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Designing combination therapies
for cancer treatment: application
of a mathematical framework
combining CAR T-cell
immunotherapy and targeted
radionuclide therapy
Vikram Adhikarla1*, Dennis Awuah2, Enrico Caserta3,
Megan Minnix4, Maxim Kuznetsov1, Amrita Krishnan2,
Jefferey Y. C. Wong5, John E. Shively4, Xiuli Wang2,
Flavia Pichiorri3 and Russell C. Rockne1*

1Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope
National Medical Center, Duarte, CA, United States, 2Department of Hematology and Hematopoietic
Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte,
CA, United States, 3Department of Hematologic Malignancies Translational Science, Beckman
Research Institute, City of Hope National Medical Center, Duarte, CA, United States, 4Department of
Molecular Imaging and Therapy, Beckman Research Institute, City of Hope National Medical Center,
Duarte, CA, United States, 5Department of Radiation Oncology, City of Hope National Medical Center,
Duarte, CA, United States
Introduction: Cancer combination treatments involving immunotherapies with

targeted radiation therapy are at the forefront of treating cancers. However,

dosing and scheduling of these therapies pose a challenge. Mathematical models

provide a unique way of optimizing these therapies.

Methods: Using a preclinical model of multiple myeloma as an example, we

demonstrate the capability of a mathematical model to combine these therapies

to achieve maximum response, defined as delay in tumor growth. Data from

mice studies with targeted radionuclide therapy (TRT) and chimeric antigen

receptor (CAR)-T cell monotherapies and combinations with different intervals

between them was used to calibrate mathematical model parameters. The

dependence of progression-free survival (PFS), overall survival (OS), and the

time to minimum tumor burden on dosing and scheduling was evaluated.

Different dosing and scheduling schemes were evaluated to maximize the PFS

and optimize timings of TRT and CAR-T cell therapies.

Results: Therapy intervals that were too close or too far apart are shown to be

detrimental to the therapeutic efficacy, as TRT too close to CAR-T cell therapy

results in radiation related CAR-T cell killing while the therapies being too far apart

result in tumor regrowth, negatively impacting tumor control and survival. We show

that splitting a dose of TRT or CAR-T cells when administered in combination is

advantageous only if the first therapy delivered can produce a significant benefit as

a monotherapy.
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Discussion: Mathematical models are crucial tools for optimizing the delivery of

cancer combination therapy regimens with application along the lines of

achieving cure, maximizing survival or minimizing toxicity.
KEYWORDS

radionuclide, combination therapy, myeloma, CAR T cells, daratumumab, mathematical
model, targeted alpha therapy
1 Introduction

Chemotherapy and external beam radiation therapy have been

traditional approaches for treating hematological malignancies.

External beam radiation therapy has typically been employed for

treatment of solitary plasmacytomas and as a palliative measure for

more widespread disease (1, 2). The primary disadvantage of

external beam radiotherapy is the toxicity to normal cells present

near malignant cells in the bone marrow. Thus, its role has been

limited in the treatment of hematological malignancies. In contrast,

immunotherapy-based approaches have been employed in standard

regimens and have led to significant improvements in patient

disease remission (3). The dysregulation of the immune system in

multiple myeloma (MM) and its targeting by immunotherapies has

been a key reason for immunotherapy success (4). In particular,

Chimeric Antigen Receptor T cells (CAR-T cells) have recently

come to the fore due to their efficacy against several hematological

malignancies including MM, leukemia and B-cell malignancies (5).

CAR-T cells are T cells that have been engineered to target a

receptor on the tumor cells thus binding them to tumor cells for

direct effect. B-Cell Maturation Antigen (BCMA) targeting CAR-T

cells have recently been approved by the FDA for treatment of MM

(6). While these novel immunotherapies have created a significant

impact, most patients still experience relapse, leading to

unsuccessful treatment (7), supporting the need to develop novel

combinatorial approaches for complete disease eradication.

