresses together suggests that if we had more accurate 

locations of participant work addresses, the AOR of preeclampsia occurrence might have been 

less strong than previously reported.  The work history information that was collected as a part of 
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the C8 Health Project could have been more detailed and comprehensive, but with sufficient 

resources participants could still be re-contacted with a request to provide more detailed work 

histories.    

I found it useful to study the impacts of the different types of exposure uncertainty 

(independent, correlated, geocoding-based) separately. I think that future environmental 

epidemiology studies with complex exposure scenarios and multiple sources of 

variability/uncertainty can separate out the different kinds of uncertainty and study them 

separately to better understand their individual impacts and to what extent, if any, they threaten 

the validity of epidemiological studies. Also, we had initially expected a stronger impact of 

uncertainty in the fate and transport model parameters on the rank exposure and the AOR of 

preeclampsia occurrence, given the strong impact on the serum PFOA concentration predictions. 

However, we did not find this and the results were counter-intuitive, suggesting that the although 

the absolute exposure to PFOA among the participants changed, the relative change between 

participants was not big enough to impact the epidemiological study results. 

5.3 Recommendation for future studies 

We study the impacts of the different types of exposure uncertainty (independent, 

correlated, geocoding-based) separately; a combined analysis of all three types of exposure 

uncertainty in this environmental modeling-epidemiology model system could shed light on the 

combined effect of the different sources of uncertainty in the C8 exposure assessment and the 

epidemiological association with preeclampsia. Also, considering the uncertainty in the 

confounders used in the Savitz et al., 2012a study could be a possible addition to the present 

uncertainty analysis. Measurement error in the confounders could also have an impact on the 

AOR, by causing bias in either direction as suggested by previous studies (Marshall and Hastrup, 
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1996; Savitz and Baron, 1989).  Parity, maternal age, and education level are likely to have been 

reported accurately by most participants; however, smoking is often subject to under-reporting, 

particularly among pregnant women (Shipton et al., 2009; Ford et al., 1997). Considering 

additional confounders in the Savitz et al., 2012a study could also be a future direction.  

Drinking water ingestion is a major exposure route (versus inhalation) for our study 

population in all years, except for the participants who consumed water from Little Hocking 

before 1974 and those who consumed water from Belpre before 1990 (Shin et al. 2011b). Given 

this, and the fact that the epidemiological analysis included pregnancies occurring only between 

1990 and 2006, we chose to model uncertainty only for the drinking water concentrations in this 

analysis, not perturbing the original inhalation exposure estimates. The addition of uncertainty 

and variability in the original inhalation exposure estimates could contribute to the overall 

uncertainty in this environmental epidemiology study. This could be a potential future analysis, 

but we expect it to not cause much change to the present results as drinking water ingestion is the 

major exposure route in this population. 

 Other epidemiological studies conducted by the C8 Science Panel might or might not 

have similar results for exposure uncertainty analyses. This is because they include a different set 

of participants whose shared exposure sources, individual-level independent exposure parameters 

and residential/work addresses might differ (including more/less ZIP code centroids) from the 

Savitz et al., 2012a study; thereby holding more/less uncertainty in exposures, or different rank 

exposures among the epidemiology study participants. One future direction for research is to 

study the impact of these exposure uncertainties (exposure measurement error) within the C8 

Health Project population on other important C8 Science Panel epidemiological studies linking 
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PFOA exposure with cholesterol, colitis, uric acid, kidney and testicular cancer, and thyroid 

disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 



 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

88 

 

Ali, M., Emch, M., Donnay, J.P., 2002. Spatial filtering using a raster geographic information 

system: Methods for scaling health and environmental data. Heal. Place 8, 85–92. 

doi:10.1016/S1353-8292(01)00029-6 

Andersen, M.E., Clewell, H.J., Tan, Y.M., Butenhoff, J.L., Olsen, G.W., 2006. Pharmacokinetic 

modeling of saturable, renal resorption of perfluoroalkylacids in monkeys-Probing the 

determinants of long plasma half-lives. Toxicology 227, 156–164. 

doi:10.1016/j.tox.2006.08.004 

Anzai, N., Kanai, Y., Endou, H., 2006. Review Organic Anion Transporter Family : Current 

Knowledge. J Pharmacol Sci 426, 411–426 

Armstrong, B.G., 1998. Effect of measurement error on epidemiological studies of 

environmental and occupational exposures. Occup. Environ. Med. 55, 651–6 

Avanasi, R., Shin, H.-M., Vieira, V.M., Savitz, D. a., Bartell, S.M., 2016a. Impact of Exposure 

