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ABSTRACT

In theory, an investor can make infinite profits by taking unlimited posi-
tions in an arbitrage. In reality, however, investors must satisfy margin
requirements which completely change the economics of arbitrage. We
derive the optimal investment policy for a risk-averse investor in a mar-
ket where there are arbitrage opportunities. We show that it is often
optimal to underinvest in the arbitrage by taking a smaller position than
margin constraints allow. In some cases, it is actually optimal for an
investor to walk away from a pure arbitrage opportunity. Even when the
optimal policy is followed, the arbitrage strategy may underperform the
riskless asset or have an unimpressive Sharpe ratio. Furthermore, the
arbitrage portfolio typically experiences losses at some point before the
final convergence date. These results have important implications for the
role of arbitrageurs in financial markets.



So there’s an arbitrage. So what? This desk has lost a lot of money on
arbitrages. Arbitrages aren’t particularly great trades.

– Treasury bond trader at a major Wall Street investment bank.

1. INTRODUCTION

One of the foundational principles of financial economics is that arbitrages cannot
exist in security markets. The reasoning is that if arbitrages did exist, then investors
could attain infinite wealth by taking unlimited positions in the arbitrage. Economic
theory implies that an arbitrage is an investment opportunity that is literally too good
to be true.

In actual financial markets, however, investors may not be able to attain infinite
wealth even if pure arbitrage opportunities exist. Recall that the textbook strategy for
exploiting an arbitrage requires taking offsetting long and short positions and holding
them until convergence. An investor who takes a short position, however, is required
to post collateral as margin. This margin requirement drives an important wedge
between textbook arbitrage strategies and strategies that are actually feasible. For
example, consider an investor who implements an arbitrage strategy to exploit an
arbitrage opportunity. If the arbitrage were then to widen rather than narrow, the
investor would experience mark-to-market losses on the position. If the losses were
severe enough, the investor might not have sufficient collateral to meet margin calls,
and then be forced to liquidate some or all of the position at a loss before it had
converged to its theoretical no-arbitrage value. Some recent examples of this include
the following:

When spreads widened in a disorganized, tumbling market, gains on short
positions weren’t enough to offset losses on long ones. Lenders demanded
more collateral, forcing the funds either to abandon the arbitrage plays or to
raise money for the margin calls by selling other holdings at fire sale prices.
Long-Term Capital responded to the crisis by shedding marginal deals, such
as bets on the direction of interest rates, at losses.

– Business Week, September 21, 1998.
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A Minneapolis-based hedge fund that specializes in fixed-income arbitrage, Ea-
gle Global Value Fund, was compelled to begin liquidating its holdings Friday
in the latest trouble for the hedge-fund business. The move was made after
the fund failed to meet margin calls, or demands to put up more collateral.

– The Wall Street Journal, October 12, 1998.

Because an investor might be forced to liquidate part of an arbitrage position prior to
convergence, even the simplest strategies to exploit arbitrages could actually result in
losses when investors face margin constraints, a lesson painfully learned recently by
many highly-leveraged hedge funds. This inherent risk in taking arbitrage positions
is also discussed in recent papers by Shleifer and Vishny (1997) and Loewenstein and
Willard (2000a).

If arbitrages are actually risky investments from the perspective of an investor or
hedge-fund manager facing margin constraints, then a number of interesting economic
issues arise. For example, what is the optimal investment strategy when markets have
arbitrage opportunities? Similarly, how do arbitrages compare with other investments
in terms of their risk and return characteristics?

To address these issues, this paper studies a continuous-time model in which
there are explicit arbitrage opportunities. To capture the spirit of standard textbook
examples, we model the arbitrage opportunity as a security whose price follows a
process that converges to zero at some specified future time. In this setting, an
investor could make arbitrage profits with certainty if he could hold the position until
convergence at maturity. In the short run, however, the arbitrage may widen and
force the investor to liquidate positions at a loss. Thus, there is no guarantee that the
investor can hold the position until it converges.

The results are surprising. We find that it is often optimal for the investor to
underinvest in the arbitrage opportunity. Specifically, the investor often will not take
the largest arbitrage position allowed by the margin constraint; the margin constraint
frequently is not binding. This contrasts with the popular view that an investor should
take the largest position possible in any arbitrage opportunity. In fact, we demonstrate
that there are actually circumstances in which an investor will walk away from an
arbitrage opportunity. In particular, an investor may turn down an arbitrage strategy
with a payoff that dominates the payoff on a riskless asset in order to follow a strategy
that may underperform the riskless asset.

Even when the investor follows the optimal investment strategy, the returns from
investing in the arbitrage may not be as attractive as those from conventional assets.
For example, we demonstrate that the investor can experience substantial losses on
his portfolio prior to the convergence date of the arbitrage. In some cases, these
losses can be more than 75 percent of the value of the portfolio. For some parameter
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values, it is also possible for the investor to have a loss even after the arbitrage has
converged at its maturity date. In this situation, the investor is worse off than if he
had invested only in the riskless asset. We show that the return distributions from
following the optimal strategy are highly skewed towards negative values during the
early stages of the arbitrage, and that the arbitrage portfolio is usually worth less that
its initial value at some point during the life of the arbitrage. Finally, we find that
the Sharpe ratio from investing in the arbitrage generally only averages about two
in our numerical examples, which is not significantly better than for many types of
traditional investments.

Our results demonstrate that experiencing large losses during the early stages of
an arbitrage strategy is almost a hallmark of the optimal strategy. From this perspec-
tive, the real problem during the hedge fund crisis of 1998 may not have been that
arbitrage funds used too much leverage or that they were speculating, but rather that
many market participants had unrealistic expectations about how arbitrage strategies
should perform over time.

These results also have important implications for the role of arbitrageurs in
financial markets. Standard economic theory takes as given the notion that arbitrages
cannot exist in the markets since if they did, arbitrageurs would immediately buy and
sell the cheap and rich securities until the prices came back into line. Our analysis
calls this simplistic view into question since it is not clear that an investor would
actually choose to take a position in a specific arbitrage. If investors found it optimal
to take only a very limited position in an arbitrage opportunity, or to avoid taking
any position at all, then there is no reason why the arbitrage could not persist or
even become wider. Given that margin requirements are a fact of life in all financial
markets, these results suggest that many theoretical valuation arguments based on
the absence of arbitrage principles may need to be reexamined.1

Our research complements an important recent literature focusing on whether ar-
bitrage opportunities can exist in equilibrium. Key examples of this literature include
Basak and Croitoru (2000) and Loewenstein and Willard (2000a, 2000b, 2000c). These
papers demonstrate that arbitrage or mispricing can be sustained in general equilib-
rium when financial markets have frictions or imperfections. In the models studied in
these papers, however, the arbitrageur always takes the maximum possible position
allowed by the financial market constraints. This paper contributes to the literature
by demonstrating that when the real-world feature of margin constraints is introduced,
arbitrages become risky and agents may actually choose to take smaller positions that
allowed by constraints. Our results underscore the importance of the papers by Basak
and Croitoru and Loewenstein and Willard and suggest that their analysis could be
extended to provide even richer general equilibrium implications for financial markets.

1Important recent papers addressing derivatives valuation without using no-arbitrage
arguments include Cochrane and Saa-Requejo (2000) and Bernardo and Ledoit (2000).
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Other important related work includes Brennan and Schwartz (1988, 1990), De Long,
Shleifer, Summers, and Waldmann (1990), Duffie (1990), Dumas (1992), Tuckman
and Vila (1992), Delgado and Dumas (1994), Yadev and Pope (1994), Chen (1995),
Dow and Gorton (1997), Detemple and Murthy (1997), Zigrand (1997), Willard and
Dybvig (1999), and Xiong (1999). In addition, our paper complements and extends
the literature on margin constraints in financial markets. Important examples of this
literature include Heath and Jarrow (1987), Hindy (1995), and Cuoco and Liu (1999).
Finally, our results corroborate Shleifer and Vishny (1997) who show that arbitrage
can be risky when there are margin constraints. Unlike Shleifer and Vishny, however,
we explicitly study the optimal portfolio strategy for an investor in a market with
arbitrage opportunities.

The remainder of this paper is organized as follows. Section 2 presents the dy-
namic portfolio choice problem in markets with arbitrage opportunities. Section 3
discusses the optimal portfolio strategy. Section 4 examines the return distributions
resulting from following the optimal strategy. Section 5 considers several alternative
strategies. Section 6 summarizes the results and makes concluding remarks.

2. THE DYNAMIC PORTFOLIO CHOICE PROBLEM

In this section, we describe the continuous-time framework and explain how we model
arbitrage opportunities. We then solve for the optimal portfolio strategy and the
investor’s derived utility of wealth function. To make the intuition as clear as possible,
we focus on the simplest version of the model.2 Extensions of the basic model are
discussed later.

We model a simple two-investment financial market in which trading takes place
continuously in time. The first investment is a riskless asset with value Rt which earns
a constant rate of interest r. The dynamics of the riskless asset are given by

dR = rRdt, (1)

where R0 = 1. Solving this equation for the value of the riskless asset gives Rt = e
rt.