Targeted radionuclide therapy (TRT) is a form of radiation

therapy in which a radionuclide delivering radiation is attached to

an agent that targets tumor cells (8). The advantage of TRT is that it is

both highly targeted and delivered systemically. In addition, the

radionuclide can be chosen with a half-life that is appropriate for

balancing efficacy and toxicity of the treatment. For example, we have

shown that the targeted alpha particle therapy (TAT) with 225Ac

conjugated to the CD38 receptor targeting antibody daratumumab

demonstrated superior efficacy without added toxicity in treatment of

disseminated multiple myeloma in a mouse model as compared to a

beta particle emitter 177Lu (9). The shorter range (< 100 mm) but

higher potency (given by their high linear energy transfer) of alpha

particles emitted from 225Ac and its daughters was crucial in targeting

the cancer cells but sparing the normal tissue cells in the bone

marrow. While TAT was associated with increased survival, it alone

did not result in curative responses. To address this limitation of
02
radionuclide therapies, we and others (10–12) have investigated the

addition of immune-based therapies to TRT as a potentially curative

combination therapy approach.

Selecting the dosing, timing, and sequencing of any combination

therapy approach experimentally is challenging due to the number of

possible combinations to be tested; therefore a more efficient method

of experimental design to achieve optimal therapy regimens is useful

and increasingly becoming essential (13). Fortunately, mathematical

models aided by experimental data exemplify a way for achieving

optimal combination of therapies. Combining multiple therapies can

result in synergistic, additive or antagonistic effects. Methods have

been proposed to quantify (14, 15) and optimize (16–18) these effects.

Combination therapy optimization using mathematical models can

be performed at several levels depending on our knowledge of the

system parameters (19). Many types of therapy combinations have

been investigated using mathematical models (20). In particular,

mathematical models of tumor-immune system dynamics have

been proposed to optimize and personalize immunotherapies (21–

23) either on their own or in combination with chemotherapy (24).

Additionally, mathematical modeling of radiation therapy using the

linear-quadratic model (25) to optimize patient-specific treatment

regimens has been investigated for decades (26, 27). The proposed

radiobiological models have been used to study both tumor and

normal tissue radiation dose-response effects (28–30). The modeling

efforts using radiobiological models and their variations span both

external beam, brachytherapy as well as targeted radionuclide

radiotherapies (30–35). Recognizing the synergy between

immunotherapies and radiation therapy, mathematical models

utilizing the external beam radiation therapy and immunotherapies

have been proposed (36, 37) in order to tailor the dose of external

beam radiation therapy to elicit systemic immune response as well as

to study the effect of radiation therapy on different immune

populations (38, 39).

We recently proposed a mathematical model for optimization

of targeted radionuclide therapy with CAR-T cell therapy (40). The

model considered the tumor response to targeted radionuclide and

CAR-T cell therapies as monotherapies and preclinical data from

each set of monotherapy experiments was used to characterize the

model. Different timing schedules of TAT and CAR-T cell therapies

were tested in silico, and it was shown that the timing between the

two therapies for maximizing the survival metrics was highly

dependent on the tumor proliferation rate. Elucidating the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1358478
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Adhikarla et al. 10.3389/fimmu.2024.1358478
mathematical parameters relevant for multiple therapies gives a

novel way of investigating the dosing, timing, and the sequence of

combination therapies and generate in silico therapeutic regimens

that can then be tested in vivo.

Here we validate the mathematical model against experimental

data where the timing of the CAR-T cell therapy is varied keeping

the TAT dosage and timing constant. Model parameters are

elucidated from the experimental data to optimize the timing of

CAR-T cell therapy post-TAT by maximizing the progression-free

survival. The effect of fractionated dosing of both TRT and CAR-T

cell therapies on the survival metrics is also studied. In addition,

multiple dosing strategies for TRT and CAR-T cell therapies are

tested to analyze whether the splitting and scheduling of the doses

result in improved tumor control or survival.
2 Methods

2.1 Mathematical model

The framework of the combined mathematical model for TRT

and CAR T-cell therapy dynamics is given by the set of differential

equations as described below (Figure 1) (40). This simplified model

considers only the tumor cells, CAR-T cells, and action of the TRT.

dNT

dt
= rNT −H(t − tTRT )kRxTNT −H(t − tCAR  T)k1NTNC (1)

dNR

dt
=  H(t − tTRT )kRxTNT −H(t − tCAR  T )k1NRNC − kclNR (2)

dNC

dt
= k2(NT + NR)NC −H(t − tTRT )kRxCNC − qNC (3)

kRxi =  aiR0e
−l(t−tTRT ) +

2biR2
0

g − l
(e−2l(t−tTRT ) − e−(l+g )(t−tTRT ))gl (4)

