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Probability and Contiguity Trade-Offs in Causal Induction 
 

Marc J Buehner (BuehnerM@Cardiff.ac.uk) & Stuart McGregor (Stuart.McGregor1@ntlworld.com) 
School of Psychology, Cardiff University, Tower Building, Park Place 

Cardiff, CF10 3AT, Wales, UK. 
 

Abstract 

Two experiments investigated the roles of contingency and 
temporal contiguity in causal reasoning, and the trade-off 
between them. Participants observed an ongoing, continuous 
stream of events, which was not segmented into discrete 
learning trials. Four potential candidate causes competed for 
explanatory strength with respect to a single dichotomous 
effect. The effect was contingent on two of these causes, with 
one of these (A) having a higher probability of producing the 
effect compared to the other (B), while B was more 
contiguous to the effect than A. When asked to identify the 
strongest cause of the effect, participants consistently and 
reliably selected A, as long as it was not separated from the 
effect by more than 2.5s. The extent of preference diminished, 
however, as the contiguity gradient between A and B 
increased. Beyond 2.5s, the high-probability, but low-
contiguity cause A was seen as equally strong as the low-
probability, but high-contiguity cause B, and both reliably 
stood out compared to the remaining two non-contingent 
distracter items. This apparent trade-off between contingency 
and contiguity, rooted in contrasting two of David Hume’s 
(1739/1888) fundamental cues to causality, has important 
implications for psychological and statistical models of causal 
discovery, learning theory, and artificial intelligence. 
KEYWORDS: Causality, Probability, Contiguity, Learning, 
Human Experimentation, Causal Inference. 

Introduction 
How do humans and other intelligent systems learn that one 
thing causes another? The contemporary cognitive science 
approach to this problem of induction can be traced back to 
David Hume (1739/1888), who famously argued that our 
sensory system is not equipped to directly perceive 
causality. Instead, he argued, reasoners have to interpret 
sensory experiences to create a mental representation of 
causality. Hume identified three principles underlying the 
formation of causal impressions: i) temporal priority of the 
cause c before the effect e, ii) temporal and spatial 
contiguity between c and e, and iii) constant conjunction 
between c and e. Only the latter two principles are of 
relevance to cognitive scientists, as the need for temporal 
priority of c over e is usually not debated (Reichenbach, 
1956; but see also Savastano & Miller, 1998; and Tanimoto 
et al., 2004 for discussion of bi-directional associations). 
Computational approaches of causal induction have almost 
exclusively focused on the third Humean principle, which is 
commonly referred to as cause-effect contingency. Just how 
exactly contingency gives rise to causal impressions is still 
subject of a hot debate in the field. Suggestions range from 
using contingency (∆P) - calculated by the difference 
between the two conditional probabilities: P(e|c)-P(e|¬c) – 
as a direct measure of causal strength (Allan & Jenkins, 

1980; Jenkins & Ward, 1965) to more sophisticated 
judgment rules (e.g. Anderson & Sheu, 1995; Mandel & 
Lehman, 1998; White, 2003). An alternative suggestion 
(Shanks & Dickinson, 1987) is that causal learning may be 
no different from associative learning as exemplified by 
Rescorla & Wagner’s (1972) model of Pavlovian 
conditioning. More recently, however, Cheng (1997) 
showed that all the above approaches fall short of 
representing causality as an unbound variable (Holyoak & 
Hummel, 2000), and suggested a computational causal 
power approach. A related approach (Buehner & Cheng, 
2005) has been to model causal induction as Bayesian 
inference (e.g. Steyvers et al., 2003; Tenenbaum & 
Griffiths, 2001). 
In the midst of the vigorous debate over the computational 
details of covariation assessment, the second Humean cue – 
contiguity - got largely overlooked (but see Young, 1997). 
The majority of recent experimental studies have 
investigated how variations in contingency influence causal 
assessment; contiguity was never manipulated in these 
studies, and was usually kept at an immediate level. 
Earlier work on causal reasoning, however, often focused on 
contiguity. Michotte (1946/1963) observed that even very 
short delays render an illusion of causal launching non-
causal. In a completely different domain, Shanks, Pearson & 
Dickinson (1989) reported that people fail to distinguish 
causal from non-causal actions in an instrumental learning 
task when the action-outcome delay exceeded two seconds. 
The importance of Hume’s second principle was 
acknowledged in early, non-computational psychological 
theories of causal induction (Einhorn & Hogarth, 1986; 
Young, 1995). 