2Basak and Croitoru (2000) and Loewenstein and Willard (2000a, 2000b, 2000c) focus
on the important issue of whether arbitrage or mispricing can exist in general equi-
librium. Motivated by their results as well as by practitioner claims and empirical
evidence that arbitrages do exist, we focus on how an agent optimally exploits arbi-
trages in financial markets. In doing this, we use a partial equilibrium framework to
highlight the implications for the portfolio choice problem. In this sense, our results
both complement those of Basak and Croitoru and Loewenstein and Willard and sug-
gest ways in which their general equilibrium models could be extended to allow richer
effects.
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The second investment is an arbitrage opportunity with value At, where 0 ≤ t ≤
T . Intuitively, At can be thought of as the value of a portfolio that converges to zero
at time T . As an example of this type of portfolio, consider the case where there is a
violation of the put-call parity relation for European options on non-dividend-paying
stock. Standard option-pricing theory such as Merton (1973) shows that a portfolio
consisting of a long call option with strike K and maturity T , a short put option with
the same strike and maturity, a short position in the underlying stock, and an initial
investment of Ke−rT in the riskless asset must be worth zero at time T . This conver-
gence to zero at time T is a simple consequence of the contractual cash flows from the
options at their expiration date, and does not depend on assumptions about the dis-
tributions of returns or the rationality of the options market at time T . If the value of
this portfolio is non-zero at some time t < T , then this portfolio becomes a clear exam-
ple of a pure arbitrage opportunity. If the value of the portfolio is negative (positive),
the investor makes arbitrage profits by taking a long (short) position in this portfo-
lio. Note that the arbitrage portfolio requires taking both long and short positions in
some securities (see Longstaff (1995)). Other examples of arbitrage portfolios which
mathematically must converge to zero at some future time T include taking offsetting
long and short positions in two Treasury STRIPS or zero-coupon bonds with identical
maturity dates (see Daves and Ehrhardt (1993) and Grinblatt and Longstaff (2000))
or in a Treasury bill and an off-the-run Treasury bond after it pays its final coupon
(see Amihud and Mendelson (1991) and Kamara (1994)). Similarly, the difference
between a stock index futures price and the price implied by standard cost-of-carry
arguments must converge to zero at the expiration date of the contract (see Brennan
and Schwartz (1988, 1990) and Duffie (1990)).

To capture the classical notion of an arbitrage as a portfolio with a value con-
verging to zero at some future point in time T , we assume that the dynamics of A
follow the Brownian-bridge process

dA =
−αA
T − tdt+ σ dZ, (2)

where α and σ are positive constants, 0 ≤ t ≤ T , and Z is a standard Brownian
motion.3 Note that as t → T , the drift of this process approaches +∞ when At < 0,
and −∞ when At > 0. Thus, as t→ T , the mean reversion of the process towards zero
become stronger and stronger, forcing AT to converge to zero with probability one.

4

3The Brownian bridge process has been applied to financial market prices by Ball and
Torous (1983), Brennan and Schwartz (1988, 1990), Duffie (1990), and Cheng (1991).
Loewenstein and Willard (2000a) study the viability of a Brownian bridge as a return
process.

4Rather than converging to zero at time T , the arbitrage process could be generalized
to converge to some other fixed value by a simple modification of the drift term.
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The parameter α governs the speed at which the arbitrage opportunity converges to
zero. The parameter σ represents the volatility of the arbitrage and determines the
distribution of possible arbitrage opportunities. Solving this stochastic differential
equation results in the following expression for As, where 0 ≤ t ≤ s ≤ T ,

As =

µ
T − s
T − t

¶α
At + σ

Z s

t

µ
T − s
T − τ

¶α
dZτ . (3)

It is easily seen that As is normally distributed for s < T . We denote the expected
value of As conditional on the value of At by Ms, where

Ms =

µ
T − s
T − t

¶α
At. (4)

Similarly, the conditional variance of As, which we denote V
2
s , is given by

V 2s =
σ2(T − t)
1− 2α

"µ
T − s
T − t

¶2α
−
µ
T − s
T − t

¶#
, (5)

for α 6= 1/2, and by

V 2s = σ
2(T − s) ln

µ
T − t
T − s

¶
, (6)

for α = 1/2. As s→ T , both Ms and V
2
s converge to zero.

The Brownian-bridge process allows At to take on both positive and negative
values. When At is positive, the investor receives a positive cash flow of At by investing
in a negative number of units of the arbitrage. When At is negative, the investor
receives a positive cash flow of −At by investing in a positive number of units of the
arbitrage. It is important to observe that by taking a position in the arbitrage and
receiving a positive cash flow at time t, the investor simultaneously creates a liability,
since the investor would need to pay the same amount to immediately unwind the
arbitrage position. It is easily shown that |A(t)| can exceed any fixed value with
strictly positive probability.5 Thus, this specification implies that there is always a

The qualitative results, however, are unaffected by the specific number to which the
arbitrage converges since the investor can always modify his final payoff by a constant
by trading the riskless asset.

5This follows from the distribution of the maximum of a Brownian bridge. See
Karatzas and Shreve (1991).
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risk that the arbitrage can widen further before its final convergence date. This risk
plays both a major role in this model as well as in actual financial markets.

More losses arose in Salomon Smith Barney’s U.S. arbitrage group. Its
traders had placed $1 billion bets on the London Interbank Offered Rate, or
Libor, on the expectation that the spread between that rate and U.S. Treasury
yields would narrow. Instead, it ballooned, leading to aftertax losses of $120
million.

– The Wall Street Journal, September 22, 1998.

As shown by Cheng (1991), the unboundedness of the drift of the arbitrage process
as t → T implies that the usual sufficient Novikov condition for the existence of an
equivalent martingale measure is not satisfied. In our simple two-investment financial
market, it is straightforward to demonstrate directly that no equivalent martingale
measure is possible.

Proposition 1. Non-Existence of an Equivalent Martingale Measure.

The Brownian bridge describing the dynamics of At in this financial market does not
admit the existence of an equivalent martingale measure.

Proof of Proposition 1. See Appendix.

Since there is no equivalent martingale measure in this market, arbitrage is possible.6

Thus, the process for At represents an arbitrage in a fundamental sense.
7

Let Nt and Pt denote the number of units of the arbitrage and the riskless asset
held by the investor. The amount invested in the riskless asset can be viewed as
the balance in the investor’s margin account. The balance in the interest-accruing

6Because the riskless rate is constant in this financial market, the corollary on pg.
123 of Duffie (1996) implies the existence of an (approximate) arbitrage. In the next
section, we provide an explicit example of a strategy that generates arbitrage profits.
7Loewenstein and Willard (2000a, 2000b, 2000c) provide excellent discussions of the
various definitions of arbitrage that are relevant in markets with different types of
constraints.
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margin account represents collateral available to the investor’s creditors. Recall that
in financial markets, collateral is often posted in the form of interest-bearing securities.

The investor’s wealth at time t is given by

Wt = NtAt + PtRt. (7)

Following standard portfolio choice theory, we assume that the investor follows a
self-financing strategy.8 Applying the self-financing condition results in the following
dynamics for Wt,

dW = NdA+ rPRdt

= NdA+ r(W −NA)dt

=

µ
rW −

µ
r +

α

T − t
¶
NA

¶
dt+ σNdZ

. (8)

This equation, along with the dynamics of At in equation (2), implies that Wt and At
follow a joint Markov process. Thus, the state of economy is completely specified by
the current values of the state variables Wt and At. From equation (8), WT can also
be expressed as

WT =Wt exp

ÃZ T

t

µ
r −

µ
r +

α

T − s
¶
NA

W
− σ

2

2

N2

W 2

¶
ds+ σ

Z T

t

N

W
dZ

!
. (9)

Harrison and Kreps (1979) and Harrison and Pliska (1991) show that restrictions on
trading strategies are necessary to rule out unrealistic arbitrages arising from doubling
strategies. Dybvig and Huang (1988) and Cox and Huang (1989) demonstrate that
requiring admissible trading strategies to satisfy the non-negative wealth condition
Wt > 0 for all t, 0 ≤ t ≤ T , eliminates these types of unrealistic trading strategies.

In actual financial markets, however, even stronger restrictions on trading strate-
gies are imposed though the standard requirement that investors hold collateral in
margin accounts as protection against the risk of their short positions. Specifically,
whenever an investor generates a liability by either shorting an asset or borrowing

8This rules out the possibility of later capital injections into the investor’s portfolio.
This is without much loss of generality, however, since the investor’s initial wealth can
be viewed as inclusive of the value of contingent capital injections.
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funds (which is the same as shorting the riskless asset), financial institutions virtually
always require collateral exceeding the amount of the liability as protection against
mark-to-market losses. The amount by which the value of collateral exceeds the lia-
bility is often referred to as the ‘haircut,’ or the investor’s equity in the position. The
size of the required ‘haircut’ is typically a function of the type of collateral and risk
of the short position. For example, an investor can initially borrow up to 50 percent
of percent of the value of stock.9 Large institutional investors may be able to borrow
as much as 99 percent of the value of Treasury bonds through the repo market. In
some cases, nearly 100 percent financing of Treasury bills is possible. The key point,
however, is that no matter what the leverage, extra collateral is still required to pro-
tect against the risk of market movements in which the liability is no longer fully
secured.10 If the trade goes against the investor and generates losses, or if the value of
the collateral itself falls, investors may be forced to either provide additional collateral
in response to a margin call or be liquidated.

Creditors of hedge funds, convinced the funds wouldn’t get back all the money
they had put into Russia, issued demands for more collateral, known as mar-
gin calls. The funds had to raise capital to meet the calls, but they couldn’t do
so by selling Russian securities with those markets paralyzed. So they began
selling other assets, including U.S. stocks.

– The Wall Street Journal, September 22, 1998.

As we show later, requiring margins against losses from following arbitrage strategies
actually has the potential to cause those losses to occur; the fear that trading losses
may occur can essentially become a self-fulfilling prophesy through the margining
mechanism.11

9The level of margin on stock positions is governed by Federal Reserve regulations.
Specifically, Federal Reserve regulations G, T, and U place constraints on the amount
of leverage that financial institutions can offer their clients.

10Long-Term Capital appears to be one of the few exceptions to the rule since they
were apparently able to avoid ‘haircuts’ on a number of their positions such as swap
contracts. Dunbar (2000) argues, however, that when the positions began to go against
Long-Term Capital, their counterparties imposed effective ‘haircuts’ by being more
aggressive in the way they marked the collateral to market. In this sense, Long-Term
Capital essentially faced ‘contingent haircuts’.

