UC San Diego UC San Diego Previously Published Works

Title

A 37-year record of ocean acidification in the Southern California current

Permalink

https://escholarship.org/uc/item/48m1m39m

Journal

Communications Earth & Environment, 4(1)

ISSN

2662-4435

Authors

Wolfe, Wiley H Martz, Todd R Dickson, Andrew G <u>et al.</u>

Publication Date

2023

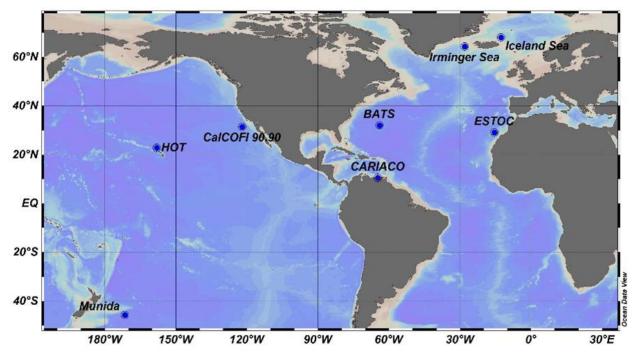
DOI

10.1038/s43247-023-01065-0

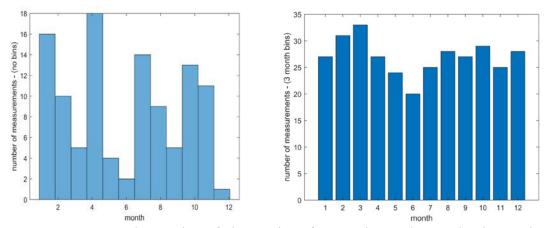
Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NoDerivatives License, available at <u>https://creativecommons.org/licenses/by-nd/4.0/</u>

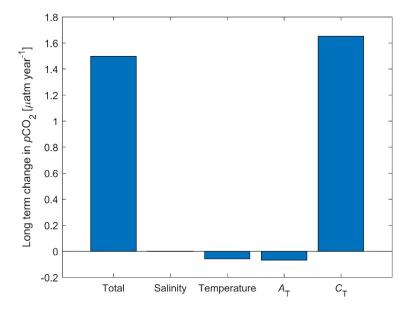
Peer reviewed

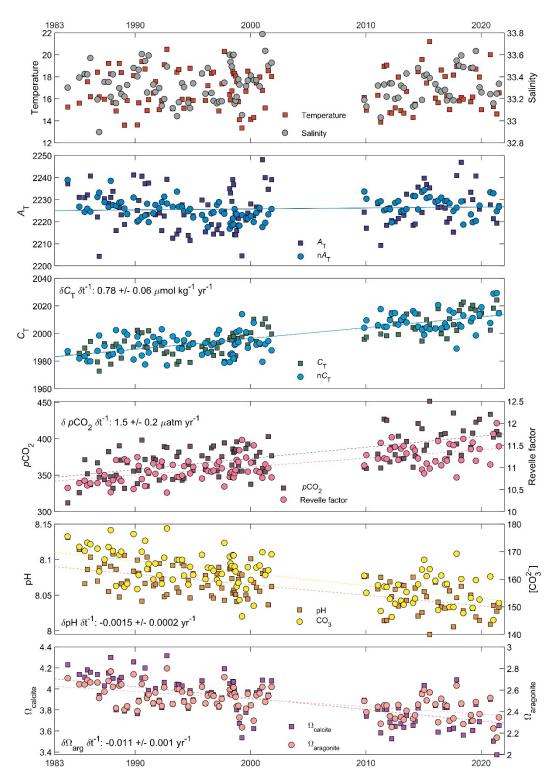

Supplementary Information for: A 37-year record of ocean acidification in the Southern

California Current


Wiley H. Wolfe¹, Todd R. Martz^{1*}, Andrew G. Dickson¹, Ralf Goericke¹, Mark D. Ohman¹

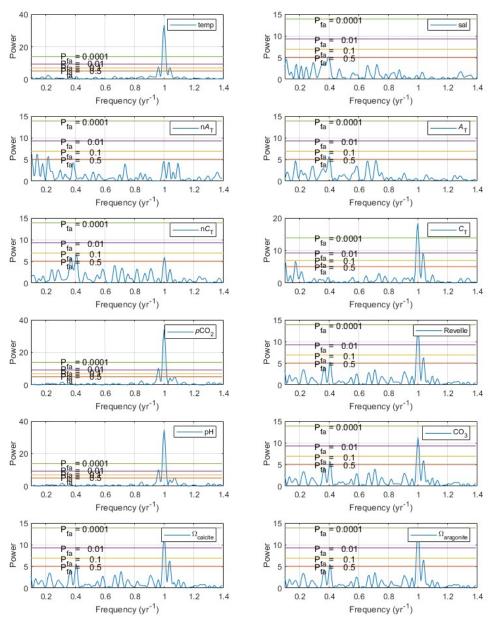
Corresponding author: Todd R. Martz (trmartz@ucsd.edu)


¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.

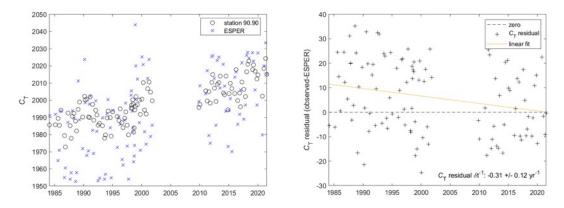

Supplementary Fig. 1. The locations of CalCOFI station 90.90 the other seven long term time series of seawater inorganic carbon⁹.

Supplementary Fig. 2. The number of observations from each month over the time series, before (left) and after binning (right).