Two Cues Towards Causality: Contingency vs. 
Contiguity 
Developmental psychologists attempted to determine which 
of the two cues, contiguity or contingency, is more 
important (Siegler & Liebert, 1974; Mendelson & Shultz, 
1976; Shultz, 1982). These efforts were somewhat 
inconclusive, as they were closely entangled with another 
important principle of causal induction: understanding or 
knowledge of mechanism (Bullock et al., 1982; Ahn et al., 
1995). Mendelson & Shultz, for instance, reported that 
whether a non-contiguous but contingent cause was 
preferred over a contiguous but non-contingent cause 
depended on variations in the physical make-up of the 
apparatus (i.e. mechanism), and whether such variations 
were commensurate with the experienced delay. 
The role of causal mechanisms. Considerations of 
mechanism (and concomitant expectations of timeframes) 
have been suggested to interact with contiguity (Einhorn & 
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Hogarth, 1986): if reasoners assume that the mechanism 
linking cause and effect operates instantly, they should only 
consider immediate cause-effect pairings as evidence 
supporting a causal link; if the mechanism is thought to 
involve a delay, only delayed pairings ought to give rise to 
causal attributions. Buehner and May (2002, 2003, 2004) 
found partial empirical support for this knowledge 
mediation hypothesis: Delays were no longer detrimental in 
a causal judgment task modeled after Shanks et al. (1989), if 
participants expected a delayed relation. However, 
immediate cause-effect pairings were consistently rated as 
highly causal, irrespective of time-frame expectations. 
These results suggest that knowledge of mechanism bridges 
temporal gaps; at the same time, however, experienced 
contiguity seems to override considerations of mechanism. 
Schlottmann (1999), for instance found that young children 
and adults readily learnt about two causal mechanisms with 
different timeframes. They could a) successfully predict the 
correct cause-effect timing for slow and fast mechanisms, 
and b) correctly infer (based on the experienced timeframe 
of the observed causal relation) which of the mechanisms 
(fast vs. slow) was hidden in a “mystery box”.  However, 
when contiguity and mechanism were directly pitted against 
each other in a forced choice task involving a contiguous 
and a delayed cause, young children consistently preferred 
the contiguous cause, even when this choice openly 
conflicted with well-established knowledge of a delayed 
mechanism. Experienced contiguity as a cue to causality 
thus seems to operate on a more fundamental level than 
higher-level considerations of mechanism. 
Note that these studies did not vary the contingencies 
associated with each cause. While they illuminated the role 
of contiguity in causal induction, and how it interacts with 
knowledge of mechanism, they did not address the 
questions raised by developmental psychologists in the 
1970s: Whether the two empirical cues to causality -- 
contingency and contiguity -- are equally important for 
causal induction.  
A Computational Perspective. From a computational, 
perspective, one would expect that contingency is more 
fundamental than contiguity. After all, the ability to control 
and predict our environment – the goal of causal induction 
(Cheng, 1997) – is based on making use of regularity 
information. On the other hand, it is also evident that 
contiguity is vital for causal assessment. Time-lagged 
regularities are harder to detect, because event information 
needs to be kept in memory for longer; as the cause-effect 
interval increases, the number of potentially intervening 
(alternative) causes that need to be taken into account 
increases. In short, identification of causal relation becomes 
increasingly difficult as contiguity decreases. 
Nonetheless, there is no causality without regularity (Cheng, 
1993), and given sufficient computational resources, 
contingency should be the essential cue. In realistic, real-
time situations, however, where computational resources are 
limited, one may well observe a tradeoff between the two 
cues. 