11Loewenstein and Willard (2000a, 2000b, 2000c) consider models in which agents can
obtain credit and may actually have liabilities in excess of the value of their assets.
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When an investor invests in Nt units of the arbitrage, the investor receives an
immediate cash flow of −NtAt and has a current mark-to-market liability of the same
amount. For example, imagine that two bonds with identical future cash flows have
prices of 100 and 101. Define the arbitrage as a long position in the first and a short
position in the second. Thus, At = 100− 101 = −1, and taking a position in 10 units
of the arbitrage generates an immediate cash flow of −NtAt = 10 and a liability of
NtAt = 10. To capture the economics of the margining system in a simple way, we
assume that the investor is required to hold liquid securities in the amount of the
liability plus a margin of λ per unit of the arbitrage held, where λ is a non-negative
constant.12 Thus, we require that

PtRt ≥ | NtAt | + λ | Nt | . (10)

Assuming NtAt ≤ 0 (which we show later to be optimal), the margin constraint can
be expressed as a simple wealth constraint,

Wt ≥ λ | Nt | . (11)

Since λ is non-negative, satisfying this constraint generally satisfies the less-restrictive
condition that Wt > 0 for all t, 0 ≤ t ≤ T . Note that the form of this constraint
parallels actual market practice in that the required margin is directly related to the
size of the position and that λ can be interpreted as a percentage of the notional
amount of the short leg of the arbitrage.13

Intuitively, the margin requirement insures that the counterparty taking the other
side of the arbitrage position has collateral at least equal to the amount owed by the
investor. Thus, if λ = 1, the investor in the above example who invested in Nt = 10
units of the arbitrage would have a long position of 1,000 in the first bond, and a
short position of 1,010 in the second bond, implying NtAT = −10. The investor
would need to have collateral of PtRt = 20 to cover the net liability of | NtAt | = 10
generated by the arbitrage and to post the additional λ|Nt| = 10 margin required.

12By requiring that margin only be held against the net value of the arbitrage rather
than against the gross value of the short position, we are making the conservative
assumption that both legs of the arbitrage are with the same counterparty. If not, the
investor could face much higher total collateral requirements. Gross margin constraints
could easily be modeled within this framework by setting λ to a larger value.
13It does not make sense to have the margin constraint depend on the value of At since
the position still would be risky even when At = 0. Furthermore, from the dynamics
in equation (2), the instantaneous volatility of the arbitrage process which governs the
short-term mark-to-market risk of an arbitrage position does not depend on the level
of At.

10



The parameter λ can also be thought of as the ‘haircut’ required for the short position.
In this example, the investor has a liability of 1,010 and needs total collateral of 1,020
consisting of a long bond position with value 1,000 and 20 of the riskless asset. The
margin requirement of 10 represents the excess of the collateral over the investor’s
short position. Note that the investor in this example is leveraged nearly 50 to 1. In
general, since the arbitrage At is defined as the net of the long and short positions,
the actual leverage inherent in a unit of the arbitrage could be almost arbitrarily large
from the perspective of the balance sheet of the investor.

Another way of thinking about the margining mechanism is from the perspective
of the cash generated. If entering into an arbitrage position were a source of funds
rather than a use of funds, then whenever the investor experienced losses on a trading
position, the investor could generate additional funds by simply doubling up on the
arbitrage strategy. By requiring that investors meet margin requirements, financial
markets insure that the moral hazard problem of an investor doubling up a losing
position does not occur.

It is important to observe that requiring collateral as margin is fundamentally
different from short-selling restrictions. In this framework, investors can take arbi-
trarily large short positions as long as they can post the required collateral. In fact,
as we show later, the optimal portfolio strategy has the property that the portfolio
weight for the arbitrage can take on any negative value. Thus, there is no limitation
on the fraction of the portfolio invested in a short position in the arbitrage.14 Mar-
gin constraints are also fundamentally different from transactions costs. Intuitively,
this is because investors receive all of the interest, dividends, and appreciation on the
securities held as collateral in margin accounts. Thus, the investor incurs no direct
economic costs or losses from holding securities in a margin account. Finally, margin
constraints differ from position limits such as those imposed in futures markets. This
is because there is no specific upper bound on the number of units of the arbitrage
that can be held by the investor; the margin constraint is based only on the investor’s
wealth, not on the absolute size of the position.

The investor is endowed with strictly positive initial wealth W0 and has a finite
investment horizon T corresponding to the date at which the arbitrage converges to
zero. Note that the investor in this model could be viewed either as an individual
agent, or as a hedge fund manager. To simplify the exposition, we assume that the
investor only consumes at time T , although this assumption can be relaxed without
affecting the basic results. In particular, the investor dynamically chooses a portfolio
Nt to maximize an expected utility function defined over the logarithm of his terminal
wealth WT ,

14This differs from Basak and Croitoru (2000) who place explicit upper and lower
bounds on the fraction of wealth that can be invested in an arbitrage.
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Et [ lnWT ] . (12)

We use this simple preference structure to focus more directly on the intuition of how
the arbitrage opportunity affects the portfolio problem.

Define the derived utility of wealth function J(W,A, t) by the following expression

J(W,A, t) = max
N
Et [ lnWT ] , (13)

subject to the budget constraint in equation (9) and where N is a member of the
set of admissible strategies satisfying the margin constraint. Because the problem and
margin constraint are homogeneous inWt, we demonstrate in the following proposition
that Nt must be of the form FtWt, where F is a function of A and t only. Substituting
this into equation (9) implies

J(W,A, t) = lnWt +max
F
Et

"Z T

t

r −
µ
r +

α

T − s
¶
FA− σ

2

2
F 2ds

#

= lnWt + r(T − t)−min
F
Et

"Z T

t

µ
r +

α

T − s
¶
FA+

σ2

2
F 2ds

#
.

(14)

Because of the quadratic form of the integrand in F and the fact that the dynamics
of A are independent of F , the optimal portfolio strategy can be determined in closed
form by a state-by-state minimization.

Proposition 2. The Optimal Arbitrage Position.

The optimal portfolio strategy for the investor is

Nt =



1
λWt, if At < − 1

λ
σ2

(r+ α
T−t )

,

− r+ α
T−t
σ2 AtWt, if | At |≤ 1

λ
σ2

(r+ α
T−t )

,

− 1
λWt, if At >

1
λ

σ2

(r+ α
T−t )

.

(15)
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Proof of Proposition 2. See Appendix.

This optimal portfolio strategy has many interesting features which are discussed in
the next section. Substituting the optimal portfolio strategy into equation (14) and
evaluating the expectations gives the following result.

Proposition 3. The Derived Utility of Wealth.

The derived utility of wealth J(W,A, t) is given by the following expression

J(W,A, t) = lnWt + r(T − t)−
Z T

t

H(A, s) ds, (16)

where H(A, s) =

σ2

2λ2
−
µ
r +

α

T − s
¶
Ms

λ

+

Ã
σ2

2λ2
+

µ
r +

α

T − s
¶
Ms

λ
+

µ
r +

α

T − s
¶2
M2
s + V

2
s

2σ2

!
Φ

µ
−Ls +Ms

Vs

¶

−
Ã
σ2

2λ2
−
µ
r +

α

T − s
¶
Ms

λ
+

µ
r +

α

T − s
¶2
M2
s + V

2
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and where Φ(·) is the cumulative standard normal distribution function. Furthermore,
if | At |<∞, Wt <∞, and λ > 0, then J(W,A, t) <∞ for all t, 0 ≤ t ≤ T .

Proof of Proposition 3. See Appendix.
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The result that the derived utility of wealth is finite depends critically on the condition
that λ > 0. If λ = 0, then it is easily shown that the strategy

Nt = −
r + α

T−t
σ2

AtWt, (17)

implies that E[ lnWT ] =∞. Thus, the margin constraint fundamentally changes the
economics of the arbitrage opportunity in this financial market.

3. THE OPTIMAL PORTFOLIO STRATEGY

In this section, we examine in more detail the optimal portfolio strategy. We focus
first on the properties of the optimal strategy and then present numerical examples
illustrating their implications for trading behavior.

Several key properties of the optimal strategy are immediately apparent from
Proposition 2. First, the optimal strategy always requires taking a position in the
arbitrage opposite in sign from the value of the arbitrage At. Thus, when At is
negative, the investor optimally invests in a positive number of units of the arbitrage.
Since At is negative, this generates an immediate cash inflow to the investor. Similarly,
when At is positive, the optimal strategy is to invest in a negative number of units of
the arbitrage. This again results in an immediate cash inflow to the investor. Since
there are margin requirements, however, the investor must keep liquid assets at least
equal in amount to the cash inflow plus λ|Nt|. Thus, while the optimal strategy
generates cash, the investor is constrained in the way this cash can be used.

Since the investor faces margin constraints, it is perhaps not surprising that the
investor only takes a finite position in the arbitrage. For example, if At < 0, the
maximum value of Nt that the margin restriction allows is

1
λWt. Thus, if Wt = 100

and λ = 1, the maximum number of units of the arbitrage the investor can hold is
Nt = 100, independent of how large the arbitrage opportunity At becomes. Note,
however, that this does not limit the leverage that the investor can utilize in his
portfolio. In particular, since the portfolio weight for the arbitrage is NtAt/Wt, the
maximum portfolio weight for the arbitrage in this example is −100At/100 = −At,
which is unbounded. Thus, while the number of units of the arbitrage that can be
held is bounded for a given Wt, the portfolio weight invested in the arbitrage is not.
This is the sense in which margin constraints differ from short-selling constraints.

