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Quasiclassical selection of initial coordinates and momenta 
for a rotating Morse os.cillator 
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Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074 

W. H. Miller 

Department of Chemistry and Inorganic Material~ Research Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720 
(Received 22 July 1974) 

The classical orbits of a rotating Morse oscillator are calculated by means of Hamilton-Jacoby theory 
after truncating the Hamiltonian to permit analytical solution. Except at very high J, the· approximate 
analytic orbit for the radial coordinate is in good agreement with that obtained by numerical integration of 
the exact equations of motion. Bohr quantization gives an expression for the rotation-vibration energy 
correct through quadratic terms in (v+ Y,) and J(J+ 1), where v and J are the vibrational and rotational 
quantum numbers, respectively. The principal result is an analytic prescription for obtaining values of the 
coordinates and momenta, given v, J, and a set of random numbers, that facilitates properly weighted 
quasiclassical selection or'initial states of diatomic molecules in trajectory calculations. 

I. INTRODUCTION b=A+~<~-1)-b 4-_!_). <~-1)2 +···. 
r r e are are ~ ar. The use of classical·trajectory calculations as a the­

oretical tool for studying the molecular dynamics of 
diatomic molecules 1 has revived an interest in the clas­
sical mechanics of the Morse oscillator. 2 Slater3 has 
given an expression for the classical orbit of a non­
rotating Morse oscillator from which the probability den­
sity for the displacement can be easily obtained. Rarikin 
and, Miller4 have solved the nonrotating Morse oscillator 
problem by means of action-angle variables. In this 
paper, we derive, several useful classical formulas for 

(3) 
Neglecting powers of ~ - 1 greater than the second, we 
have for the Hamiltonian 

a rotating .Morse oscillator whose Hamiltonian has been 
truncated to allow analytic solution of the dynamical 
problem. The accuracy of the orbit calculated from the 
truncated Hamiltonian is assessed by comparison with 
the results of a numerical integration of the exact equa­
tions of motion. We apply the rules of Bohr quantiza­
tion to obtain quasiclassical formulas, namely classical 
expressions for a Morse oscillator with a quantum­
mechanically allowed internal energy and rotational an­
gular momentum. Finally, we give an easily pro­
grammed prescription for randomly selecting the.initial 
coordinates and momenta of a rotating diatomic molecule 
in ·11 quasiclassical trajectory calculation. 5 · 

fJ 

II. EXPANSION OF THE CLASSICAL HAMILTONIAN 

The classical'.Hamiltonian for a rotating Morse oscil­
lator with angular momentum L and reduced mass J.l is2 

p2 L2 
H'=.!;..L +~ +D(1- e"""<r-re>)2 

2J.J. 2JJ.r 
(1) 

where D, 01, and r. are the usual Morse parameters. 2 

A natural variable is 

Expand in&" 1/r2 about r"' r. is equivalent to expanding 
about~= 1: 

(2) 

Solving for Pr at a fixed energy E gives 

Pr = J.l'Y = ± (2J.J.)1/2 (a +b~ +d2)1/2; 

where, 

a=E-D-AL2
, 

b=2D-BL2
, 

C=-D+CL2
, 

1 r 3 ~ 1 )J. A=~ 1--1-- , 
2JJ.r e · ar. . ar. 

2 ( 3 ) B=--3 1---
J.J.ar e . 2a.r6 ' 

Ill. TRANSFORMATION TO ACTION-ANGLE 
VARIABLES AND SOLUTION OF THE EQUATIONS 
OF MOTION 

(5) 

(6) 

To solve the dynamical problem, we transform to a 
system of conjugate variables (QJ, Pi) in which the mo­
menta Pi are constants of the motion. Since His inde­
pendent of time, the generator of such a transformation 
is Hamilton's characteristic function, 6•7 namely 

(7) 
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where 

W 8=J P8 d8=J (L2
- s%~S

12 

dO, 

w4> = J p4> a4> =M<f>. 