Here, NT and NR represent the number of tumor cells that are

unirradiated and irradiated respectively. NC represents the number
Frontiers in Immunology 03
of CAR-T cells in the system, and k1 and k2 represent the killing

rate of tumor cells by CAR-T cells and the proliferation/exhaustion

rate of CAR-T cells respectively. q and kcl are the clearance rates of

CAR-T cells and irradiated tumor cells from the system. tTRT and

tCART are the time points at which TRT and CAR-T therapy are

given via a Heaviside function H(t). The parameters a and b are

radiobiological constants from the linear-quadratic model with b =

0 for high linear energy transfer alpha particle-based therapy. The

parameter R0 is the initial dose rate given as R0 = h Ainj, where Ainj

is the injected radioactivity. Parameters, values, and units are given

in Table 1. The immune system as well as other populations of

normal cells are not considered in this simplified model. The

subscript i in equation (4) indicates the type of cell population

which can either be T for tumor or C for CAR-T cells.
2.2 Experimental data

To benchmark the model and to optimize the timing of CAR-T

and TRT therapies, data on monotherapies of TRT using 225Ac-

daratumumab targeting CD38 receptor and CAR-T cells targeting

CS1 receptor as well as combination of these therapies was analyzed

(11). Briefly, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG; 6–10

weeks old; Jackson Laboratory) (IACUC 21034) were engrafted

with 5 × 106 MM.1S eGFP-ffluc lines intravenously (I.V.) and

randomized into groups 6 days post tumor injection (day 6),

based on bioluminescence imaging (BLI). All mice were followed

weekly over the course of therapy using BLI to measure tumor

burden. Day 0 was taken as the day MM.1S cells were inoculated in

the mice. Six groups of mice (n = 8 each except CAR-T only group)

with multiple myeloma are considered: (a) Untreated mice serving

as controls (Group-0) (b) TRT (day 7) only post tumor inoculation

(Group-T7) (c) TRT (day 7) and CAR-T cells (day 18) (Group-

T7C18) (d) TRT(d7) and CAR-T cells (d25) (Group-T7C25) (e)

TRT (d7) + CAR-T (d32) (Group-T7C32) and (f) CAR-T cell

monotherapy administered on day 7 (n = 7) (Group-C7). For

groups c, d, and e, the CAR-T cell doses were planned to be

administered on day 14, 21, and 28 respectively. However, due to
BA

FIGURE 1

(A) Antibody-based TRT and CAR T-cells therapy modalities. (B) Schematic of the mathematical model of TRT and CAR-T cell therapy.
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experimental logistical considerations, the actual dates of

administration were 18, 25, and 32 respectively. BLI images and

raw data can be found in the experimental publication (11).
2.3 Benchmarking model parameters

The tumor proliferation rate r was calculated from untreated

control tumor data by fitting an exponential function to the

individual mice tumor burden trajectories over time as measured

with BLI (Supplementary Figure 1). The average BLI measurement

on day 7 post inoculation and the average proliferation rate r across

all untreated mice was then used to back calculate what the BLI

would have been on day 0 based on the exponential tumor growth

formalism. A single BLI to tumor cell conversion factor was then

calculated by taking the ratio of BLI flux on day 0 and the number of

injected MM.1S cells. For the treated groups, the following

parameters and quantities were held constant based on the

experimental conditions: CAR-T cell dose (NC0), injected
Frontiers in Immunology 04
radioactivity (A0), effective TRT decay rate (l), and initial tumor

burden (NT(t = 0)). Other parameters (r, h, aT, aC, k1, k2, q and kcl)
were allowed to vary and were optimized simultaneously for all

cohorts yielding a single parameter set for all mice. This approach

identifies parameters for CAR-T cell and tumor cell radiosensitivity,

tumor proliferation, CAR-T cell and TRT killing rate and TRT

clearance that are specific to the MM.1S myeloma cell line, the CS1

CAR T-cells and the 225Ac-daratumamab therapies across

treatment groups. The parameter set that is common and shared

across treatment groups for all mice is referred to henceforth as the

global parameter set.