What is surprising, however, is that the investor often finds it optimal to take a
smaller position in the arbitrage opportunity than the margin restrictions allow. For
example, when

14



− 1
λ

σ2³
r + α

T−t
´ < At < 1

λ

σ2³
r + α

T−t
´ , (18)

the optimal Nt is less in absolute value than the maximum number of units of the
arbitrage that could be held while satisfying the margin constraint. In fact, when
| At | is close to zero, the optimal Nt may only be a small fraction of the maximum
allowable number of units of the arbitrage.

To illustrate this, we simulate how often an investor following the optimal strategy
will reach the margin constraint. In particular, we simulate paths of At and report in
Table 1 the percentage of paths where the bounds shown in equation (18) are exceeded
for different values of t < T , and for various values of the parameters. The lower the
margin requirement λ, the less frequently the margin constraint is binding. Similarly,
the riskier the arbitrage as measured by σ2, the less frequently the investor finds it
optimal to take the maximum position. As the speed of convergence α increases, the
investor takes a more aggressive position and the margin constraint is more likely to
be binding.

The intuition for why the investor does not always take the largest possible po-
sition in the arbitrage is directly related to the risk of the arbitrage widening. When
At differs only slightly from zero, it is almost as likely that the arbitrage will widen
as narrow, since the drift is close to zero. Furthermore, when At is close to zero, the
potential loss from the arbitrage widening can be much larger than the possible gain
from the arbitrage converging, at least in the near term. Specifically, the investor can
realize a small gain per unit of the arbitrage if it converges to zero over the next short
interval, but can experience a large loss if it widens to several times its current value.
If the investor suffers large losses in the early stages, he clearly has less wealth to
exploit arbitrages at a later stage. By being too aggressive with small arbitrages, the
investor risks finding himself in a state of the world where there is a large arbitrage,
but his ability to exploit the arbitrage is severely reduced because of losses suffered as
the arbitrage widened.

Since the bounds in equation (18) converge to zero at rate (T − t) while the
standard deviation of At converges to zero at rate (T − t)1/2, the probability that the
margin constraint becomes binding becomes one as t→ T . This convergence, however,
typically takes place at nearly the last instant before time T ; Table 1 shows that even
when t = .999 and T = 1, the probability that the constraint is reached is clearly less
than one.

From Proposition 2 it is clear that the optimal Nt is continuous even at the
boundary where the margin constraint becomes binding. Thus, there are no abrupt
changes in the size of the arbitrage position when the boundary is reached. Over time,
however, the absolute value of Nt tends to decreases after the boundary is reached.
To see the intuition for this, consider the case where the boundary is just reached and
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the value of the arbitrage then moves back toward zero. The constraint is no longer
binding and the size of the arbitrage position is reduced since the arbitrage is no longer
as large. On the other hand, if the boundary is reached and the arbitrage widens, the
investor then suffers a decrease in his wealth. Because of this decline in wealth, the
constraint Wt ≥ λ | Nt | can only be satisfied by reducing the absolute value of Nt in
this self-financing framework. Thus, the investor must partially liquidate his position
in the arbitrage at a loss. Either way, the tendency is for the size of the arbitrage
position to be reduced once the boundary is reached.

Since the optimal strategy involves taking a position in the arbitrage opposite in
sign to At, the portfolio weight for the arbitrage position,

wt =
NtAt
Wt

, (19)

is less than or equal to zero. To give a sense of the distribution of portfolio weights
that results from following the optimal portfolio, Table 2 provides summary statistics
for the percentage portfolio weights for different values of t and of the parameters.

The optimal portfolio strategy can be highly leveraged even when there are margin
constraints. For example, when A0 = 0 and λ = 1, the investor may optimally leverage
his portfolio by a factor of almost four by taking a short position in the arbitrage. The
leverage factor is typically even higher when there is an initial arbitrage at time zero.
Again, this leverage measure does not map directly into a traditional debt-equity ratio
since the arbitrage is expressed in terms of the net value of the long and short legs, not
in terms of the absolute size or notional amount of the long and short legs. Note also
that this leverage factor is determined largely by the parameter σ; for larger values of
σ than those in Table 2, much higher leverage factors would be obtained. Furthermore,
there is considerable variability in the possible portfolio weights as evidenced by the
standard deviations. The means are typically well below the median, indicating that
the distribution of portfolio weights is skewed toward large negative values. Table
2 also shows that the distribution of portfolio weights converges to zero at the final
horizon date of the arbitrage. In particular, the portfolio weights and their standard
deviations at time t = .999 are typically an order of magnitude smaller in absolute
value than for the other values of t.

4. THE RETURNS FROM ARBITRAGE

In this section, we examine the wealth distributions obtained from following the opti-
mal investment strategy in a market with arbitrage opportunities. As before, we first
present general results about the distribution of returns and then provide numerical
examples.

The investor’s wealth at time t, when the investor follows the optimal strategy,
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¶
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It can be shown that the investor’s wealth is strictly positive for all t, 0 ≤ t ≤ T . Thus,
the optimal investment strategy satisfies the positive wealth constraint of Dybvig and
Huang (1988). Because of the boundedness of F , it follows from Proposition 2 that
Wt is finite with probability one. Thus, an investor following the optimal investment
strategy in this market faces a well-defined wealth distribution with support (0,∞)
for any time t.

In specific cases, the range of possible returns that can be obtained from investing
optimally in the arbitrage opportunity can be narrowed. The following proposition
gives sufficient conditions for the optimal investment portfolio to dominate the riskless
asset at time T .

Proposition 4. Dominance of the Optimal Strategy.

If 0 < α ≤ 1, then WT ≥W0e
rT a.s. when the optimal strategy is followed.

Proof of Proposition 4. See Appendix.

When the condition 0 < α ≤ 1 is satisfied, this proposition implies that an investor
who follows the optimal investment strategy cannot achieve a lower return than the
riskless rate. In this situation, the investment portfolio clearly dominates the riskless
asset and becomes an arbitrage in the classic textbook sense. Thus, following the
optimal strategy can lead to a pure arbitrage at time T . Conversely, however, the fact
that there is a pure arbitrage at time T does not imply that the investor takes the
maximum possible position in the arbitrage at any time t < T . As shown earlier, the
investor often finds it optimal to take a position smaller than would be allowed by the
margin requirements.

In general, however, the returns obtained from investing in the arbitrage do not
dominate those from the riskless asset. To illustrate this, Table 3 provides summary
statistics for the wealth distributions at different horizons obtained from following the
optimal portfolio strategy. In each of these examples, the initial wealth of the investor
is assumed to be 100. Table 3 confirms the dominance result that when α = 1, the
optimal arbitrage portfolio ends up doing better than the riskless asset at time T ; the
final value of the arbitrage portfolio exceeds the 100e.06 = 106.18 value of a portfolio
fully invested in the riskless asset. When α > 1, however, Table 3 shows that the final
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value of the arbitrage portfolio can be less than the value of the riskless portfolio, and
can even be less than the initial value of the investor’s wealth. Thus, when α > 1, the
arbitrage portfolio is no longer even an arbitrage in the classic sense.

This latter result is particularly interesting given that it is actually possible to find
an investment strategy that dominates the riskless asset even when α > 1. Specifically,
let Dt denote the portfolio strategy given by

Dt =



1
λWt, if At < − σ2

2rλ ,

0 if | At |≤ σ2

2rλ ,

− 1
λWt, if At >

σ2

2rλ .

(21)

We denote this strategy the barrier strategy since it is zero until the arbitrage reaches
a specific level. Because | Dt | is always less than or equal to the margin constraint,
this portfolio strategy is always feasible. The following result is easily shown:

Proposition 5. Dominance of the Barrier Strategy.

If α > 0, then WT ≥W0e
rT a.s. when the barrier strategy is followed.

Proof of Proposition 5. See Appendix.

This result implies that by following the barrier strategy, the investor can achieve a
wealth distribution that dominates that available from the riskless asset, and hence,
is again a pure arbitrage. Even though this strategy is available to the investor when
α > 1, the investor finds it optimal to walk away from this pure arbitrage opportunity.
Surprisingly, the optimal strategy is to invest in a way that runs the risk of under-
performing the riskless asset even though there is a strategy available that guarantees
the investor’s return cannot be less than the riskless asset.

Another interesting feature relates to the shape of the distribution of investment
returns. During the early stages of the investment horizon, the mean value of the
portfolio is often substantially lower than the median value, suggesting a distribution
that is highly skewed towards lower values. As the final convergence date approaches,
the distribution typically becomes skewed toward higher values and the mean exceeds
the median. To illustrate this, Figures 1 and 2 graph the distribution of values for
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the optimal arbitrage portfolio at times t = .250, t = .500, t = .750, and t = 1.000.
The distribution at t = .250 is highly skewed towards the left. This is also true for
t = .500. At t = .750, however, the nature of the distribution begins to change and a
more symmetrical pattern appears. At the final maturity date T , the distribution now
becomes highly skewed towards higher values and values less than the riskless asset
value of 106.18 disappear since α = 1 in these graphical examples.

The value of the optimal arbitrage portfolio is highly variable over time. Starting
from an initial value of 100, the arbitrage portfolio can actually lose more than 75
percent of its value by t = .250. Analyzing these particular paths reveals that the
investor takes a large position in the arbitrage portfolio at an early date, but then
loses significant amounts as the arbitrage continues to widen. When the investor
reaches the margin constraint, the investor is forced to begin to unwind his position
at a loss in order to satisfy the margin constraint as the arbitrage widens further.
Although the arbitrage ultimately converges to zero at time T , the investor is unable
to fully participate at later stages since his wealth is now much lower. Thus, investors
who experience large losses early during the life of the arbitrage end up with lower
returns at time T . This can be seen Figure 3 which graphs the final value of the
portfolio at time T against the minimum value of the portfolio during the life of the
arbitrage. This demonstrates clearly that losses that occur early during the life of the
strategy due to the widening of the arbitrage do not entirely “come back” later on as
the arbitrage ultimately converges to zero.