The new coordinates are given by 

aw 
Q;=ap . • 

• 
We therefore need the derivatives 

awr ~J.l)112 1 1 . ~ b~+2a ~ ----- --- arcsm ...-T-~=== 
aa - 2 a 1-:::ri 0b2 - 4ac 

(Sa) 

(8b) 

(Be) 

(9) 

(lOa) 

awr=(J!..\112 .!__l_arcsin(2c~+b) (lOb) 
ab \2) a ~ ·lb2 - 4ac 

awr /F)1
1

2
1 b . 1- 2c~+b~ 1 I I 

ac=\2 . a2(-c)372 arcsm\v'b2-4ac r2w Pr' 

8W8 _ ( cose ) 
az:-=qL=arccos\v'l-X2 , 

aw8 • . (.X cote) 
aM =-arccos v' 1 _ X2 , 

aw<~>=-~, 
aM '~-'' 

where 

Xo=M/L. 

(loc) 

(lla) 

(1lb) 

(12) 

(13) 

We take as the conserved momenta three quantities 
that are proportional to the action variables, 

p o=N=_!__fP dr=.!. (2JJ)1/2 Je> (a+b~+c~2)1/2 d~ 
1 27T r 1T a e< ~ 

= (2JJ)1/2(--b-- r::a) 
Ci 2r-G ' '(14) 

(15) 

(16) 

where ~>• ~< are the roots of Pr = 0, 

(17a) 

and 

(17b) 

From Eqs. (9)-(17) we obtain the equations of trans­
formation to the new variables, 

. [2c~+b )] C IP 1} 
+ arcsm\v'b2- 4ac + ca r ' (19) 

QM=(::) =(~~)+~~=</>-arccos~). (20) [ 
N,L L ..: 

In Eqs. (18)-(20), the old coordinates ~. e, 1> are held 
constant in all the differentiations. The time deriva­
tives of the new coordinates are given by Hamiltonian's 
equation, 

. an 
Q;=ap. 

i 
(21) 

Thus we find that QM is constant and that Q Nand Q L are 
proportional to the time: 

. (aE) (2)1/2 
QN=\aN L,M =Ci\M r-ao=wN, (22a) 

. (a E) [ (a)1/2 ( b )~ 
QL=aLN,M=2LA+-;; B+2cc'Jo=wL, (22b) 

(22c) 

Solution of the equation of motion thus takes the simple 
form 

QN(t) =oN+ wNt, 

QL(f)=fJL+WLf, 

Q JJ)=OM. 

(23a) 

(23b) 

(23c) 

The radial orbit is easily obtained from Eqs. (18) and 
(23a): 

r(t) = r.-.!.. ln{(- 2a)[b + v'b2- 4ac sin(w Nt + 6 N)]-1}. (24) 
Ci . 

The orbit for 8 is obtained from Eqs. (lla), (19), and 
(23b): 

O(t) =arccos[ v' 1- X2 cos{w Lt + o L + L~L)], (25) 

where 

and 

Finally, from Eqs. (20) and (23c) we obtajn for the orbit 
of 1> 

(28) 

The Cartesian components of the linear momentum can 
be expressed in terms of the variables Q N' Q L• and Q M 
[and thus through Eqs. (23) as functions of t] and of the 
constant angular momenta. Transformation to the polar 
coordinates 
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x = r sinll cos¢ , 

y = r sinll sin¢, 

.z =rcose 

.• gives for the conjugate momenta 

_ Pr = Jl'Y =Pxsinll cos¢ +Pysinll sin¢ +Pt cosO, 
'\ • 2 . 
• Po= 11er =Pxrcose cos¢ +Pyrcosllsin¢ +Pzrcose, 

p0 = wPr 2 sin211 =- Pxr sinll sin¢ +P"r sinll cos¢ . 

In matrix form, the inverse transformation is 

() (

inll cos¢ cosll cos¢ 

p" = sinll sin¢ cosll sin¢ 

Pz · cosll - sinll 

-:sin¢) ( Pr ) 
cos¢ P8/r . 