Supplementary Fig. 3. Contributions of salinity, temperature, A_T , and C_T to the long-term trend in sea surface pCO_2 .

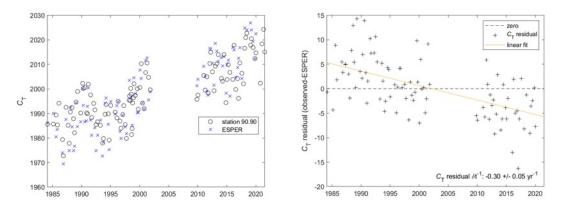

Supplementary Fig. 4. The time series observations at station 90.90 without seasonal detrending. Regression statistics shown in Supplementary Table 1.

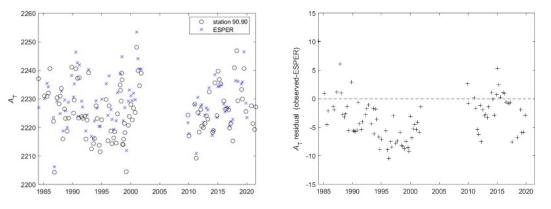
Parameter	Slope	standard error	units	п	r^2	<i>p</i> -value
Hydrography						
Temperature	-0.0041	0.0148	°C yr ⁻¹	107	0.0007	0.7824
Salinity	0.0001	0.0013	yr^{-1}	107	0.0001	0.9310
Ocean acidificati	on indicators					
pН	-0.0015	0.0002	yr^{-1}	105	0.4334	< 0.0001
CO3 ²⁻	-0.449	0.0516	µmol kg ⁻¹ yr ⁻¹	105	0.4241	< 0.0001
$\Omega_{ ext{calcite}}$	-0.0108	0.0013	yr^{-1}	105	0.4155	< 0.0001
$\Omega_{ m aragonite}$	-0.007	0.0009	yr^{-1}	105	0.3754	< 0.0001
seawater carbona	te chemistry					
Ст	0.7846	0.0604	µmol kg ⁻¹ yr ⁻¹	107	0.6167	< 0.0001
nC _T	0.7775	0.0658	µmol kg ⁻¹ yr ⁻¹	107	0.5706	< 0.0001
A_{T}	0.0431	0.0775	µmol kg ⁻¹ yr ⁻¹	105	0.0030	0.5796
$\mathbf{n}A_{\mathrm{T}}$	0.0425	0.0397	µmol kg ⁻¹ yr ⁻¹	105	0.0110	0.2867
<i>p</i> CO ₂	1.5317	0.1712	μ atm yr ⁻¹	105	0.4372	< 0.0001
Revelle factor	0.019	0.002	yr^{-1}	105	0.4696	< 0.0001


Supplementary Table 1. Trend statistics from station 90.90 presented without seasonal detrending (from Supplementary Fig. 4).

Parameter	peak	standard error	amplitude	standard error	units				
Hydrography									
Temperature	18.6	1.0	3.2	2.0	$^{\circ}\mathrm{C}~\mathrm{yr}^{-1}$				
Salinity	33.4	0.1	0.1	0.3	yr^{-1}				
Ocean acidification indicators									
pН	8.08	0.02	0.04	0.04	yr^{-1}				
CO3 ²⁻	167	4	10	15	μ mol kg ⁻¹ yr ⁻¹				
$\Omega_{ ext{calcite}}$	4.05	0.10	0.26	0.37	yr^{-1}				
$\Omega_{ m aragonite}$	2.61	0.07	0.18	0.25	yr^{-1}				
seawater carbonate chemistry									
C_{T}	2006	14	17	22	μ mol kg ⁻¹ yr ⁻¹				
nC_T	2002	17	11	23	μ mol kg $^{-1}$ yr $^{-1}$				
A_{T}	2229	7	7	16	μ mol kg $^{-1}$ yr $^{-1}$				
$\mathbf{n}A_{\mathrm{T}}$	2228	3	4	6	μ mol kg ⁻¹ yr ⁻¹				
pCO_2	396	19	41	39	µatm yr ⁻¹				
Revelle factor	11.2	0.5	0.4	0.6	yr^{-1}				

Supplementary Table 2. Descriptive statistics of the seasonal cycles shown in Fig. 1, right. The peak of seasonal cycle and peak-trough amplitude of surface hydrography and seawater carbon chemistry (from Supplementary Fig. 1, right).


Supplementary Fig. 5. Power spectral density of each time series variable calculated using the MATLAB function 'plomb'. Frequencies between 0.1 and 1.4 yr⁻¹. Most parameters exhibit a strong annual signal.


Supplementary Fig. 6. ESPER predictions using only temperature, salinity, latitude, longitude, depth, and year. (Left) Observed and ESPER predicted $C_{\rm T}$ over time. (Right) The residual $C_{\rm T}$, Observed – ESPER, over time.

Supplementary Fig. 7. ESPER predictions using only temperature, salinity, latitude, longitude, depth, and year. (Left) Observed and ESPER predicted $A_{\rm T}$ over time. (Right) The residual $A_{\rm T}$, Observed – ESPER, over time.

Supplementary Fig. 8. ESPER predictions using all available predictor variables (temperature, salinity, phosphate, nitrate, silicic acid, oxygen, latitude, longitude, depth, and year). (Left) Observed and ESPER predicted $C_{\rm T}$ over time. (Right) The residual $C_{\rm T}$, Observed – ESPER, over time.

Supplementary Fig. 9. ESPER predictions using all available predictor variables (temperature, salinity, phosphate, nitrate, silicic acid, oxygen, latitude, longitude, depth, and year). (Left) Observed and ESPER predicted $A_{\rm T}$ over time. (Right) The residual $A_{\rm T}$, Observed – ESPER, over time.