
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Essays on Microeconomics

Permalink
https://escholarship.org/uc/item/48m4x44w

Author
Zhou, Junjie

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48m4x44w
https://escholarship.org
http://www.cdlib.org/


Essays on Microeconomics

By

Junjie Zhou

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Chris Shannon, Chair
Professor Robert Anderson

Professor Benjamin Hermalin
Professor Suzanne Scotchmer

Spring 2012



Essays on Microeconomics

Copyright 2012
by

Junjie Zhou



Abstract

Essays on Microeconomics

by

Junjie Zhou

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Chris Shannon, Chair

This dissertation consists of two essays on microeconomics.
The first chapter explores leadership within hierarchical organizations. For

each hierarchy, I consider a dynamic signaling game in which each player observes
only the actions of his direct superiors before choosing his action. At the top of the
hierarchy are the leaders, who learn the state from nature. The hierarchy controls
the flow of information and the timing of the game, and determines the equilibrium
output and welfare. I show that the welfare-optimal hierarchy is the chain, because
it maximizes the incentive of players to “lead by example” for their subordinates.
The chain remains optimal even in the presence of verifiable or unverifiable costly
information acquisition by the leaders. Lastly, I characterize optimal hierarchies
when the number of layers or the number of leaders is limited. Applications to
fund-raising are also discussed.

The second chapter studies the optimal way to select projects or agents in
environments where information arrives in well defined rounds. Examples include
academic environments where review periods are set by policy, aptitude tests such
as those given by software developers to programmers applying for jobs, venture
capital protocols where the rounds of funding may be stopped before the project is
complete, and FDA testing, where drugs can be dropped at well defined junctures.
Sequential rounds of elimination reduce the cost of selection, but also reduce the
average quality of surviving projects. I characterize the nature of the optimal
screening process with and without ”memory.” The second chapter is based on
joint work with Suzanne Scotchmer.
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Chapter 1

Economics of Leadership and
Hierarchy

1.1 Introduction

This paper studies the role of leadership and information flow in the design of
organizations. I develop a model of public good provision in teams with asymmetric
information. Team members can engage in costly signaling of their information
through their choice of effort to invest in the joint project. Leadership positions
within the organization are distinguished by differential access to information: a
team member’s effort is observed only by her direct subordinates. The flow of
information is thus endogenous to the design of the organization, and becomes
the crucial channel through with the organizational design affects team output. I
characterize the optimal organizational design in this model, and show that the
optimal hierarchy provides important welfare gains over the standard team output
and other methods of addressing the classic problem of moral hazard in teams
(Holmstrom (1982)).

A central building block for my work is the idea of leading by example, intro-
duced in the seminal work of Hermalin (1998). Hermalin (1998) also starts from
the issue of free-riding in team production problems, and assumes that one team
member knows the true marginal return to effort. In the standard team model,
the informed member cannot credibly signal her information, thus it is useless.
Hermalin’s fundamental insight is that if the informed member can move first,
however, then she can “lead by example”: if she chooses her effort first and this is
observable to all other team members, then her investment in the project provides
a credible costly signal. Hermalin (1998) shows that such leading by example, by
exploiting this information channel, yields higher welfare in equilibrium than the
standard team production (even in the symmetric information case). Thus Herma-
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lin (1998) identifies an important aspect of leadership in information transmission
and incentive provision that can mitigate free-riding in teams. This insight has
been at the heart of a sizable and growing literature on the economics of leadership
(for example, see Hermalin (2007), Komai, Stegeman and Hermalin (2007), Komai
and Stegeman (2010)).

An important limitation to the analysis in Hermalin (1998) is that the informa-
tion channels and organizational structure are essentially taken to be exogenous.
One team member is exogenously assumed to be informed about the true state,
thus have “leadership potential.” The leader’s only choice is whether to move first,
thereby signaling to all of the other members simultaneously. Thus the organiza-
tional structure is exogenously given: a two-tier hierarchy with the leader at the
top and all other members on the second tier. If the signaling role of a leader is
important, however, then information flows should be an important component
in the endogenous design of organizations. For example, consider a three-person
team in which one member learns the true state. Hermalin’s (1998) results show
that team output increases if the informed member invests first and reveals her
investment to the other members, who then choose their investments simultane-
ously. Is this the optimal organizational design, however? Hermalin (1998) and
the substantial work that followed do not address this important question. For
example, is it better to have information flow through a “middle manager,” that
is, to have a three-tier hierarchy in which a single member observes the leader’s
investment, chooses his investment and then in turn reveals only his investment
to the third member? Or is it better to have two leaders, each of whom signals to
the third member?

To answer these questions, I start by illustrating the results in the simple case
of three workers. In this case, it is possible to give an exhaustive list of all of the
possible hierarchies. In a simplified version of the public good provision model
with quadratic disutility of effort, I show that the optimal hierarchy has three
tiers, with one leader on the top tier, one middle manager on the second tier, and
a terminal worker on the third tier. This results in two rounds of the “leading
by example” effect observed by Hermalin (1998). The middle manager “leads by
example” for the terminal worker, which results in higher effort from the middle
manager due to the need to provide credible signal. Because the middle manager
works harder, the leader has a larger incentive to invest more as well, again due
to the signaling effect. In particular, this three-tier chain hierarchy yields higher
output than the two-tier hierarchy assumed in Hermalin (1998). Similarly, the
chain dominates the inverted two-tier hierarchy with two leaders on the top tier.1

In either case, one round of signaling is wasted, leading to lower output than in
the chain.

1This result relies on an assumption on the beliefs of the terminal worker. See Section 2.3.
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The general model with any number of workers and general sharing rule and
disutility function is analyzed in sections 4 and 5. Here I distinguish between
simple hierarchies, in which every player who is not the leader has a unique direct
predecessor, and complicated hierarchies, in which at least one player has multiple
direct predecessors. In a simple hierarchy, the dynamic signaling game I define al-
ways has a unique separating equilibrium, but in a complicated hierarchy typically
there are multiple separating equilibria. Consequently, the analysis of complicated
hierarchies is more delicate.

For simple hierarchies, I show that similar intuition as in the three-person ex-
ample holds, and the chain is optimal in an arbitrarily large team. The optimality
of the chain follows from the observation that by transforming any hierarchy into
a chain, we obtain the maximal number of stages of signaling, as the set of fol-
lowers for each member is larger in the chain than in the original hierarchy. For
fixed shares, the chain gives every member the largest possible signaling incentive,
hence motivates the highest efforts. Therefore, the chain can replicate the same
welfare under any hierarchy but uses less total shares. Moreover, extra shares
always improve welfare when distributed optimally among the team. Combining
these results shows the optimality of the chain among simple hierarchies.

For complicated hierarchies, I focus on a particular equilibrium which shares
a similar characterization as the unique equilibrium with simple hierarchies. Here
I consider two operations on hierarchies: adding links and splitting. Adding links
means constructing a link, and hence an information channel, between two mem-
bers who were unconnected, while splitting means creating a new intermediate tier
consisting of a single member chosen from a tier with more than one member, and
adding the maximal number of links to this new tier. Interestingly, each operation
improves welfare after adjusting the shares optimally. The optimality of the chain
follows directly from the fact that any hierarchy can be transformed into a chain
through a sequence of these two operations.

I then extend the model to allow for endogenous information acquisition by
the leaders. If research effort is verifiable, then the optimal hierarchy is still the
chain because the chain generates the highest social return to information. Even if
research effort is not verifiable, the chain remains optimal because the leader’s in-
centive for information acquisition now depends monotonically on her equilibrium
effort, which is higher in the chain than in any other hierarchy. Thus the leader
acquires more accurate information in equilibrium, even when research effort is
not verifiable.

A drawback to the chain is that for a large team, the hierarchy is very long, as
it requires as many tiers as team members. Thus I also consider a version of the
model with constraints on the height of the hierarchy, that is, in which hierarchies
are constrained to have fewer tiers than team members. In this case a chain is

3



not feasible. I show that the optimal simple hierarchy must have the maximal
number of middle managers, hence the smallest number of terminal workers. This
is achieved by assigning at most one follower to each middle manager. The maximal
number of middle managers exploits the maximal level of signaling incentives in
the team when height is limited.

While I use the language of leaders and followers throughout the paper, fol-
lowing Hermalin (1998) and subsequent work, the results developed here can be
applied to a wide variety of team production problems with asymmetric informa-
tion. In many applications, the informed players who move first in the optimal
team hierarchy need not literally be team “leaders” or CEOs; in many settings
it might be natural for more informed members to be lower-level workers more
familiar with the production technology or better able to collect information. In
such problems, these results show that the optimal arrangement of the team is a
chain originating with the informed member, with each member signaling via his
effort to a subsequent member.

As an application, I consider the problem of a charity trying to raise funds
from a pool of possible donors. I show that the charity can raise more money
by implementing a fund-raising campaign resembling a chain; that is, by placing
potential donors in a line and asking them to donate one after the other. In
particular, the charity should not reveal the entire donation history to future
donors.

Related Literature

This paper is related to two strands of literature, one focusing on the economics
of leadership, and the other focusing on determinants of organizational design.

As mentioned an important contribution to the literature of leadership is Her-
malin (1998), on which this paper is built. Many extensions of Hermalin’s model
have appeared. Komai and Stegeman (2010) study the rise of leaders endoge-
nously. Komai, Stegeman, and Hermalin (2007) consider team production with
binary action (participate or not). Hermalin (2008) extends the static model to
an infinitely repeated setting, thus allowing the leader to build a reputation. The
literature on leaders conveying information is surveyed in Hermalin (2007). As
noted, a limitation of these models is that they all assume an exogenous orga-
nizational structure. The main contribution of this paper is to endogenize the
organizational structure.

Many different aspects of hierarchies have been studied in previous work. Some
approaches emphasize moral hazard and loss of control, for example, Calvo and
Wellisz (1978, 1979), and Qian (1994). Others, following Radner (1993), study
optimal hierarchies for minimizing costs of information processing and commu-
nication, for example, Bolton and Dewatripont (1994), Prat (1997), van Zandt
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(1999), Marschak and Reichelstein (1998). This paper identifies another role of
hierarchy through a different perspective, that of signaling channels. The dissemi-
nation of information along the hierarchy creates incentives for players as they try
to influence their followers’ beliefs, hence efforts.

This paper is also related to the increasingly growing literature on social learn-
ing (Bala and Goyal, 1998) and social networks (Jackson, 2008). The hierarchies
studied here are particular networks in which information is transmitted through
signaling along the directed links. In this model, cheap talk messages are not
credible. Instead, the information about the state is transmitted from one player
to his follower via his action, which connects this paper to the literature on “in-
formation cascades” and “herd behavior” (see, e.g., Banerjee 1992, Bikhchandani
et al., 1992). But there are many differences. First, followers in this paper have
no private signals. Also, the action and state are both continua, the action fully
reveals the state in equilibrium. Lastly, unlike that literature, one player’s payoff
here also depends on other players’ actions.

1.2 Model with Three Workers

In this section, I provide basic intuition about how organizational structure affects
the incentives of players and team welfare using a simplified three-worker public
good production model. The general model with any fixed number of workers,
general sharing rule and disutility function is studied in the next section.

For an organization with three workers, there are only a few possible hierarchies:
T structure (team structure), Λ structure (leading by example), C3 (sequential
leading by example), and V structure (two leaders).2 For each hierarchy, I define
the game associated with it, characterize the unique separating equilibrium, and
compute welfare in that equilibrium. I show the chain yields higher welfare than
leading by example, which in turn yields higher welfare than the team structure.
The analysis for the V structure is complicated by the fact that the unique follower
of two leaders may have different out-of-equilibrium beliefs to support different
equilibrium efforts from the leaders. Under a pessimistic belief assumption for the
follower, I show that there is a continuum of separating equilibria, but all such
equilibria are bounded by two special equilibria, what I call the U-equilibrium and
L-equilibrium. The U-equilibrium does better than leading by example, but still
worse than the chain, while the L-equilibrium does as well as the team structure.
Hence, I give a complete picture of what we can achieve with three workers.

Consider a team with N=3 identical workers producing a joint project. The
value of the project is v(x1, x2, x3) = θ(x1 + x2 + x3), where θ ∈ Θ = [0,∞)

2There is another structure with two leaders, but one leader has no followers. See footnote 6
for discussion.
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is a stochastic productivity factor and xi ∈ R+ is the contribution of worker
i. The prior distribution of θ is F : [0,∞) → [0, 1]. I assume F has full sup-
port and a continuous and positive density function f . Furthermore, assume
each member gets 1/3 of the total output v and c(x) = 1

2
x2 is the disutility

of effort, which is the same for every worker. Then, worker i’s payoff πi is
πi(x1, x2, x3) = 1

3
v(x1, x2, x3) − c(xi) = 1

3
θ(x1 + x2 + x3) − 1

2
x2
i and aggregate

welfare is W (x1, x2, x3) =
∑3

i=1 πi(x1, x2, x3) =
∑3

i=1(θxi − 1
2
x2
i ). Note that the

output function v is additively separable in individual efforts. So, if state θ is
common knowledge or all workers have the same belief θ about the state, worker i
has a dominant strategy to exert effort xNi = 1

3
θ. Welfare under the corresponding

equilibrium is WN(θ) = W (1
3
θ, 1

3
θ, 1

3
θ) = 5

6
θ2. The first-best effort is xFBi = θ and

the first-best welfare is W FB(θ) = W (θ, θ, θ) = 3
2
θ2. There is under-provision of

effort due to standard free-riding in teams. In the first-best world, each worker
must receive 100% of the output on the margin, but in total we only have 100% to
give due to budget balance. The case with symmetric information can be graph-
ically represented by Figure 1.1. Every member’s position is symmetric in this
structure, and we call it the standard team structure.

•1 •2 •3

Figure 1.1: Standard Team Structure (T)

1.2.1 Leading by Example

To counteract the free-riding problem in teams, hidden information and leading by
example were introduced by Hermalin (1998). In that model, one worker, called
the “leader,” has superior information about θ and she moves first. All of the
other workers, who initially only know the prior distribution of the state, observe
her effort and choose their efforts simultaneously in the next stage.

•L
↙ ↘

•F1 •F2

Figure 1.2: Leading by Example (Λ)

Figure 1.2 shows the relationship between workers. L is the leader and F1 and
F2 are the two followers. An arrow from L to F1 means that F1 observes L’s effort.

6



We call this the Λ structure since it resembles the letter Λ. For the Λ structure,
we can define a signaling game as follows:

• Nature chooses θ ∈ Θ, which is unknown to all initially.

• In period 1, the leader L learns θ and chooses xL.

• In period 2, both F1 and F2 observe xL and pick their efforts xF1, xF2 simul-
taneously.

• Payoffs are realized.

We are interested in separating equilibrium, in which the leader’s effort x̃L(θ)
is a monotonic function of the state θ, hence reveals the state to the followers. A
separating Perfect Bayesian Equilibrium (SPBE) of this signaling game is calcu-
lated in Hermalin (1998, Lemma 4). In that equilibrium, the leader’s equilibrium
strategy is x̃L(θ) = 2

3
θ. After observing the leader’s effort xL, each follower’s point

belief about the state is βi(xL) = 3
2
xL, i = 1, 2. Hence, each follower chooses effort

xFi(xL) = 1
3
βi(xL) = 1

2
xL, i = 1, 2. The equilibrium efforts of L, F1, F2 are 2

3
θ, 1

3
θ,

and 1
3
θ respectively.

The equilibrium welfare in this equilibrium is WL(θ) = W (2
3
θ, 1

3
θ, 1

3
θ) = θ2 So,

the welfare with leading by example is higher than that with symmetric informa-
tion, i.e, WL = θ2 > WN = 5

6
θ2.3 Compared with the team structure, leading

by example improves welfare, because the equilibrium effort of the leader is larger
than under symmetric information, but still below the first-best level. The intu-
ition is as follows. The leader gets a portion of the output generated by followers.
In a separating equilibrium, the leader’s effort fully reveals the information about
the state. The harder the leader works, the higher the followers’ beliefs about the
state, thus the harder followers work and the better off is the leader. Being a leader
and signaling to the followers gives leader L extra incentive to work hard beyond
the incentive from her own share of the output. Given that the equilibrium efforts
with symmetric information are too low to begin with, inducing harder work is
welfare improving.

1.2.2 Sequential leading by example

Leading by example improves welfare in teams as shown by Hermalin (1998). But
in equilibrium, efforts of the followers F1 and F2 are still too low. Welfare would
be even higher if we could motivate any of the followers to exert higher effort in
equilibrium. This requires that the followers have some extra signaling incentive as
the leader L had in the previous example. This leads us to change the Λ structure

3This is true except when θ = 0. For the sake of brevity, I will not repeat this caveat later.
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into a chain (see Figure 1.3). The timing of the game is now modified as follows.
In period 2, only F1 (not F2 ) can observe L’s effort xL, and he exerts effort in
period 2. In period 3, F2 observes F1’s effort xF1 and exerts effort xF2 last.

•L → •F1→ •F2

Figure 1.3: The Chain Structure (C3)

The chain structure contains two stages of leading by example. Leader L signals
to F1, and F1 signals to F2. Critically, F2 cannot observe the leader L’s effort
directly in period 2, otherwise F1 would have no signaling incentive because F2
would have already known the state from L’s effort.

A separating Perfect Bayesian Equilibrium (SPBE) of this game is a strategy
profile 〈x̃L(·), x̃F1(·), x̃F2(·)〉 and posterior point beliefs βF1(·), βF1(·) such that:

(S) All x̃i, i ∈ {L, F1, F2}, βj, j ∈ {F1, F2} are monotonic.

(PL) ∀θ, x̃L(θ) ∈ arg max
xL≥0

θ

3
(xL + x̃F1(xL) + x̃F2(x̃F1(xL)))− 1

2
x2
L.

(P1) ∀xL, x̃F1(xL) ∈ arg max
xF1≥0

βF1(xL)

3
(xL + xF1 + x̃F2(xF1))− 1

2
x2
F1.

(P2) ∀xF1, x̃F2(xF1) ∈ arg max
xF2≥0

βF2(xF1)

3
(xL + xF1 + xF2)− 1

2
x2
F2.

and

(B) βF1 = x̃−1
L , and βF2 = βF1 ◦ x̃−1

F1

S says that each player’s effort fully reveals his belief about the state under
any history. B specifies the belief updating rule. PL, P1, and P2 are the usual
perfection conditions: Each player is acting optimally given other players’ beliefs
and best responses.

It is easy to check that the following is a SPBE of this game:4

x̃L(θ) = kLθ,

βF1(xL) =
xL
kL

x̃F1(xL) = kF1βF1(xL) =
kF1

kL
xL

βF2(xF1) =
xF1

kF1

x̃F2(xF1) = kF2βF2(xF1) =
kF2

kF1

xF1

The constants ki, i = {L, F1, F2} are given by

kF2 =
1

3
≈ 0.333, kF1 =

1 +
√

5

6
≈ 0.539, kL =

1 +
√

7 + 2
√

5

6
≈ 0.731

4 This result is a special case of Theorem 4.1.
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The equilibrium effort of player i is kiθ, i = {L, F1, F2} and the corresponding
welfare is

W S = W (kLθ, kF1θ, kF2θ) ≈ 1.13554θ2

It is clear that W S > WN , so we have established that the chain structure (Figure
1.3) with sequential leadership yields greater welfare than the Λ structure (Figure
1.2) with a single leader.

This result can be interpreted in the following way. In the chain structure,
F1 plays leading by example with F2 as F2 infers the state from his effort. Due
to signaling, F1’s response as a function of his belief about the state must be
steeper than what he chooses when he has no followers. Note that the leader L
cannot influence the beliefs of player F2 directly as F2 cannot observe his effort,
but indirectly L can influence the belief and effort of F2 through the intermediate
player F1.

The leader L benefits from output generated by both F1 and F2. Her effort
provides the information about the state. The greater her effort, the higher F1’s
belief, the greater F1’s effort, the higher F2’s belief, the higher F2’s effort, and the
better off is the leader. But the difference is now that F1’s response given his belief
β1 is steeper under the chain than under the Λ structure. Therefore, to determine
L’s incentive for signaling, we can imagine that there is just one stage of signaling,
as in Figure 1.2, with the share of F1 modified to kF1 ≈ 0.539 > 1/3. This extra
benefit increases the leader’s equilibrium effort, thus we obtain kL > 2/3. Since
all the equilibrium efforts are still below first-best levels, we have obtained our
welfare-comparison result.