0 p0 /rsin8 

From Eqs. (lla) and (20), we find that 

sinll = (sin2q L + A2 cos2q L)
112

, 

cosll = 11- A2 cosqL·, 

sin¢= sinq L cosQ M +A cosq L sinQ M 
(sin2q L +A~ cos2q L)1' 2 

rl.. sinqL sinQM- A cosq LcosQ M 
cos'~-' = ~ (sin2q L + A2 cos2q L )112 

(29a) 

(29b) 

(30a) 

(30b) 

(30c) 

(31) 

(32a) 

(32b) 

(32c) 

(32d) 

Substitution of Eqs. (32) into Eq. (31) gives after. some 
algebraic simplification 

(

- cosq L sinQ M- A sinq L cosQ) 

+ L/r cosqL cosQ M- A sinq L sinQ M 

. - 11 - A2 sinq L 

(33)' 

In Eq. (33), the "intermediate" variable qL is given by 

q L = Q L + L6. L' 

Pr is give!l by Eq. (5), r is given by 

1 
r=r -- ln~ 

e Ol ' 

~L is given by Eq. (26), and ~by 

'g ~ = (- 2a)[b + .J b2- 4ac sinQ N]-1. 

(34) 

! (35) 

1(36) 

From Eqs. (29) and (32), the components of rare found 
to be given by 

(
x) (- sinqL sinQM +A cosqL cosQM) 

y = r sinqL cosQM. +A cosqL sinQM . 

z ../1-X2cosqL 

(37) 

IV. CLASSICAL RADIAL DISTRIBUTION 

The radial density function is obtained in the usual way 
from the radial period T r• 

(38) 

sincePr=f-Lf and since rr=2rr/wN, we have 

(39) 

The (cumulative) radial distribution function is 

fr 1 ir D(r) = P(r')dr' =;(- 2afJ.)112 p,-1dr'. 
r< r< 

(40) 

From Eqs. (5) and (40) we obtain 

D(r)= ~ {> (a+be +ce 2t112 ~~, 

=i-;arcsin(~J;t_2:ac), (41) 

where a, b, care given by Eqs. (6) and~ by Eq. (2). ' 

The derivation of D(r) directly from the results of 
Sec. III is trivial. Inspection of Eqs. (2), (17), and (18) 
shows that r goes from r< tor> as QN goes from - rr/2 
to rr/2. Thus, with boundary condition D(r<)=O, it fol­
lows that 

(42) 

which is the same result as Eq. (41). The radial den­
sity is therefore 

P(r) =!~ =- Ol~ ~ = ar-a (a+ b~ + c~2 ) 112 (43) 
rr dr rr d~ rr ' 

which is equivalent to Eq. (39). 

V. BOHR-SOMMERFELD QUANTIZATION 

The Bohr-Sommerfeld quantization rule is 8 

(44) 

where v is the vibrational quantum number, and N is 
given by Eq. (14). To compare with the quantum-me­
chanical eigenvalues for a rotating Morse oscillator, we 
use Eq. (6) to expand b/2..r:::G in powers of L2

: 

b 2r-G=D1/2- FL2- GL4 + ... (45) 

where 

F- 3 . (1 _1 ). 
-4/-Lar!D112 -ar.' 

(46)' 

Solving Eq. (14) for a; substituting the definition of a 
from Eq. (6), and using Eq. (44) for N, we obtain for E 

Writing out Eq. (47) to the fourth power of L, substitut­
ing the definitions for all constants, and setting L 2 

=J(J + l)n2 gives · 

J. Chem. Phys., Vol. 63, No.5, 1 September 1975 
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1i
2 

( ) ( 1) 1i 2w~( 1)2 1i
4 

[( ( )]2 3[1-(1/ar,)] 3 1 
EvJ=-2 2J J+1 +fiWoV+z -·4D V+z -4 2 2 6D J J+1 - 4 3D n Wo(V+z-)J(J+1), 11r, _ 11 a r, 11ar, 

(48) 

in agreement with the quantum-mechanical results. 9 

Thus, the value of v found from a classicaltrajectoryfor 
a diatomic molecule by the prescription 

v =- t +- p,.dr 2lr> 
n r< 

(49) 

iS unambiguously the vibrational "quantum number" even 
when separation of vibration and rotation is a poor as­
sumption, since insertion of v from Eq. (49) and J from 
the expression10 

J=-t+~(1+4L2/n 2 ) 112 (50)· 

:lnto Eq. (48) [or better, Eq. (14) and solution of there­
sulting equation for E] correctly gives the (unseparable) 
rotation-vibration energy. 