Once the global parameter set for TRT and CAR-T cells therapy

was calculated as above, these parameter values were set as initial

conditions for individual mice to allow for individual mice

variations across the parameter set. Thus, mice-specific

parameters were calculated by allowing the individual parameters

to vary by +/- 50% from the global parameter values. Mice-specific

parameters included: r, aT, k1, q and kcl. For individual mice data

optimization, h, aC, and k2 were held constant to the global

parameter set.
2.4 Optimizing single administration of
CAR-T therapy with respect to TRT and
influence of therapy interval on
model parameters

The benchmarked global parameter set was used to test the

optimal timing of CAR-T cell therapy post TRT. With TRT

injection on day 7 after MM.1S cell inoculation, the time of CAR-

T cell delivery was varied from day 8 (following day administration)

until day 50 (43 days following TRT). Progression free survival

(PFS) was calculated for each scenario. Progression-free survival

was defined as the amount of time from the start of TRT for the

tumor burden to attain the same size as at the start of treatment. If

no reduction in tumor burden was observed, the PFS was set to zero

days. CAR-T cell therapy timing that maximized the PFS was taken

as the optimal therapy timing.

The influence of variation in individual model parameters on

the optimal timing of CAR-T cell therapy after TRT was tested. For

this purpose, the parameter set obtained from fitting the model to

individual mice tumor trajectories (with 50% uncertainty from

global parameter set) was used. The minimum and maximum

values of the individual parameters were calculated from this

parameter set and a new synthetic parameter set was created with

parameters randomly and uniformly generated between these

limits. Using this synthetic parameter set, the range of CAR-T

injection days that resulted in the maximum PFS was calculated. In

this manner, 1000 synthetic parameter sets were generated by

sampling the parameters 1000 times. The resulting histogram of

CAR-T injection days for maximum PFS was generated by

summarizing the data from all 1000 simulations. For visualization

purposes, the dependence of PFS on TRT to CAR-T therapy

interval for five synthetic parameter set runs is shown and a

histogram of CAR-T infusion days that maximized the PFS for

each of these 5 parameter sets is shown. Similar analysis was done
TABLE 1 Constants and global parameters for the mathematical model
estimated from experimental data.

Parameter Symbol Value Comments

Effective decay constant
(1/day)

l 0.07 Accounts for
biological
clearance and
physical decay

Tumor proliferation
rate (1/day)

r 0.208 Global
parameter set
optimized value

Clearance rate of irradiated
tumor cells (1/day)

kcl 0.45 Global
parameter set
optimized value

CAR-T cell killing
rate (1/day/cell)

k1 3.01x10-7 Optimized
from data

CAR-T cell proliferation/
exhaustion rate (1/day/cell)

k2 2.34 × 10−14 Global
optimized and
kept as constant
for
individual mice

CAR-T cell death rate (1/day) q 0.035 Global
parameter set
optimized value

Tumor cell
radiosensitivity (1/Gy) *

aT 1.43 Global
parameter set
optimized value

CAR-T cell
radiosensitivity (1/Gy) *

aC 1.01 Global
optimized and
kept as constant
for
individual mice

Activity to dose conversion
factor (Gy/day/mCi)

h 1.44 Global
optimized and
kept as constant
for
individual mice
*Note that the radiosensitivity coefficients incorporate the effect of the radiobiological
effectiveness of high linear-energy transfer radiation as is the case in 225Ac alpha
particle therapy.
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for parametric variation with 10% and 30% uncertainty

(Supplementary Figure 3).
2.5 Impact of TRT and CAR-T cell therapy
dosing and scheduling on survival metrics

Both TRT and CAR-T cell doses were varied between 20% of

the experimental dose to 200% of the experimental dose. For TRT

this range was 1.48 to 14.8 kBq and for CAR-T cells it was from 0.2

to 2 million cells. Both therapies were simulated with the model as

monotherapies in silico to evaluate the impact of therapy dose on

the time to minimum tumor burden (tmin), the progression free

survival and the overall survival (OS). Overall survival was defined

to be the time interval between the tumor cell injection and the time

at which the number of tumor cells reaches 1011. The minimum

dose demonstrating an advantage in PFS was noted. Time to

minimum tumor burden (tmin) is defined as time difference

between the start of the first treatment and the day of the

minimum tumor burden. If no reduction in tumor was observed

tmin was set to zero. The impact of two doses of TRT or two doses of

CAR-T therapy were tested. Mathematically, this is done by adding

the second TRT or CAR-T therapy term to Equations (1) through

Equation (4). For TRT, two doses of 3.7 kBq each were simulated

with variable timing between them. For the CAR-T cell therapy, two

doses of 0.5 million cells with variable timing between them were

simulated. Minimum therapy interval demonstrating an advantage

in PFS was noted.
2.6 Optimizing multiple administrations of
CAR-T and TRT treatments