At this time, it is worthwhile to check the role of additively separable pro-
duction functions in this model. First, additive separability isolates the signaling
effects from other forces possibly driven by strategic complements or substitutes
between workers. If information is symmetric, the timing of moves is irrelevant
as everyone has a dominant strategy, thus organizational structure does not play
any role. When information is asymmetric, all the welfare comparison results must
come from the signaling incentives. Second, additive separability greatly simplifies
the computation of equilibrium. The strategic role of effort in this model is that
it conveys valuable information about the state from one player to his followers.
In the dynamic signaling game defined above, each worker’s incentive consists of
two parts. The first (direct) part is his share of the output. The second (indirect)
part is strengthening of incentives of workers whose beliefs he can influence by his
own effort, either directly or indirectly. In the chain, F1’s effort can only affect
F2’s belief, while L can influence F1’s belief directly and F2’s belief indirectly. F2
cannot influence anyone’s belief and therefore the second incentive component is
zero. The higher is each incentive part, the harder one works.

9



1.2.3 Two leaders

Beyond the chain and the Λ structure, there is another hierarchy, called the V
structure, possible with three workers. In the V structure, L1 and L2 are leaders
and F is the only follower of both. See Figure 1.4. The time line for the V structure

•L1 •L2
↘ ↙
•F

Figure 1.4: V structure, with two leaders

is the following:

• Nature chooses θ ∈ [0,∞), which is unknown to all.

• In period 1, both leaders L1 and L2 learn θ and choose x1, x2 simultaneously.

• In period 2, F observes both leaders’ efforts x1, x2 and exerts effort xF .

• Payoffs are realized.

A SPBE of this game is a strategy profile 〈e1(·), e2(·), eF (·, ·)〉 and belief func-
tion bF (·, ·) such that:

(S) ei(θ), i = {1, 2} are monotonic.

(P1) ∀θ, e1(θ) ∈ arg max
x1≥0

θ

3
(x1 + eF (x1, e2(θ)) + e2(θ))− 1

2
x2

1.

(P2) ∀θ, e2(θ) ∈ arg max
x2≥0

θ

3
(e1(θ) + eF (e1(θ), x2) + x2))− 1

2
x2

2.

(PF ) ∀x1, x2 ≥ 0, eF (x1, x2) ∈ arg max
xf≥0

bF (x1, x2)

3
(x1 + x2 + xf )−

1

2
x2
f .

(B) ∀θ, bF (e1(θ), e2(θ)) = θ.

P1 and P2 and PF are the perfection conditions. Note that B says that the
belief of F is correct on the equilibrium path, but it is silent about F’s out-of-
equilibrium beliefs.

Obviously, PF could be replaced by

(PF ′) eF (x1, x2) = bF (x1, x2)/3

10



For convenience, define β : Θ × Θ → Θ by β(θ1, θ2) := bF (e1(θ1), e2(θ2)). Then
bF (x1, x2) = β

(
e−1

1 (x1), e−1
2 (x2)

)
. After simplifying and using (PF ′), we can

rewrite conditions P1 and P2 and B as:

(P1′) ∀θ, e1(θ) ∈ arg max
x1≥0

θ

3

(
x1 +

1

3
β(e−1

1 (x1), θ)

)
− 1

2
x2

1.

(P2′) ∀θ, e2(θ) ∈ arg max
x2≥0

θ

3

(
x2 +

1

3
β(θ, e−1

2 (x2))

)
− 1

2
x2

2.

(B′) ∀θ, β(θ, θ) = θ.

To find an equilibrium, it suffices to find functions {e1, e2, β} satisfying condi-
tions S, P1′, P2′, B′. There are many belief functions satisfying B′. I will use the
following pessimistic belief assumption.

βp(θ1, θ2) = min(θ1, θ2). (1.1)

There are two main justifications for this assumption. First, it gives both leaders
some incentive to signal to the follower. If any of the leaders shirks, the follower
will detect it immediately and punish that deviating leader by expending lower
effort because the follower believes that the minimum of the two signals, here the
one revealed by the deviating leader, is the true state. Second, if the follower’s
belief is the maximum of the two signals, then it is impossible to support any
separating equilibrium, because at least one leader will have incentive to deviate
either downward (free-riding on the other leader to signal to the follower) or upward
(taking advantage of the benefits of signaling as the follower, in this case, will
depend solely on his effort for updating beliefs).5 If the follower believes that off
the equilibrium path only one of the leaders is deviating, which is mostly likely
to be the case, the pessimistic belief function is a better choice as the optimistic
belief cannot support any equilibrium. Hence, we will maintain this pessimistic
belief assumption from now on. For detailed discussions of the belief functions in
the V structure, see the appendix.

Fix β = βp. Let ē(θ) := 1+
√

5
6
θ and e(θ) := θ

3
. It is easy to verify that ei = ē(θ),

i = 1, 2, or ei = e(θ), i = 1, 2 satisfy the above conditions (P1′), (P2′), (B′) with
β = βp. We call the equilibrium with ei = ē(θ) (e(θ)), ∀i the U(L)-equilibrium. In
the U-equilibrium, both leaders exert higher efforts ē, while in the L-equilibrium,
both leaders choose e = 1

3
θ = xNi , their efforts under symmetric information. In

the appendix, I show that all separating equilibria corresponding to βp are bounded
by these two equilibria. Therefore, I can find the upper and lower bounds of the
corresponding equilibrium welfare:

5

6
θ2 ≤ W 2L ≤ (8 + 5

√
5)

18
θ2

5See appendix section C.2 for a detailed proof.
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The lower bound corresponds to the L-equilibrium, while the upper bound corre-
sponds to the U-equilibrium. Any number in between is also obtainable.

1.2.4 Welfare comparison

In previous subsections, we solve for equilibrium under four different structures
with three workers. The computed welfares are ranked as follows:

WN = minW 2L < WL < maxW 2L < W S < W FB

Figure 1.5: Welfare Rankings

As a conclusion, the chain structure dominates each of the other three struc-
tures.6 None of them can achieve first-best welfare, however. Figure 1.5 summa-
rizes these results.

As mentioned, workers on the higher tier of a chain exert higher efforts. One
concern is that their efforts are inefficiently high, possibly in a team with large N .
Part of the following analysis is to demonstrate that this phenomena is not going
to happen in a team with arbitrary N . In the next section, I study the general
model, and prove the optimality of the chain in the end.

1.3 The General Model

Let N = {1, 2, · · · , N}. Consider a team with N identical members. Each member
n chooses an effort en ∈ [0,∞). The value to the team is V = θ

∑N
n=1 en, where

θ ∈ Θ = [0,∞) is a stochastic productivity factor. Each member has utility
function w − c(e), where w is his wage, and the disutility function c is twice
differentiable and strictly convex with c(0) = c′(0) = 0, c′(∞) =∞.

Following Holmstrom (1982), we assume that contracts can only be written
contingent on total output V , not on individual efforts. Furthermore, we restrict
attention to affine-shares contracts, i.e., wn(V ) = snV + tn. Here {sn, tn}Nn=1

6 Technically, there is one more structure with three workers constructed by deleting the link
from L2 to F in the V structure. It is easy to see that this structure is less efficient than the Λ
structure, hence worse than the chain.
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are constants. No external source of funds means that
∑N

n=1wn ≤ V . Requiring

contracts to be renegotiation-proof means
∑N

n=1 wn ≮ V . Therefore
∑N

n=1 sn =

1, sn ≥ 0, and
∑N

n=1 tn = 0. We are interested in team members’ equilibrium
efforts. The transfers {tn} are irrelevant to our analysis, hence omitted in our
calculations. Let ∆N = {s = (s1, · · · , sN)|

∑N
i=1 si = 1, si ≥ 0,∀i} denote the

N -dimensional simplex.7 Then an affine-shares contract is just an element s of
∆N .

As we have seen in section 2, hierarchy matters for the performance of the
team. To define a hierarchy formally, we first review some concepts from graph
theory.

Definition 1 (Graph) A directed graph (N ,d) consists of a set of nodes N =
{1, 2, · · · , N} and an adjacency matrix d = (dij)N×N . dij = 1 if there is a directed
link from i to j, otherwise dij = 0.
A path from i to j is a sequence of nodes i1, i2, · · · , ik such that ik = j, and
dii1 = di2i3 = · · · dik−1ik = 1, while k is called the length of this path.

In this paper, N is fixed, thus we refer to d as a graph. For a fixed adjacency
matrix d, we can define DF i = {j ∈ N|dij = 1} as the set of direct followers of
i, and F i = {j ∈ N|there is a path from i to j} as the set of i’s followers, direct
and indirect. Similarly, we define DP i = {j ∈ N|dji = 1} as the set of direct
predecessors of i, and P i = {j ∈ N|there is a path from j to i} as the set of i’s
predecessors, direct and indirect. By definition, j ∈ DF i if and only if i ∈ DP j.
Similarly, j ∈ F i if and only if i ∈ P j. Obviously DF i ⊂ F i and DP i ⊂ P i,∀i.

Definition 2 (Ordered Partition) P = {A1, A2, · · · , Am} is called an ordered
partition of A if (1) Ai 6= ∅ for all i; (2) ∪mi=1A

i = A; (3) Ai ∩ Aj = ∅,∀i 6= j.

Definition 3 (Hierarchy) A hierarchy H = (d,P) on N is a directed graph
(N ,d) together with an ordered partition P= {N1, N2, · · · , Nh} of N such that:

(a) for k = 1, 2, · · · , h − 1, if j ∈ Nk and dji = 1, then i ∈ Nk+1. If j ∈ Nh,
then dji = 0,∀i.

(b) for k = 2, · · · , h, if j ∈ Nk, then there is a node i ∈ Nk−1 such that dij = 1.

Definition 4 In a hierarchy H = (d,P) with P= {N1, N2, · · · , Nh}, the number
h is called the height of H.

7Later on, I will allow
∑N
n=1 si ≤ 1 in some of the proofs.
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For a fixed hierarchyH, Nk is just the set of members on level k, and nk = |Nk|
is the number of workers on level k. The workers in N1 are called the leaders, while
the workers in Nh are called terminal workers.

Condition (a) means that a path can only connect nodes from one level to the
next lower level, while condition (b) says that all workers except leaders have at
least one predecessor. Terminal workers have no followers and leaders have no
predecessors.

Remark 1 Notice that from Definition 3(a), direct links only follow from the lead-
ers to middle level workers, and from middle level workers to terminal workers.
The length of any path in a hierarchy is hence bounded above by the height of the
hierarchy. Also, links between nodes on the same level are not allowed.

When the partition is obvious from the context, I refer to the adjacency matrix
d as the hierarchy. Here are some examples of hierarchies.

Example 1 (TN) Figure 1.6a is a hierarchy with N=5, which is the standard team
structure. The general team with N members is denoted TN .

Example 2 (L(1,N−1)) Figure 1.6b is a hierarchy with height 2, one level with one
leader and the other level with 4 direct followers. This is the structure explored in
Hermalin (1998). The general leading by example hierarchy with one leader and
N − 1 followers is denoted L(1,N−1).

(a) team T5 (b) leading by example L(1,4) (c) chain C3

Figure 1.6: Examples of Hierarchies

Example 3 (CN) Figure 1.6c is a hierarchy with three levels. Member B follows
A, but is followed by C. The general chain with N workers is denoted CN .
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We have analyzed these examples in section 2 for the case N = 3. A com-
mon feature of the above three examples is that a worker has at most one direct
predecessor, and hence can make inferences regarding the state only through that
predecessor’s effort. The equilibrium outcomes are quite different when a worker
can draw multiple inferences of the state from efforts of his predecessors. I distin-
guish these two cases.

Definition 5 A hierarchy H is called simple if any worker who is not a leader
has a unique predecessor; H is called complicated if it is not simple.

In Examples 1-3, hierarchies are all simple. The V structure (Figure 1.4) is a
complicated hierarchy.

Given the payoff defined by the contract s, and the timing defined by the
hierarchy H, I can study the equilibrium and make welfare comparisons across
different hierarchies as I did in the previous section.

1.4 Simple Hierarchies

In this section we study the general case of simple hierarchies.
Given an affine-shares contract s = {si, i ∈ N} ∈ ∆N and a simple hierarchy

H, define an h+ 1 stage dynamic game G(s,H) as follows:

• t = 0, nature chooses θ, which is unknown to all.

• t = 1, the leaders in N1 learn θ and exert effort simultaneously.

• t = 2, each member j ∈ N2 observes the effort of his unique direct predecessor
DP j(a singleton set in this case), who exerted effort in period t = 1. Then,
members in N2 exert effort simultaneously.

...

• t = k + 1, each member l ∈ Nk+1 observes the effort of his unique direct
predecessor DP l, who exerted effort in period t = k. Then, members in N1+k

exert effort simultaneously.

...

• θ is realized and output is divided according to s.

The following theorem fully characterizes the separating equilibrium.
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Theorem 1.4.1 (Equilibrium Characterization) If the hierarchy H is sim-
ple, then there exists a separating equilibrium of G(s,H) in which the equilibrium
efforts x̃i(θ) are the solutions to the following system of differential equations:

siθ

1 +
∑
j ∈ F i

x̃′j(θ)

x̃′i(θ)

 = c′(x̃i(θ)), i = 1, 2, · · · , N. (1.2)

If F i = ∅, then the summation
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)
is zero by definition.

This result follows from a standard cost-benefit analysis. If player i deviates by
exerting ∆xi more effort, then that effort will affect the beliefs of all his followers
by ∆θ ≈ ∆xi

x̃′i(θ)
.8 Hence each j ∈ F i will contribute more by the amount x̃j(θ+∆θ)−

x̃j(θ) ≈ ∆θ · x̃′j(θ). Therefore the benefit of this deviation to i is approximately

siθ

∆xi +
∑
j∈F i

∆θ · x′j(θ)

 ≈ siθ

1 +
∑
j ∈ F i

x̃′j(θ)

x̃′i(θ)

∆xi

The cost of this deviation is:

c(x̃i(θ) + ∆xi)− c(x̃i(θ)) ≈ c′(x̃i(θ))∆xi

In equilibrium, the benefit equals the cost, which leads to Equation (1.2).
The equilibrium characterization from Theorem 4.1 has some interesting fea-

tures. First, the equilibrium effort of player i only depends on his share si and
the equilibrium efforts of his followers. It does not depend on the effort of his
predecessors, or on the effort of other workers on the same level as him. Again,
this follows from additive separability of the production function. Second, all fol-
lowers, not just direct followers, affect equilibrium effort. Third, these equations
are recursively solvable. Solving for a player’s equilibrium effort function requires
solving for all of his followers’ equilibrium efforts, which requires solving for the
equilibrium efforts of the followers’ followers, etc.

The term siθ comes from i’s share of the output, and the term siθ
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)

comes from i’s signaling incentive and it is always nonnegative. If the signaling

term
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)
vanishes in equation 1.2, the solutions are just the efforts that

workers would expend under symmetric information. With this extra signaling
incentive, in equilibrium i must expend more effort. Formally, we have:

Proposition 1.4.2 The equilibrium effort x̃i(θ) of player i characterized in The-
orem 4.1 is greater than his effort with symmetric information; that is,

x̃i (θ) ≥ c′−1(siθ) i = 1, 2, · · · , N.
8If H is simple, a deviation by player i only affects his followers.
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Strict inequality holds if θ > 0 and F i 6= ∅.

Proof The weak version is obvious. If θ > 0 and F i 6= ∅, then (1+
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)
) >

1, hence c′(x̃i(θ)) > siθ, or x̃i (θ) > c′−1(siθ). �

Finding closed-form solutions to the above system of equations (1.2), in gen-
eral, is infeasible. To get explicit solutions, further restrictions on the disutility
functions are needed.

Assumption C: The disutility function is c(x) = 1
2
x2.

Theorem 1.4.3 Under Assumption C, the solutions to equation (1.2) are x̃i(θ) =
ki(s,H)θ, where k(s,H) = {ki(s,H), i ∈ N} satisfies the following equations:

ki(s,H) =

si +

√
s2
i + 4si

(∑
j∈F i kj(s,H)

)
2

, i = 1, 2, · · ·N (1.3)

Proof For brevity, I write ki(s,H) as ki. If x̃i(θ) = kiθ, then x̃′i(θ) = ki, so
equation (1.2) is equivalent to:

siθ

1 +
∑
j ∈ F i

kj
ki

 = c′(x̃i(θ)) = x̃i(θ) = kiθ, i = 1, 2, · · · , N (1.4)

Canceling θ:

si

(
1 +

∑
j ∈ F i kj

ki

)
= ki, i = 1, 2, · · · , N

Solving this quadratic equation gives us ki =
si+

√
s2i+4si(

∑
j∈Fi kj)

2
. �

Define g(x, y) =
x+
√
x2+4xy

2
, x > 0, y ≥ 0 to be the unique positive solution to

x

(
1 +

y

g(x, y)

)
= g(x, y).

See Lemma 3.1.1 in the appendix for some useful properties of g. Then equation
(1.3) can be rewritten as:

ki(s,H) = g(si,
∑
j∈F i

kj(s,H)), i = 1, 2, · · · , N (1.5)
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Theorem 1.4.3 gives linear solutions for equation (1.2) under quadratic disu-
tility. The constant ki, which quantifies how player i responds to his belief about
the state in equilibrium, is called i’s responsive coefficient. These coefficients can
be calculated by equation 1.3 recursively.9

From Theorem 4.1 and Theorem 4.3, we see that each player’s equilibrium effort
depends positively on two components: one is the worker’s share si of the total
output, the other is the signaling part depending on the responsive coefficients of
i’s followers. For two workers with the same shares, if one worker is the follower
of the other, then the signaling incentive of that follower should be weaker than
the leader. It is intuitive to guess that the equilibrium effort of the leader should
be higher than the follower. This result is formally presented in the following
proposition.

Proposition 1.4.4 If si = sj > 0 and j ∈ F i, then x̃i(θ) > x̃j(θ).

Proof If j ∈ F i, then F j ⊂ F i. Therefore ki(s,H) > kj(s,H) by Theorem 1.4.3,
hence x̃i(θ) > x̃j(θ). �

As a special case, for equal shares, we have:

Corollary 1.4.5 If si = 1/N,∀i, then the higher a player is in the hierarchy, the
larger the equilibrium effort, and the smaller his equilibrium payoff.

Proof If si = sj = 1/N and j ∈ F i, then x̃i(θ) > x̃j(θ) by Proposition 1.4.4,
therefore c(x̃i(θ)) > c(x̃j(θ)). Then i works harder than j, but gets the same share
of the output as j, so i’s equilibrium payoff must be smaller. �

1.4.1 Welfare Comparisons for Simple Hierarchies

In the previous subsection, I solved for the equilibrium efforts for a fixed hierar-
chy. The aggregate welfare definitely depends on the members’ shares, but it also
depends crucially on the structure of the hierarchy: how many members are on
each level, how are they connected with each other, how many direct or indirect
followers each worker has, and what the followers’ shares are.

9 Here is a simple algorithm to compute all the {ki}Ni=1 in N steps:

1. Start with terminal workers j ∈ Nh. Notice that kj = sj for these workers.

2. Suppose we have computed kj for all workers in Nh, Nh−1, · · · , Nk. Then we can calculate
ki for each i ∈ Nk−1 using ki = g(si,

∑
j∈F i kj), since F i ⊂ ∪k≤t≤hN t.
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The aggregate welfare in the equilibrium characterized in Theorem 4.3 is

SW (s,H) = θ
∑
i∈N

ki(s,H)θ −
∑
i∈N

1

2
(ki(s,H)θ)2

= θ2
∑
i∈N

(
ki(s,H)− ki(s,H)2

2

)
(1.6)

Clearly, the value of θ is irrelevant if we want to maximize aggregate welfare
with respect to the hierarchy structure and the shares. Equivalently we define

w(s,H):=
∑

i∈N

(
ki(s,H)− ki(s,H)2

2

)
. Then the welfare maximization problem

can be written as

max
s,H

w(s,H) subject to
∑
i∈N

si = 1, si ≥ 0. (1.7)

This program can be decomposed into two steps:

1. For a fixed hierarchyH, find the optimal shares s∗(H) by solving the following
problem:

max
s≥0,

∑
i∈N si=1

w(s,H) =
∑
i∈N

(
ki −

k2
i

2

)
(1.8)

We define w̄(H) := w(s∗(H),H) as the maximum value above.

2. Maximize over different simple hierarchies with optimal shares s∗(H):

max
H

w(s∗(H),H) = max
H

w̄(H)

Below is the main result of this paper.