Experiment 1 
We developed a new experimental methodology aimed at 
studying the trade-off between contingency and contiguity 
in causal induction. We adopted Mendelson & Shultz’s 
(1976) idea to pitch two causes, each with a high value on 
one, but a low value on the other dimension against each 
other.  More specifically, one cause (A) had a higher 
contingency with respect to the effect than the other (B), but 
at the same time A was less contiguous with the effect than 
B. Unlike in Mendelson & Shultz’ study, however, A and B 
were fully independent of each other and there was no 
interactive causal influence (Novick & Cheng, 2004) 
beyond the individual causal strengths. Furthermore, it was 
important to couch the task in a novel context so that 
participants would not have any pre-conceived notions of 
mechanism or expectations of time-frames. This allowed us 
to rule out any top-down influences and study contingency-
contiguity trade-offs in a purely bottom-up manner. 
To this end, we created a “Stargate” scenario: Participants 
were told they would observe a group of UFOs orbiting 
around a stargate; each UFO would attempt to open the 
gate. Because each UFO would use a unique signaling 
technique, some would be more successful than others at 
opening the gate, and some could open the gate faster (if 
successful) than others.  Participants’ task was to determine 
which UFO was most successful at opening the gate. 
In designing the task, it was essential to avoid a discretely 
marked trial structure. Trial structures either confound 
contingency with contiguity (see Buehner & May, 2003) or 
remove the event-parsing aspect of causal learning (Allan et 
al., 2003), resulting in an artificial judgment task that bears 
little resemblance with causal discovery. We used 
Macromedia Director to present participants with 
continuous event streams that were not divided into 
individual learning trials. Although the event stream was 
controlled by an underlying trial structure, the appearance to 
the participant was one of a continuous sequence of events. 
We strongly encourage readers to watch sample stimuli 
provided at  
http://www.cardiff.ac.uk/psych/home/buehnerm/Stimuli 

Method 
Participants. Ninety-nine undergraduate students from 
Cardiff University participated to fulfill part of a course 
requirement. 
 
Apparatus and Procedure. Event sequences were 
programmed using Macromedia Director, and displayed on 
a computer screen. The displays represented a ‘stargate’ in 
the middle of the screen, which was either open or closed, 
and four static UFOs, arranged near each corner of the gate. 
Each UFO had a unique color scheme for its two windows. 
A ‘signalling’ UFO was displayed with an overlay of 
colored stripes, with the color pattern matching the color 
scheme of the windows. By default, the stargate was closed, 
and UFOs were inactive. Activity (open gate, active UFO) 
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was scheduled by the program and lasted 500ms. Figure 1 
displays sample stimulus materials. 
 

 
 

Figure 1. Stimulus Materials. The top right UFO is 
“active” in this screenshot, and the gate is closed. 

 
Each participant worked on four conditions presented in 
random order, each consisting of a sequence of trials, 
presented in random order. The appearance to the 
participant was one of a continuous stream of events; trial 
delineation was not made explicit to the participant, and 
trials were not marked.  
In each condition, activity of two UFOs (A&B) was 
probabilistically linked to the opening of the gate, with A 
always having a higher probability of opening the gate than 
B as specified in the Design section. The other two UFOs 
(C&D) were programmed to activate on 25% of the trials, at 
a random time throughout each trial; activity in these UFOs 
was unrelated to the gate opening. The base-rate of the gate 
opening was zero, i.e. it only opened conditional on activity 
in A or B. The locations and color schemes of each of the 
four UFOs were randomized for each condition. 
The event-structure was organized as follows: If A or B 
were scheduled to be active on a given trial, they would 
emit a signal at a random point during the first 5 seconds of 
that trial.  If the signaling was successful, the gate opened 
for 500ms after the relevant delay. Activity in A and B was 
independent of each other, so that on some trials both A and 
B would signal; on such trials, A and B would both produce 
the effect according to their respective probability and 
delay. In other words, A and B were truly independent of 
each other and did not interact to produce the effect (Novick 
& Cheng, 2004). 
Participants observed the event streams for each condition, 
and then had to indicate which UFO was most successful in 
opening the gate.  To this end, they were told to imagine 
they could “zap” one of the UFOs to emit a signal, and were 
asked to decide which UFO they would zap in order to open 
the gate. The experiment lasted about 30 minutes. 
Design. The two variables of interest, Contingency and 
Contiguity, were controlled as follows.  A always opened 

the gate with a higher probability than B. The extent of the 
probability gradient between A and B was manipulated 
between participants in five conditions: a) 75% vs. 25%; b) 
75% vs. 50%; c) 100% vs. 25%; d) 100% vs. 50%; and e) 
100% vs. 75%. Participants were randomly allocated to one 
of these pairs of probabilities.  
The cause-effect contiguity of the low-probability cause (B) 
was always set to 500ms.  The contiguity of the high-
probability cause (A) varied within participants across four 
conditions, and took values of 500ms, 1000ms, 1500ms, and 
2000ms.  