Here, our chief interest in Bohr-Sommerfeld quanti­
zation of Nand L is to facilitate quasiclassical selection 
of initial coordinates and momenta (see Sec. VII) by 
means of the results of Sec. III. Before proceeding, 
however, we turn to the question of errors introduced' 
by truncating the Hamiltonian. 

VI. NUMERICAL ACCURACY OF THE RADIAL ORBIT 
AND THE RADIAL DISTRIBUTION 

Since Eqs. (24)-(28) give solutions of the classical 
equations of motion for a Hamiltonian truncated to the 
terms quadratic in{~- 1) [Eq. (4)], the errors induced 
by the truncation need to be examined. Comparison of 
Eq. (48) with ReL 9 testifies to the accuracy of the en­
ergy quantization through quadratic terms in the quantum 
numbers. ~n this section we numerically test the ac­
curacy of the radial orbit and the radial distribution. 

Table I compares values of the radial coordinate as 
given by the analytic expression Eq. (24) with values for 
the· same times obtained by numerical integration of the 
exact equations of motion. The numerical integration is 
accurate to at least eight significant figures, as can be 
seen by comparing values of r(t) with those calculated 
from Eq. (24) for J = 0, since the analytic expression is 
exact for a nonrotating molecule. For J* 0, the agree­
ment of the numerical arid approximate analytic results 
for r(t) are excellent when the rotational energy is not 
too large a fraction of the total internal energy. The 
error after one complete period is about 1% for v = 10, 
J= 10 where the rotational energy is .about 0. 03 of the 
total internal energy; the error after a complete period 
increases to 19. 5% for v = 10, J = 30 where the rotational 
energy is about 0. 2 of the total internal energy. 

The approximate analytic expression for the radial 
probability density is much more accurate, however. 
Figure 1 compares P(r) calculated from Eqs. (43) and 
(2) with the radial density calculated from the numeri­
cally exact trajectory for v = 10, J = 30. From the figure 
one sees that even for this case in which the analytical 
expression for r(t) is in error by almost 20% after one 
period, the analytic expression for the radial density is 

entirely acceptable. The greatest error in the density is 
near the turning points. The analytic expressions can ~ 

TABLE I. Orbit of a rotating Morse oscillator. a 

v J E(eV) 

0 0° 0.1835 

0 4 ·, 0.2093 

0 10 0.3248 

2 0.8801 

2 4 0.9044 

2 10 1. 0130 

10 4· 3.0894 

10 10 3.1704 

10 30 3.8655 

0 
o:530 
1.055 
1.585 
2.100 

0 
0.530 
1.060 
1. 590 
2.115 

0 
0.535 
1.070 
1.605 
2.135 

0 
0.575 
1.150 
1.725 
2.300 

0 
0.~575 

1.155 
1. 730 
2.310 

0 
0.580 
1.165 
1. 745 
2.330 

0 
0.900 
1. 800 
2.700 
3.600 

0 

0.915 
1.830 
2.745 
3.665 

0 
1.135 
2.270 
3.405 
4.540 

r(a.u.) 