The mean values of the arbitrage portfolios display an interesting pattern. Ini-
tially, they tend to be somewhat larger than the value of the riskless portfolio. Over
time, however, the means grow rapidly and ultimately far exceed the value of the
riskless portfolio. The farther the initial value of the arbitrage is from zero, the higher
the final expected value of the optimal portfolio. This is intuitive, since when A0 6= 0,
the investor immediately has the opportunity to invest in an arbitrage. Table 3 also
shows that the means are decreasing functions of the leverage parameter λ. This fol-
lows since a lower value of λ places fewer constraints on the investor’s ability to exploit
arbitrage opportunities. The distribution of returns is typically shifted towards higher
values when the value of α increases. Intuitively, a higher value of the speed of mean
reversion implies that an arbitrage tends to converge more rapidly. On the other hand,
the investor finds it optimal to take a larger position in the arbitrage for any given
value of At. Because of this latter effect, there can be paths where the investor does
worse that would be the case for a smaller value of α. In particular, when α is greater
than one, the investor can actually end with less wealth at time T than he had at time
zero. The expected return typically increases with the value of σ.

The standard deviation of the value of the arbitrage portfolio demonstrates that
uncertainty about the ultimate value of the portfolio is not resolved evenly over time.
At early stages of the life of the arbitrage, the standard deviation of the value of
the optimal portfolio is fairly small. As the final convergence date T is approached,

19



however, the standard deviation of the value of the arbitrage portfolio grows rapidly.

A detailed analysis of the returns from following the optimal strategy reveals
that returns have three primary sources. First, the investor benefits by investing
directly in an arbitrage which then eventually converges. The more frequently there
is an arbitrage which then converges, the higher the value of the portfolio at the final
maturity.

Second, the final value of the portfolio is adversely affected by reaching the margin
constraint. This can be seen in Figure 4 which graphs the final value of the portfolio
against the percentage of times that the margin constraint is binding along a path.
There is a strong negative relation between the final value of the portfolio and the fre-
quency with which the margin constraint is binding. Intuitively, this is because when
the margin constraint is binding and there is an increase in the size of the arbitrage,
the investor is forced to reduce his position at a loss rather than more aggressively
exploiting the wider arbitrage. Figure 5 plots the final value of the portfolio against
the number of units of the arbitrage that the investor must unwind in order to satisfy
the margin constraints. The larger the number of units in absolute terms, the greater
the total impact on the investor; the final value of the portfolio is clearly less as the
number of units of the arbitrage unwound in order to meet the margin requirement
increases.

Given these two effects, the investor does best when the value of the arbitrage
tends to return frequently to zero and stays away from larger values which would then
cause the margin constraint to be binding more frequently. This surprising implication
is illustrated in Figure 6 which plots the final value of the portfolio against the average
value of the arbitrage during its life. When the arbitrage is initially zero, the highest
final value of the portfolio tends to be for those paths for which the average value
of the arbitrage is close to zero. Similarly, when A0 = 1, the highest final values of
the arbitrage portfolio tend to occur for paths where the arbitrage returns quickly
to the neighborhood of zero, resulting in average values of At of between zero and
one. Thus, the highest returns occur along paths where there is a steady flow of small
arbitrages which converge rapidly, and where large widenings in the value of At do not
occur. This is consistent with the well-known Wall Street description of the business
of relative value or arbitrage investing as “picking up nickels in front of a steamroller.”

“Myron once told me they (LTCM) are sucking up nickels from all over
the world,” says Merton Miller, a University of Chicago business professor
and himself a Nobel Prize winner in economics. “But because they are so
leveraged, that amounts to a lot of money.”

– The Wall Street Journal, November 16, 1998.
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The third source of returns is more subtle. Because of the margin constraint, the
investor is forced to place any cash generated by taking a position in the arbitrage
into the riskless asset. Since the arbitrage is a source of cash, the balance invested
in the margin account tends to be larger when the investor takes a position in the
arbitrage. Over time, the excess funds in the riskless asset generate additional returns
from the accrual of interest. Thus, the investor receives a subtle but direct benefit
from the collateral requirement imposed by the margin constraint. The interest from
the margin account can represent an important source of returns in many situations.

Although the eventual value of the optimal portfolio is on average much higher
than the riskless asset, the intermediate values of the portfolio typically reflect losses
at some point during the life of the arbitrage. Table 4 reports pathwise statistics from
following the optimal portfolio. These pathwise statistics indicate that for a very high
percentage of paths, the minimum value of the optimal portfolio is actually less than
its initial value of 100. Specifically, the percentage of paths for which there is an
actual capital loss at some point during the life of the arbitrage is typically in excess
of 96 percent. Note that this is also true for the case where α = 1 which guarantees
that the final value of the arbitrage is strictly greater than the riskless asset. Clearly,
the probability of the value of the portfolio dropping below the value of the riskless
asset at some point is even higher than the probability of dropping below 100; Table 4
shows that the probability of underperforming the riskless asset at some point during
the investment horizon is typically greater than 97 percent.

These results have many interesting implications for performance expectations
for hedge funds investing in arbitrage opportunities. These results indicate that ex-
periencing capital losses prior to the final horizon is part of the inherent nature of
investments in arbitrage opportunities in markets with margin constraints. Thus,
there is a definite “darkest before dawn” nature to arbitrage investments. This con-
trasts dramatically with the widely-held view that investors in arbitrage opportunities
should never experience significant losses. An immediately corollary of this widely-held
view is that arbitrage funds can experience losses only if they are not really investing
in arbitrage opportunities but speculating in conventional types of investments. Our
analysis, however, demonstrates that this common wisdom is flawed; losses during the
early stages of an arbitrage opportunity are almost inevitable for an investor pursuing
an optimal investment strategy in the arbitrage.15

15These results also have interesting implications for the willingness of an investor to
inject capital into a hedge fund which has experienced significant losses. The expected
return from acquiring the assets of a distressed fund optimally investing in arbitrage
opportunities may far exceed that from the initial investment. This may have been
one of the reasons why Long-Term Capital Management was able to so quickly receive
a capital injection of $3.65 billion from a consortium of 16 financial institutions in
exchange for most of the equity in the fund. Certainly, there is no evidence that any
of the financial institutions experienced losses on the additional capital contributed
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In general, the maximum value of the portfolio is obtained when the arbitrage
converges to its final value of zero at time T . It is interesting to note, however, that
there are paths for which the maximum is obtained earlier than at time T . Although
the optimal strategy involves taking a position in the arbitrage whenever At 6= 0, this
shows that there can be cases where the investor will wish that he had terminated his
arbitrage position before the final convergence date.

Table 4 also reports the average times at which the minimum and maximum
values are attained. The average time at which the minimum is attained ranges from
.05 to .45 years for these examples. This is again consistent with the notion that
the performance of an arbitrage position is generally worse during its early stages.
The average time at which the maximum is attained is always very close to the final
convergence date of the arbitrage.

Finally, Table 4 shows that the average minimum ranges from about 60 to 98 for
an portfolio initially worth 100. Thus, an investor following an optimal strategy can
expect to be down as much as 40 percent at some point for some parameter values.
This again contrasts with the common view that true arbitrage positions should never
show losses. The average maximum values are generally very similar to the expected
portfolio values at time T shown in Table 3.

One popular measure of the attractiveness of a portfolio’s return is the traditional
Sharpe ratio, and the performance of hedge funds is often compared in terms of the
Sharpe ratio. To make our analysis of Sharpe ratios compatible with the ratios typi-
cally reported by the financial industry, we do the following. For each simulated path,
we compute the sample standard deviation of changes in the value of the portfolio and
annualize the estimate. We do this for horizons of .250, .500, .750, and 1.000 years.
We then take the excess return of the portfolio at the same horizons over the value of
the riskless asset Rt and annualize the excess returns. We then divide the annualized
excess return by the annualized standard deviation to obtain the estimated Sharpe
ratio. Since the resulting Sharpe ratio is computed for each path, it is consistent with
Sharpe ratios reported by the financial industry which are also computed from a single
realized path. We repeat this process for 10,000 paths and provide summary statistics
for the resulting distribution of Sharpe ratios at the various horizons. These summary
statistics are reported in Table 5. Figures 7 and 8 also graph the distribution of Sharpe
ratios for selected values of the parameters.

The Sharpe ratios for investing in the arbitrage are quite variable. This is partic-
ularly true at the early stages. At the convergence date, however, the average Sharpe
ratio is roughly about two for all of the examples shown in Table 5. Curiously, this
is about the same as the average Sharpe ratio of 2.39 for the relative-value hedge
funds reported as of March 23, 2000 by the website HedgeFund.net which tracks the

during the bailout.
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performance of approximately 1,000 hedge funds.16 Figures 8 and 9 show that most of
the Sharpe ratios at the final convergence date are between zero and four. Thus, even
when there is a pure arbitrage available in the market, there is no guarantee than a
hedge fund following the optimal investment strategy will have a Sharpe ratio even as
large as that for the S&P 500.17

5. ALTERNATIVE STRATEGIES

In earlier sections, we derived the optimal strategy from the perspective of an investor
with logarithmic preferences and explored its implications for return distributions. To
provide additional insight, however, it is also interesting to study the performance
of a number of alternative strategies that are not optimal, but may still have some
intuitive justification.

5.1 The Maximal Strategy.

We consider first a simple strategy in which the investor always takes the largest
possible position allowed by the margin constraint whenever At deviates from zero.
In particular, when At > 0, the investor holds Nt = −Wt/λ units of the arbitrage,
and Nt =Wt/λ when At < 0. This strategy, although suboptimal, loosely reflects the
common belief that an investor faced with an arbitrage should plunge by taking the
maximal allowable position.