Theorem 1.4.6 (Optimal Simple Hierarchy) The chain is the optimal simple
hierarchy, i.e.,

w̄(H) = max
s≥0,

∑
i∈N si=1

w(s,H) ≤ w̄(CN) = max
s≥0,

∑
i∈N si=1

w(s, CN)

The proof is shown in a sequence of steps.
First, to make two hierarchies comparable, we transform any hierarchy H into

a chain, and compare the equilibrium efforts under these two hierarchies using the
same share profile. Each transformation is determined by a permutation σ of N
by assigning member σ(i) to the ith level on a chain, i = 1, · · · , N . For a fixed
hierarchyH, we look for a special permutation σ satisfying the following condition:

Condition OP: If j is i’s follower under H, then σ(i) < σ(j).

The existence of such a permutation is shown in the following lemma.10

10There are multiple permutations satisfying Condition OP. We just need one.
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Lemma 1.4.7 For any hierarchy H, there exists a permutation σ satisfying Con-
dition OP.

Proof For each i, let fi = #F i be the number of followers of i under H. We can
enumerate the numbers in N by decreasing order of fi (take any order if fi = fj
for i 6= j). We define the permutation σ by mapping each i to its place under this
enumeration. Then, if j ∈ F i, j’s follower is also i’s follower, hence F j is a strict
subset of F i. Therefore fi > fj, so i must come earlier in σ than j, equivalently,
σ(i) < σ(j). �

With the permutation σ given in the above lemma, we construct the chain
Cσ(N ) by assigning member σ(i) to the ith level, i = 1, · · · , N . We call this the C-
transformation, because this procedure transforms any hierarchy into a chain.
Given a share profile s for H, we assign the same share si to member i in the chain
Cσ(N ). Condition OP implies that this transformation has some nice properties.

Lemma 1.4.8 The C-transformation given by a permutation σ satisfying condi-
tion OP has the following properties.

1. For fixed shares s, any member’s equilibrium effort is weakly higher in Cσ(N )

than in H, that is,
ki(s, Cσ(N )) ≥ ki(s,H)

2. For fixed shares s, we can find another share profile s̃ such that s̃ ≤ s but

ki(̃s, Cσ(N )) = ki(s,H)

Therefore, w(̃s, Cσ(N )) = w(s,H).

The C-transformation preserves the subordination relation between members.
If i is a predecessor of j in H, then i is j’s predecessor in Cσ(N ). For some players,
however, the set of followers may be strictly larger in Cσ(N ). Each worker’s equilib-
rium effort depends on his own share and the sum of equilibrium efforts of all his
followers. Since the shares are the same under the two hierarchies, each member
will have larger incentive to signal when he has more followers in Cσ(N ), therefore
his equilibrium effort is weakly higher. Moreover we can reduce his share suitably
to make his equilibrium effort equal under two hierarchies. Therefore for any hier-
archy H with a share profile s, the chain Cσ(N ) can generate the same welfare using
a share profile s̃, which uses less total shares than s. But s̃ in general does not
belong to ∆N even if the initial share profile s is in ∆N .

Next we show that if we distribute the the extra shares optimally to the team
members in the chain, we can generate even higher welfare. Actually we show this
result for any hierarchy, not just the chain.
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Formally, for each fixed H and t ∈ (0, 1], define

φ(t,H) := max
s
w(s,H)

s.t:
∑
i∈N

si = t, si ≥ 0

as the maximal achievable welfare under H with the constraint that the total
shares sum up to t. In particular when t = 1, φ(1,H) = w̄(H). In the appendix,
we show that increasing the total constraint on shares improves welfare whenever
total shares are less than 1.

Theorem 1.4.9 For any simple hierarchy H, if 1 ≥ t1 > t2 ≥ 0, then φ(t1,H) >
φ(t2,H).

Using Lemma 1.4.8 and Theorem 1.4.9, we show that the chain structure is
optimal whenever the total shares are less than 1.

Proposition 1.4.10 For any simple hierachy H, φ(t,H) ≤ φ(t, CN),∀t ∈ (0, 1].

Proof For any t ∈ (0, 1], suppose s is optimal, i.e., φ(t,H) = w(s,H). Then from
Lemma 1.4.8, we can find a welfare equivalent s̃ in the chain Cσ

(N), but use less

total share, i.e, w(s,H) = w(s̃, Cσ(N )), |s̃| ≤ |s| = t. By Theorem 1.4.9, extra shares
always yield greater welfare if we adjust the shares optimally. Formally, we have:

φ(t,H) = w(s,H) = w(s̃, Cσ(N ))

≤ max
s≥0,|s|=|s̃|

w(s, Cσ(N )) = φ(|s̃|, Cσ(N )) ≤ φ(t, Cσ(N ))

The first inequality holds since s̃ is not necessarily optimal. The second inequality
follows from Theorem 1.4.9 since |s̃| ≤ |s| = t. Note that both Cσ(N ) and CN repre-

sent the same hierarchy: the chain of length N . Therefore, φ(t, Cσ(N )) = φ(t, CN).11

Thus, we finish the proof of Proposition 1.4.10. �

Proposition 1.4.10 immediately implies Theorem 1.4.6 by setting t = 1.
The optimality of the chain comes from three observations. First, the chain

gives every member the maximal signaling incentives. Note that motivating efforts
alone is not always welfare improving, as the welfare function is declining after
effort exceeds first-best level. Second, we can use fewer shares to provide incentives
to the workers in the chain to generate the same levels of efforts than in any other
hierarchy. Third, extra shares, if distributed optimally among the team, improve
welfare.

11This result does not hold if the team is not homogeneous either because different workers
have different disutility functions, or because different workers value the project differently.
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Remark 2 If the main program is to maximize equilibrium output or equiva-
lently

∑
i∈N ki(s,H) rather than equilibrium welfare, then the chain is still optimal,

since each worker’s equilibrium effort is weakly higher after C-transformation (see
Lemma 1.4.8).

1.4.2 The Chain CN
Given the optimality of the chain, we next study the optimal sharing rule and
equilibrium effort levels in the chain. We give a detailed analysis of the chain in
this subsection.

Consider the chain CN . We denote by i the unique worker on level i, i =
1, · · · , N . Let si be worker i’ share. Then by Theorem 4.3, we have the following
expression for ki(s, CN):

kN(s, CN) = g (sN , 0) = sN

kN−1(s, CN) = g (sN−1, kN(s, CN))
...

k1(s, CN) = g

(
s1,

N∑
j=2

kj(s, CN)

)

Equal shares

To get quantitative results about the strength of sequential signaling effects—and
also their limitations—here we calculate the welfare function for equal share seq,
that is, si = 1

N
,∀i. Equal shares corresponds to the case of public good provision

or committee service, as each team member has roughly the same stake in the
project.

First, we have the following estimates regarding responsive coefficients:

Lemma 1.4.11 For equal shares seq in the chain CN , we have

1

2N
< ki(s

eq, CN)− ki+1(seq, CN) <
1

N
i = 1, · · · , N − 1

Hence:
N + 1− i

2N
< ki(s

eq, CN) <
N + 1− i

N
i = 1, · · · , N − 1

In particular, ki(s
eq, CN) < 1,∀i.

With these bounds, we can estimate the welfare SW (seq, CN).
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Proposition 1.4.12 The aggregate welfare for CN with equal shares, SW (seq, CN),
satisfies:

5

24
Nθ2 ≤ SW (seq, CN) ≤ (

1

3
N +

1

4
)θ2

The first-best aggregate welfare is 1
2
Nθ2, which is, of course, infeasible here.

Also, the free-riding problem is more severe in larger teams as each member’s share
is smaller. However, Proposition 1.4.12 shows that the signaling incentives in the
team are strong enough to yield at least 5

12
≈ 42% of the first-best welfare with

equal shares. Optimal shares potentially could do better.
From Lemma 1.4.11, we see that for the equal share rule, all the ki are less

the first-best. From Example 4 (below), however, we see that ki could be greater
than the first-best under some shares. So, we look for a sufficient condition on s
to guarantee that ki(s, CN) ≤ 1. The following proposition is one result along this
line.

Proposition 1.4.13 If the shares s for the chain are monotonic, so that 0 < s1 ≤
s2 · · · ≤ sN , then ki(s, CN) < 1,∀i.

The assumption of this proposition is quite general. Equal shares satisfy this
condition. By continuity, this conclusion still holds for shares s sufficiently close
to seq or any monotonic shares. Note that s′ = (0.8, 0.1, 0.1) in Example 4 is not
monotonic, and indeed kA = 1.007 is greater than 1 for s′.

Optimal shares

In this subsection, we characterize the optimal shares for the chain with N workers.
First, we start with an example with three workers.

Example 4 Table 1.1 lists the equilibrium efforts and welfare with different share
rules, where A is the leader, C is the terminal worker, and B is the middle worker.
seq are the equal shares, and s∗ are the optimal shares.

s = (sA, sB, sC) k = (kA, kB, kC) welfare w(s, C3)
s′ =(0.8, 0.1, 0.1) (1.0078, 0.1618, 0.1000) 0.7437

s′′ =(0.75, 0.1, 015) (0.9994, 0.1823 ,0.1500) 0.8044
seq = (0.3333, 0.3333, 0.3333) (0.7312, 0.5393, 0.3333) 1.1355
s∗ =(0.1997, 0.2668, 0.5335) (0.5721, 0.5335, 0.5335 ) 1.1909

Table 1.1: C3 with different shares

23



There are a few points worth noting. Because kA(s′, C3) > 1, A’s equilibrium effort
is actually higher than first-best level. Transferring a small share from A to C, as
shown in s′′, is welfare improving, because it mitigates A’s overly strong signaling
incentive in s′ and gives C more shares so that C will expend higher effort. For
equal shares seq, efforts are monotonic, but still below first-best levels (Lemma
1.4.11). But equal shares are not optimal, i.e., seq 6= s∗. Moreover, for optimal
shares, s∗A < s∗B < s∗C , but k∗A > k∗B = k∗C . The worker higher in the hierarchy
actually has a smaller share, but works harder due to stronger signaling incentives
from his followers. We will see that this is the general pattern for the chain of any
length.

Equal shares are in general not optimal. The effort of workers on higher levels
is too high compared with workers on lower levels. Now we turn to the question of
how to find the optimal shares. Unfortunately, the expressions for ki are recursive
and the exact expressions involving {si} are quite complicated. Therefore the
Lagrange multiplier approach to maximize w(s, CN) with constraint s ∈ ∆N is not
quite informative. Nevertheless, we use a variation argument to show that optimal
shares s∗ and the corresponding responsive coefficients k∗i = ki(s

∗, CN) satisfy the
following conditions:

Theorem 1.4.14 The optimal shares s∗ for the chain satisfy

1

2
<

s∗i
s∗i+1

< 1, ∀i = 1, 2, · · · , N − 2, and
s∗N−1

s∗N
=

1

2
.

Moreover, the k∗i s satisfy 1 > k∗1 > k∗2 > · · · > k∗N−1 = k∗N > 0.

As a consequence, we get a chain of inequalities:

0 < s∗1 < s∗2 < · · · < s∗N = k∗N−1 = k∗N < · · · < k∗2 < k∗1 < 1. (1.9)

All workers are symmetric ex ante, but we do not want to distribute the shares
equally to them as different workers have different signaling incentives that vary
with the their positions on the chain. Under optimal shares in the chain, a worker
has stronger signaling incentives than his followers, although he gets a smaller
share of the output.

1.5 Complicated Hierarchies

Although simple hierarchies are the structures typically observed in organizations,
complicated hierarchies exist as well. Sometimes a worker may communicate with
multiple bosses. I explore complicated hierarchies in this section.
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For a complicated hierarchy, we can define the dynamic signaling game as
before, except that now a worker can potentially observe efforts from multiple
direct predecessors. After adopting the pessimistic belief assumption as I did for
the V structure with two leaders, the equilibrium characterization is quite similar
to the case of simple hierarchies.

Theorem 1.5.1 If H is complicated, then there exists a separating equilibrium of
G(s,H) in which the equilibrium efforts are x̃i(θ) = ki(s,H)θ, while ki(s,H) is
given recursively by

ki(s,H) = g(si,
∑
j∈F i

kj(s,H)), i = 1, 2, · · ·N.

Qualitatively, Theorem 1.5.1 looks exactly the same as Theorem 4.3. There are
some major differences. First, we need the pessimistic belief assumption in compli-
cated hierarchies, while we did not need any assumption on the belief functions for
simple hierarchies. Second, there are multiple equilibria even with the pessimistic
belief assumption as we have seen in the V structure (Section 2). Uniqueness of
the equilibrium is not guaranteed.

From now on, we focus on the equilibrium identified by Theorem 1.5.1 for
both simple and complicated hierarchies. Given the similarity between Theorem
1.5.1 and Theorem 4.3, we can show that the results proved for simple hierarchies,
like Proposition 1.4.4, Lemma 1.4.8, and Theorem 1.4.9, also hold for complicated
hierarchies. I will directly use them without proof.

1.5.1 Welfare Improving Operations

In section 4.1, we have shown that the chain structure is optimal among simple
hierarchies. Next we want to show that the chain structure is optimal among all
hierarchies, simple or complicated. To achieve this goal, we explore two welfare-
improving operations on hierarchies.

Definition 6 For fixed hierarchy H = (d,P), let H + ij be the hierarchy formed
from H by adding one direct link from i to j in d.

Note that in the definition i and j should not be linked in H, and j should lie on
the next level from i, otherwise H + ij is not a hierarchy according to Definition
3. Obviously, H + ij is not simple even if H is. Adding links enlarges the sets of
followers, hence pushes workers’ effort higher by Theorem 1.5.1. Formally:

Proposition 1.5.2 For fixed share profile s, kl(s,H) ≤ kl(s,H + ij), ∀l ∈ N .
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From Proposition 1.5.2, it is intuitive to guess that for fixed share profile s,
adding links will increase welfare: w(s,H) ≤ w(s,H + ij). We give a counterex-
ample in the Appendix to show that this naive argument is wrong. The reason
is that some players’ effort is already too high under strong signaling incentives,
and motivating higher effort for those workers will actually decrease welfare. In-
stead, once we adjust the share optimally, we can show that adding links increases
welfare.

Theorem 1.5.3 For every fixed t ∈ (0, 1], φ(t,H) ≤ φ(t,H + ij). In particular,
when t = 1, w̄(H) ≤ w̄(H + ij).

Definition 7 A hierarchy H is maximal if any member in Nk is linked to any
member in Nk+1, for k = 1, 2, · · · , h− 1.

Adding links (with suitable adjustment of shares) means improving welfare,
therefore we should link all the unlinked workers in adjacent levels (if the partition
is fixed). In the end, we construct a maximal hierarchy, i.e, a multi-partition graph.
Thus, we have the following corollary.

Corollary 1.5.4 For hierarchies with N workers, the optimal hierarchy is a multi-
partition graph if the number of workers on each level is fixed.

For a maximal hierarchy, workers within each level are symmetric. As a spe-
cial case, for leading by example L(1,N−1), Hermalin (1998) shows that all N − 1
followers should get the same shares under optimal affine linear contracts. The
following proposition shows that this holds for general maximal hierarchies.

Proposition 1.5.5 For maximal hierarchies under optimal shares, members on
the same level are assigned the same shares, hence work equally hard in equilib-
rium.12

We still do not know exactly what the optimal shares are for any maximal
hierarchy. Nevertheless, these results show that we can reduce the number of
variables from N , the total number of workers, to h, the height of the hierarchy.

Starting from a multi-partition graph, we can split one level into multiple levels.
Figure 1.7 explains such a procedure. We claim that this procedure also improves
welfare after adjusting shares optimally.

Suppose H is a maximal hierarchy defined by the ordered partition P =
{N1, · · · , Nh} of N . Suppose |Nk| ≥ 2 for some k. Pick i ∈ Nk, and let H′ be
the maximal hierarchy defined by the ordered partition P ′ = {N1, · · · , Nk−1, {i},
Nk\{i}, · · · , Nh}.

12This result relies on c(x) = 1
2x

2. It may not hold for other cost functions.
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Figure 1.7: Splitting

Proposition 1.5.6 For fixed t ∈ (0, 1], we have:

φ(t,H) < φ(t,H′)

In particular, for t = 1, we have w̄(H) < w̄(H′). The new hierarchy constructed
by splitting is more efficient than the original one.

By repeated splitting until we have a partition that we cannot split at any
level, eventually, we get the chain. Here is a map presenting the procedures to
move from any hierarchy to the chain:

hierarchy H
add links︷︸︸︷

=⇒ maximal hierarchy
splitting︷︸︸︷

=⇒ chain (1.10)

Each step is welfare improving, which shows the optimality of the chain struc-
ture.

Theorem 1.5.7 Among all hierarchies, the chain structure is optimal.13

This theorem is the counterpart of Theorem 4.6 for simple hierarchies.

1.6 Extensions

1.6.1 Who will be a leader?

Previously, we have only compared the aggregate welfare of the whole team across
different hierarchies. In this section, we study an individual’s incentive in various

13This result depends crucially on the fact that we are picking the equilibrium given in The-
orem 1.5.1 for complicated hierarchies. Using other belief functions or picking other equilibria
may reverse the ranking. See the discussion in the appendix about belief functions with the V
structure. We do not have this problem when restricting attention to simple hierarchies.
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hierarchies. As an example, with equal shares, leaders contribute more to the
common project. Why should they do that? Who would ever want to a leader?
To answer this question, first we review some results from section 2.

Figure 1.8 compares the equilibrium payoffs of three workers in various hierar-
chies with equal share seq. The number to the right of each node is the payoff of
that node when θ = 1. SW denotes welfare when θ = 1.

(a) Team T3 (b) Lead by Example Λ (c) Chain C3 (d) V structure

Figure 1.8: Individual payoffs with different hierarchies

A general fact illustrated in the figure is that a leader’s equilibrium payoff is
actually lower than her followers. This is consistent with Corollary 4.5. Another
interesting observation is to compare the payoffs of the leader under the first three
hierarchies. The leader’s payoff in the Λ structure, 0.2222, is lower than he gets
in the team structure, 0.2778. But the leader’s payoff is higher in the chain, as
the middle player is now contributing more to the project. Meanwhile, given the
fact that a lump-sum transfer could be used to adjust individual payoffs without
affecting the incentives, thus equilibrium efforts, of workers, it is reasonable to
concentrate only on comparisons of aggregate welfare.

1.6.2 Limited Height

The previous analysis has shown that the chain is optimal among all hierarchies,
but the height of the chain is too large to be realistic when N is large. Here we
search for optimal hierarchies satisfying more realistic conditions, such as a con-
straint on the number of levels, being simple, and having a single leader. Formally,
define

Ms(N,K, 1) = {H| H is simple, has height K and one leader}.

Here we look for the optimal hierarchy in Ms(N,K, 1).14

14Equivalently, we could define the setMs(N,K, 1) by including all the hierarchies with height
at most K. The optimal element would be the same. The reason is that the constraint on height
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For K = 2, the program is trivial, since the only hierarchy satisfying all of the
three conditions is leading by example L(1,N−1). The optimal sharing rule for this
structure is completely solved in Hermalin (1998) for any N .

For K = 3, the problem gets tricky. For general N ≥ 3, K < N , Ms(N,K, 1)
is not a singleton. There could be a different number of middle managers, and
different groups of followers for each middle manager.

(a) H1 (b) H2

Figure 1.9: two hierarchical structures in Ms(N, 3, 1)

For example, if N = 1+2p is odd and p ≥ 2, Figure 1.9 presents two hierarchies
H1 and H2 in Ms(N, 3, 1). For H1, there are p managers, and each has only one
follower; for H2, there are only 2 managers, and each has p followers.

Proposition 1.6.1 Hierarchy H1 is more efficient than H2:

w̄(H1) = max
s∈∆N

w(s,H1) > max
s∈∆N

w(s,H2) = w̄(H2)

The intuition behind this proposition is as follows. Suppose share profile s is
optimal for H2 and let l be the share of the leader, L. Then we can construct a
profile s′ for H1 as follows: L still gets l, while each manager gets m = 1

3
1−l
p

and

every terminal worker gets f = 2
3

1−l
p

. Note that g(m, f) = g(1
2
f, f) = f , so all

workers in H1 except L exert the same equilibrium effort. The sum of responsive
coefficients for those 2p workers is

p (g(m, f) + f) = 2pf =
4

3
(1− l)

We claim (with proof given in the appendix) that the sum of the responsive coef-
ficients of all workers in H2 except the leader L under the contract s is less than

must bind for the optimal hierarchy in Ms(N,K, 1), since it must use the maximum height, i.e,
K in this case.
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4
3
(1− l), i.e,

4

3
(1− l) ≥

∑
j 6=L

kj(s,H2) (1.11)

or

f =
2

3

1− l
p
≥
∑

j 6=L kj(s,H2)

2p
.