Uncertainty on the Association between Perfluorooctanoate and Preeclampsia in the C8 

Health Project Population. Environ. Health Perspect. doi:10.1289/ehp.1409044  

Avanasi, R., Shin, H.-M., Vieira, V.M., Bartell, S.M., 2016b. Variability and epistemic 

uncertainty in water ingestion rates and pharmacokinetic parameters, and impact on the 

association between perfluorooctanoate and preeclampsia in the C8 Health Project 

population. Environ. Res. 146, 299–307. doi:10.1016/j.envres.2016.01.011 

Bainbridge, S.A., Roberts, J.M., 2008. Uric acid as a pathogenic factor in preeclampsia. Placenta 

29 Suppl A, S67–72. doi:10.1016/j.placenta.2007.11.001 

Bainbridge, S.A., Roberts, J.M., Versen-ho, F. Von, Koch, J., Edmunds, L., Hubel, C.A., 2009. 

Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers 

440–450. doi:10.1152/ajpcell.00593.2008 

Baker D, Niewenhuijsen MJ. 2008. Environmental epidemiology: study methods and 

application. New York, NY: Oxford University Press Inc. 

Barry, V., Winquist, A., Steenland, K., 2013. Perfluorooctanoic acid (PFOA) exposures and 

incident cancers among adults living near a chemical plant. Environ. Health Perspect. 121, 

1313–1318. doi:10.1289/ehp.1306615 

Bartell, S.M., Calafat, A.M., Lyu, C., Kato, K., Ryan, P.B., Steenland, K., 2010. Rate of decline 

in serum PFOA concentrations after granular activated carbon filtration at two public water 

systems in Ohio and West Virginia. Environ. Health Perspect. 118, 222–8. 

doi:10.1289/ehp.0901252 

Bartell, S.M., Griffith, W.C., Faustman, E.M., 2004. Temporal error in biomarker-based mean 

exposure estimates for individuals. J. Expo. Anal. Environ. Epidemiol. 14, 173–9. 

doi:10.1038/sj.jea.7500311 



 

89 

 

Bell, E.M., Hertz-picciotto, I., Beaumont, J.J., Epidemiology, S., Mar, N., 2015. A Case-Control 

Study of Pesticides and Fetal Death Due to Congenital Anomalies Linked references are 

available on JSTOR for this article : 12, 148–156 

Bellander, T., Berglind, N., Gustavsson, P., Jonson, T., Nyberg, F., Pershagen, G., Järup, L., 

2001. Using geographic information systems to assess individual historical exposure to air 

pollution from traffic and house heating in stockholm. Environ. Health Perspect. 109, 633–

639. doi:10.1289/ehp.01109633 

Berkson L. 1950. Are there two regressions? J Am Stat Assoc 45:164–180 

Beyea, J., Hatch, M., 1999. Geographic exposure modeling: A valuable extension of geographic 

information systems for use in environmental epidemiology. Environ. Health Perspect. 107, 

181–190. doi:10.2307/3434482 

Bonner, M.R., Han, D., Nie, J., Rogerson, P., Vena, J.E., Freudenheim, J.L., 2003. Positional 

accuracy of geocoded addresses in epidemiologic research. Epidemiology 14, 408–12. 

doi:10.1097/01.EDE.0000073121.63254.c5 

Bradman A,  Kogut K,  Eisen EA, Jewell NP, Quirós-Alcalá L,  Castorina R, et al. 2013. 

Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine 

samples collected from young children during 1 week. Environ. Health 

Perspect. 121(1):118–124 

Burmaster, D.E., Anderson, P.D., 1994. Principles of good practice for the use of Monte Carlo 

techniques in human health and ecological risk assessments. Risk Anal. 14, 477–81 

Butenhoff, J.L., Kennedy, G.L., Hinderliter, P.M., Lieder, P.H., Jung, R., Hansen, K.J., Gorma, 

G.S., Nokers, P.E., Thomford, P.J., 2004. Pharmacokinetics of perfluorooctanoate in 

cynomolgus monkeys. Toxicol. Sci. 82, 394–406. doi:10.1093/toxsci/kfh302 

C8 Science Panel, 2011. Probable link evaluation of pregnancy induced hypertension and 

preeclampsia 1–6 

Calafat, A., Kuklenyik, Z., Reidy, J.A., Caudill, S.P., Tully, J.S., Needham, L.L., 2007. Serum 

Concentrations of 11 Polyfluoroalkyl Compounds in the U . S . Population : Data from the 

National Health and Nutrition Examination Survey ( NHANES ) 1999 - 2000. Environ. Sci. 