To examine the performance of this strategy, we again simulate paths of the
arbitrage and the resulting value of the arbitrage portfolio. This allows us to directly
compare the results to those obtained by following the optimal strategy. Summary
statistics for the return distributions obtained by following the maximal strategy are
reported in Table 6.

The return distributions obtained by following the maximal strategy are very dif-
ferent from those obtained by following the optimal strategy. In general, the expected
returns are higher at the final maturity date for the maximal strategy than for the
optimal strategy. We conjecture that the maximal strategy may be close to the op-
timal strategy for a risk-neutral investor. Although the expected returns are higher
for the maximal strategy, the standard deviations for the final value of the portfolio
are all substantially higher than for the optimal strategy. It is for this reason that the

16On March 23, 2000, HedgeFund.net reports that the average Sharpe ratio for con-
vertible arbitrage hedge funds is 2.32, for fixed-income arbitrage funds is 2.09, for
options-arbitrage hedge funds is 2.91, and for risk-arbitrage hedge funds is 2.23.

17Empirical evidence about the return performance and trading strategies of hedge
funds is presented in recent papers by Fung and Hsieh (1997, 1998) and Ackermann,
McEnally, and Ravenscraft (1999).
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maximal strategy fails to be optimal for an investor with logarithmic preferences; the
higher expected return for the maximal strategy does not offset the higher standard
deviation of the returns. This is also clear from the Sharpe ratios for the maximal
strategy which are all lower than for the optimal strategy.

In addition to the higher standard deviations, Table 6 also illustrates that the
final value of the portfolio following the maximal strategy can be less than the riskless
rate for any value of α. Thus, the maximal strategy never generates a final value that
is an arbitrage in the sense that it dominates the riskless asset.

5.2 The Barrier Strategy.

In contrast to the maximal strategy, we demonstrated earlier that the barrier strategy
always generates a final value that dominates the riskless asset. Despite this, the
barrier strategy is not optimal for an investor with logarithmic preferences.

To examine the return distributions produced by the barrier strategy, we again
simulate paths of the arbitrage and the resulting value of the portfolio and report
the results in Table 7. The expected return from following the barrier strategy is
usually well below the expected return from following the optimal strategy. Table 7
also demonstrates that the final value of the portfolio is always greater than or equal
to the value of the riskless asset for any value of α. On the other hand, the standard
deviations of the returns are also much lower than for the optimal strategy. Intuitively,
this is because the barrier strategy is a much less aggressive strategy than the optimal
strategy. Ultimately, however, the decrease in the expected return more than offsets
the decrease in the standard deviation, and the average Sharpe ratio for this strategy
is less than for the optimal strategy.

6. CONCLUSION

We examine the optimal investment policy of a risk-averse investor in a market where
there are arbitrage opportunities. The model includes the realistic feature that in-
vestors must hold collateral as margin against the risk of their short positions. We
find that the optimal policy often results in the investor underinvesting in the arbi-
trage by taking a smaller position than would be allowed by the margin constraint.
We also show that the investor may find it optimal to walk away from a strategy that
is a pure arbitrage in the sense that its returns dominate those of the riskless asset.
Even when the optimal policy is followed, the returns from the arbitrage strategy may
not be much more attractive than those obtained from traditional investments. For
example, the optimal strategy may generate losses even at the convergence date of the
arbitrage, or may have a Sharpe ratio less that those available by directly investing in
the stock market.

Our results also have implications for the current debate about hedge-fund lever-
age and the role of arbitrageurs in financial markets. Hedge funds such as Long-Term
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Capital Management have been criticized for employing too much leverage in their
trading strategies. This analysis shows that optimal leverage is determined by the
volatility and speed of convergence of the arbitrage as well as by the nature of the
margin requirements. Long-Term Capital Management had substantial investments
in fixed-income spread trades, which historically have displayed rapid convergence.
In addition, Long-Term Capital Management was successful in negotiating some of
the lowest margin requirements on Wall Street. Given the combination of these two
factors, it is possible that the optimal leverage structure of Long-Term Capital Man-
agement may have been much higher than for other market participants.

There are many possible extensions of this analysis. For example, alternative
preference structures or objective functions could be used in solving the investor’s or
hedge-fund manager’s problem. A simple perturbation argument, however, suggests
that our basic results hold for preference structures sufficiently close to logarithmic,
and are not an artifact of the myopic nature of logarithmic preferences. In fact, we
conjecture that our results are true for virtually all risk averse preferences. Further-
more, using a simple binomial tree example, we can show that our results hold in a
discrete-time setting and are not an artifact of continuous-time modeling. In addi-
tion, it would be useful to introduce additional risky assets and arbitrage opportunities
into the investment opportunity set. The primary message of this paper, however, is
that when the real-world feature of margin constraints is introduced, the economics
of arbitrage become fundamentally different. In particular, arbitrages become risky
investments and the issue of whether there would be sufficient demand from investors
to completely eliminate arbitrage opportunities becomes relevant.
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Table 1

Percentage of Times that Margin Constraint is Binding. This table reports the percentage of 10,000
simulated paths for which the margin constraint is binding at the indicated horizons. The initial value of the
arbitrage is set equal to zero, the final convergence date for the arbitrage is one year, and the simulation uses
10,000 discretization points per year in modeling the arbitrage process. The initial value of the arbitrage is
A0. The parameter λ represents the margin requirement. The parameters α and σ represent the speed of
convergence and the volatility of the arbitrage process. The riskless rate is 6 percent.

A0 λ α σ t = .250 t = .500 t = .750 t = .999

0 1 1 1 9.44 32.40 56.58 97.32
0 1 1 2 .09 5.17 25.26 94.70
0 1 2 1 33.18 51.82 66.26 98.14
0 1 2 2 5.11 19.40 38.03 95.93

0 10 1 1 86.18 92.41 95.83 99.77
0 10 1 2 73.18 84.93 91.37 99.50
0 10 2 1 91.86 94.86 96.51 99.86
0 10 2 2 84.23 90.05 93.05 99.59

1 1 1 1 53.27 53.43 62.20 97.28
1 1 1 2 .66 7.72 26.47 94.47
1 1 2 1 70.77 59.94 66.72 98.13
1 1 2 2 11.78 21.68 37.98 95.93

1 10 1 1 96.96 95.51 95.98 99.78
1 10 1 2 81.82 85.57 90.68 99.47
1 10 2 1 97.49 95.31 96.80 99.86
1 10 2 2 88.22 90.52 93.16 99.59



Table 2

Summary Statistics for the Percentage Portfolio Weights Invested in the Arbitrage. This table
reports summary statistics for the percentage portfolio weights for the indicated horizons based on 10,000
simulated paths. The final convergence date for the arbitrage is one year, and the simulation uses 10,000
discretization points per year in modeling the arbitrage process. The initial value of the arbitrage is A0. The
parameter λ represents the margin requirement. The parameters α and σ represent the speed of convergence
and the volatility of the arbitrage process. The riskless rate is 6 percent.

A0 λ α σ t Min. Mean Median Max. Std. Dev.

0 1 1 1 .250 -202.65 -23.20 -11.65 .00 23.81
.500 -196.48 -34.09 -23.26 .00 33.07
.750 -187.47 -32.50 -29.13 .00 27.40
.999 -15.16 -2.60 -2.21 .00 1.97

0 1 1 2 .250 -405.30 -25.61 -11.65 .00 36.29
.500 -392.95 -48.17 -23.26 .00 61.11
.750 -374.95 -56.07 -34.45 .00 57.60
.999 -30.33 -5.19 -4.42 .00 3.94

0 1 2 1 .250 -179.28 -25.91 -17.72 .00 25.23
.500 -150.16 -28.35 -25.56 .00 24.36
.750 -115.83 -21.98 -19.15 .00 17.78
.999 -7.83 -1.54 -1.30 .00 1.17

0 1 2 2 .250 -358.55 -36.69 -17.72 .00 46.53
.500 -300.32 -47.03 -26.53 .00 50.58
.750 -231.66 -40.13 -29.56 .00 37.61
.999 -15.67 -3.08 -2.61 .00 2.34

0 10 1 1 .250 -20.27 -3.40 -2.89 .00 2.62
.500 -19.65 -3.96 -3.36 .00 2.99
.750 -18.75 -3.43 -2.91 .00 2.58
.999 -1.52 -.26 -.22 .00 .20

0 10 1 2 .250 -40.53 -6.70 -5.78 .00 5.33
.500 -39.30 -7.88 -6.72 .00 6.02
.750 -37.50 -6.85 -5.83 .00 5.18
.999 -3.03 -.52 -.44 .00 .39

0 10 2 1 .250 -17.93 -3.00 -2.55 .00 2.29
.500 -15.02 -3.03 -2.56 .00 2.27
.750 -11.58 -2.27 -1.92 .00 1.71
.999 -.78 -.15 -.13 .00 .12

0 10 2 2 .250 -35.86 -5.96 -5.10 .00 4.60
.500 -30.03 -6.05 -5.11 .00 4.56
.750 -23.17 -4.53 -3.83 .00 3.43
.999 -1.57 -.31 -.26 .00 .23



Table 2 Continued

A0 λ α σ t Min. Mean Median Max. Std. Dev.