Note η(k) := k − 1
2
k2 is concave in k and increasing if k < 1, so by Jensen’s

inequality,

∑
j 6=L

η(kj(s,H2)) = 2p

(∑
j 6=L

1

2p
η(kj(s,H2))

)

≤ 2p× η(

∑
j 6=L kj(s,H2)

2p
) ≤ 2p× η(f) (1.12)

The last inequality holds because
∑
j 6=L kj(s,H2)

2p
≤ f = 2

3
1−l
p
< 2

3
1
p
< 1. This shows

the contribution to welfare by all workers except L is higher in H1 than in H2.
The leader’s incentive is higher in H2, because her share under the two cases is
the same but the sum of the responsive coefficients of her followers is higher in H2

by equation 1.11. The old trick applies. We reduce the share of L by ∆ > 0 to
make her incentive equal and then apply Theorem 4.9 to finish the proof.

The same argument can be used to show that hierarchy H1 is not only more
efficient than H2, but also more efficient than any other hierarchy inMs(N, 3, 1).

Proposition 1.6.2 If N = 1 + 2p is odd, p ≥ 2, and K = 3, then hierarchy H1

is the most efficient in Ms(N,K, 1). That is,

w̄(H1) > w̄(H), ∀H ∈Ms(N,K, 1), H 6= H1

1.6.3 Endogenous Information Acquisition

Previously, we have assumed that leaders are endowed with information, How
do the leaders get the information in the first place? Presumably, the leaders
exert costly research effort, such as sampling, running regressions, or consulting
experts, to get more accurate information about the state. In this section, we
study endogenous information acquisition in hierarchies.

For simplicity, assume H is simple, and there is a unique leader, L. She is the
only one who will acquire information. To study this extension, insert one more
stage between t = 0 (nature chooses θ) and t = 1 (the leader expends her effort
xL) in the game G(s,H):
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• t = 0.5, the leader L exerts research effort I ∈ I = [I0, I1] and gets a signal s.

For each information structure I, θI ∼ EI{θ|s} is the posterior. Let F I be the
C.D.F of θI . Furthermore we assume:

1. The support of θI is Θ for any I ∈ I.

2. The utility of the leader is additively separable in both research effort and
productive effort.

3. For I < I ′, θI
′

is a mean-preserving spread (MPS) of θI .15

Condition 2 guarantees that the leader’s research effort does not affect his signaling
incentives. Risk-neutrality of workers and Condition 1 implies that the equilibrium
characterization still applies, except that now we have to replace the state by the
leader’s point estimate in Theorem 4.3. Condition 3 means that the label of the
information structure preserves the informativeness of the signal, that is, the higher
is I, the more spread is the distribution of θI .

If research effort is verifiable (so it can serve as a contract contingency), then
we only need to maximize expected social welfare of information minus the cost of
research effort:

U(H) := max
I∈I

max
s∈∆N

(∫
Θ

w(s,H)θ2dF I(θ)− r(I)

)
(1.13)

Here r(I) is the cost of research effort I. Assume r′ > 0, so a more accurate
signal is more expensive. For convenience, define v(I) :=

∫
Θ
θ2dF I(θ) as the

second moment of θI . Then condition 3 implies that v is monotone increasing in
I. Rewrite equation (1.13) as:

U(H) = max
I∈I

max
s∈∆N

(w(s,H)v(I)− r(I))

= max
I∈I

(w̄(H)v(I)− r(I))

Let I∗(H) be the maximizer (assume it is unique, for simplicity). Then for two
given hierarchies H and H′, if w̄(H′) > w̄(H), standard monotone comparative
statics results (Milgrom and Shannon 1994) imply that I∗(H′) ≥ I∗(H). Greater
marginal social value of information (w̄(s,H)) will induce higher research effort
by the leader. Moreover, we have U(H′) ≥ U(H). As a corollary of Theorem 4.6,
we can establish that the chain provides the greatest information acquisition and
welfare.

15Each θI necessarily has the same mean by the law of iterated expectations: E[θI ] =
E[E[θ|s]] = E[θ],∀I ∈ [I0, I1]. See Rothschild and Stiglitz (1970) for the formal definition
and properties of MPS.
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Theorem 1.6.3 Given assumptions 1-3 and verifiability of research effort, the
chain CN induces the highest research effort and yields the greatest expected welfare
in the extended game with endogenous information acquisition.

Now, we assume that we cannot write a contract contingent on the leader’s
research effort, either because research effort is not observable, or because it might
be observable but hard to verify in court. Then the leader’s research incentive
comes from his private value of information, which, in general, is lower than the
social value.

From Theorem 4.3, we know that the equilibrium payoff of the leader without
information cost is

πL(s,H) = θ2

(
sL(
∑
j∈N

kj)−
1

2
k2
L

)
=

1

2
θ2kL(s,H)2

which is monotonic in the leader’s equilibrium responsive coefficient. Also, the
leader’s equilibrium payoff does not depend explicitly on other workers’ efforts.
The second equality uses the properties of g and Theorem 4.3.

The optimal contract is the solution to the following program:

Un(H) : = max
s∈∆N ,I∈I

(w(s,H)v(I)− r(I)) (1.14)

subject to: (IC-L) I ∈ arg max
I′∈I

1

2
kL(s,H)2v(I ′)− r(I ′)

Let sn∗(H) and In∗(H) be the solution. IC-L is the incentive compatibility condi-
tion for the leader’s research effort.

Theorem 1.6.4 Assume conditions 1-3 and that research effort is not verifiable.
Then the chain CN is still the most efficient hierarchy, even if we take the leader’s
research incentive into account. That is,

Un(CN) ≥ Un(H)

for any simple hierarchy H with a single leader.

This result is quite intuitive. Since the leader’s research incentive only depends
on her responsive coefficient, for any (s, I) which satisfies IC-L under H, we can
find a new contract s′ for CN such that kL(s′, CN) = kL(s,H), and w(s′, CN) ≥
w(s,H).16 In particular, the leader’s responsive coefficient is the same, so (s′, I)
satisfies IC-L under CN . Also, w(s′, CN) ≥ w(s,H), the marginal social value of

16See proofs of Lemma 4.8 and Theorem 4.6 for the construction of s′.
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information is also higher under the chain. Therefore, the chain both gives the
leader higher incentive to acquire more accurate information and generates higher
marginal social value of information. Both forces move in the same direction, so
in the end, the chain wins.

Remark 3 If research effort is verifiable, then there is no conflict between choos-
ing optimal shares and incentivizing the leader for choosing the socially optimal
research effort, as one can see from equation 1.13. When research effort is not
verifiable, choosing optimal shares and incentivizing the leader for information ac-
quisition are in conflict.

In general, information is under-provided, i.e., In∗(H) ≤ I∗(H), because the
marginal private benefit of information from the perspective of L is lower than
the corresponding social value (πL(s,H) < w(s,H)θ2 ≤ w̄(H)θ2). Of course,
the maximal obtainable welfare is lower if research effort is not verifiable, i.e.,
Un(H) ≤ U(H). Moreover, in general s∗n(H) 6= s∗(H), so we should modify the
shares s∗(H) to give the leader enough incentive for research. Nevertheless, the
chain is the best given all these inefficiencies. Other hierarchies perform even
worse.

1.6.4 Applications in fund-raising

A natural application of the model is charity fund-raising, which is similar to
public good provision. Vesterlund (2003) and Andreoni (2006) emphasize the
importance of leadership giving in charitable fund-raising, which serves as a signal
to other givers that the charity is of high quality. Using our terminology, they
show the superiority of sequential fund-raising, which corresponds to L(1,N−1),
over simultaneous fund-raising, which corresponds to TN .17

Given the optimality of the chain structure, a charity could raise more money
by implementing the chain CN , i.e., placing potential donors in a line and asking
them to donate one after the other. In particular, the charity should not reveal
the entire donation history to future givers. A drawback to the chain is that it
requires more steps to complete the fund-raising. If delay is costly to the charity,
the techniques and results of this paper might still be useful for suggesting better
ways to organize the fund-raising campaign. Rather than having each donor on a
separate tier, donors could be organized into subgroups, with the total donation of
each subgroup revealed only to the next tier. Smaller subgroups allow for a larger
number of tiers, thus raising more money, but also results in a longer delay. The
optimal configuration involves a trade-off between the costs of delaying and the

17For experimental evidence, see Protter et al., (2001,2005).
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benefits of the funds. Carefully designed future experiments should be able to test
this theory in the field.

1.7 Conclusion

This paper highlights the importance of hierarchical structures from the perspec-
tive of information flow and signaling effects associated with dissemination of in-
formation. In a team production framework, we show the optimality of the chain
structure from three perspectives: maximizing dynamic signaling effects, motivat-
ing efforts of all members, and providing strong incentives for the leader’s infor-
mation acquisition.

This paper isolates one feature, signaling effects, of organization design. In
reality, there are other forces, such as communication, adaptation and coordina-
tion, which are also relevant for the design of organizations. Also, I model leaders
as the source of information. There are many other features of leadership which
I have not addressed. For example, Bolton et al. (2008) show that a resolute
leader can achieve a better outcome for an organization faced with conflict be-
tween adaptation and coordination as a resolute leader overestimates the precision
of her prior belief and hence is less responsive to new information. They show
that the coordination benefit from a resolute leader generally outweighs the cost
of mal-adaptation.18 Adding these components into this model may balance the
signaling effect which is dominant in this paper, thus lead to more realistic predic-
tions about optimal hierarchies. Also, there might be other transaction costs, such
as delaying, or communication costs, associated with each hierarchy. A related
question is: Does the optimal hierarchy get longer and thinner, or the opposite,
as transaction costs drop? Adding these costs will shed some light on our under-
standing of real organizational design problems. A detailed analysis of these new
features requires another paper, and I plan to address these issues in the future.

18See Bolton et al. (2010) for a survey of key elements of leadership.
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Chapter 2

Picking Winners in Rounds of
Elimination

This chapter is based on joint work with Suzanne Scotchmer.

2.1 Introduction

We study economic environments where a principal must select projects or agents
from a pool, but cannot observe a candidate’s ability or the project’s intrinsic
worth. A technique for solving this problem is to cast a wide net, and then
to eliminate agents or projects that do not perform well. For example, this is
how professors are hired. A department initially hires a large pool of assistant
professors, gives them a few years to demonstrate their worth, and then makes
an up-or-out evaluation. At the full professor stage, the survivors are evaluated
again. Those who are not promoted typically leave.

There are many other selection arenas that use a similar technique. Venture
capitalists may give early funding to many young start-up firms, but cut them
loose ruthlessly when they fail to perform. Drug testing is similar. After the first
round of testing, many drugs are dropped, while others go on to another round.

In this paper we ask how such rounds of elimination should be structured.
Should there be many rounds or only a few? How should the structure depend on
cost? Should standards become tougher or more lax in later rounds? How should
the selection at a later round incorporate information generated at earlier rounds?

Different versions of this problem call for different stylizations. In the styliza-
tion here, there are natural periods of time in which agents or projects generate
signals. The arrival of independent signals in successive periods leads naturally
to rounds of elimination. This structure arises naturally in academic life, where
evaluation periods are established by policy. Hiring contests are also structured
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this way. It is common for a software engineering firm to test its applicants by
giving them problems to solve. Candidates must pass all the rounds of elimination
in order to be considered. How should the rounds of elimination and the use of
the signal be structured?

To isolate the issues, we consider only two periods, with two signals (x1, x2) ,
independently drawn from a distribution determined by an unobservable ability
parameter, µ. The principal wants to select for high values of µ. He can select in a
single round of elimination, waiting until the end of period 2 and using both signals,
or he can select in double rounds of elimination, using x1 to winnow the candidates
at round one, and then using x2 to winnow them further. We assume that in both
schemes, he is constrained to end up with the same number of survivors.

We distinguish between selection schemes with memory and those without, as
in Scotchmer (2008). In a selection scheme with memory, the selection at round
two can use the signal generated at round one as well as the signal generated at
round two. In a selection scheme without memory, selection at each round can only
depend on the signal generated in that round. Sports tournaments are typically
selection schemes without memory, whereas promotion in the academic hierarchy
typically has memory.

Some of our conclusions are obvious, or at least very intuitive, once stated.
However, even the “obvious” conclusions are not always true. They require con-
ditions on the distributions, which we illuminate in this paper. We give a general
characterization of optimal selection sets, but also illuminate their special struc-
ture when probability densities are log-supermodular. Our work is related to an
earlier literature on optimization that uses supermodularity for the conclusion
that optimal control variables move monotonically with underlying parameters
(Topkis, 1978, Milgrom and Weber, 1982, Milgrom and Shannon, 1995, Athey,
2002). We use log- supermodularity for a different purpose. Instead of using log-
supermodularity to characterize how control variables move with parameters, we
use log-supermodularity to characterize optimal selection sets.

Our main conclusions are:

• When the joint distribution of µ and x satisfy log-supermodularity, optimal
selection sets can be characterized by threshold values on the signals.

• Conditional on a given number of ultimate survivors, the average ability of
survivors in a single round of elimination is higher than in any double round
of elimination, and the average ability of survivors is higher if the selection
scheme has memory than if not.

• A higher cost of holding on to candidates should lead to more stringent
screening at round one, less stringent screening at round two, and lower
average ability among ultimate survivors.
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• In double rounds of elimination without memory (depending on a hazard
rate condition), the selection standard should be tougher in round one than
in round two.

• If it is optimal to use a sufficient statistic for selection in a single round
of elimination, then it is optimal to use the same sufficient statistic in the
ultimate round of double elimination, even though the sample has been win-
nowed in round one, using partial information.

The last point, which follows from the factorization theorem, is perhaps the
least intuitive. One might have thought that, in double rounds of elimination,
extra weight should be given to x2 at the second round. The signal x1 was already
used for selection at the first round, and conditional on survival at round one,
the signal x1 is likely to exhibit some “good luck bias.” Nevertheless, the same
sufficient statistic should be used at the second round as if no prior selection had
taken place, although with a less stringent screening standard. No extra weight
should be given to x2, even if there has already been screening on x1.

In section 2, we describe a simple model. In section 3 we characterize how the
selection set should be chosen for a single round of elimination, and record some
well known features of probability distributions that lead to monotonic selection
criteria. We also give examples, showing that the parameter of interest, µ, may be
interpreted in many ways, such as the mean of a distribution, a measure of upside
or downside risk, or expected waiting time for an arrival. In section 4 we discuss
double rounds of elimination with memory, and in section 5 we discuss double
rounds of elimination without memory.

Since we conclude that all the information should be used at every round, sec-
tion 5 is mainly of interest because many selection schemes ignore or de-emphasize
information from earlier rounds. Our work implies that, to explain this, one must
look elsewhere than simple screening. For example, moral hazard could be a jus-
tification. De-emphasizing earlier success maintains an incentive to work harder
in later rounds. We intentionally put aside moral hazard problems, because our
objective is to isolate the screening problem. Elements of our characterizations
will remain when screening and moral hazard are combined.

2.2 The model

We assume that agents (or projects) are endowed with an underlying parameter
µ, which is unobservable. The value of µ is therefore a random variable from the
perspective of an observer. The observer wants to select a given number of agents
or projects in a way that maximizes the expected value of µ. The underlying
parameter µ could be, for example, the profitability of a project, the potential
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market size of a new innovation, the ability of an assistant professor, the assistant
professor’s upside potential, or the rate at which the assistant professor thinks of
good ideas. The prior distribution on µ is given by a density function h.

The objective of the selection scheme is to maximize the expected value of µ
among survivors, but µ does not need to be the mean of the distribution. As
long as the log-supermodularity condition below is satisfied, our optimal selec-
tion theorems apply. In section 3.2 below we give examples of how µ might be
interpreted.

The agents (or projects) generate signals x ∈ R2 (more generally, x ∈ Rn)
where the draws are assumed to be independent conditional on the underlying
value of µ. Each xi has probability distribution F (·, µ). Throughout we maintain
the assumption that the distribution of signals is atomless with density f (·, µ).

This simple structure with x ∈ R2 permits two rounds of elimination. Agents or
projects might be eliminated at the first round, based on x1, or at the second round,
based on (x1, x2) . A single round of elimination means that all agents are kept
in the pool until the end of the second period, and selection uses the information
generated in both periods, (x1, x2) . Double rounds of elimination mean that some
of the agents are eliminated after round one, using only the information x1. At the
second round, selection can take place using both (x1, x2) or only x2. This is the
distinction between rounds of elimination with memory and without memory.

We will use the following notation when it is convenient and not ambiguous:1

When we write an integral sign without delimiters, we mean the integral on the
full support.

p (x1, x2, µ) = f (x1, µ) f (x2, µ)h (µ)
p (x1, x2) =

∫
p (x1, x2, µ) dµ

p (x1) =
∫ ∫

p (x1, x2, µ) dx2dµ =
∫
f (x1, µ)h (µ) dµ

p (x1,∆2) =
∫

∆2
p (x1, x2) dx2

p (∆1, x2) =
∫

∆1
p (x1, x2) dx1

Conditional probabilities will also be expressed in this notation:

p (µ|x1, x2) = p (x1, x2, µ) /p (x1, x2)
p (x2|x1) = p (x1, x2) /p (x1)
p (∆2|x1) = p (x1,∆2) /p (x1)

p (x2|x1,∆2) = p (x2|x1) /p (∆2|x1)
p (x1|∆1, x2) = p (x1|x2) /p (∆1|x2)

1We abuse notation to avoid awkwardness, hopefully without confusion. Instead of writing,
for example, p(µ,X1,X2) (·) and p(X1|X2) (·), as the names of the density functions, we simply write
p (µ, x1, x2) and p (x1|x2). That is, we write the same thing to refer to the functions themselves
as well as to point values of the functions. The context will indicate which interpretation is
appropriate.
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We will also use sufficient statistics. Using the factorization theorem, a function
σ : R2 → R of the signals is sufficient for µ if the joint density p (x1, x2, µ) can be
written as

p (x1, x2, µ) = q(x1, x2)θ(σ(x1, x2), µ) (2.1)

for functions q, σ : R2 → R and θ : R2 → R.

2.3 Single Round of Elimination

We first consider a single round of elimination, using the information generated in
both periods.

In a single round of elimination, the selection set is a subset ∆ of R2 such that
only the agents or projects that generate signals (x1, x2) ∈ ∆ are chosen. Others
are thrown away. When integrated over a set of signals ∆ ∈ R2, the total number
of survivors is

Ss (∆) =:

∫
∆

∫
p(x1, x2, µ)dµdx1dx2

and their total ability is

V s (∆) =:

∫
∆

∫
µp(x1, x2, µ)dµdx1dx2

We pose the optimization problem with a constraint on the probability of
survival (or number of survivors), Ss (∆) = Λ, Λ ∈ (0, 1) . Reducing the set ∆
leads to fewer survivors. Our problem is to choose the selection set such that the
expected ability of survivors is maximized.

The problem we wish to solve is

max
∆

V s (∆) subject to Ss (∆) = Λ (2.2)

Following is a general characterization of the solution.

Theorem 2.3.1 (Single round of elimination: the optimal selection set)
There exists a finite number α such that, for every solution ∆ to (2.2),

E (µ|x1, x2) ≥ α for a.e. x ∈ ∆

E (µ|x1, x2) ≤ α for a.e. x ∈ R2\∆
(2.3)

If ∆̂ and ∆ are two solutions to (2.2), then

E (µ|x1, x2) = α for a.e. x ∈ (∆̂\∆) ∪ (∆\∆̂) (2.4)
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Proof: It will be convenient to state the optimization problem using a function
g defined as the expected value of µ, given (x1, x2) .

g(x1, x2) =

∫
µ

p (x1, x2, µ)∫
p (x1, x2, µ) dµ

dµ = E(µ|x1, x2)

Let dν =
[∫
p (x1, x2, µ) dµ

]
dA on the interior of its support in R2. Because

dν and dA are absolutely continuous with respect to each other, a set that has
measure zero with respect to Lebesgue measure also has measure zero with respect
to ν measure.