Technol. 2237–2242 

Carroll RJ, Ruppert D, Stefanski LA, Crainicieanu CM. 2006.Measurement error in nonlinear 

models: a modern perspective. Boca Raton, FL: Chapman and Hall/CRC Press LLC. 

Darrow, L.A., Stein, C.R., Steenland, K., 2013. Serum Perfluorooctanoic Acid and 

Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio 

Valley, 2005-2010. Environ. Health Perspect. 2005–2010 



 

90 

 

Elgethun, K., Fenske, R. a., Yost, M.G., Palcisko, G.J., 2003. Time-location analysis for 

exposure assessment studies of children using a novel global positioning system instrument. 

Environ. Health Perspect. 111, 115–122. doi:10.1289/ehp.5350 

Finley, B., Paustenbach, D., 1994. The benefits of probabilistic exposure assessment: three case 

studies involving contaminated air, water, and soil. Risk Anal. 14, 53–73 

Floret, N., Mauny, F., Challier, B., Arveux, P., Cahn, J.-Y., Viel, J.-F., 2003. Dioxin emissions 

from a solid waste incinerator and risk of non-Hodgkin lymphoma. Epidemiology 14, 392–

8. doi:10.1097/01.ede.0000072107.90304.01 

Ford, R.P., Tappin, D.M., Schluter, P.J., Wild, C.J., 1997. Smoking during pregnancy: how 

reliable are maternal self reports in New Zealand? J. Epidemiol. Community Health 51, 1–2 

Frisbee, S.J., Brooks, a. P., Maher, A., Flensborg, P., Arnold, S., Fletcher, T., Steenland, K., 

Shankar, A., Knox, S.S., Pollard, C., Halverson, J. a., Vieira, V.M., Jin, C., Leyden, K.M., 

Ducatman, A.M., 2009. The C8 Health Project: Design, Methods, and Participants. Environ. 

Health Perspect. 117, 1873–1882. doi:10.1289/ehp.0800379 

Gallo, V., Leonardi, G., Genser, B., Lopez-Espinosa, M.J., Frisbee, S.J., Karlsson, L., Ducatman, 

A.M., Fletcher, T., 2012. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate 

(PFOS) concentrations and liver function biomarkers in a population with elevated PFOA 

exposure. Environ. Health Perspect. 120, 655–660. doi:10.1289/ehp.1104436 

Granger, J.P., Alexander, B.T., Bennett, W. a, Khalil, R. a, 2001. Pathophysiology of pregnancy-

induced hypertension. Am. J. Hypertens. 14, 178S–185S 

Gryparis, A., Paciorek, C.J., Zeka, A., Schwartz, J., Coull, B. a., 2009. Measurement error 

caused by spatial misalignment in environmental epidemiology. Biostatistics 10, 258–274. 

doi:10.1093/biostatistics/kxn033 

Gustafson P. 2003. Measurement error and misclassification in statistics and 

epidemiology: impacts and Bayesian adjustments. Boca Raton, FL: Chapman and Hall/CRC 

Press LLC. 

Han, X., Nabb, D.L., Russell, M.H., Kennedy, G.L., Rickard, R.W., 2012. Renal elimination of 

perfluorocarboxylates (PFCAs). Chem. Res. Toxicol. 25, 35–46. doi:10.1021/tx200363w 

Heid IM, Küchenhoff H, Miles J, Kreienbrock L, Wichmann HE. 2004. Two dimensions of 

measurement error: Classical and Berkson error in residential radon exposure assessment. J 

Expo Sci Environ Epidemiol 14, 365–377 

Heinig, M., Johnson, R.J., 2006. Role of uric acid in hypertension, renal disease, and metabolic 

syndrome. Cleve. Clin. J. Med. 73, 1059–1064 



 

91 

 

Henry, K. a, Boscoe, F.P., 2008. Estimating the accuracy of geographical imputation. Int. J. 