Results 
For sake of brevity, analyses are only reported for data 
collapsed across the five probability gradients.1 All 
statistical analyses are based on an alpha-level of .05 with 
Bonferroni-corrections for multiple tests, where applicable. 
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Figure 2. Experiment 1: Percentage of Participants 

(N=99) choosing Causes A or B or one of the two unrelated 
events (C&D). 

 
Inspection of Figure 2 suggests that participants consistently 
selected the high-probability cause A, even when its 
contiguity with respect to the effect was degraded. 
However, the degree of preference of A over B seems to 
diminish as the contiguity of A decreased. Choices for the 
unrelated distracter causes (C&D) were below 10% in all 
conditions, and thus well below the chance level of 50%, 
(all ps <.001 on a Binomial test). 
We constructed three separate and mutually exclusive 
dichotomous choice variables for causes A and B, and the 
two unrelated events (C&D).  The proportion of choices for 
A was significantly higher than that for B across all four 
levels of contiguity (all ps<.001 by sign test). Cochran’s Q 
tests with corrected alpha-level (p=.017) were conducted to 
assess the influence of contiguity on choice patterns.  
                                                           
1 Preliminary analyses revealed no effects or interactions 
associated with probability gradient, suggesting that participants 
distinguished equally well between high (A) and low (B) 
contingencies in all five conditions. 
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Choices for A significantly decreased as A’s contiguity with 
respect to the effect decreased, Q(3,99)=13.541, while 
choices for B significantly increased, Q(3,99)=14.415.  
Choices for the two unrelated causes were not affected by 
variations in A’s contiguity, Q(3,99) = 2.561. 

Discussion 
Participants were clearly able to extract contingency 
information from a continuous stream of events that 
contained no observable trial boundaries. They reliably and 
consistently identified the cause that was followed by the 
effect with the highest probability among a choice of four. 
Moreover, this preference for a high-probability cause was 
maintained in the face of degraded contiguity: although B 
was highly contiguous with the effect (500ms), A was 
consistently preferred as the stronger and more effective 
cause due to its higher probability, even when A was 
separated from the effect by as much as 2s.  The extent of 
this overall preference decreased, however, as the contiguity 
contrast between A and B increased. Experiment 1 thus 
suggests that people put more importance on contingency 
than on contiguity as reliable cues towards causality; at the 
same time, there seems to be some trade-off between the 
two, with participants shifting more weight on contiguity, as 
the contiguity contrast increases. 

Experiment 2 
Shanks et al. (1989) reported that participants failed to 
distinguish causal from non-causal actions when the action-
outcome interval exceeded two seconds (but see Buehner & 
May, 2003).  Perhaps the contiguity gradient in Experiment 
1 was not steep enough to observe a shift from contingency 
to contiguity.  Experiment 2 thus replicated Experiment 1, 
but employed a larger contiguity contrast between causes A 
and B: while B was still associated with a 500ms delay, A’s 
delay could take on values of 2500ms, 3250ms, and 
4000ms. 
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Figure 3. Experiment 2: Percentage of Participants 

(N=65) choosing Causes A or B or one of the two unrelated 
events (C & D). 

 

Method 
Participants. Sixty-five undergraduate students from 
Cardiff University participated to fulfill part of a course 
requirement. 
Apparatus, Procedure, and Design. The same design and 
procedure as in Experiment 1 was employed, except that the 
contiguity of A could take on values of 2500ms, 3250ms, 
and 4000ms (varied within-subjects), while the contiguity of 
B remained at 500ms.  The same five probability gradients 
as in Experiment 1 were varied between subjects. 