The problem in a single round of elimination can be stated as

max
∆

∫
∆

g dν subject to:

∫
∆

1 · dν = ν(∆) = Λ (2.5)

In appendix A,we first show that for each Λ, there exists a set ∆ with the
property that:

1. ν(∆) = Λ,

2. There exists a finite number α such that g ≥ α on ∆, and g ≤ α on the
complement.

We now show that this set is optimal. In particular, for any set A with ν(A) =
Λ, it must be the case that: ∫

A

gdν ≤
∫

∆

gdν

The first observation is that:∫
A\∆

gdν ≤
∫
A\∆

αdν = ν(A\∆)α = ν(∆\A)α =

∫
∆\A

αdν ≤
∫

∆\A
gdν

These inequalities hold because g ≤ α on A\∆ ⊂ R2\∆, α ≤ g on ∆\A ⊂ ∆ ,
and ν(∆\A) = ν(∆)− ν(A ∩∆) = ν(A)− ν(A ∩∆) = ν(A\∆). Thus,∫

A

gdν =

∫
A∩∆

gdν +

∫
A\∆

gdν ≤
∫
A∩∆

gdν +

∫
∆\A

gdν =

∫
∆

gdν

This shows (2.3).
For (2.4), suppose that ∆̂ is another optimal solution. Then

∫
∆̂\∆ gdν =∫

∆\∆̂ gdν. For almost every x ∈ ∆̂\∆, g ≤ α because x 6∈ ∆, but g ≥ α because
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x ∈ ∆̂. Therefore g = α, and similarly for ∆\∆̂. Hence, g = α on (∆̂\∆)∪ (∆\∆̂),
except on a set of measure zero. �

Theorem 2.3.1 implies that a solution ∆ is coupled with a value α that rep-
resents the expected ability of the marginal agent. However, without further as-
sumptions, the value α that accompanies ∆ is not necessarily unique. When α is
not unique, the largest such value is of particular interest, because it represents the
infimum of E (µ|x1, x2) on subsets of selected signals (agents) that have positive
measure.

For any solution ∆ coupled with a particular α, we can get the other solutions
by replacing the part of ∆ where E (µ|x1, x2) = α with another set of the same
measure where E (µ|x1, x2) = α. However, when ν(x ∈ R2 : E (µ|x) = α) = 0, the
optimal selection set is almost unique. By this we mean that if ∆ is a solution
coupled with α and and ∆̂ is also a solution, it is coupled with the same α, and
either that ν((∆̂\∆) ∪ (∆\∆̂)) = 0 or ν(∆\∆̂)) = ν(∆̂\∆)) = 0. Every optimal
solution is just ∆ except on a zero measure set,which is impossible to detect using
integration.

When there is a sufficient statistic for µ, Theorem 2.3.1 can be restated using
the sufficient statistic. For each value σ̄ ∈ R, define

Ē (µ|σ̄) =

∫
µ

θ(σ̄, µ)∫
θ(σ̄, µ)dµ

dµ

Then it is easy to show that E (µ|x1, x2) has the same value for every signal (x1, x2)
in the set {(x1, x2) |σ (x1, x2) = σ̄} , and

Ē (µ|σ (x1, x2)) = E (µ|x1, x2) (2.6)

Theorem 2.3.1 thus implies

Corollary 2.3.2 Suppose that σ is a sufficient statistic for µ. There exists a finite
number α such that, for every solution ∆ to (2.2),

Ē (µ|σ (x1, x2)) ≥ α for a.e. x ∈ ∆

Ē (µ|σ (x1, x2)) ≤ α for a.e. x ∈ R2\∆

If ∆̂ and ∆ are two solutions to (2.2), then

Ē (µ|σ (x1, x2)) = α for a.e. x ∈ (∆̂\∆) ∪ (∆\∆̂) (2.7)
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2.3.1 Single Round: Promotion thresholds and monotonic-
ity

The characterization in Theorem 2.3.1 and Corollary 1 is too general to be useful.
For example, it does not say that if the signal (x̂1, x̂2) is larger than some signal
(x1, x2) in the selection set, then the larger signal (x̂1, x̂2) should also be selected.
And it does not say that if the value of the sufficient statistic σ (x̂1, x̂2) is larger
than a value σ (x1, x2) that would be selected, then the larger value of the sufficient
statistic should also be selected. These are intuitive conclusions; if they do not
hold, then the signal (x1, x2) has no natural interpretation.

We will use the mathematical structure of supermodularity. This structure is
used widely in economics, following Topkis (1978, p. 310), Milgrom and Weber
(1982), Milgrom and Shannon (1995), and Athey (1982). The literature is con-
cerned with monotone comparative statics, that is, monotonicity of optimal choices
with respect to underlying variables. If an optimand is supermodular with respect
to the appropriate variables, then the optimizer is a monotonic function of the
underlying parameters. Our application here is concerned with optimal selection
sets for random variables rather than with optimal control variables. Monotonicity
leads to the conclusion (among others) that selection sets can be characterized by
threshold values.

For convenience, we state the monotonicity assumptions on the density function
p. However, they follow from the same properties of f .

The density p satisfies the monotone likelihood ratio property if

p(x′1, x2, µ
′)

p(x1, x2, µ′)
≥ p(x′1, x2, µ)

p(x1, x2, µ)
whenever x′1 > x1, µ

′ > µ

p(x′1, x
′
2, µ)

p(x′1, x2, µ)
≥ p(x1, x

′
2, µ)

p(x1, x2, µ)
whenever x′1 > x1, x

′
2 > x2

and the equivalent statements hold when x1 and x2 are reversed.
Assuming that p is twice differentiable, we will say that the density p is log

supermodular (strictly log supermodular) if the cross partial derivative of log p in
any of (x1, µ) , (x2, µ) , (x1, x2) is nonnegative (positive).This is not the general
definition, but is equivalent to the general definition when p is differentiable Top-
kis (1978, p.310). See the papers cited above for the definition and underlying
mathematical structure. We will also refer to log supermodularity of θ in (2.1).

We will also use first-order stochastic dominance. Let two distributions F and
G have common supports in R. We say that F first-order stochastically dominates
G if F (t) ≤ G (t) for all t in the supports.

An important fact is that, if F first order dominates G, the expected value of
the random variable, or an increasing function of the random variable, is larger
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when distributed as F than when distributed as G. We will use a slight extension
of this fact, stated in the following lemma.

Lemma 2.3.3 Let F and G be two distributions on supports contained in R such
that F first-order dominates G. Suppose that two functions u, v : R→ R have the
properties that (1) both are nondecreasing and (2) u(t) ≥ v(t) for all t. Then:∫

u(t)dF (t) ≥
∫
v(t)dG(t)

Proof: ∫
u(t)dF (t)−

∫
v(t)dG(t)

=

∫
(u(t)− v(t))︸ ︷︷ ︸

≥0

dF (t) +

{∫
v(t)dF (t)−

∫
v(t)dG(t)

}
≥ 0

The first term is nonnegative because the integrand is nonnegative. Nonnegativity
of the second term follows because F first-order dominates G and because v is
nondecreasing. �

The following remark records some relationships among the definitions that are
used heavily below. The first two bullet points reflect the fact that supermodularity
is preserved by integration. This property underlies the analysis of Athey (2002),
who extended monotone comparative statics to problems where the optimand is
the expected value of a supermodular function.

Remark 4 Suppose that p (x1, x2, µ) is log supermodular. Then

• Any marginal density function derived from p is log supermodular. For ex-
ample,

∫
p (x1, x2, µ) dµ is log supermodular in (x1, x2).

• Any conditional density function derived from p, such as p (x1, µ|x2), is log
supermodular.

• Any conditional density function derived from p satisfies the monotone like-
lihood ratio property.

• If x1 > x̂1, p (µ, x2|x1) stochastically dominates p (µ, x2|x̂1) (and symmetri-
cally for the other conditional distributions).

• The expected value of µ, conditional on x1, is increasing in x1 (symmetrically,
x2).
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When we assume that p is log supermodular below, we are adopting all the
properties in the Remark.

We also use the following lemma, which links monotonicity properties of a
sufficient statistic to log supermodularity of the underlying density function.

Lemma 2.3.4 If p is strictly log supermodular and twice differentiable, and can be
written as (2.1), then σ and θ can be chosen such that θ is strictly log supermodular
and σ is increasing in its arguments.

Proof of Lemma: We want to show that, as long as there is any pair of functions
σ and θ such that (2.1) holds, then there is a pair of function σ and θ such that
∂2

∂σ∂µ
log θ (σ, µ) > 0. Write, for i = 1, 2,

∂2

∂x1∂µ
log p (x1, x2, µ) =

∂2

∂x1∂µ
log g (x1, x2) +

∂2

∂σ∂µ
log θ (σ (x1, x2) , µ)

∂

∂x1

σ (x1, x2)

=
∂2

∂σ∂µ
log θ (σ (x1, x2) , µ)

∂

∂x1

σ (x1, x2)

∂2

∂x2∂µ
log p (x1, x2, µ) =

∂2

∂σ∂µ
log θ (σ (x1, x2) , µ)

∂

∂x2

σ (x1, x2)

Because ∂2

∂xi∂µ
log p (x1, x2, µ) > 0, ∂

∂xi
σ (x1, x2) 6= 0 for i = 1, 2. If ∂

∂x1
σ (x1, x2) >

0, then ∂2

∂σ∂µ
log θ (σ (x1, x2) , µ) > 0, as required, and ∂

∂x2
σ (x1, x2) > 0. If ∂

∂x1
σ (x1, x2) <

0, then ∂2

∂σ∂µ
log θ (σ (x1, x2) , µ) < 0 and ∂

∂x2
σ (x1, x2) < 0. In that case, define

σ̃ = −σ. Then σ̃ is also sufficient for µ, and θ (σ̃, µ) is log supermodular. �
The following theorem shows that, if there is a sufficient statistic, the opti-

mal selection set can be written as a threshold value on that statistic, that is,
{(x1, x2) : σ (x1, x2) ≥ k} . If the selection scheme has memory, the optimal selec-
tion set cannot generally be written, for example, as {(x1, x2) : x2 ≥ k1, x2 ≥ k2} .

Theorem 2.3.5 (Single round of elimination and a sufficient statistic) Suppose
that p is log supermodular, and let ∆ be a selection set that solves (2.2) . Suppose
that σ is a sufficient statistic for µ. Then there exists σ̄ such that the optimal
selection set can be written as

∆ = {(x1, x2) : σ (x1, x2) ≥ σ̄}

Proof : This follows from Theorem 2.3.1, and from (2.6). With log supermod-
ularity, σ is increasing in its arguments, as is Ē (µ|σ̄) . �

In the next section, we give some examples to show the different meanings that
the parameter µ can take. The most familiar case is where µ is the distribution
mean, and the sufficient statistic is the mean of the sample. We also consider
examples where µ is an extreme point of the support, interpreted as a measure of
upside risk or downside risk.
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2.3.2 Examples

Normal Distribution. Let x be a single random draw from a normal distribution
with unknown mean µ and known variance v. Then the distribution of x conditional
on µ is

f(x, µ) =
1√

2πv2
e−

(x−µ)2

2v2 , x ∈ R

One can check directly that f is log supermodular. When a sample (x1, x2, ..., xn)
is available, the joint distribution conditional on µ is

Πn
i=1f(xi, µ) =

(
1

2πv2

)n/2
e−

∑
(xi−µ)

2

2v2 =

(
1

2πv2

)n/2
exp

{
−
∑
xi

2 − 2µ
∑
xi + µ2

2v2

}
=

(
1

2πv2

)n/2
exp

{
−
∑
xi

2

2v2

}
exp

{
2µnx̄

2v2

}
exp

{
− µ2

2v2

}
Using the factorization theorem, the sample mean, x̄, is a sufficient statistic for µ.

Figure 2.1: selection on the mean

Applying Theorem 2.3.5, the lower bound of the optimal selection set is an
affine line with slope −1, that is ∆ = {(x1, x2)|x1 + x2 ≥ σ} for an appropriate
value of the sufficient statistic, σ. This is shown in figure 2.1.
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General exponential distributions. In the exponential family, the distri-
bution of a single random draw, x, conditional on a parameter µ, can be expressed
as

f(x, µ) = h(x) exp(η(µ)σ(x) − A(µ)), x ∈ R

Then, using the factorization theorem for sufficient statistics, σ is a sufficient
statistic for µ. Provided η′(µ)σ′(x) > 0 (both are increasing or both are decreasing),
the density function is log supermodular.

When there are two random draws, the joint density is f (x1, µ) f (x2, µ) , and
the sufficient statistic is σ (x1) + σ (x2) .

Waiting Time: The random variable x with the following density represents
a waiting time, conditional on µ :

f(x, µ) =
e−x/µ

µ
, µ > 0, x ∈ R+

The waiting time itself, x, is a sufficient statistic. If two waiting times are
measured, the sufficient statistic is their sum.

Maximizing the upside risk. Suppose x1 and x2 are independent and uni-
formly distributed on the interval [0, µ]. The density of each random draw x is

f(x, µ) =
1

µ
1{0≤x≤µ}

where 1{0≤x≤µ} is the indicator function on the set [0, 1]. This density function
is log supermodular in (x, µ), because both 1{0≤x≤µ}

2 and 1
µ

are logsupermod-

ular in (x, µ), and the product of nonnegative log supmodular functions is log
supermodular. Therefore E(µ|x1, x2) is weakly increasing in x1 and x2.

Let

σ(x1, x2) = max(x1, x2)

The probability density of (x1, x2) can be written as follows:

f(x1, µ)f(x2, µ) =
1

µ
1{0≤x1≤µ}

1

µ
1{0≤x2≤µ} =

(
1{0≤min(x1,x2)}

)( 1

µ2
1{max(x1,x2)≤µ}

)
Therefore, using the factorization theorem, σ is sufficient for µ. Further, there

is an unbiased estimator of µ, β1, that increases with σ. For this estimator,

E(µ|x1, x2) = β1(max(x1, x2))

2This can be checked directly from the general definitions, which we have not reprised here.
For our purpsoes it is enough to cite Lemma 3 of Athey (2002), which tells us that the indicator
function with values 1A(µ) (x) is logsupermodular in (x, µ) if and only if the set A (µ) is a
sublattice. The condition holds because A (µ) is the interval [0, µ].
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Figure 2.2: Selection for maximizing upside risk

For some number α, an upper contour set of E(µ|x1, x2), hence the selection set
∆, takes the following form:

∆ = {(x1, x2)|σ (x1, x2) ≥ α} = {(x1, x2)|max(x1, x2) ≥ α}

Minimizing the downside risk. Now suppose x1 and x2 are independent
and uniformly distributed on the interval [µ, 1]. The density of a single random
draw, x, is

f(x, µ) =
1

1− µ
1{µ≤x≤1}

where 1{µ≤x≤1} is the indicator function on the set [µ, 1]. This density function
is log supermodular in (x, µ), because both 1{µ≤x≤1} and 1

1−µ are log supermod-

ular in (x, µ), and the product of nonnegative log supmodular functions is log
supermodular. Therefore E(µ|x1, x2) is weakly increasing in x1 and x2.

Let

σ(x1, x2) = min(x1, x2)

The probability density of (x1, x2) can be written as follows:

f(x1, µ)f(x2, µ) =
1

1− µ
1{µ≤x1≤1}

1

1− µ
1{µ≤x2≤1} =

(
1{0≤min(x1,x2)}

)( 1

(1− µ)2 1{min(x1,x2)≥µ}

)
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Figure 2.3: Selection for minimizing downside risk

Therefore, σ is sufficient for µ and there is an unbiased estimator of µ, β2, that
increases with σ. For this estimator,

E(µ|x1, x2) = β2(min(x1, x2))

For some number α, an upper contour set of E(µ|x1, x2), and therefore the selection
set ∆, takes the following form:

∆ = {(x1, x2)|min(x1, x2) ≥ α}

2.4 Double Rounds of elimination with memory

We now suppose that it is costly to collect information in each round, for example,
because assistant professors must be paid. In the previous sections, we implicitly
assumed that the selection will be made only after two draws. If drawing samples
is not costly, this is optimal. However, when sampling is costly, money can be
saved by discarding some unpromising projects or agents after the first round.
That is, it is optimal to have double rounds of elimination. The potential penalty
for saving money in this way is that the first round of elimination might exclude
good projects that would be revealed as such if kept for the second round.

We assume that the cost of experimenting is the same in each round, namely,
c. This is without loss of generality, assuming it is efficient to begin the experi-
mentation process at all. Since the cost in the first round must be sunk in order to
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proceed, the (relevant) objective function depends only on the cost in the second
round.

The selection process has memory if the selection criterion at round two can
depend on the signal generated at round one. We view the selection problem as
the choice of ∆1 ⊂ R and ∆2 : ∆1 → A, where A is the set of measurable subsets
of R and where, for each x1 ∈ ∆1, ∆2 (x1) ∈ A is understood as the selection set
at the second round.

The objective is to maximize the expected µ among agents who survive both
rounds, minus the cost that must be paid in the second round for survivors of the
first round. The number of survivors at the end of the second round is constrained
to be Λ. We write the objective function as

V (∆1,∆2; c) ≡
∫ ∫

∆1

∫
∆2(x1)

µp (x1, x2, µ) dx2dx1dµ

−c
∫ ∫

∆1

∫
µp (x1, x2, µ) dx2dx1dµ

We write the number of survivors of both rounds as

S (∆1,∆2) =:

∫ ∫
∆1

∫
∆2(x1)

p (x1, x2, µ) dx2dx1dµ

Then the objective is

maximize V (∆1,∆2; c) subject to S (∆1,∆2) = Λ (2.8)

Theorem 2.4.1 (Double elimination with memory: the optimal policy)
Let ∆1,∆2 be the selection sets that solve (2.8). Then there exists a number λ such
that

E (µ|x1,∆2 (x1))− c

p (∆2 (x1) |x1)
− λ ≥ 0 for a.e. x1 ∈ ∆1 (2.9)

E (µ|x1,∆2 (x1))− c

p (∆2 (x1) |x1)
− λ ≤ 0 for a.e. x1 6∈ ∆1

for a.e. x1 ∈ ∆1,


E (µ|x1, x2)− λ ≥ 0 for a.e. x2 ∈ ∆2 (x1)

E (µ|x1, x2)− λ ≤ 0 for a.e. x2 6∈ ∆2 (x1)
(2.10)

Proof : In order to characterize the solution, it is convenient to reformulate the
objective as a Lagrange function where the choice variables are indicator values
I (x1) ∈ {0, 1} for each x1 ∈ R and J (x1, x2) ∈ {0, 1} for each (x1,x2) ∈ R×R
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such that I (x1) = 1 There is a one-to-one relationship between the indicator
functions I, J and the selection sets ∆1,∆2, given by

∆1 = {x1 ∈ R : I (x1) = 1}

∆2 (x1) = {x2 ∈ R : J (x1, x2) = 1} for each x1 ∈ ∆1

We will sometimes refer to the optimum as the optimal indicator functions I, J
and sometimes as the optimal selection sets ∆1,∆2.

The Lagrange function to be maximized is

L (I, J) =

∫ ∫ ∫
I (x1) J (x1, x2) µ p (x1, x2, µ) dx2dx1dµ

−c
∫ ∫ ∫

I (x1) p (x1, x2, µ) dx2dx1dµ

−λ
[∫ ∫ ∫

I (x1) J (x1, x2) p (x1, x2, µ) dx2dx1dµ− Λ

]
The first-order conditions are S (∆1,∆2) = Λ and for each (x1, x2) ,

∂
∂I(x1)

L (I, J) ≥ 0 if I (x1) = 1

∂
∂I(x1)

L (I, J) ≤ 0 if I (x1) = 0
(2.11)


∂

∂J(x1,x2)
L (I, J) ≥ 0 if J (x1, x2) = 1

∂
∂J(x1,x2)

L (I, J) ≤ 0 if J (x1, x2) = 0
(2.12)

To interpret these conditions, we write out the values of the partial derivatives.