Numerical 
integration Eq. (21) 

2.4100000 2.4100000 
2.2306325 2.2306325 
2.4894230 2.4894230 

'2.6315951 ,2.6315951 
2.4183750 2.4183750 

2:4100000 2.4100000 
2.2340684 2.2340620 
2.4957977 
2.6336871 
2.4119575 

2.4100000 
2.2474418 
2.5172910 
2.6436397 
2.4122819 

2.4957830 
2.6336794 
2.4119421 

2.4100000 
2.2474084 
2.5172216 
2.6435846 
2.412i631 

2.4100000 2.4100000 
2.1187399 2.1187399 
2.7995140 2.7995140 
2.9599080 2.9599080 
2.4131772 2.4131772 

2. 4100000 ' 2. 4100000 
2.1215817 2.1215405 
2.8065219 2.8064771 
2.9620295 2.9619462 
2.4071156 2.4069132 

2.4100000 2.4100000 
2.1388586 2.1386400 
2.8265814 2.8263466 
2. 9745255 2. 9740138 
2.4137778 2.4125441 

2.4100000 2.4100000 
2.8838100 2.8836702 
4.0423125 4.0418722 
3.9116854 3.9095214 
2.4007287 2.3947490 

2.4100000 2.4100000~ 

2.9225111 2.9217751 
4.0744397 4.0718377-
3.9419554 ·3.92922801 
2.4153917 2.3801441 

2.4100000 2.4100000 
3.3978372 3.3929283 
4.4459384 
4.2025554 
2.4115216 

4.3926178 
3.9593128 
1.9431636 

~he Morse parameters are those for the HCl molecule: re 
= 2. 410 a. u., 01 = 4. 61534 a. u., D=4. 61534 eV. 

l>rhe unit of time is 0. 5387 x 10"14 sec. 
0 Equation (21) is exact for J=O; inclusion of these entries pro­
vides a check of the accuracy of the numerical integration of 
the exact equations of motion. 
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2.0 

V=IO 

HCI 
j=30 

1.0 

0~~~~~-=~~~~~~~~~~~~~~~. 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 

R(a.u.) 

Fig. 1. The classical radial probability density for a rotating 
Morse oscillator. Parameters are chosen to represent the 
HCl molecule (see footnote a, Table I) in a quasiclassical state 
v = 10, J= 30. Approximate analytic expression: solid curve 
(-); exact density from numerical trajectory: dashed ·curve 
(---). The figur~ also shows a histogram for the density de­
termined by assigning trajectory results for r(t) to 20 equal 
time intervals spanning the period. 

·be made more exact in these regions by modifying them 
to give the correct turning points11 if these are known. 
It should also be obvious that numerical integration of 
Eq. (Sa) and subsequent numerical extraction of the 
radial distribution can be accomplished without expand­
ing the rotational term, if greater accuracy than that 
provided by th~ approximate analytic formula is required 
when rotational energy is a significant fraction of the 
total energy. 

VII. QUASICLASSICAL SELECTION OF INITIAL 
COORDINATES AND MOMENTA 

There are several equivalent methods by which the 
radial coordinate r can be selected at random. The ra­
dial distribution function D(r) given in Eq. (41) can be 
set equal to a number R chosen randomly from the 
closed interval (0, 1) with uniform density, and the re­
sult solved for r with the assistance o£ Eq. (2). Alter­
m(i;ively, .one can set oN=O and wNt/21f=R in Eq. (24). 
Both of these methods lead to12 

~ 1 
r = r.- -ln{(- 2a)[b + v'b2 - 4ac sin(21fR)]-1

}. (51) 
Q! 

While these methods are adequate for r, they are not so 
easy to apply in the case of 8, ¢, and the components of 
p. 

Since the independent angle variables QN, QL, and QM 
[see Eqs. (23)] all range from 0 to 21r and are at most 
linear in t, it is clear that one need merely to set 

QJt= 21fR1 , 

QL = 21fR2, 

QM = 21fR3, 

(52) 

where the R 1 are·mutually random numbers with flat dis._ 
tributions in the closed interval (0, 1). The components 
of r and p calculated from Eqs. (33)-(37) then have the 
properly weighted distributions for a rotating Morse 
oscillator. The quasiclassical selection is implemented 
by the use of Eq. (44) and 

L 2 =J(J+l)n 2 (53) 

in t!le evaluation of the constants a, b, and c by means 
of Eq. (6). 

This prescription is analogous to the situation in 
quantum mechanics when the values of the momenta 
(here the action variables) are sharp and the values of 
their conjugate coordinates (here the angle variables) 
are therefore completely random. 
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