Based on the evaluation of tumor burden at different CAR-T

and TRT dose levels, a multiple administration dosing scheme was

created. A single dose of 7.4 kBq of TRT was administered for

maximum efficacy while two separate doses of 1 million CAR-T

cells each were administered. The therapies were administered in

silico in an alternating fashion with the TRT dose given in between

two CAR-T doses. While other regimens can also be explored, we

tested this dosing scheme here.

Based on the above dosing schemes, a strategy for maximizing PFS

was tested. First, CAR-T cell therapy (1million cells – dose 1) was given

on day 7. The timing of sequential TRT (7.4 kBq) and the subsequent

CAR-T cell therapy (1 million cells – dose 2) was varied. Tumor

burden, PFS and OS were calculated for each of the simulated

therapeutic scenarios. To test the effect of model parameter

variability on the optimal timing of the doses, the parameter limits

from individual mice fits with 30% variation from baseline parameters

are used to randomly generate 100 synthetic parameter sets, which was

observed to sufficiently characterize the distribution. For visualization,

two synthetic parameter sets are simulated and creation of histograms

demonstrating the range of TRT and CAR-T therapy timings that

yielded the highest PFS are shown.
Frontiers in Immunology 05
3 Results

3.1 Benchmarking model parameter set for
individual mice

Due to the variability in response among mice within a

treatment group, we fit the model to each mouse tumor growth

curve, allowing 50% variation in the parameters from the global

parameter set (Figures 2A–E). PFS for each group (Figure 2F) show

that treatment group with TRT dose on day 7 and CAR-T cell dose

on day 25 resulted in the greatest PFS. Large uncertainty in PFS was

found for treatment with TRT on day 7 and CAR-T cell therapy on

day 32, suggesting that the overall efficacy of the combination

therapy decreases and becomes highly uncertain if the interval

between therapies is too long. Analogous to Figure 2, the model-

data fit using global parameters is provided in the supplement

(Supplementary Figure 2).
3.2 Optimizing single administration of
CAR-T therapy with respect to TRT and
influence of therapy interval on
model parameters

The global parameter set was used to simulate variable CAR-T

therapy intervals post-TRT. Temporal dynamics of tumor and

CAR-T cell numbers are shown in Figure 3A. PFS curves from 5

synthetic parameter sets (including the benchmarked one in black)

are shown in Figure 3B. There is a range of therapy intervals for

which the PFS is maximum (black arrow). The CAR-T cell

administration day that yielded the maximum PFS for each of

these curves is plotted (Figure 3C). The procedure for generation of

histogram of optimal CAR-T cell therapy administration day for

maximizing PFS using these 5 synthetic datasets is also shown. The

histogram created from 1000 synthetic parameter sets shows a well-

defined peak at day 27-28 post-tumor inoculation (Figure 3D)

indicating this to be the CAR-T cell therapy administration day

for maximizing PFS. The synthetic parameter sets used for the

results shown incorporate 50% variability from the global

parameter set. Similar results are obtained with 10% or 30%

uncertainty in parameters (Supplementary Figure 3).