∂

∂I (x1)
L (I, J) =

∫ ∫
J (x1, x2)µp (x1, x2, µ) dx2dµ− c

∫ ∫
p (x1, x2, µ) dx2dµ

−λ
∫ ∫

J (x1, x2) p (x1, x2, µ) dx2dµ

Given a pair (x1,∆) ∈ R×A, we use the notation

E (µ|x1,∆) =:

∫
∆

p (x2|x1)

p (∆|x1)
E (µ|x1, x2) dx2 (2.13)

Then

∂

∂I (x1)
L (I, J) =

∫
J (x1, x2) p (x1, x2)

∫
µ
p (x1, x2, µ)

p (x1, x2)
dµdx2

−cp (x1)− λ
∫
J (x1, x2) p (x1, x2) dx2

=

∫
J (x1, x2) p (x1, x2)E (µ|x1, x2) dx2 − cp (x1)− λp (x1,∆2 (x1))
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∂

∂I (x1)
L (I, J)× 1

p (x1,∆2 (x1))

=

∫
J (x1, x2)

p (x1, x2)

p (x1,∆2 (x1))
E (µ|x1, x2) dx2 − c

p (x1)

p (x1,∆2 (x1))
− λ

=

∫
∆2(x1)

p (x2|x1)

p (∆2 (x1) |x1)
E (µ|x1, x2) dx2 − c

1

p (∆2 (x1) |x1)
− λ

= E (µ|x1,∆2 (x1))− c

p (∆2 (x1) |x1)
− λ (2.14)

∂

∂J (x1, x2)
L (I, J) = I (x1)

[
p (x1, x2)

∫ ∞
0

µ
p (x1, x2, µ)

p (x1, x2)
dµ− λp (x1, x2)

]
= I (x1) p (x1, x2)× [E (µ|x1, x2)− λ] (2.15)

The conclusions in the theorem follow from (2.11) and (2.12), and (2.14) and
(2.15). �

The condition (2.9) for selection at the first round takes account of the cost
that will be incurred in the second round. The value of keeping the agent after
round one is diminished by the expected cost. The cost is wasted if the agent
will be eliminated later. Averaged over the agents who survive both rounds, the
per-agent cost of including the signal x1 at the first round is c

p(∆2(x1)|x1)
.

At the second round of elimination, the decision maker can use both sample
points (x1, x2) to select the ultimate survivors. Since both sample points contain
information, the selection process should clearly use both. However, the selection
is only among agents who survived round one – many sample points are ”missing,”
and the ones that are missing were selected in a systematic way. This means that
the conditional distribution of x2, given the selection in round one, is different
than the distribution of x1 in round one, and different than the distribution of x2

if all agents were in the sample. Given that there will be a “good luck bias” among
the agents who survive round one, one might think that x2 should be given some
special weight in the evaluation at round two.

To put these questions more precisely,

• Should the two sample points (x1, x2) be treated symmetrically at the end
of round two?

• For the case that there is a sufficient statistic for a single round of elimination,
should the selection at the end of round two be based on the same statistic?

Perhaps surprisingly, the following corollary answers these questions affirma-
tively.
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Corollary 2.4.2 (Double elimination with memory and a sufficient statistic )
Suppose σ is a sufficient statistic for µ. Let ∆1,∆2 be the selection sets that solve
(2.8). Then for a suitable constant λ,

E (µ|x1,∆2 (x1))− c
p(∆2(x1)|x1)

− λ ≥ 0 for a.e. x1 ∈ ∆1

E (µ|x1,∆2 (x1))− c
p(∆2(x1)|x1)

− λ ≤ 0 for a.e. x1 6∈ ∆1

for a.e. x1 ∈ ∆1,


Ē (µ|σ (x1, x2)) ≥ λ for a.e. x2 ∈ ∆2 (x1)

Ē (µ|σ (x1, x2)) ≤ λ for a.e. x2 6∈ ∆2 (x1)

Proof : The characterization of ∆1 is the same as in Theorem 2.4.1, and the
characterization of ∆2 relies on the sufficient statistic instead of (x1, x2) , using
(2.6). �

Thus, if there is a sufficient statistic for µ, the selection criterion at the second
round depends only on this statistic. It is the same sufficient statistic as is used
in a single round of elimination, even though the distributions are different. For
example, if it is optimal to use only the sample mean for selection in a single round
of elimination, then it is optimal to use the mean at round two – in particular,
to weight the signals of the two periods equally – even when a prior selection has
been made at round one, based only on x1. No extra weight should be given to x2

to compensate for the fact that x1 has already been used at round one.
As with a single round of elimination, the characterization of the optimum is

more useful if the density functions are log supermodular, and therefore satisfy
the monotone likelihood ratio property. We now turn to this case.

2.4.1 Double round with memory: monotonicity and thresh-
old values

With additional structure on the distributions, we can say more about how the
signals (x1, x2) should be used in two rounds of elimination. In particular, the
optimal selection sets (∆1,∆2) are threshold policies.

Theorem 2.4.3 shows that log supermodularity again leads to the conclusion
that the optimal selection policy is a threshold policy in each round. Theorem 2.4.4
refines this result, showing that selection in the first round should use a threshold
for the first signal, and if there is a sufficient statistic, should use a threshold for
the sufficient statisic in the second round. Both these threshold results use log
supermodularity.
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Theorem 2.4.3 (Double elimination with memory: promotion using threshold values)
Suppose the distribution p is log supermodular. Given a cost c, let ∆1,∆2 be the
selection sets that solve (2.8). Then the optimal selection sets can be written with
threshold values k1 (c) , {k2 (x1, c) : x1 ≥ k1 (c)} such that

x1 ≥ k1 (c) for a.e. x1 ∈ ∆1

x1 ≤ k1 (c) for a.e. x1 6∈ ∆1

for a.e. x1 ∈ ∆1,


x2 ≥ k2 (x1, c) for a.e. x2 ∈ ∆2 (x1)

x2 ≤ k2 (x1, c) for a.e. x2 6∈ ∆2 (x1)

Proof : Taking ∆2 first, log supermodularity implies that E (µ|x1, x2) is in-
creasing in x2. Therefore the conclusion follows from Theorem 2.4.1.

For ∆1, referring to the proof of Theorem 2.4.1, rewrite the derivative (2.13)
of the Lagrange function as

∂

∂I (x1)
L (I, J) =

∫ ∞
−∞

J (x1, x2) p (x1, x2) [E (µ|x1, x2)− λ] dx2 − cp (x1)

1

p (x1)

∂

∂I (x1)
L (I, J) =

∫ ∞
−∞

J (x1, x2) p (x2|x1) [E (µ|x1, x2)− λ] dx2 − c

By Theorem 2.4.1, J (x1, x2) ≥ 0 ⇐⇒ [E (µ|x1, x2)− λ] ≥ 0. Thus,

1

p (x1)

∂

∂I (x1)
L (I, J) =

∫ ∞
−∞

p (x2|x1) max (E (µ|x1, x2)− λ, 0) dx2 − c

For clarity of the argument, define

ω (x1, x2) =: max (E (µ|x1, x2)− λ, 0)

and write

∂

∂I (x1)
L (I, J) =

∫ ∞
−∞

p (x2|x1)ω (x1, x2) dx2 − c

To prove the result, we will show that ∂
∂I(x1)

L (I, J) ≤ ∂
∂I(x̂1)

L (I, J) if x1 ≤ x̂1.

Due to log-supermodularity, E (µ|x1, x2) is increasing with both x1 and x2, and
therefore ω is increasing in x1 and x2. To complete the proof, it is enough to that,
if f is log supermodular and x1 ≤ x̂1, then∫
p(x2|x1) max(E(µ|x1, x2)− λ, 0)dx2 ≤

∫
p(x2|x̂1) max(E(µ|x̂1, x2)− λ, 0)dx2
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Let

u(x2) = max(E(µ|x̂1, x2)− λ, 0)

v(x2) = max(E(µ|x1, x2)− λ, 0)

F (x2) =

∫ x2

∞
p(x̃2|x̂1)dx̃2

G(x2) =

∫ x2

∞
p(x̃2|x1)dx̃2

In this notation, we want to show that∫
v (x2) dG (x2) ≤

∫
u (x2) dF (x2)

E(µ|x1, x2) is weakly increasing in both arguments by log supermodularity of
p(x1, x2, µ), and therefore v and u are weakly increasing. Because x̂1 > x1, v ≤ u,
and because F first-order dominates the distribution function G (see the Remark)
the result follows from Lemma 2.3.3. �

When there is a sufficient statistic, the optimal threshold policy can be stated
with reference to the sufficient statistic in round two, just as for a single round of
elimination.

Theorem 2.4.4 (Double elimination with memory: sufficient statistic) Suppose
the distribution p is log supermodular, and that σ is a sufficient statistic for µ.
Given a cost c, let ∆1,∆2 be the selection sets that solve (2.8). Then the selection
sets can be written with threshold values k1, σ̄ such that

x1 ≥ k1 for a.e. x1 ∈ ∆1

x1 ≤ k for a.e. x1 6∈ ∆1

for a.e. x1 ∈ ∆1,


σ (x1, x2) ≥ σ̄ for a.e. x2 ∈ ∆2 (x1)

σ (x1, x2) ≤ σ̄ for a.e. x2 6∈ ∆2 (x1)

Proof : The characterization of ∆1 is the same as in Theorem 2.4.3. We must
show that the characterization of ∆2 in Theorem 2.4.1 is equivalent to the one in
this theorem. The posterior distribution of µ, given (x1, x2), is

p (µ|x1, x2) =
p (x1, x2, µ)∫
p (x1, x2, µ) dµ

=
g (x1, x2) θ (σ (x1, x2) , µ)∫
g (x1, x2) θ (σ (x1, x2) , µ) dµ

=
θ (σ (x1, x2) , µ)∫
θ (σ (x1, x2) , µ) dµ
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Therefore

E (µ|x1, x2) =

∫
µ

[
θ (σ (x1, x2) , µ)∫
θ (σ (x1, x2) , µ) dµ

]
dµ

= Ē (µ|σ (x1, x2))

Using Lemma 2.3.4, Ē (µ|σ) is increasing in σ, and σ is increasing in (x1, x2) .
Choose σ̄ so that Ē (µ|σ̄) = λ. Then the characterization of ∆2 above is equivalent
to the characterization of ∆2 in Theorem 2.4.1. �

2.4.2 Double round with memory: comparisons

As shown in Theorem 2.4.1, the expected ability of the marginal survivor in an
optimal selection scheme is λ at the end of round two. This is also the oppor-
tunity cost of reducing the number of survivors; it is the shadow price on the
constraint that a fraction Λ of projects must survive. We now ask how the se-
lection scheme and its efficacy change when the cost of keeping candidates in the
pool increases. Given that mistakes are made at round one – some of the high-µ
agents or projects are eliminated due to the randomness in x1 – it is not entirely
obvious how the ability of marginal survivors relates to the average ability in the
group that survives.

The costliness of collecting information creates two burdens. First is the di-
rect burden of paying the cost of round-one survivors in round two. Second, by
eliminating some of the agents or projects too early, the selection process is less
effective. We show that, if the cost of keeping survivors after round one increases,
fewer will be kept, and the average ability of ultimate survivors, after round two,
becomes smaller.

Theorem 2.4.5 (Double eliminations with memory: Higher cost leads to
more stringent screening at round one, less stringent screening at round
two, and lower average ability of survivors at the end.) For each cost c,
let (∆c

1,∆
c
2) be the optimal selection sets for the double-elimination problem (2.8).

Let ĉ > c. Then
(1) If 0 < p

(
∆ĉ

1

)
< 1 and 0 < p (∆c

1) < 1, then p
(
∆ĉ

1

)
≤ p (∆c

1) .
(2) The expected ability of survivors in the selection scheme (∆c

1,∆
c
2) is larger (no

smaller) than in the selection scheme
(
∆ĉ

1,∆
ĉ
2

)
.

(3) If p is strictly log supermodular, the selection sets can be written with threshold
values as in Theorem 2.4.3 where

k1 (ĉ) ≥ k1 (c)

k2 (x1, ĉ) ≤ k2 (x1, c) .
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Proof : (1) Using Theorem 2.4.1, write the objective function as V , defined as

V (∆1,∆2; c) = T (∆1,∆2)− cp (∆1)

where T (∆1,∆2) =

∫ ∫
∆1

∫
∆2(x1)

µp (x1, x2, µ) dx2dx1dµ

cp (∆1) = c

∫ ∫
∆1

∫
p (x1, x2, µ) dx2dx1dµ

Because

V (∆c
1,∆

c
2; c) = T (∆c

1,∆
c
2)− cp (∆c

1) ≥ T
(
∆ĉ

1,∆
ĉ
2

)
− cp

(
∆ĉ

1

)
V
(
∆ĉ

1,∆
ĉ
2; ĉ
)

= T
(
∆ĉ

1,∆
ĉ
2

)
− ĉp

(
∆ĉ

1

)
≥ T (∆c

1,∆
c
2)− ĉp (∆c

1)

it follows that

T (∆c
1,∆

c
2)− T

(
∆ĉ

1,∆
ĉ
2

)
≥ c

[
p (∆c

1)− p
(
∆ĉ

1

)]
T (∆c

1,∆
c
2)− T

(
∆ĉ

1,∆
ĉ
2

)
≤ ĉ

[
p (∆c

1)− p
(
∆ĉ

1

)]
Subtracting,

0 ≥ (c− ĉ)
[
p (∆c

1)− p
(
∆ĉ

1

)]
Thus (c− ĉ) < 0 =⇒ p (∆c

1) ≥ p
(
∆ĉ

1

)
.

(2) The total ability of survivors is T (∆c
1,∆

c
2) for each c. If (∆c

1,∆
c
2) is optimal

for c, and
(
∆ĉ

1,∆
ĉ
2

)
is optimal for ĉ, the two selection schemes yield the same

number of survivors. Because T (∆c
1,∆

c
2) − cp (∆c

1) ≥ T
(
∆ĉ

1,∆
ĉ
2

)
− cp

(
∆ĉ

1

)
and

p (∆c
1)− p

(
∆ĉ

1

)
≥ 0, it follows that

T (∆c
1,∆

c
2)− T

(
∆ĉ

1,∆
ĉ
2

)
≥ c

[
p (∆c

1)− p
(
∆ĉ

1

)]
≥ 0. (2.16)

Dividing the left side by the probability of surviving both rounds, which is the
same in both cases, the result follows.

(3) uses Theorem 2.4.3 and part (1) above.

p (∆c
1)− p

(
∆ĉ

1

)
=

∫ ∫
k1(c)

∫
p (x1, x2, µ) dx2dx1dµ−

∫ ∫
k1(ĉ)

∫
p (x1, x2, µ) dx2dx1dµ

=

∫ ∫ k1(ĉ)

k1(c)

∫
p (x1, x2, µ) dx2dx1dµ ≥ 0

The difference can only be positive if kĉ1 ≥ k1 (c), which also implies k2 (x1, ĉ) ≤
k2 (x1, c), because otherwise there would be different numbers of survivors in the
two selection schemes. �

Because a single round of elimination is the extreme case where c = 0 and
everyone is promoted or rejected after one round, we have the following corollary:
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Corollary 2.4.6 (When cost is zero, a single round of elimination is optimal)
Conditional on the same number of survivors, the expected ability of survivors af-
ter the optimal single round of elimination is larger than the expected ability of
survivors in any double round of elimination in which some agents or projects are
eliminated at round one.

2.5 Double Rounds of elimination without mem-

ory

When we say that the elimination scheme does not have memory, we mean that
the selection set at round two cannot depend on x1. Only the fact of survival is
known from the first round. The selection problem can now be described as the
choice of ∆1 ⊂ R and ∆2 ⊂ R, where the selection at round two requires both
x1 ∈ ∆1and x2 ∈ ∆2.

The objective is still to maximize the expected µ among agents who survive
both rounds, minus the cost that must be paid in the second round for survivors
of the first round. We write the objective function as

V (∆1,∆2; c) = :

∫ ∫
∆1

∫
∆2

µp (x1, x2, µ) dx2dx1dµ

−c
∫ ∫

∆1

∫
µp (x1, x2, µ) dx2dx1dµ

We write the number of survivors of both rounds as

S (∆1,∆2) =:

∫ ∫
∆1

∫
∆2

p (x1, x2, µ) dx2dx1dµ

Then the objective is

maximize V (∆1,∆2; c) subject to S (∆1,∆2) = Λ (2.17)

Theorem 2.5.1 (Double elimination without memory: the optimal policy)
Let ∆1,∆2 be selection sets that solve (2.17). Then there exists a number λ such
that

E (µ|x1,∆2)− c

p (∆2|x1)
− λ ≥ 0 for a.e. x1 ∈ ∆1 (2.18)

E (µ|x1,∆2)− c

p (∆2|x1)
− λ ≤ 0 for a.e. x1 6∈ ∆1

E (µ|∆1, x2)− λ ≥ 0 for a.e. x2 ∈ ∆2 (2.19)

E (µ|∆1, x2)− λ ≤ 0 for a.e. x2 6∈ ∆2
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Proof : In order to characterize the solution, it is again convenient to reformu-
late the objective as a Lagrange function where the choice variables are indicator
values I (x1) ∈ {0, 1} for each x1 ∈ R and J (x2) ∈ {0, 1} for each (x1,x2) ∈ R×R
such that I (x1) = 1. There is again a one-to-one relationship between the indicator
functions I, J and the selection sets ∆1,∆2, now given by

∆1 = {x1 ∈ R : I (x1) = 1}

∆2 = {x2 ∈ R : J (x2) = 1}

The Lagrange function to be maximized is

L (I, J) =

∫ ∫
I (x1)

∫
J (x2) µ p (x1, x2, µ) dx2dx1dµ

−c
∫
I (x1)

∫ ∫
p (x1, x2, µ) dx2dx1dµ

−λ
[∫ ∫

I (x1)

∫
J (x2) p (x1, x2, µ) dx2dx1dµ− Λ

]
The first-order conditions are S (∆1,∆2) = Λ and for each (x1, x2) ,

∂
∂I(x1)

L (I, J) ≥ 0 if I (x1) = 1

∂
∂I(x1)

L (I, J) ≤ 0 if I (x1) = 0
(2.20)


∂

∂J(x2)
L (I, J) ≥ 0 if J (x2) = 1

∂
∂J(x2)

L (I, J) ≤ 0 if J (x2) = 0
(2.21)

∂

∂I (x1)
L (I, J) =

∫ ∫
J (x2)µ

∫ ∞
−∞

p (x1, x2, µ) dx2dµ− c
∫ ∫ ∞

−∞
p (x1, x2, µ) dx2dµ

−λ
∫ ∫

J (x2) p (x1, x2, µ) dx2dµ

For each ∆1 ⊂ R,∆2 ⊂ R, we use the notation

E (µ|x1, x2) =

∫
µ

p (x1, x2, µ)∫
p (x1, x2, µ) dµ

dµ

=

∫
µp (µ|x1, x2) dµ

E (µ|x1,∆2) =

∫
∆2

∫
µ

p (x1, x2, µ)∫
∆2

∫
p (x1, x2, µ) dµdx2

dµdx2
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=

∫
∆2

E (µ|x1, x2)
p (x2|x1)

p (∆2|x1)
dx2

E (µ|∆1, x2) =

∫
∆1

∫
p (x1, x2, µ)∫

∆1

∫
p (x1, x2, µ) dµdx1

dµdx1

=

∫
∆1

E (µ|x1, x2)
p (x1|x2)

p (∆1|x2)
dx1

∂

∂I (x1)
L (I, J) =

∫
J (x2) p (x1, x2)

∫
µ
p (x1, x2, µ)

p (x1, x2)
dµdx2

−cp (x1)− λ
∫
J (x2) p (x1, x2) dx2

=

∫
J (x2) p (x1, x2)E (µ|x1, x2) dx2 − cp (x1)− λp (x1,∆2)

∂

∂I (x1)
L (I, J)× 1

p (x1)
=

∫
J (x2) p (x2|x1)E (µ|x1, x2) dx2−c−λ

∫
J (x2) p (x2|x1) dx2

(2.22)

∂

∂I (x1)
L (I, J)× 1

p (x1,∆2)

=

∫
J (x2)

p (x1, x2)

p (x1,∆2)
E (µ|x1, x2) dx2 − c

p (x1)

p (x1,∆2)
− λ

=

∫
∆2

p (x2|x1)

p (∆2|x1)
E (µ|x1, x2) dx2 − c

1

p (∆2|x1)
− λ

= E (µ|x1,∆2)− c

p (∆2|x1)
− λ (2.23)

L (I, J) =

∫ ∫
I (x1)

∫
J (x2) µ p (x1, x2, µ) dx2dx1dµ

−c
∫
I (x1)

∫
f (x1, µ)h (µ) dx1dµ

−λ
∫ ∫

I (x1)

∫
J (x2) p (x1, x2, µ) dx2dx1dµ

∂

∂J (x2)
L (I, J) =

∫
I (x1)

∫
µ p (x1, x2, µ) dµdx1 − λ

∫
I (x1)

∫
p (x1, x2, µ) dµdx1

= p (∆1, x2) {E (µ|∆1, x2)− λ} (2.24)

The theorem then follows from (2.20) and (2.21), and (2.23) and (2.24). �
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As with memory, if the probability distributions satisfy a monotonicity prop-
erty, then the optimal selection sets can be expressed using threshold values, and
the threshold values depend on the cost.