Results 

Results and Discussion 
Inspection of Figure 3 suggests that A is no longer preferred 
over B when A’s delay exceeds 2.5s. As in Experiment 1, 
choices for distracter items C&D never exceeded 10% in 
any of the conditions, again well below the chance level of 
50% (all ps < .001 on a Binomial test). 
The proportion of choices for A was significantly higher 
than choices for B in the 2500ms condition, Z=4.032, 
p<.001 on a Sign test; no significant difference in choice 
patterns was obtained in the 3250ms and 4000ms 
conditions, Z=.768 and Z=.645, respectively. Choices for A 
significantly declined as the contiguity of A decreased, 
Q(2,65)=15.630, while choices for B significantly increased, 
Q(2,65)=9.600; choices for C were not affected by 
variations in A’s contiguity, Q(2,65)=2.000. 
As expected, with a steeper contiguity gradient, contingency 
no longer dominated choice patterns. Both cues were 
equally important in determining choice patterns. 
Remarkably, B never was preferred over A, suggesting that 
contiguity was never more important than contingency, at 
least not within the parameters of this design. 

General Discussion 
The goal of this paper was to investigate how contiguity and 
contingency relate to each other in causal induction. In 
particular, we wanted to find out whether people selectively 
weigh one cue as more important than the other. Towards 
this end we created a novel experimental setup, which 
allowed us to study causal induction under ecologically 
valid conditions: events were presented in one continuous 
flow, with no discrete trial boundaries. Within this 
framework, event parsing becomes part of causal induction, 
as it does in real life. Our choice of scenario furthermore 
ruled out recruitment of prior knowledge of mechanism and 
associated timeframes. Previous experiments investigating 
the role of contiguity within demarcated learning trials 
examined contrasts between experienced and expected 
timeframes (e.g. Allan et al., 2003). In such studies, 
variations of contiguity determined whether each individual 
trial was seen as evidence for or against the causal relation 
in question. In our design, the absence of trials made such 
evaluations immaterial. Instead, participants had to consider 
the entire stream of events when making causal judgments.  
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This trial-free notion of causal learning is similar to rate-
based accounts of learning (Anderson & Sheu, 1995; 
Gallistel & Gibbon, 2000). Anderson & Sheu, for instance, 
found that causal judgments followed a grating contrast 
based on the rates of effect occurrence conditional on the 
presence vs. the absence of the cause. In their instrumental 
learning task, Anderson & Sheu varied response-outcome 
intervals while keeping contingencies constant. While they 
reported sensitivity to both contiguity and contingency, their 
design did not allow systematic investigations of the 
interaction between the two cues (for a related argument on 
relative contiguity, see also Wasserman & Neunaber, 1986). 
As we have argued in the introduction, degradations in 
causal judgment due to reductions in contingency follow 
readily from a computational analysis of the inductive 
problem; degradations due to reduced contiguity may 
appear non-normative (apart from mis-matches between 
expected and experienced time-frames), but nonetheless are 
to be expected under realistic circumstances involving 
limited memory and computational resources. What was 
less clear, however, was how these two cues interact to 
determine causal induction. Our results suggest a dominance 
of contingency over contiguity. This dominance is 
moderated by a trade-off curve, however, such that 
contingency gradually loses its dominance when the cause-
effect delay increases.  
When considering such trade-offs, it is important to separate 
utility from causality (Oaksford & Chater, 1998). A 
response may have perfect contingency with a desired 
outcome, but produce the outcome only after a long delay. 
An alternative response may produce the outcome right 
away, but unreliably. Depending on the cost of responding 
and the time available to interact with the environment, it 
may be more beneficial for the organism to engage in the 
low-contingent response. Our experiment asked participants 
to select the cause that is most successful in producing the 
effect (without any reference to time). The one-shot nature 
of our dependent measure clearly requested an answer based 
on causality, rather than utility, and our results show that 
people were aware of this.  
We hope that our empirical results will inform and constrain 
modeling efforts in event parsing and statistical learning. 
Our current results indicate that contiguity at best is equally 
important as contingency, but never outweighs it. Future 
research will need to investigate whether this parameter 
ordering also holds in situations involving steeper contiguity 
gradients.  
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