Figure 3E shows the parameter variation between groups. aT is

seen to be increasing with increased interval between therapies –

indicating that more of the tumor reduction is due to TRT rather

than CAR-T. Thus, the group-specific parameters show that the

effectiveness of CAR-T therapy is lower with increased intervals

between the therapy. Similarly, the value of k1 (CAR-T cell killing

rate) is lower and q (CAR-T cell persistence) is higher indicating

again the reduced effectiveness of CAR-T cell therapy. These results

can potentially point to a changing landscape of tumor cell

mutations with increased tumor burden. This reduced

effectiveness of CAR-T cell therapy with increased therapy

interval is not captured with the overall survival metric obtained

from the model.
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B C

D E

A

FIGURE 3

Optimizing the timing of CAR-T cell therapy after TRT and parametric variations attributed to treatment intervals. (A) Temporal development of
tumor and CAR-T cells based on the global parameter set with TRT administered on day 7 and CAR-T cell therapy administered on one of the days
from day 8 to day 50. (B) PFS calculated from day of TRT. Results of 5 synthetic parameter set runs are shown with global parameter set in black. For
the global parameter set, maximum PFS is observed when CAR-T cells are delivered between day 25 and 34. Note that there is a range of CAR-T
cell administration dates that yield highest PFS (black arrow). (C) The day when the PFS was maximum for each simulation run from B is shown along
with the corresponding histogram demonstrating how the variability in parameters between different simulation runs impacts the variability in day of
optimal CAR-T cell infusion. (D) Histogram showing the range of CAR-T injection days for which the maximum PFS was found with 1000 synthetic
parameter set simulations. CAR-T cells infused on day 27 on average had the highest probability of maximizing PFS. (E) Distributions of model
parameters for individual mice tumor growth curves are shown with parameters limited to ±50% of the parameters obtained from the benchmarked
parameter set for (1) d7 TRT only (2) d7 TRT + d18 CAR-T cell therapy. (3) d7 TRT + d25 CAR-T cell therapy. (4) d7 TRT + d32 CAR-T cell therapy. (5)
CAR-T cell monotherapy.
B C

D E F

A

FIGURE 2

Dynamics of tumor growth in response to TRT and CAR-T combination therapies. Datapoints show the tumor cell numbers calculated from the
experimental BLI data while the curves show the model fits to data. Individual mice parameters were limited to ±50% of the parameters obtained
from the global parameter set. (A) TRT D7 only (B) TRT D7 + CAR-T cell D18 therapy. (C) TRT D7 + CAR-T cell D25 therapy. (D) TRT D7 + CAR-T cell
D32 therapy. (E) CAR-T cell D7 therapy. (F) PFS obtained for each treatment group. The TRT D7 + CAR-T cells D25 therapy group demonstrated the
highest PFS.
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3.3 Impact of TRT and CAR-T cell therapy
dosing and scheduling on survival metrics

Figures 4A, B show the impact of reduction in injected

radioactivity on tumor burden and survival metrics. Figures 4C, D

show the analogous impact of dose reduction in CAR-T cell numbers.

In both cases, no reduction in PFS is observed below a certain dose

level (about 6.3 kBq for TRT and 0.7 million cells for CAR-T cells).

Doses below this level only result in slowing down of the disease

burden. Overall survival is seen to linearly increase with increasing

dose indicating the dose proportional gain in survival time.

Reducing the TRT dose (Figure 4F) of the first cycle to 3.7 kBq

does not give an advantage in the PFS indicating that a critical dose

is required initially for a multiple dose cycle. The highest PFS is

found when the entire 7.4 kBq dose is delivered on day 7. Thus the

7.4 kBq dose that has been used in the experimental group is used

for further simulations and the TRT dose is not split into two.

Similar effects were observed when a 1 million CAR-T cell dose is

split into two.

The impact of splitting TRT and CAR-T doses and varying the

interval between these doses is shown (Figures 4E–H). At 3.7 kBq

per TRT dose and 0.5 million cells per CAR-T dose, the second dose

does not show improved PFS if it is administered after 5 days (after

day 12) after the first dose (on day 7). The dependence of overall

survival on therapy interval is seen to be low, with OS comparable
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across different therapy timing. However, this metric does not

capture the parametric changes that happen when therapy

interval is decreased (Figure 4D).
3.4 Optimizing multiple administrations of
CAR-T and TRT treatments

After the first dose of CAR-T cell therapy, the timing of the

following dose of TRT and CAR-T cell therapy needs to be

optimized to yield maximum PFS (Figure 5A). If any of the

therapies are given too close to each other, the resulting death of

CAR-T cells due to radiation results in lower PFS. Similarly, having

the therapies spaced too far apart can also result in lower PFS due to

loss of benefit of the combination. The maximum PFS is observed

when timing the second therapy close to the point when the tumor

volume returns to the baseline. The creation of histograms for TRT

and CAR-T therapies administration days that yielded the

maximum PFS is shown (Figure 5B) using two synthetic

parameter sets as examples. The procedure is analogous to the

histogram creation in Figure 3C except that here there are two

therapy sequence timings to be optimized (TRT and CAR-T dose 2)