Theorem 2.5.2 [Double elimination without memory: promotion using
threshold values] Suppose the distribution p is log supermodular. Given a cost
c, let ∆1,∆2 be the selection sets that solve (2.17). Then the selection sets can be
written with threshold values k1 (c) , k2 (c) such that

x1 ≥ k1 (c) for a.e. x1 ∈ ∆1

x1 ≤ k1 (c) for a.e. x1 6∈ ∆1

x2 ≥ k2 (c) for a.e. x2 ∈ ∆2

x2 ≤ k2 (c) for a.e. x2 6∈ ∆2

This is proved as in Theorem 2.4.3.
Finally, we can make a qualitative statement about the stringency of screening

at round one. Even without log supermodularity, we can conclude that higher cost
should lead to fewer survivors of round one, and that the more stringent policy
reduces the average ability of ultimate survivors. With log supermodularity, the
more stringent policy takes the form of a higher threshold value for survival at
round one, and a corresponding lower threshold at round two, in order to ensure
that there are enough ultimate survivors.

Theorem 2.5.3 [Double eliminations without memory: Higher cost leads
to more stringent screening at round one, less stringent screening at
round two, and survivors of lower average ability at the end.]
For each cost c, let ∆c

1,∆
c
2 be the selection sets that solve (2.17). Let ĉ > c. Then

(1) If 0 < p
(
∆ĉ

1

)
, p (∆c

1) < 1, then p (∆c
1) ≥ p

(
∆ĉ

1

)
.

(2) The expected ability of survivors in the selection scheme (∆c
1,∆

c
2) is larger than

in the selection scheme
(
∆ĉ

1,∆
ĉ
2

)
.

(3) If p is strictly log supermodular, the selection sets can be written with threshold
values as in Theorem 2.5.2, where

k1 (ĉ) > k2 (c) and k2 (ĉ) ≤ k2 (c) .

The proof of this theorem is the same as the proof of Theorem 2.4.5 except
that we must use the definition of V in the problem (2.17) where the selection
criterion in round two does not depend on x1.

60



Finally, we ask whether selection standards should become tougher or more
lenient over time. That is, should the standard in the second round be lower or
higher than in the first round? We did not address this question for the selection
scheme with memory, because the selection standards in the second round depend
on the signal from the first round.

It is convenient to return to the underlying densities f and h, instead of the
density function p. Let φ be the hazard rate of f :

φ (k, µ) ≡ f (k, µ)

[1− F (k, µ)]

The assumption under which we can rank the thresholds in the two rounds is
that the cross partial is positive:

∂2

∂µ∂k
log φ (k, µ) > 0 (2.25)

Lemma 2.5.4 Let k1, k2 ∈ R. Suppose that (2.25) holds. Then

E (µ|k1, (k2,∞))


>
=
<

E (µ| (k1,∞) , k2)
if k1 > k2

if k1 = k2

if k1 < k2

Proof : Write

p ((k1,∞) , k2) =

∫
k1

∫
f (x1, µ) f (k2, µ)h (µ) dµdx1

=

∫
φ (k2, µ) [1− F (k1, µ)] [1− F (k2, µ)]h (µ) dµ

p (k1, (k2,∞)) =

∫
φ (k1, µ) [1− F (k1, µ)] [1− F (k2, µ)]h (µ) dµ

E (µ| (k1,∞) , k2) =

∫
µ
φ (k2, µ) [1− F (k1, µ)] [1− F (k2, µ)]h (µ)

p ((k1,∞) , k2)
dµ

=

∫
µgk2 (µ) dµ

where gk2 is a probability distribution defined for each µ by

gk2 (µ) =
φ (k2, µ) [1− F (k1, µ)] [1− F (k2, µ)]h (µ)

p ((k1,∞) , k2)
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Similarly,

E (µ|k1, (k2,∞)) =

∫
µ
φ (k1, µ) [1− F (k1, µ)] [1− F (k2, µ)]h (µ)

p (k1, (k2,∞))
dµ

=

∫
µgk1 (µ) dµ

where gk1 is a probability distribution defined for each µ by

gk1 (µ) =
φ (k1, µ) [1− F (k1, µ)] [1− F (k2, µ)]h (µ)

p (k1, (k2,∞))

If k1 = k2, then gk1 (µ) = gk2 (µ) , hence E (µ|k1, (k2,∞)) = E (µ| (k1,∞) , k2) .
If the cross partial (2.25) is positive, the following shows that the ratio gk1 (µ) /gk2 (µ) is

increasing if k1 > k2, and therefore gk1 stochastically dominates gk2 . The reverse
holds if k2 > k1.

∂

∂µ
log

gk1 (µ)

gk2 (µ)
=

∂

∂µ
log

φ (k1, µ)

φ (k2, µ)
=

∂

∂µ
log φ (k1, µ)− ∂

∂µ
log φ (k2, µ)

=

∫ k1

k2

∂2

∂µ∂k
log φ (k, µ) dk �

This lemma allows us to state the following theorem:

Theorem 2.5.5 (Without memory, screening should become less stringent)
For a given cost c, suppose the selection sets that solve (2.17) can be written with
threshold values (k1 (c) , k2 (c)) as in Theorem 2.5.2. Suppose that the cross partial
of the derivative of the logarithm of φ is positive. Then for each c, k1 (c) > k2 (c) .

Proof : Theorem 2.5.1 implies that

E (µ|k1 (c) , (k2 (c) ,∞))− c

p ((k2 (c) ,∞) |k1 (c))
− E (µ| (k1 (c) ,∞) , k2 (c)) = 0

If c > 0, the result follows from Lemma 2.5.4 because E (µ|k1 (c) , (k2 (c) ,∞)) >
E (µ| (k1 (c) ,∞) , k2 (c)) . �
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Chapter 3

Appendix

3.1 Some Auxiliary Lemmas

A few technical lemmata are presented in this section, which may be skipped on
first reading. Proofs of these results are in the following sections.

The first lemma lists some properties of g.

Lemma 3.1.1 Let g(x, y) =
x+
√
x2+4xy

2
, x > 0, y ≥ 0. Then:

1. (Definition) g2(x, y) = x(g(x, y) + y).

2. (Homogeneity) g(λx, λy) = λg(x, y), ∀λ ≥ 0, x ≥ 0, y ≥ 0.

3. (Monotonicity) g(x, y) is strictly increasing in x and y, and gy = x
2g−x ≤ 1 ≤

gx = g+y
2g−x .

4. (Bounds) x ≤ g(x, y) ≤ x+ y.

5. (Concavity) If x > 0, y > 0, then gxx < 0, gyy < 0 and gxy > 0.

6. (Special Values) g(x, 0) = x and g( y
1+n

, ny) = y,∀n, y.

The next three lemmata are used in the proof of Theorem 1.4.14.

Lemma 3.1.2 If x ≥ 0, then x/2 ≤ g(x, g(x, t) + t) − g(x, t) ≤ x, ∀t ≥ 0. All
inequalities are strict if x > 0.

Lemma 3.1.3 If k, y ≥ 0, then g(k/3, y + g(2k/3, y)) ≤ g(2k/3, y), with strict
inequality if y > 0 and k > 0.
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Lemma 3.1.4 Suppose 0 < k ≤ 1, y ≥ 0. Define two functions ã, a : [0, k] → R
as follows:

ã(e) = g(k − e, g(e, y) + y), a(e) = g(e, y),

Let

A = ã+ a, M = ã− 1

2
ã2 + a− 1

2
a2

Then:

1. A(k) = A(0) < A(e),∀e ∈ (0, k), and M(k) = M(0) < M(e), ∀e ∈ (0, k).

2. A is strictly concave in e and A′(k
2
) > 0. Also, A′(2k

3
) < 0 if y > 0, A′(2k

3
) =

0 if y = 0; Therefore A′(e) > 0 if e ∈ [0, k
2
], A′(e) < 0 if e ∈ (2k

3
, k];

3. M ′(e) > 0 on [0, k
2
], while M ′(e) < 0 on (2k

3
, k].

4. If y = 0, then A′(2k
3

) = M ′(2k
3

) = 0, and 2k
3

is the unique maximizer of A
and M . If y > 0, then A′(2k

3
) < 0, and M ′(2k

3
) < 0.

Lemma 3.1.5 Suppose f : [0,∞) → R is continuous and differentiable, and
f(0) = 0. If f ′(x) ≤ 0 whenever f(x) ≥ 0, then f(x) ≤ 0,∀x ≥ 0.

Proof of Lemma 3.1.1

Proof Most of the calculations are straightforward.

1. If x(1+ y
g
) = g, then g2 = x(g+y), or g2−xg−xy = 0, hence g =

x+
√
x2+4xy

2

(drop the negative solution as g > 0).
2. Trivial.
3. If x > 0, y > 0, then g is differentiable in (x, y). Differentiating the equation

g2 = x(g + y) with respect to x, we get 2ggx = g + y + xgx, hence gx = g+y
2g−x > 0.

Similarly, we have 2ggy = x(gy + 1), hence gy = x
2g−x > 0. Note x + y ≥ g (part

4 below), so g + y ≥ 2g − x, hence gx = g+y
2g−x ≥ 1. Similarly gy = x

2g−x ≤ 1 since
g ≥ x.

4. This follows from x = x+
√
x2+0
2

≤ g(x, y) =
x+
√
x2+4xy

2
≤ x+

√
x2+4xy+4y2

2
=

x+ y.
5. g(x, y) = xζ(y/x), where ζ(z) = 1+

√
1+4z
2

. It is easy to see that ζ ′′(z) < 0,
hence ζ is strictly concave. So, gyy = 1

x
ζ ′′(y/x) < 0 and gxy = − y

x2
ζ ′′(y/x) > 0,

and gxx = y2

x3
ζ ′′(y/x) < 0. Also gxxgyy − g2

xy = 0, therefore g is concave in (x, y).

6. Obviously g(x, 0) = x. Also, g(1, n(n+1)) =
1+
√

1+4n(n+1)

2
= 1+2n+1

2
= n+1.

By homogeneity of g, g( y
1+n

, ny) = y
1+n

g(1, n(n+ 1)) = y. �
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Proof of Lemma 3.1.2

Proof If x = 0, all terms vanish for any t ≥ 0, hence the result holds in this case.
If x > 0, by the Mean Value Theorem (MVT),

g(x, g(x, t) + t)− g(x, t) = (g(x, t) + t− t) gy(x, ζ)

for ζ ∈ (t, t + g(x, t)). Note g is concave in y, hence gy(x, ζ) < gy(x, t) = x
2g(x,t)−x

(Part 3, Lemma A.1). Therefore

g(x, g(x, t) + t)− g(x, t) < g(x, t)gy(x, t) = g(x, t)
x

2g(x, t)− x
= x

g(x, t)

2g(x, t)− x
.

Note g(x, t) ≥ x, hence g(x, t) ≤ 2g(x, t)− x, or equivalently g(x,t)
2g(x,t)−x ≤ 1. So,

g(x, g(x, t) + t)− g(x, t) < x
g(x, t)

2g(x, t)− x
≤ x · 1 = x

For the other direction, note gy(x, ζ) > gy(x, g(x, t) + t) = x
2g(x,g(x,t)+t)−x , hence

g(x, g(x, t) + t)− g(x, t) >
xg(x, t)

2g(x, t+ g(x, t))− x

Simplifying this inequality, we have 1

g(x, g(x, t) + t)− g(x, t) >
x

2
>

xg(x, t)

2g(x, t+ g(x, t))− x
.

Combining both directions, we get the following chain of inequalities when x > 0:

xg(x, t)

2g(x, t+ g(x, t))− x
< x/2 < g(x, g(x, t)+t)−g(x, t) < x

g(x, t)

2g(x, t)− x
≤ x,∀t ≥ 0

(3.1)
Hence Lemma 3.1.2 is proved. �

Proof of Lemma 3.1.3

Proof If k = 0, then both sides equal zero for any y, hence the result holds.
If k > 0, by homogeneity of g, we have

g(
k

3
, g(

2k

3
, y) + y)− g(

2k

3
, y) =

k

3

(
g(1, g(2,

2y

k
) +

2y

k
)− g(2,

2y

k
)

)
1 (g̃− g)(2g̃−x) > xg, hence 2g̃2− 2gg̃−xg̃ > 0, or g̃(2g̃− 2g−x) > 0. Thus 2g̃− 2g−x > 0

or g̃ − g > x/2. Here g̃ = g(x, g(x, t) + t).
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So, it is sufficient to show the case for k = 3. To this end, it is equivalent to show

z(y) := g(1, g(2, y) + y)− g(2, y) < 0,∀y > 0.

Note z′(y) = gy(1, g(2, y) + y)(1 + gy(2, y))− gy(2, y). Substituting for the partial
derivative of g and simplifying, we have

z′(y) < 0⇐⇒ 2g(1, g(2, y) + y)− 1− g(2, y) > 0.

Note 2g(1, g(2, y) + y) = g(2, 2(g(2, y) + y)) > g(2, g(2, y) + y) > 1 + g(2, y),
∀y > 0, while the last inequality follows from Lemma 3.1.2. So, z′(y) < 0,∀y > 0,
but z(0) = g(1, 2)−g(2, 0) = 2−2 = 0. Therefore, z(y) < 0,∀y > 0. That finishes
the proof of Lemma 3.1.3. �

Proof of Lemma 3.1.4

Proof The proof is given in four parts.
Part 1:

Since ã(0) = a(k) = g(k, y), ã(e) = a(k) = 0. Therefore A(k) = A(0), and
M(0) = M(k).
Suppose 0 < e < k. Then 2

A(e) = g(k − e, g(e, y) + y) + g(e, y) > g(k − e, y) + g(e, y)

≥ k − e
k

g(k, y) +
e

k
g(k, y) = g(k, y) = A(0).

For M , first simplify the expression using g2(x, y) = x(g(x, y) + y):

M(e) = ã(e)− 1

2
(k − e)(ã(e) + a(e) + y) + a(e)− 1

2
e(a(e) + y)

= (1− k

2
)(ã(e) + a(e)) +

1

2
eã(e)− 1

2
ky

= (1− k

2
)(ã(e) + a(e)) +

1

2

√
e2(k − e)(ã(e) + a(e) + y)− 1

2
ky

= (1− k

2
)A(e) +

1

2

√
e2(k − e)(A(e) + y)− 1

2
ky (3.2)

If 0 < e < k, then A(e) > A(0) > 0. Also
√
e2(k − e)(A(e) + y) is zero if e = 0,

or e = k and is positive ∀e ∈ (0, k). Hence M(e) > M(0).
Part 2:

For brevity, I use g̃ := g(k − e, g(e, y) + y), g := g(e, y). Then,

A′(e) = −gx(k − e, g(e, y) + y) + gy(k − e, g(e, y) + y)gx(e, y) + gx(e, y) = −g̃x + (1 + g̃y)gx

A′′(e) = g̃xx − g̃xygx + (−g̃yx + g̃yygx)gx + (1 + g̃y)gxx

2 Note g(e, y) is concave in e with g(0, y) = 0, hence g(e,y)
e is weakly decreasing in e ∈ [0, k].
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Obviously A′′(e) < 0, because g̃xx < 0, g̃xy > 0, g̃yy < 0, gx > 0, g̃y ≥ 0, so A is
strictly concave. Notice that A(0) = A(k), hence A has a unique interior maximizer
on [0, k], which is given by the solution to A′(e) = 0. Note that

A′(e) > 0⇐⇒ gx >
g̃x

1 + g̃y

From Lemma 3.1.1, gx = g+y
2g−x ,

g̃x
1+g̃y

= g̃+g+y
2g̃

. Therefore,

gx =
g + y

2g − e
>

g̃x
1 + g̃y

=
g̃ + g + y

2g̃

⇐⇒ (g + y)2g̃ > (2g − e)(g̃ + g + y) = g̃(2g − e) + (g + y)(2g − e)
⇐⇒ g̃(2y + e) > (g + y)(2g − e) = 2g2 + g(2y − e)− ey

= 2e(g + y) + g(2y − e)− ey = g(2y + e) + ey

⇐⇒ (g̃ − g)(2y + e) > ey.

In the end, we have

A′(e) > (<)0⇐⇒ g̃ − g > (<)
ey

2y + e
(3.3)

When e = k
2
, g̃ − g = g(k/2, g(k/2, y) + y) − g(k/2, y) > k/4 by Lemma 3.1.2.

Meanwhile ey
2y+e

= y
2y+e

e < 1
2
e = k/4. Therefore A′(k

2
) > 0. By concavity,

A′(e) > 0 if e ∈ [0, k
2
].

When e = 2k
3

, there are two cases. If y = 0, then g̃ = g(k/3, 2k
3

) = 2k
3

= g.
Therefore A′(2k

3
) = 0 by equation (3.3). If y > 0, A′(2k

3
) < 0 follows from

g̃ − g = g(k
3
, g(2k

3
, y) + y)− g(2k

3
, y) < 0, by Lemma 3.1.3.

Therefore A′(2k
3

) < 0, if y > 0; A′(2k
3

) = 0, if y = 0.
Part 3:

By equation (3.2),

M ′(e) = (1− k

2
)A′(e) +

1

4
{e2(k − e)(A(e) + y)}−1/2{e2(k − e)(A(e) + y)}′

where {e2(k − e)(A(e) + y)}′ = e(2k − 3e)(A(e) + y) + e2(k − e)A′(e).
If e ∈ [0, k

2
], then A′(e) > 0 (by part 2) and 2k − 3e > 0, so {e2(k − e)(A(e) +

y)}′ > 0, hence M ′(e) > 0 on [0, k
2
]. Similarly, if e ∈ (2k

3
, k], then A′(e) < 0 (by

part 2) and 2k− 3e < 0, so {e2(k− e)(A(e) + y)}′ < 0. Thus M ′(e) < 0 on (2k
3
, k].

Part 4:
If y = 0, at e = 2k

3
, A′(2k

3
) = 0, so {e2(k− e)(A(e) + y)}′|e= 2k

3
= 0 (both A′(e) and

2k − 3e vanish at this point), therefore M ′(2k
3

) = 0. Also, in this case, if e < 2k
3

,
A′(e) > 0, hence M ′(e) > 0. If e > 2k

3
, then A′(e) < 0, hence M ′(e) < 0. Thus 2k

3

is the unique maximizer of both M and A on [0, k].
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If y > 0, then at e = 2k
3

, A′(2k
3

) < 0. Therefore {e2(k− e)(A(e) + y)}′|e= 2k
3
< 0

(note 2k−3e vanishes at this point), hence M ′(2k
3

) < 0. Moreover, M is decreasing
on (2k

3
, k] by part 3, so the maximizer of M is less than 2k

3
. �

Proof of Lemma 3.1.5

Proof For ε > 0, let g(x) = f(x) − ε(1 + x). If g(x) ≥ 0, then f(x) ≥ 0, and
f ′(x) ≤ 0. Hence g′(x) = f ′(x) − ε < 0. We claim that g(x) ≤ 0 for all x ≥ 0.
Suppose g(x̄) > 0. Then let x̂ = inf{x ≥ 0|g(x) ≥ 0}. Note g(0) < 0, hence x̂ 6= 0.
Moreover g(x̂) = 0 and g(x) < 0 for ∀x < x̂. Therefore g′(x̂) ≥ 0. Also, g(x̂) = 0,
so g′(x̂) < 0, hence we get a contradiction. Therefore g(x) ≤ 0,∀x. This implies
f(x) ≤ ε(1 + x). This holds for any positive ε. Taking the limit as ε goes to zero,
we have f(x) ≤ 0,∀x. �

3.2 Omitted Proofs

All omitted proofs are given in this section.

Proof of Theorem 1.4.1

Before the proof, we need an auxiliary lemma.

Lemma 3.2.1 For a simple hierarchy H, the following are true:

A. {DF j : j ∈ Nk} is a partition of Nk+1, for k = 1, 2, · · · , h − 1; that is,
∪j∈NkDF j = N1+k and for j 6= i,DF j ∩DF i = ∅.

B. If i, j ∈ Nk and i 6= j, then F i ∩ F j = ∅.

C. For any two members i, j, there is at most one path from i to j.

Proof For A, the union of DF j is Nk+1 by part (b) of Definition 3. The disjoint-
ness of these sets follows from simplicity of the hierarchy. B and C follow from A
using induction. �

Proof of Theorem 1.4.1 If H is simple, then every worker except the leaders
has a unique predecessor, hence a unique source of information. Also, F i identifies
the set of players whose beliefs can be influenced by i’s effort. Lemma 3.2.1 shows
that if i, j ∈ Nk, then F i ∩ F j = ∅, i.e, i and j have no common followers, which
makes the equilibrium characterization much easier.