1 1 1 1 .250 -241.25 -70.80 -75.11 .00 45.64
.500 -246.48 -54.13 -52.36 .00 43.00
.750 -201.68 -38.29 -34.01 .00 31.04
.999 -15.06 -2.60 -2.21 .00 1.97

1 1 1 2 .250 -407.51 -44.89 -23.56 .00 56.06
.500 -442.95 -58.52 -29.55 .00 70.22
.750 -378.36 -59.20 -37.54 .00 59.86
.999 -30.23 -5.20 -4.41 .00 3.94

1 1 2 1 .250 -201.96 -56.70 -56.65 .00 36.19
.500 -174.46 -34.78 -31.78 .00 28.36
.750 -115.76 -22.49 -19.49 .00 18.20
.999 -7.83 -1.54 -1.30 .00 1.17

1 1 2 2 .250 -347.68 -54.13 -29.91 .00 60.25
.500 -323.93 -50.68 -30.03 .00 53.30
.750 -225.41 -40.41 -29.74 .00 37.84
.999 -15.67 -3.08 -2.61 .00 2.34

1 10 1 1 .250 -24.13 -7.63 -7.51 .00 4.04
.500 -24.65 -5.79 -5.24 .00 3.96
.750 -20.17 -3.98 -3.40 .00 2.96
.999 -1.51 -.26 -.22 .00 .20

1 10 1 2 .250 -40.75 -9.22 -8.22 .00 6.66
.500 -44.30 -8.82 -7.58 .00 6.71
.750 -37.84 -7.72 -6.08 .00 5.40
.999 -3.02 -.52 -.44 .00 .39

1 10 2 1 .250 -20.20 -5.85 -5.67 .00 3.41
.500 -17.45 -3.64 -3.18 .00 2.68
.750 -11.58 -2.32 -1.95 .00 1.75
.999 -.78 -.15 -.13 .00 .12

1 10 2 2 .250 -34.77 -7.59 -6.62 .00 5.54
.500 -32.39 -6.35 -5.44 .00 4.79
.750 -22.54 -4.55 -3.84 .00 3.45
.999 -1.57 -.31 -.26 .00 .23



Table 3

Summary Statistics for the Value of the Optimal Portfolio. The table reports summary statistics
for the value of the optimal portfolio at the indicated horizons based on 10,000 simulated paths. The initial
value of the portfolio is 100. The final convergence date for the arbitrage is one year, and the simulation uses
10,000 discretization points per year in modeling the arbitrage process. The initial value of the arbitrage
is A0. The parameter λ represents the margin requirement. The parameters α and σ represent the speed
of convergence and the volatility of the arbitrage process. If the initial wealth of 100 was invested in the
riskless asset only, its value in one year would be 106.18.

A0 λ α σ t Min. Mean Median Max. Std. Dev.

0 1 1 1 .250 20.63 105.27 111.33 119.64 15.39
.500 20.79 118.32 128.70 151.15 28.82
.750 23.78 144.88 149.04 220.03 44.69
1.000 113.53 278.85 266.45 763.86 88.83

0 1 1 2 .250 8.30 105.38 111.38 119.64 15.45
.500 6.67 120.39 131.62 151.15 30.13
.750 5.69 158.30 176.55 223.09 53.44
1.000 131.45 482.73 453.52 1413.09 186.92

0 1 2 1 .250 22.02 110.98 118.60 139.39 22.99
.500 28.58 135.44 137.98 214.04 40.09
.750 39.94 183.14 176.55 428.22 65.85
1.000 98.83 420.94 387.01 1457.41 179.84

0 1 2 2 .250 5.94 112.72 122.03 139.39 24.70
.500 7.87 147.22 162.17 214.16 48.42
.750 11.79 228.79 230.84 430.42 97.04
1.000 90.10 995.53 873.80 5488.36 583.91

0 10 1 1 .250 85.71 102.33 102.47 114.63 4.27
.500 85.39 105.50 105.29 128.65 5.85
.750 90.06 109.93 109.48 138.61 6.83
1.000 106.78 120.27 119.32 157.13 7.36

0 10 1 2 .250 71.99 103.04 103.76 118.31 7.59
.500 71.97 107.76 107.64 141.92 10.86
.750 77.92 115.04 114.30 165.52 13.17
1.000 107.45 135.31 133.22 221.21 15.29

0 10 2 1 .250 87.72 102.95 102.92 117.66 4.26
.500 89.02 107.15 106.82 130.83 5.60
.750 95.94 112.86 112.20 143.55 6.66
1.000 107.11 125.42 124.59 163.00 7.99

0 10 2 2 .250 75.68 104.31 104.38 128.91 8.06
.500 77.49 111.14 110.48 159.90 11.01
.750 87.72 121.24 119.87 184.65 13.66
1.000 107.97 147.20 144.87 236.91 18.01



Table 3 Continued

A0 λ α σ t Min. Mean Median Max. Std. Dev.

1 1 1 1 .250 22.37 126.10 123.85 201.28 43.63
.500 19.43 155.30 156.46 252.65 58.47
.750 28.49 199.18 195.50 366.68 76.16
1.000 184.98 390.99 366.18 1049.28 141.19

1 1 1 2 .250 9.36 111.29 119.89 136.56 24.49
.500 4.35 131.71 145.59 172.88 38.60
.750 5.53 176.57 197.01 251.04 63.33
1.000 139.82 541.30 512.30 1664.83 214.64

1 1 2 1 .250 33.05 150.73 142.36 278.51 52.08
.500 39.56 201.94 197.95 414.53 72.05
.750 65.25 278.91 261.88 739.87 109.86
1.000 182.21 640.59 580.94 2669.69 287.75

1 1 2 2 .250 7.38 129.38 142.73 179.41 40.08
.500 6.85 174.35 189.56 273.14 65.14
.750 12.45 272.57 270.88 547.72 123.60
1.000 88.47 1183.89 1029.33 6326.61 717.29

1 10 1 1 .250 88.25 104.21 104.08 119.45 4.46
.500 89.23 108.70 108.42 130.27 5.53
.750 94.83 114.08 113.41 143.87 6.08
1.000 117.10 125.20 123.87 160.32 6.16

1 10 1 2 .250 74.55 104.34 104.24 126.03 8.58
.500 72.96 109.95 109.42 147.84 11.48
.750 78.96 117.78 116.61 177.71 13.41
1.000 115.72 138.73 136.19 215.37 15.32

1 10 2 1 .250 91.77 106.17 106.02 122.64 4.04
.500 95.80 111.87 111.44 136.12 4.94
.750 103.13 118.17 117.35 145.75 5.86
1.000 117.20 131.35 130.31 165.08 7.15

1 10 2 2 .250 79.12 106.51 106.17 135.19 8.22
.500 82.06 114.32 113.41 167.62 10.94
.750 91.73 124.83 123.23 195.80 13.42
1.000 115.82 151.57 149.19 243.08 17.70



Table 4

Pathwise Summary Statistics for the Value of a Portfolio following the Optimal Strategy. This
table reports summary statistics taken over 10,000 paths for the value of a portfolio where the optimal
strategy is followed. The final convergence date for the arbitrage is one year, and the simulation uses
10,000 discretization points per year in modeling the arbitrage process. The initial value of the arbitrage
is A0. The parameter λ represents the margin requirement. The parameters α and σ represent the speed
of convergence and the volatility of the arbitrage process. The riskless rate is 6 percent. Percent < 100
is the percentage of paths for which the minimum value of the portfolio was below 100. Percent < Rt is
the percentage of paths for which the return on the portfolio was less than the riskless asset at some point.
Percent Max > WT is the percentage of paths for which the maximum value of the portfolio occurred prior
to T . The values of Average tMin and Average tMax are the average of the times at which the minimum and
maximum values of the arbitrage occurred. The values Average Min. and Average Max. are the average
minimum and maximum values of the portfolio.

Percent Percent Percent Average Average Average Average
A0 λ α σ < 100 < Rt Max > WT tMin tMax Min. Max.

0 1 1 1 99.89 100.00 .17 .3605 .9999 75.34 278.85
0 1 1 2 99.91 100.00 .49 .4366 .9999 67.09 482.73
0 1 2 1 99.94 99.98 .57 .2532 .9997 75.81 420.94
0 1 2 2 99.96 99.99 1.74 .3170 .9985 65.64 995.60

0 10 1 1 99.50 99.86 .00 .1722 1.0000 96.85 120.27
0 10 1 2 99.71 99.89 .00 .2271 1.0000 93.13 135.31
0 10 2 1 99.38 99.72 .00 .1269 1.0000 97.27 125.42
0 10 2 2 99.69 99.84 .01 .1625 1.0000 94.00 147.20

1 1 1 1 98.60 98.66 .14 .1980 .9999 72.17 390.99
1 1 1 2 99.18 99.33 .50 .3538 .9999 65.27 541.30
1 1 2 1 97.86 97.98 .53 .1182 .9999 80.04 640.59
1 1 2 2 98.77 98.83 1.80 .2272 .9980 63.67 1183.97

1 10 1 1 97.64 98.49 .00 .1036 1.0000 97.67 125.20
1 10 1 2 98.63 99.00 .00 .1877 1.0000 93.32 138.73
1 10 2 1 96.55 97.42 .00 .0547 1.0000 98.42 131.35
1 10 2 2 98.26 98.65 .01 .1273 1.0000 94.89 151.57



Table 5

Summary Statistics for the Annualized Sharpe Ratio. The table reports summary statistics for the
distribution of annualized Sharpe ratios based on 10,000 simulated paths. The final convergence date for the
arbitrage is one year, and the simulation uses 10,000 discretization points per year in modeling the arbitrage
process. The Sharpe ratios are computed pathwise from the annualized mean and standard deviations of
changes in the value of the optimal portfolio. The initial value of the arbitrage is A0. The parameter λ
represents the margin requirement. The parameters α and σ represent the speed of convergence and the
volatility of the arbitrage process.

A0 λ α σ t Min. Mean Median Max. Std. Dev.