instead of one. Based on 100 synthetic parameter set simulations

(Figure 5C) the maximum PFS is seen when TRT is delivered on day

33 and dose 2 of CAR-T cell therapy is given on day 56.
B

C D

E F

G H

A

FIGURE 4

Impact of dosing and scheduling of TRT and CAR-T cell therapies on tumor burden and survival. Impact of TRT dose on (A) tumor volume and
(B) Survival metrics. Impact of CAR-T cell therapy dose on (C) tumor volume and (D) Survival metrics. A threshold of approximately 6.3 kBq for TRT
and 0.7 million CAR-T cells is required to observe an increase in PFS. Impact of timing of second dose of TRT on tumor burden (E) and survival (F).
Impact of timing of second dose of CAR-T cell therapy on tumor burden (G) and Survival (H). When splitting the doses, the TRT dose was 3.7 kBq
while CAR-T cell dose was 0.5 million cells for each administration. At these doses, the second dose needs to be given before day 12 for either TRT
or CAR-T therapy to note any advantage in PFS. The model predicts that 7.4 kBq single dose or 1 million CAR-T cell dose that are split into two
doses have a minimal effect on survival (D,E blue arrow).
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4 Discussion

In this work we show a modeling framework of combined TRT

and CAR-T cell therapy applied to experimental data. We have

elucidated the parameters that are relevant for this combination in a

murine model of multiple myeloma. We show that splitting of

therapy doses is advantageous only if the first therapy can produce a

significant benefit on its own. The model provides a quantitative

framework to optimize the dosing of immunotherapies and targeted

radionuclide therapies.

We optimized the TAT and CAR-T model parameters such that

a single parameter set with 50% uncertainty can explain the

differences in the tumor burden curves between individual mice.

Such an approach can facilitate in silico optimization of the two

therapies, where a single parameter set is associated with each of the

therapies. While the introduction of uncertainties in the parameters
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results in better individual tumor curve fits, more information about

CAR-T cell dynamics within the system can be highly informative

regarding the model parameters. In particular, the value of CAR-T

cell proliferation (k2) was predicted to be small relative to other

rate constants.

The optimized value of tumor proliferation rate (r = 0.21 day-1) is

smaller than the one calculated from untreated controls (r = 0.27 day-1)
which is used for BLI to tumor cell number conversion. There can be

two reasons for this. First, the long-term growth of the tumor burden

could be sigmoidal in nature instead of exponential as assumed in the

model resulting in slowing down of the tumor growth at later stages as

compared to the initial stages. Secondly, it could be that the post-

treatment phenotype of the tumor cells could be more resistant and

could grow slower in comparison to the pre-treatment phenotype. Such

a scenario would also support the reduced effectiveness of CAR-T cell

therapy when the interval between the therapies is increased
B C

A

FIGURE 5

Optimization of multiple dosing schedules. The timing of the following sequential therapies was optimized: CAR-T cell therapy (dose 1 always on
day 7) + TRT + CAR-T cell therapy repeated dose (dose 2), by maximizing the PFS. (A) Progression-free survival (PFS) shown as a function of TRT and
CAR-T dose timings following the first CAR-T dose given on day 7. The tumor burden curves corresponding to different zones of the PFS map are
also shown. (B) Example histogram creation of TRT and CAR-T cell dose timings that yielded the highest PFS based on two synthetic parameter sets.
It should be noted that combination of both TRT and CAR-T therapy timings contribute to maximizing the PFS. The TRT and CAR-T histograms
cannot be viewed in isolation. (C) TRT and CAR-T histograms created using 100 synthetic parameter sets generated within 30% uncertainty from
global parameter set. Of these 100 synthetic parameter set simulations, maximum PFS was found roughly 400 times when the TRT injection was
delivered on day 33 and CAR-T cells were infused on day 56. For each parameter set simulation, a PFS map as in (A) is observed – thus there are
multiple CAR-T and TRT administration days that yield highest PFS.
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(Figure 3E). The resistance of tumor cell population to therapy can be

mitigated by combination therapy approaches targeting two different

types of treatment sensitivities. Gatenby et al. (41) introduced the

ecological evolutionary dynamics concept of ‘first strike-second strike’

approach (42) to strategically sequence therapies for tumor cure. The

first strike reduces the size and heterogeneity of the tumor cell

population while the second strike(s) pushes the population below a

critical threshold that eventually results in tumor cell eradication.