Health Geogr. 7, 3. doi:10.1186/1476-072X-7-3 

Hundley, S.G., Sarrif, a M., Kennedy, G.L., 2006. Absorption, distribution, and excretion of 

ammonium perfluorooctanoate (APFO) after oral administration to various species. Drug 

Chem. Toxicol. 29, 137–45. doi:10.1080/01480540600561361 

Johnson, P., Sutton, P., 2014. The Navigation Guide—Evidence-Based Medicine Meets 

Environmental Health: Systematic Review of Human Evidence for PFOA Effects on Fetal 

Growth. Env. Heal. … 122, 1040–1051. doi:10.1289/ehp.1307893 

Kang, D., Finch, J., Nakagawa, T., Karumanchi, S.A., Kanellis, J., Granger, J., Johnson, R.J., 

2004. Uric acid , endothelial dysfunction and pre-eclampsia : searching for a pathogenetic 

link. J. Hypertens. 22, 229–235. doi:10.1097/01.hjh.0000098227.37783.8e 

Kennedy, G.L., Butenhoff, J.L., Olsen, G.W., O’Connor, J.C., Seacat, A.M., Perkins, R.G., 

Biegel, L.B., Murphy, S.R., Farrar, D.G., 2004. The Toxicology of Perfluorooctanoate, 

Critical Reviews in Toxicology. doi:10.1080/10408440490464705 

Koustas, E., Lam, J., Sutton, P., Johnson, P.I., Atchley, D.S., Sen, S., Robinson, K. a, Axelrad, 

D. a, Woodruff, T.J., 2014. The Navigation Guide - evidence-based medicine meets 

environmental health: systematic review of nonhuman evidence for PFOA effects on fetal 

growth. Environ. Health Perspect. 122, 1015–27. doi:10.1289/ehp.1307177 

Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., Seed, J., 2007. Perfluoroalkyl 

acids: a review of monitoring and toxicological findings. Toxicol. Sci. 99, 366–94. 

doi:10.1093/toxsci/kfm128 

Laughon, S.K., Catov, J., Powers, R.W., Roberts, J.M., Gandley, R.E., 2011. First trimester uric 

acid and adverse pregnancy outcomes. Am. J. Hypertens. 24, 489–95. 

doi:10.1038/ajh.2010.262 

Leeman, L., Fontaine, P., 2008. Hypertensive disorders of pregnancy. Am. Fam. Physician 78, 

93–100. 

Limpert, E., Stahel, W. a., Abbt, M., 2001. Log-normal Distributions across the Sciences: Keys 

and Clues. Bioscience 51, 341. doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 

Loccisano, A.E., Campbell, J.L., Butenhoff, J.L., Andersen, M.E., Clewell, H.J., 2012. 

Evaluation of placental and lactational pharmacokinetics of PFOA and PFOS in the 

pregnant, lactating, fetal and neonatal rat using a physiologically based pharmacokinetic 

model. Reprod. Toxicol. 33, 468–90. doi:10.1016/j.reprotox.2011.07.003 

Loccisano, A.E., Longnecker, M.P., Campbell, J.L., Andersen, M.E., Clewell, H.J., 2013. 

Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life 

stages. J. Toxicol. Environ. Health. A 76, 25–57. doi:10.1080/15287394.2012.722523 



 

92 

 

Lopez-Espinosa M, Mondal D, Armstrong B, Bloom MS, Fletcher T. 2012. Thyroid Function 

and Perfluoroalkyl Acids in Children Living Near a Chemical Plant. Environ. Health 

Perspect. 120:1036–1041; doi:10.1289/ehp.1104370 

Mazzali, M., Hughes, J., Kim, Y.-G., Jefferson, J. a., Kang, D.-H., Gordon, K.L., Lan, H.Y., 

Kivlighn, S., Johnson, R.J., 2001. Elevated Uric Acid Increases Blood Pressure in the Rat 

by a Novel Crystal-Independent Mechanism. Hypertension 38, 1101–1106. 

doi:10.1161/hy1101.092839 

Mazzali, M., Kanellis, J., Han, L., Feng, L., Xia, Y.-Y., Chen, Q., Kang, D.-H., Gordon, K.L., 

Watanabe, S., Nakagawa, T., Lan, H.Y., Johnson, R.J., 2002. Hyperuricemia induces a 

primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. 