0 1 1 1 .250 -8.95 1.05 1.24 8.03 1.97
.500 -4.00 .85 1.00 5.98 1.38
.750 -2.51 .86 .85 5.13 1.03
1.000 .12 1.66 1.60 5.13 .67

0 1 1 2 .250 -9.05 1.08 1.24 8.03 1.94
.500 -3.98 .95 1.09 5.98 1.32
.750 -2.81 .99 1.10 5.13 1.06
1.000 .34 1.82 1.76 4.79 .63

0 1 2 1 .250 -7.70 1.07 1.20 7.99 2.00
.500 -2.97 .95 .92 5.94 1.26
.750 -1.64 1.06 1.01 5.02 .89
1.000 -.18 2.19 2.18 5.17 .70

0 1 2 2 .250 -7.72 1.23 1.37 7.99 1.91
.500 -3.96 1.12 1.23 5.94 1.29
.750 -2.10 1.15 1.12 5.02 .98
1.000 -.18 2.19 2.17 5.17 .70

0 10 1 1 .250 -7.26 .44 .42 7.75 1.94
.500 -3.76 .52 .46 6.02 1.25
.750 -2.10 .71 .65 4.57 .92
1.000 .06 1.36 1.28 4.63 .68

0 10 1 2 .250 -7.85 .54 .53 8.02 2.01
.500 -3.59 .55 .50 5.85 1.27
.750 -2.11 .72 .67 4.52 .92
1.000 .07 1.40 1.33 4.90 .68

0 10 2 1 .250 -6.06 .62 .58 7.86 1.81
.500 -2.96 .82 .76 5.56 1.13
.750 -1.22 1.06 .99 4.61 .84
1.000 .09 1.79 1.74 4.81 .69

0 10 2 2 .250 -6.25 .66 .63 7.72 1.85
.500 -2.87 .82 .76 5.79 1.14
.750 -1.28 1.06 .99 4.55 .84
1.000 .09 1.84 1.78 4.88 .70



Table 5 Continued

A0 λ α σ t Min. Mean Median Max. Std. Dev.

1 1 1 1 .250 -6.36 .99 .86 8.14 2.06
.500 -3.10 1.05 .99 6.91 1.33
.750 -1.88 1.11 1.05 4.72 .95
1.000 .68 1.83 1.75 4.68 .61

1 1 1 2 .250 -6.22 1.14 1.29 8.11 1.96
.500 -3.91 1.06 1.20 5.48 1.33
.750 -2.86 1.07 1.16 4.79 1.05
1.000 .45 1.86 1.79 4.60 .62

1 1 2 1 .250 -4.45 1.56 1.35 8.11 1.80
.500 -1.83 1.50 1.42 6.71 1.11
.750 -.68 1.46 1.38 4.68 .80
1.000 .60 2.29 2.25 5.27 .65

1 1 2 2 .250 -6.11 1.38 1.57 8.27 1.92
.500 -3.07 1.26 1.32 5.58 1.28
.750 -1.98 1.24 1.20 4.96 .97
1.000 -.17 2.22 2.20 5.17 .70

1 10 1 1 .250 -5.63 1.04 1.01 7.75 1.76
.500 -2.89 1.08 1.03 5.51 1.07
.750 -1.37 1.19 1.11 4.91 .76
1.000 1.00 1.74 1.63 4.64 .53

1 10 1 2 .250 -6.19 .64 .55 8.07 1.90
.500 -3.44 .71 .64 5.70 1.21
.750 -1.98 .85 .78 4.86 .87
1.000 .46 1.49 1.40 4.58 .64

1 10 2 1 .250 -4.07 1.79 1.75 8.77 1.56
.500 -1.47 1.67 1.59 6.18 .92
.750 -.20 1.66 1.58 4.73 .69
1.000 1.02 2.24 2.17 4.79 .58

1 10 2 2 .250 -5.03 1.00 .91 7.92 1.70
.500 -2.30 1.08 1.00 6.14 1.05
.750 -.93 1.23 1.16 5.15 .78
1.000 .47 1.96 1.90 4.78 .65



Table 6

Summary Statistics for the Value of a Portfolio following the Maximal Strategy. The table
reports summary statistics for the value of a portfolio where the maximal strategy is followed. The initial
value of the portfolio is 100. The summary statistics are based on 10,000 simulated paths. The final
convergence date for the arbitrage is one year, and the simulation uses 10,000 discretization points per year
in modeling the arbitrage process. The initial value of the arbitrage is A0. The parameter λ represents the
margin requirement. The parameters α and σ represent the speed of convergence and the volatility of the
arbitrage process. The Sharpe ratio the average of the pathwise Sharpe ratios for the individual paths. If
the initial wealth of 100 was invested in the riskless asset only, its value in one year would be 106.18.

Sharpe
A0 λ α σ t Min. Mean Median Max. Std. Dev. Ratio

0 10 1 1 .250 87.06 102.36 102.12 122.96 4.81 .29
.500 84.75 105.55 105.02 137.05 6.46 .45
.750 89.22 109.98 109.19 143.58 7.51 .65
1.000 106.08 120.33 119.14 158.81 8.15 1.30

0 10 1 2 .250 74.48 103.18 102.51 148.54 9.74 .24
.500 69.34 107.98 106.50 181.40 13.33 .40
.750 75.54 115.30 113.14 195.58 16.01 .60
1.000 104.92 135.61 132.36 235.12 18.81 1.27

0 10 2 1 .250 88.54 102.96 102.74 122.86 4.57 .53
.500 88.79 107.16 106.66 132.18 5.97 .76
.750 95.19 112.87 112.06 147.51 7.08 1.02
1.000 106.50 125.44 124.44 169.93 8.46 1.74

0 10 2 2 .250 77.03 104.36 103.73 148.33 9.31 .48
.500 76.11 111.23 109.85 168.72 12.52 .71
.750 85.99 121.36 119.16 206.46 15.48 .97
1.000 105.74 147.37 144.37 269.23 20.26 1.74

1 10 1 1 .250 88.25 104.22 104.08 121.81 4.49 1.02
.500 89.23 108.69 108.39 135.93 5.61 1.06
.750 94.83 114.08 113.27 146.62 6.27 1.16
1.000 117.10 125.20 123.72 164.66 6.42 1.72

1 10 1 2 .250 74.55 104.35 103.83 149.73 9.25 .48
.500 72.96 110.06 108.52 185.71 12.75 .60
.750 78.96 117.94 115.62 206.36 15.02 .77
1.000 115.59 138.92 135.18 245.11 17.49 1.41

1 10 2 1 .250 91.77 106.16 106.02 125.71 4.06 1.78
.500 95.80 111.88 111.40 136.59 5.04 1.64
.750 103.13 118.17 117.26 146.16 6.02 1.64
1.000 117.20 131.37 130.30 166.53 7.37 2.22

1 10 2 2 .250 79.12 106.52 105.89 147.60 8.67 .91
.500 82.06 114.34 112.72 180.41 11.77 1.00
.750 91.73 124.80 122.52 223.29 14.53 1.16
1.000 115.82 151.54 148.57 256.57 19.07 1.89



Table 7

Summary Statistics for the Value of a Portfolio following the Barrier Strategy. The table reports
summary statistics for the value of a portfolio where the barrier strategy is followed. The initial value of
the portfolio is 100. The summary statistics are based on 10,000 simulated paths. The final convergence
date for the arbitrage is one year, and the simulation uses 10,000 discretization points per year in modeling
the arbitrage process. The initial value of the arbitrage is A0. The parameter λ represents the margin
requirement. The parameters α and σ represent the speed of convergence and the volatility of the arbitrage
process. The Sharpe ratio is the average of the pathwise Sharpe ratios for the individual paths. If the initial
wealth of 100 was invested in the riskless asset only, its value in one year would be 106.18.

Sharpe
A0 λ α σ t Min. Mean Median Max. Std. Dev. Ratio

0 10 1 1 .250 90.23 101.57 101.51 106.81 .61 .15
.500 93.34 103.44 103.05 113.82 1.31 .35
.750 94.72 105.61 104.60 124.06 1.85 .51
1.000 106.18 107.45 106.18 127.94 2.05 .52

0 10 1 2 .250 96.94 101.51 101.51 103.88 .05 .00
.500 99.38 103.05 103.05 111.76 .21 .01
.750 104.60 104.63 104.60 117.63 .33 .01
1.000 106.18 106.21 106.18 119.41 .35 .01

0 10 2 1 .250 93.25 101.57 101.51 107.20 .44 .12
.500 98.12 103.38 103.05 112.02 .98 .30
.750 102.07 105.14 104.60 116.50 1.27 .35
1.000 106.18 106.74 106.18 118.41 1.30 .31

0 10 2 2 .250 100.58 101.51 101.51 101.51 .01 .00
.500 103.05 103.05 103.05 105.95 .03 .00
.750 104.64 104.60 104.60 107.55 .03 .00
1.000 106.18 106.18 106.18 109.18 .03 .00

1 10 1 1 .250 88.25 103.50 104.00 112.63 2.96 1.51
.500 89.23 106.70 106.63 118.65 2.97 1.41
.750 95.67 109.67 109.17 125.71 2.78 1.35
1.000 107.97 111.74 111.14 128.59 2.86 1.24

1 10 1 2 .250 94.67 101.51 101.51 106.59 .13 .01
.500 93.00 103.08 103.05 115.96 .48 .02
.750 104.60 104.67 104.60 117.71 .62 .02
1.000 107.97 110.74 110.16 125.52 2.31 02

1 10 2 1 .250 91.77 104.35 104.31 113.46 2.02 2.14
.500 95.80 107.12 106.64 119.99 2.05 1.79
.750 105.05 109.08 108.51 122.98 2.27 1.54
1.000 107.97 110.74 110.16 125.52 2.31 1.35

1 10 2 2 .250 101.51 101.51 101.51 104.77 .05 .00
.500 103.05 103.05 103.05 110.72 .12 .00
.750 104.60 104.61 104.60 112.39 .12 .00
1.000 106.18 106.19 106.18 114.09 .12 .00




