Relevant to the combinations used in this work, radiation therapy

could be considered the tumor debulking treatment prior to CAR-T

cell therapy (43).

Based on the mathematical model, it might be feasible to delay

the delivery of the CAR-T cell dose post-TRT (CAR-T cells on day

25 vs 32), since the overall survival might increase. However, it

comes at the cost of higher uncertainty in the PFS indicating that

other factors that are not captured in the model might influence

tumor growth that might let it escape treatment. Notably, the

parameter evaluation for TRT + d32 CAR-T cell treatment

indicates lower efficacy of CAR-T cells compared to other

treatment combinations. This increased therapy interval can also

potentially increase the mutational burden of the tumor and might

lead to reduced therapy effectiveness.

In the current work, the optimization of multiple therapy

combinations is done with the goal of maximizing PFS. Another

strategy could be minimizing the tumor burden with the goal of

curative response. For different therapy regimens, it could be tested

whether tumor burden predicted by the model would be low

enough for cure in contrast to a strategy for maximizing PFS,

thus giving the model the flexibility to test different scenarios.

The mice experiments used in this work have been performed

on immunocompromised mice. Thus, the effect of radiation on

stimulating immune system is not present in this mouse model.

This data presents a cleaner model system for elucidating the effect

of CAR-T cells on the tumor volume by eradicating the influence of

other immune system components that can affect tumor volume.

The impact of radiation on the immune system will need to be

incorporated for optimizing therapeutic regimens in humans.

Biological variability in both preclinical and clinical realms is a

determinant of heterogeneous response to therapies both in terms

of efficacy and toxicity. To this end, the model assumes that a set of

model parameters is shared between the mice in the same group,

albeit with some uncertainty. Here we have chosen the model

parameters within a group to vary by 50% from the group mean.

This uncertainty level was chosen to capture expected variation in

mice groups based on our previous experience (40); and is enough

to demonstrate the differences in mean response to therapy between

the groups while at the same time accommodating qualitatively

reasonable fits to individual mice. In patients, the model can be

personalized better by delivering multiple cycles of therapy and

evaluating the patient response to individual doses to tailor the next

dose or therapy sequence. To this end clinical trials evaluating

targeted radionuclide therapy using 225Ac-DOTA-Dara (Clinical

trial identifier: NCT05363111) and CS1-CAR-T cell therapy

(Clinical trial identifier: NCT03710421) as monotherapies in

multiple myeloma patients are being evaluated to study patient

response (toxicity and efficacy) to these agents. The combination of
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these therapies can bring synergistic effects and unique challenges.

Radiation from TRT can give rise to non-specific immune response

of CAR-T cells and might result in T-cell activation and priming.

Abscopal effects of radiation that might be based on systemic

responses can also result in increased efficacy compared to model

predictions. A possible side effect especially relevant to targeted

alpha particle therapies like 225Ac is the impact of these agents on

the tumor vasculature. Depending on the specific tumor, its

vasculature and the radiation dose delivered, a complex non-

linear relationship might exist for vasculature killing that might

impact the delivery of subsequent therapies. Studying the spatio-

temporal nature of tumor response to different doses while at the

same time imaging the accumulation of these agents in tumors (as

being done in the 225Ac-Dara trial NCT05363111) can be key to

develop more sophisticated mathematical models that can further

optimize therapeutic regimen with targeted radionuclide therapies.

An obvious result is that higher dose of a therapy, the higher

chance of cure; suggesting that the shorter the interval between two

cycles of a therapy, the better the tumor reduction to the limit that

CAR-T cells are not significantly damaged by the radiation.

However, the interval between therapies cannot be shortened

indefinitely. Reduced interval between TRT and CAR-T cell

therapy results in death of CAR-T cells. On the other hand,

reduced interval between two CAR-T cell doses or two TRT doses

can be equivalent to a single high dose of that therapy. The radiation

dose to organs at risk needs to be considered in a way that the

rejuvenation of the organ at risk yields a therapeutic advantage

when delivering a second cycle of the therapy. In the case of TAT, it

could be the bone marrow while CAR-T cell toxicity can be in the

form of cytokine release syndrome. Thus, a combination therapy

where the two toxicity risks are unrelated to each other is seen to

provide the best tumor control and delay tumor growth. Thus, the

rationale for use of immunotherapies with TRT as part of a therapy

regimen is strong and justifies its use for further investigation.
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