Physiol. Renal Physiol. 282, F991–7. doi:10.1152/ajprenal.00283.2001 

Morgan G, Henrion M, Small M. 1990.Uncertainty: a guide to dealing with uncertainty in 

quantitative risk and policy analysis. New York, NY: Cambridge University Press  

The National High Blood Pressure Education Program Working Group on High Blood Pressure 

in Pregnancy. Report of the National High Blood Pressure Education Program Working 

Group on High Blood Pressure in Pregnancy. American Journal of Obstetrics and 

Gynecology 183, s1–s22 (2000) 

Nolan, L. a, Nolan, J.M., Shofer, F.S., Rodway, N. V, Emmett, E. a, 2010. Congenital anomalies, 

labor/delivery complications, maternal risk factors and their relationship with 

perfluorooctanoic acid (PFOA)-contaminated public drinking water. Reprod. Toxicol. 29, 

147–55. doi:10.1016/j.reprotox.2009.10.012 

Nuckols, J.R., Ward, M.H., Jarup, L., 2004. Using geographic information systems for exposure 

assessment in environmental epidemiology studies. Environ. Health Perspect. 112, 1007–

1015. doi:10.1289/ehp.6738 

Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L., Zobel, 

L.R., 2007. Half-life of serum elimination of 

perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired 

fluorochemical production workers. Environ. Health Perspect. 115, 1298–305. 

doi:10.1289/ehp.10009 

Özkaynak H, Frey HC, Hubbell B. 2008. Characterizing variability and uncertainty in exposure 

assessments improves links to environmental decision-making. EM (Pittsburgh Pa) 

58(7):18–22 

Panaretakis, T., Shabalina, I.G., Grandér, D., Shoshan, M.C., DePierre, J.W., 2001. Reactive 

oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma 

HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen, perfluorooctanoic 

acid. Toxicol. Appl. Pharmacol. 173, 56–64. doi:10.1006/taap.2001.9159 



 

93 

 

Paul, a Z., 2009. Geocoding Quality and Implications for Spatial Analysis. Geogr. Compass 3, 

647–680 

Paustenbach, D.J., Panko, J.M., Scott, P.K., Unice, K.M., 2007. A methodology for estimating 

human exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of 

a community (1951-2003). J. Toxicol. Environ. Health. A 70, 28–57. 

doi:10.1080/15287390600748815 

Post, G.B., Cohn, P.D., Cooper, K.R., 2012. Perfluorooctanoic acid (PFOA), an emerging 

drinking water contaminant: a critical review of recent literature. Environ. Res. 116, 93–

117. doi:10.1016/j.envres.2012.03.007 

Prentice, R.L., Tinker, L.F., Huang, Y., Neuhouser, M.L., 2013. Calibration of self-reported 

dietary measures using biomarkers: an approach to enhancing nutritional epidemiology 

reliability. Curr Atheroscler Rep 15, 353. doi:10.1007/s11883-013-0353-5 

Qian, Y., Ducatman, A., Ward, R., Leonard, S., Bukowski, V., Lan Guo, N., Shi, X., Vallyathan, 

V., Castranova, V., 2010. Perfluorooctane sulfonate (PFOS) induces reactive oxygen 

species (ROS) production in human microvascular endothelial cells: role in endothelial 

permeability. J. Toxicol. Environ. Health. A 73, 819–36. doi:10.1080/15287391003689317 

Reynolds, P., Von Behren, J., Gunier, R.B., Goldberg, D.E., Hertz, A., Smith, D.F., 2003. 

Childhood cancer incidence rates and hazardous air pollutants in California: An exploratory 

analysis. Environ. Health Perspect. 111, 663–668. doi:10.1289/ehp.5986 

Rosner B. 2010. Fundamentals of biostatistics. Boston, MA: CENGAGE Learning 

Rothman KJ, Greenland S, Lash TL. 2008. Modern epidemiology. Philadelphia, PA: Lippincott 

Williams and Wilkins 

Rull, R.P., Ritz, B., 2003. Historical pesticide exposure in California using pesticide use reports 

and land-use surveys: An assessment of misclassification error and bias. Environ. Health 

Perspect. 111, 1582–1589. doi:10.1289/ehp.6118 

Sarnat, S.E., Klein, M., Sarnat, J. a, Flanders, W.D., Waller, L. a, Mulholland, J. a, Russell, A.G., 

Tolbert, P.E., 2010. An examination of exposure measurement error from air pollutant 

spatial variability in time-series studies. J. Expo. Sci. Environ. Epidemiol. 20, 135–46. 

doi:10.1038/jes.2009.10 

Savitz, D. a, Stein, C.R., Bartell, S.M., Elston, B., Gong, J., Shin, H.-M., Wellenius, G. a, 2012. 

Perfluorooctanoic acid exposure and pregnancy outcome in a highly exposed community. 

Epidemiology 23, 386–92. doi:10.1097/EDE.0b013e31824cb93b 

Savitz, D.A., Stein, C.R., Elston, B., Wellenius, G.A., Bartell, S.M., Shin, H., Vieira, V.M., 

Fletcher, T., 2012. Children’s Health Relationship of Perfluorooctanoic Acid Exposure to 



 

94 

 

Pregnancy Outcome Based on Birth Records in the Mid-Ohio Valley. Environ. Health 

Perspect. 120, 1201–1207 

Shankar, A., Xiao, J., Ducatman, A., 2011a. Perfluoroalkyl chemicals and elevated serum uric 

acid in US adults. Clin. Epidemiol. 3, 251–8. doi:10.2147/CLEP.S21677 

Shankar, A., Xiao, J., Ducatman, A., 2011b. Perfluoroalkyl chemicals and chronic kidney disease 

in US adults. Am. J. Epidemiol. 174, 893–900. doi:10.1093/aje/kwr171 

Shimokura, G.H., Savitz, D. a, Symanski, E., Symansk, E., 1998. Assessment of Water Use for 

Estimating Exposure to Tap Water Articles ’ Contaminants Environmental. Environ. Heal. 

106, 55–59 

Shin, H.-M., Vieira, V.M., Ryan, P.B., Detwiler, R., Sanders, B., Steenland, K., Bartell, S.M., 

2011a. Environmental fate and transport modeling for perfluorooctanoic acid emitted from 

the Washington Works Facility in West Virginia. Environ. Sci. Technol. 45, 1435–42. 

doi:10.1021/es102769t 

Shin, H.-M., Vieira, V.M., Ryan, P.B., Steenland, K., Bartell, S.M., 2011b. Retrospective 

exposure estimation and predicted versus observed serum perfluorooctanoic acid 

concentrations for participants in the C8 Health Project. Environ. Health Perspect. 119, 

1760–5. doi:10.1289/ehp.1103729 

Shin H-M, Steenland K, Ryan PB, Vieira VM, Bartell SM. 2014. Biomarker-based calibration of 

retrospective exposure predictions of perfluorooctanoic acid. Environ Sci Technol 

48(10):5636–5642 

Shipton, D., Tappin, D.M., Vadiveloo, T., Crossley, J. a, Aitken, D. a, Chalmers, J., 2009. 

Reliability of self reported smoking status by pregnant women for estimating smoking 

prevalence: a retrospective, cross sectional study. BMJ 339, b4347. doi:10.1136/bmj.b4347 

Sibai, B.M., Ewell, M., Levine, R.J., Klebanoff, M. a., Esterlitz, J., Catalano, P.M., Goldenberg, 

R.L., Joffe, G., 1997. Risk factors associated with preeclampsia in healthy nulliparous 

women. Am. J. Obstet. Gynecol. 177, 1003–1010. doi:10.1016/S0002-9378(97)70004-8 

Steenland, K., Tinker, S., Shankar, A., Ducatman, A., 2010. Association of perfluorooctanoic 

acid (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with 

elevated community exposure to PFOA. Environ. Health Perspect. 118, 229–33. 

doi:10.1289/ehp.0900940 

Steenland, K., Zhao, L., Winquist, A., Parks, C., 2013. Ulcerative colitis and perfluorooctanoic 

acid (PFOA) in a highly exposed population of community residents and workers in the 

Mid-Ohio Valley. Environ. Health Perspect. 121, 900–905. doi:10.1289/ehp.1206449 



 

95 

 

Stein, C.R., Savitz, D. a, Dougan, M., 2009. Serum levels of perfluorooctanoic acid and 

perfluorooctane sulfonate and pregnancy outcome. Am. J. Epidemiol. 170, 837–46. 

doi:10.1093/aje/kwp212 

Tan, Y.M., Clewell, H.J., Andersen, M.E., 2008. Time dependencies in perfluorooctylacids 

disposition in rat and monkeys: A kinetic analysis. Toxicol. Lett. 177, 38–47. 

doi:10.1016/j.toxlet.2007.12.007 

Thomas, D., Stram, D., Dwyer, J., 1993. EXPOSURE MEASUREMENT ERROR : Influence on 

Expo sure-Disease Relationships and Methods of Correction. Annu. Rev. Public Heal. 14, 

69–93 

Tsuchiya, A., Duff, R., Stern, A.H., White, J.W., Krogstad, F., Burbacher, T.M., Faustman, 

E.M., Mariën, K., 2012. Single blood-Hg samples can result in exposure misclassification: 

temporal monitoring within the Japanese community (United States). Environ. Health 11, 

37. doi:10.1186/1476-069X-11-37 

US Department of Health and Human Services, 2014. Available:  

http://grants.nih.gov/grants/guide/pa-files/PA-15-010.html [accessed 1January 2016 ] 

U.S. EPA (Environmental Protection Agency). 2011. Exposure Factors Handbook: 2011 Edition. 

Available: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 [accessed 1 

February 2015] 

Vieira, V., Hoffman, K., Fletcher, T., 2013. Assessing the Spatial Distribution of 

Perfluorooctanoic Acid Exposure via Public Drinking Water Pipes Using Geographic 

Information Systems. Environ. Health Toxicol. 28, e2013009. 

doi:10.5620/eht.2013.28.e2013009 

Vieira, V.M., Howard, G.J., Gallagher, L.G., Fletcher, T., 2010. Geocoding rural addresses in a 

community contaminated by PFOA: a comparison of methods. Environ. Health 9, 18. 

doi:10.1186/1476-069X-9-18 

Wagner, L.K., 2004. Diagnosis and management of preeclampsia. Am. Fam. Physician 70, 

2317–24 

Ward, M.H., Nuckols, J.R., Giglierano, J., Bonner, M.R., Wolter, C., Airola, M., Mix, W., Colt, 

J.S., Hartge, P., 2005. Positional accuracy of two methods of geocoding. Epidemiology 16, 

542–547. doi:10.1097/01.ede.0000165364.54925.f3 

Watkins, D.J., Josson, J., Elston, B., Bartell, S.M., Shin, H., Vieira, V.M., Savitz, D.A., Fletcher, 

T., Wellenius, G.A., 2013a. Environmental health perspectives. Environ. Health Perspect. 

Watkins, D.J., Josson, J., Elston, B., Bartell, S.M., Shin, H., Vieira, V.M., Savitz, D.A., Fletcher, 

T., Wellenius, G.A., 2013b. Exposure to perfluoroalkyl acids and markers of kidney 



 

96 

 

function among children and adolescents living near a chemical plant. Environ. Health 

Perspect. 121, 625–30 

Wu, J., Jiang, C., Jaimes, G., Bartell, S., Dang, A., Baker, D., Delfino, R.J., 2013. Travel patterns 

during pregnancy: comparison between Global Positioning System (GPS) tracking and 

questionnaire data. Environ. Health 12, 86. doi:10.1186/1476-069X-12-86 

Yao, X., Zhong, L., 2005. Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to 

perfluorooctanoic acid. Mutat. Res. 587, 38–44. doi:10.1016/j.mrgentox.2005.07.010 

Zamorski, M., Green, L., 2001. NHBPEP Report on High Blood Pressure in Pregnancy : A 

Summary. Am. Fam. Physician 263–270 

Zeger, S.L., Thomas, D., Dominici, F., Samet, J.M., Schwartz, J., Dockery, D., Cohen, a, 2000. 

Exposure measurement error in time-series studies of air pollution: concepts and 

consequences. Environ. Health Perspect. 108, 419–26 

Zoccali, C., Maio, R., Mallamaci, F., Sesti, G., Perticone, F., 2006. Uric acid and endothelial 

dysfunction in essential hypertension. J. Am. Soc. Nephrol. 17, 1466–71. 

doi:10.1681/ASN.2005090949 

 

 

 

1.1 Background 

1.1.1 The C8 exposure assessment 

Perfluorooctanoic acid (PFOA)  

Ammonium Perfluoroocatanoate (APFO) is a surfactant that was used in the manufacture 

of perfluorinated compounds with multiple applications including non-stick cook ware, stain-free 

carpets and clothing, food contact paper etc. Once in the environment, APFO dissociates into the 

Perfluorooctanoate anion (PFOA) and ammonia. PFOA is also known as ‘C8’, owing to the fact 

that the structure has a per-fluorinated eight carbon backbone with a carboxylate group. This 

unique chemical structure gives the molecule high stability and surfactant properties which 

makes it very useful in consumer and industrial applications (Paustenbach et al., 2007; Post et 

al., 2012). Unfortunately, the stability also makes the chemical highly persistent in the 

environment (Lau et al., 2007). The major sources of PFOA to the environment include direct 
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and indirect emissions from manufacturing facilities around the world. As a result, PFOA is 

ubiquitous in various environmental media including surface water, soil, sediment, ground water, 

as well as in biological media including blood samples from wildlife and human beings (Lau et 

al., 2007; Paustenbach et al., 2007; Post et al., 2012).  Exposure sources to humans include 

occupational exposure, contaminated drinking water, air, and food, non-stick cookware, and 

household dust (Lau et al., 2007; Paustenbach et al., 2007). The median blood level of PFOA in 

the non-institutionalized U.S. population (in the NHANES study) was reported to be 5 ppb 

(Calafat et al., 2007). 

PFOA is amphiphilic in nature and is absorbed through oral, inhalational and dermal 

routes of exposure. The distribution of PFOA is highest in the liver, followed by serum proteins 

(primarily albumin), kidneys, lungs and other tissues (Hundley et al., 2006). Once inside the 

human body, PFOA is not metabolized and the excretion half-life has been estimated at 2.3-3.8 

years (Bartell et al., 2010; Olsen et al., 2007). Renal and fecal elimination are primary routes of 

excretion of PFOA from the human body (Han et al., 2012). In animal models, PFOA has been 

shown to cause benign tumors of the liver, pancreas and the testes through the PPAR-α agonist 

mechanism. PFOA has been shown to cause weight loss, hepatic hypertrophy and necrosis, 

immune suppression, neurobehavioral effects, reproductive effects, and developmental effects 

(Kennedy et al., 2004; Lau et al., 2007; Post et al., 2012). Epidemiological studies have been 

based on occupational and community exposures, and mostly cross-sectional study designs; 

some with modest associations between PFOA exposure and cholesterol, hyperuricemia, and 

elevated liver enzymes, colitis, thyroid disease, kidney and testicular cancer, pregnancy induced 

hypertension/preeclampsia (Steenland et al., 2010; Lau et al., 2007; Post et al., 2012; C8 Science 
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Panel, 2011; Steenland et al., 2013; Barry et al., 2013; Savitz et al., 2012a,  Savitz et al., 2012b, 

Lopez-Espinosa et al., 2012; Gallo et al., 2012; Watkins et al., 2013; C8 Science Panel, 2011).  

The C8 Health Project  

The C8 Health Project is a cross-sectional epidemiologic study of 69,030 people who 

lived near a primary U.S. PFOA production facility, located in the Mid-Ohio Valley near 

Parkersburg, West Virginia.  Formed in 2005, the study is a result of a settlement between 

DuPont and local residents who may have suffered adverse health consequences due to their 

PFOA exposures.  C8 Health Project participants constitute the most highly exposed sentinel 

population in the world, with serum PFOA concentrations up to thousands of times larger than 

typically found in the US general population (Frisbee et al., 2009).  APFO was used in the 

manufacture of fluoropolymers at the Mid-Ohio Valley production facility since the 1950s.  For 

decades, large amounts of PFOA were released into the atmosphere through emissions from air 

stacks as well as effluent discharge into the Ohio River. The surrounding air, surface soil, surface 

water and subsurface water had been contaminated with PFOA through wet/dry deposition onto 

the surface, leaching through the vadose zone, and transport in the ground water aquifers. As a 

part of the C8 Health Project, a retrospective PFOA exposure assessment was conducted at UCI 

(Shin et al., 2011a, Shin et al., 2011b).   

The C8 exposure assessment included PFOA release assessment, integrated fate and transport 

modeling, and dose reconstruction to predict the exposure dose to each individual in the C8 

Health Project from 1951 to 2008. First, historic PFOA emission rate estimates for the DuPont 

facility were obtained from a previous study conducted by Paustenbach et al. in 2007. Using 

these estimates with the physiochemical properties of PFOA and the historic local 

meteorological and geologic characteristics, a suite of environmental fate and transport models 
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including AERMOD, PRZM-3, BreZo, MODFLOW, and MT3DMS were applied to generate 

predicted concentrations of PFOA in the air, surface water and ground water around the facility 

(Shin et al., 2011a). The predicted air and water concentrations were utilized along with 

individual residential/work histories, demographics (age, gender, body weight), standard 

exposure factors (air inhalation rate, drinking water ingestion rate), historical pipe installation 

information of public water supply and a single compartment pharmacokinetic model to 

reconstruct the PFOA exposures of the study population and predict their yearly serum PFOA 

concentrations (Shin et al., 2011b). Among all participants (N = 43,449), the Spearman’s rank 

correlation coefficient between the estimated and the 2005-2006 observed serum PFOA 

concentration (measured as a part of the C8 Health Project) was 0.67 (Shin et al, 2011b). Median 
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