We are interested in separating equilibrium, in which any player’s effort reveals
his belief about the state. For each player i ∈ N , let x̃i : Θ → [0,+∞) denote
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player i’s optimal effort given his belief about the state. The equilibrium condition
is that for any i,

x̃i(θ) ∈ arg max
xi∈R+

siθ

xi +
∑
j∈F i

x̃j(x̃
−1
i (xi)))

− c(xi). (3.4)

The first-order condition for equation 3.4 is

siθ

1 +
∑
j∈F i

x̃′j(x̃
−1
i (xi))

x̃′i(x̃
−1
i (xi))

− c′(xi) = 0, when xi = x̃i(θ).

Note x̃−1
i (xi) = θ if xi = x̃i(θ). Simplifying the above expression, we get:

siθ

1 +
∑
j ∈ F i

x̃′j(θ)

x̃′i(θ)

 = c′(x̃i(θ)).

This must hold for any θ ∈ Θ, which is just equation 1.2. �

Remark 5 In equation 3.4, we only consider the contributions of players in F i

and i, but ignore the contributions of others workers. The reason is other workers
cannot be influenced by i’s effort, hence their contributions only affect i’s equilib-
rium payoff and do not affect i’s incentive for signaling. By Lemma 3.2.1, we can
isolate player i’s problem from other players on the same level because they have
disjoint sets of followers.

Remark 6 In general, we need to specify initial conditions to solve for ordinary
differential equations. We do not need to do so here because x̃i(0) = 0, ∀i ∈ N
is implicitly implied by equation 1.2 by setting θ = 0. If min Θ = θ > 0, then
the initial condition for equation 1.2 (see Mailath, 1987) is fixed by requiring that
the “worst” type, θ, get his maximal utility given that he is identified as the worst
type; in other words, x̃i(θ) = c′−1(siθ). In general, no explicit solutions exist when
θ > 0 even with quadratic disutility function.

Proof of Lemma 1.4.8:

Part 1 Let ρ be the inverse map of σ. Then ρ is also a permutation of N . It
suffices to show:

(+) kρ(i)(s, Cσ(N )) ≥ kρ(i)(s,H), ∀i ∈ N
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We prove (+) by induction on i from bigger i to smaller i.
For i = N , we know that ρ(N) is the worker on the last level, hence has no
followers in the chain. So σ(ρ(N)) = N ≥ σ(i), ∀i. Therefore ρ(N) has no
follower under H. Thus, kρ(i)(s, Cσ(N )) = sρ(N) = kρ(i)(s,H).

Suppose (+) holds for all i greater than or equal to K. If i = K − 1, then
by Theorem 4.3

kρ(K−1)(s,H) = g

sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H)


By monotonicity of σ, we have

F ρ(K−1) ⊂ {j|σ(j) > σ(ρ(K − 1) = K − 1} = {j|σ(j) ≥ K} = {ρ(l)|l ≥ K}.

Therefore,

kρ(K−1)(s,H) = g

sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H)


≤ g

(
sρ(K−1),

∑
l≥K

kρ(l)(s,H)

)

≤ g

(
sρ(K−1),

∑
l≥K

kρ(l)(s, Cσ(N ))

)
(by induction)

= kρ(K−1)(s, Cσ(N ))

Therefore, (+) holds for K−1. By induction, (+) holds for any i = 1, · · · , N .

Part 2 We construct s̃ step-by-step to satisfy the following conditions:

(++) kρ(i)(̃s, Cσ(N )) = kρ(i)(s,H), ∀i ∈ N

For i = N , let s̃ρ(N) = sρ(N). Note ρ(N) has no followers under H or Cσ(N ), so

in this case, kρ(N)(̃s, Cσ(N )) = s̃ρ(N) = sρ(N) = kρ(i)(s,H). So (++) holds for
i = N .
Suppose we have constructed s̃i for all i ≥ K. Define ε ≥ 0 such that:

g

sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H)

 = g

(
sρ(K−1) − ε,

∑
l≥K

kρ(l)(s,H)

)
.

70



This ε always exists by continuity of g, because the right hand side is bigger
than the left hand side if ε = 0, and the right hand side is zero if ε = sρ(K−1).
Let s̃ρ(K−1) = sρ(K−1) − ε ≤ sρ(K−1). Then

kρ(K−1)(s,H) = g(sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H))

= g(sρ(K−1) − ε,
∑
l≥K

kρ(l)(s,H))

= g(s̃ρ(K−1),
∑
l≥K

kρ(l)(̃s, Cσ(N ))) by induction

= kρ(K−1)(̃s, Cσ(N ))

Therefore, (++) holds for i = K − 1. The results follow by induction. �

Proof of Theorem 1.4.9

Proof Suppose s = {si, i ∈ N} is optimal for φ(t2,H) (an optimum always exists
by continuity of w(s,H) and compactness of ∆N). Note

∑
i∈N si = t1 < t2 and let

∆ = t2−t1 > 0. Choose one terminal worker, say b. Suppose his share is sb ∈ [0, t1].
Obviously, b has no followers. Let P b be the set of b’s predecessors. Also, we have
to remove the workers with zero shares, so define M = {j ∈ P b|sj > 0}. It is easy
to see that kj(s,H) is strictly increasing in sb if j ∈M .
Let ê = ∆ +

∑
j∈M sj > 0. We claim that:

Claim 3.2.2 There exist functions {fj, j ∈M} defined on e ∈ [0, ê] such that:

(1) ∀j ∈M , fj is continuous and nonnegative in e with fj(0) = 0.

(2) sj − fj(e) > 0.

(3) kj(s̃(e)) = kj(s), j 6= b, and kb(s̃(e)) = sb+e, where s̃(e) is the shares derived
from s by adjusting sb → sb + e and sj → sj − fj(e), j ∈M , and keeping all
other workers’ shares fixed.

If this claim is true, then define η(e) = ∆ − e +
∑

j∈M fj(e), e ∈ [0, ê]. Notice
that the summation of shares for s̃(e) is

|s̃(e)| =
∑
i∈N

sj + e−
∑
j∈M

fj(e) = t1 + e−
∑
j∈M

fj(e) = t1 + ∆− η(e) = t2 − η(e),

which varies with e. Also, η(0) = ∆− 0 + 0 > 0, and

η(e) = ∆− e+
∑
j∈M

fj(e) ≤ ∆− e+
∑
j∈M

sj (note fj(e) < sj)
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Therefore η(e) < 0 if e > ∆ +
∑

j∈M sj = ê. By the Mean Value Theorem, there
exists e such that η(e) = 0. Let ē = min{e ≥ 0|η(e) = 0}; this number exists and
is finite.

For e ∈ [0, ē), η(e) > 0, hence |s̃(e)| = t2 − η(e) ≤ t2 ≤ 1. The responsive
coefficients of all workers except b are the same under s̃(e) by part 3 Claim 3.2.2,
and kb(s̃(e)) = sb + e (b has no followers), which is increasing in e.

∂w(s̃(e),H)

∂e
=

∂

∂e
{sb + e− 1

2
(sb + e)2} = 1− (sb + e) > 1− |s̃(e)| ≥ 1− t2 ≥ 0

Therefore, the aggregate welfare w(s̃(e),H) is strictly increasing as we increase
e ∈ [0, ē], while for e = 0, s̃(0) = s, and for e = ē, |s̃(ē)| = t2 − η(ē) = t2 − 0 = t2.
In the end, we have:

φ(t1,H) = w(s,H) = w(s̃(0),H)

< w(s̃(ē),H) ≤ max
s≥0,

∑
sj=t2

w(s,H) = φ(t2,H)

which completes the proof of Theorem 1.4.9. �

Proof of Claim 3.2.2 We can construct these functions step-by-step. For each
e ≥ 0, j ∈M , define fj(e) as the unique solution to the following

g(sj, e+
∑
l∈F j

kl) = g(sj − fj(e),
∑
l∈F j

kl)

The solution fj(e) exists and is unique by continuity of g and the fact that j ∈M
and sj > 0. Also, fj is continuous by the implicit function theorem.
Last, we need to check the three conditions in Claim 3.2.2. Parts 1 and 2 are
obviously true by construction. For part 3, we prove this by induction on the level
of members.
If j ∈ Nh, then kj(s̃(e)) = s̃j(e) = sj if j 6= b, and kb(s̃(e)) = s̃b(e) = sb + e.
Suppose part 3 holds for any member on levels higher than K. Suppose j ∈ NK−1.
There are two cases.
(1) Suppose j ∈M . Hence j ∈ P b, and b ∈ F j. Then

kj(s̃(e)) = g(sj − fj(e),
∑
l∈F j

kl(s̃(e)))

= g(sj − fj(e), kb(s̃(e)) +
∑

l∈F j ,l 6=b

kl(s̃(e)))

= g(sj − fj(e), sb + e+
∑

l∈F j ,l 6=b

kl(s)) (by induction)

= g(sj − fj(e), e+
∑
l∈F j

kl(s)) = g(sj, e+
∑
l∈F j

kl) (by definition of fj(e))

= kj(s)
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The fourth equality follows by induction, since the set F j must lie on a higher
level than j.
(2) If j /∈M , then b /∈ F j. Then

kj(s̃(e)) = g(sj,
∑
l∈F j

kl(s̃(e))) = g(sj,
∑
l∈F j

kl(s)) = kj(s)

By induction, part 3 holds for any member j. �

This example shows that the result is not as obvious as it appears.

Example 5 There exists a hierarchy H and two shares s, s′ with s′ ≥ s, but
w(s,H) > w(s′,H).

For the chain A → B → C with sA = 0.8, sB = sC = 0.1, we have kA(s, C3) =
1.00782 > 1. Reduce the share of sA by 1%, which will reduce kA to 0.99737
without affecting kB, kC . Note 0.99737 − 1

2
0.997372 > 1.00782 − 1

2
1.007822. The

new shares add up to only 99%, but yield higher aggregate welfare. The problem
is that the shares are not optimally adjusted as we did in Theorem 1.4.9.

Proof of Lemma 1.4.11

Proof For the chain, the responsive coefficients ki and ki+1 are related by the
following:

ki − ki+1 = g(x, g(x, t) + t)− g(x, t)

where x = 1
N
> 0, t =

∑
j>i+1 kj ≥ 0. By Lemma 3.1.2, ki − ki+1 lies between x/2

and x, in other words, 1
2N

< ki − ki+1 <
1
N
, i = 1, · · · , N − 1. Taking summations,

we have:
N + 1− i

2N
< ki <

N + 1− i
N

i = 1, · · · , N − 1

which completes the proof of Lemma 1.4.11. �

Proof of Proposition 1.4.12

Proof Based on the estimates of ki from Lemma 1.4.11, we have:

N∑
k=1

(
N + 1− i

2N
− 1

2
(
N + 1− i

2N
)2

)
≤ w(seq, CN) =

N∑
k=1

(ki −
1

2
k2
i )

≤
N∑
k=1

(
N + 1− i

N
− 1

2
(
N + 1− i

N
)2

)
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Simplifying the terms, we get

(1 +N)(−1 + 10N)

48N
≤ w(seq, CN) ≤ (1 +N)(−1 + 4N)

12N

Therefore
5

24
N +

1

6
≤ w(seq, CN) ≤ 1

3
N +

1

4

For a large team with equal shares, w(seq, CN) grows at least linearly in N . �

Proof of Proposition 1.4.13

Proof This proof is quite similar to the proof of Lemma 1.4.11.
For the chain structure, the the responsive coefficients ki and ki+1 are related by
the following:

ki − ki+1 = g(x, g(y, t) + t)− g(y, t)

= (g(x, g(y, t) + t)− g(y, g(y, t) + t))︸ ︷︷ ︸
I

+ (g(y, g(y, t) + t)− g(y, t))︸ ︷︷ ︸
II

where x = si, y = si+1, t =
∑

j>i+1 kj. Note that x ≤ y and t ≥ 0 by assumption.
The first term I = g(x, g(y, t) + t) − g(y, g(y, t) + t) = (x − y)gx(ζ, g(y, t) + t)
for some ζ by the Mean Value Theorem. Note gx ≥ 1 and x − y ≤ 0, so I ≤
(x − y)gx(x, ζ) ≤ (x − y). The second term II = g(y, g(y, t) + t) − g(y, t) ≤ y
by Lemma 3.1.2. Therefore, ki − ki+1 = I + II ≤ (x − y) + y = x = si. Taking
summations, we have

ki ≤
∑
j≥i

(kj − kj+1) ≤
∑
j≥i

sj

Note the sum of all shares is one, so ki ≤ 1.
If all the shares si are positive, then the second term II < y = si+1, which implies
ki − ki+1 < si, therefore ki < 1. �

Proof of Theorem 1.4.14

Proof The proof consists of two steps.
Step 1: Proof that

s∗i
s∗i+1
∈ [0.5, 1)

Suppose s∗ is optimal for the chain. We want to prove that
s∗i
s∗i+1
∈ [0.5, 1) for any

i. Let k = s∗i + s∗i+1, e = s∗i+1. Then it is easy to see that

s∗i
s∗i+1

∈ [0.5, 1)⇐⇒ e

k
=

1

1 +
s∗i
s∗i+1

∈ (
1

2
,
2

3
]
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We prove this is true by contradiction.
Suppose e

k
∈ [0, 1

2
], or e ∈ [0, k

2
]. Then from Lemma 3.1.4 we have A′(e) >

0,M ′(e) > 0. So for small δ > 0, the following two conditions hold:

A(e+ δ) > A(e) and M(e+ δ) > M(e) (3.5)

Hence we can define the new shares ŝ by moving δ from i to i+ 1 in s∗. Obviously,
this will not change the incentives of workers after i + 1. Also by equation (3.5),
the new shares ŝ satisfy:

k̂l = kl, l > i+ 1 (3.6)

k̂i + k̂i+1 > ki + ki+1, (3.7)

k̂i −
1

2
(k̂i)

2 + k̂i+1 −
1

2
(k̂i+1)2 > ki −

1

2
(ki)

2 + ki+1 −
1

2
(ki+1)2 (3.8)

By induction, we also have k̂l > kl, l < i.
Because we do not know the range of k̂l, we cannot argue that w(ŝ, CN) >

w(s∗, CN). Instead, we apply the same trick as before: we reduce the share of i− 1
by a suitable amount εi−1 ≥ 0 such that

g(si−1 − εi−1, k̂i + k̂i+1 +
∑
j>i+1

k̂j) = g(si−1, ki + ki+1 +
∑
j>i+1

kj)

This is always feasible by continuity of g and equation (3.7). Then do the same
operations for player i − 2, i − 3 through player 1 such that their responsive
coefficients for the reduced shares are the same as those with s∗. Call s̃ the reduced
share profile. Then |s̃| = β < 1 by construction. Therefore, w(s̃, CN) > w(s∗, CN)
by equation (3.8). On the other hand,

w(s̃, CN) ≤ φ(β, CN) ≤ φ(1, CN) = w(s∗, CN)

So we get a contradiction. Hence it is impossible to have e ∈ [0, k
2
].

Similarly, it is impossible to have e
k
∈ (2

3
, 1] by using Lemma 3.1.4 to get a

contradiction.
For the last two workers, we can even show that sN−1 = 1

2
sN . If this is not

the case, then we can move part of the share from one worker to the other such
that the ratio is 1/2. Notice that in this case we will have A(2k/3) > A(e), and
M(2k/3) > M(e) (Part 4 of Lemma 3.1.4). We get a contradiction by using the
same method as above.

Step 2: Proof that k1 > k2 > · · · > kN−1 = kN
Notice that s∗N−1 = 0.5s∗N , so kN−1 = g(0.5s∗N , s

∗
N) = s∗N = kN .

For any other pair of players {si, si+1}, i 6= N − 1, let k = si + si+1, ē = si+1. If
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ki ≤ ki+1, then g̃ − g = ki+1 − ki ≤ 0, and ēy
2y+ē

> 0 (y > 0 in this case because

i+ 1 is not the terminal worker). Therefore

A′(ē) < 0, or ã′(ē) + a′(ē) < 0

by equation 3.3. Also, by monotonicity of si in Step 1 and Proposition 1.4.13 we
have ki ≤ ki+1 < 1, therefore 1 > a(ē) ≥ ã(ē). Then

M ′(e) = (1−ã(e))ã′(e)+(1−a(e))a′(e) = (1−ã(e))(ã′(e)+a′(e))+(ã(e)−a(e))a′(e)

which is strictly negative at e = ē, since (1− ã(ē))(ã′(ē) + a′(ē)) < 0, and (ã(ē)−
a(ē))a′(ē) ≤ 0. Therefore we have shown that

A′(ē) < 0, and M ′(ē) < 0

This means that we can reduce si+1 by a small amout δ > 0, and increase si by
the same amount δ, such that:

A(ē− δ) > A(ē), and M(ē− δ) > M(ē)

The same procedure can be used to get a contradiction. So ki > ki+1 for ∀i 6= N−1.
Hence, the proof is complete. �

Proof of Theorem 1.5.1

Proof We want to show that the linear functions given by Theorem 1.5.1 are part
of a separating equilibrium with the pessimistic belief assumption. For brevity, let
ki = ki(s,H). Now fix a player i ∈ Nk. If k = h, i.e., i is a terminal worker, then
obviously ki = si. Now suppose k < h. Let F i be the set of followers of i. There
are two possible deviations for i, upward and downward.

If i deviates downward (we only consider one player deviating, so all other
workers on level k are “telling the truth”), then all the players in F i will use i’s
effort to update beliefs by the pessimistic belief assumption and choose efforts
accordingly. No profitable downward deviating means that:

kiθ ∈ arg max
x≤kiθ

siθ

x+
∑
j∈F i

kj(
x

ki
)

− 1

2
x2

Using the first order condition, this is equivalent to

siθ(1 +
∑
j∈F i

kj
ki

) ≥ kiθ ⇐⇒ ki ≥ g(si,
∑
j∈F i

kj)
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Clearly ki = g(si,
∑

j∈F i kj) satisfies the condition above (this is actually an equal-
ity in this case).
If i deviates upward, the situation is a little bit different, as not all the followers
will “listen to” i’s effort. Let

F i
c = {j ∈ F i|there is no path from l to j for l ∈ Nk, l 6= i}.

These workers will follow i because they cannot detect i’s upward deviation as i is
the only source of information for them. The workers in F i\F i

c will not be affected
by i’s upward deviation as they get at least one other signal saying that the state
is θ. Thus, no profitable upward deviation means that:

kiθ ∈ arg max
x≥kiθ

siθ

x+
∑
j∈F ic

kj(
x

ki
)

− 1

2
x2

Using the first order condition, this is equivalent to

siθ(1 +
∑
j∈F ic

kj
ki

) ≤ kiθ ⇐⇒ ki ≥ g(si,
∑
j∈F ic

kj)

Obviously, ki = g(si,
∑

j∈F i kj) ≥ g(si,
∑

j∈F ic
kj) satisfies this condition, as F i

c ⊂
F i.

Combing these two results, we have shown that kiθ is i’s best response given
all the other players’ best responses, thus we have verified that it is part of a sep-
arating equilibrium supported by pessimistic beliefs. �

Remark 7 As we have seen implicitly in the above proof, any number in the
interval [g(si,

∑
j∈F ic

kj), g(si,
∑

j∈F i kj)] is a possible choice for i’s equilibrium re-
sponsive coefficient. We choose the largest one in that interval. The same thing
happens in the V structure (Section 2). I conjecture that the equilibrium efforts
characterized in Theorem 1.5.1 are the upper bounds of equilibrium efforts among
all separating equilibria supported by pessimistic beliefs as I show for the V struc-
ture in section 2.

Proof of Theorem 1.5.3

Proof Suppose s is optimal for φ(t,H), i.e., φ(t,H) = w(s,H). We claim that
there exists a contract s′ such that w(s,H) = w(s′,H + ij) and s′ ≤ s. Then the
proposition follows directly from this claim and Theorem 4.9.
To show the claim, first we claim that there exists a δ ≥ 0 such that:

g(si,
∑
t∈F i

kt(s,H)) = g(si − δ,
∑
t∈F ia

kt(s,H))
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Here F i
a is the set of i’s followers in H + ij, which is larger than F i because a

link from i to j was added. The existence of δ follows from continuity of g. By
induction, we can keep weakly reducing all players on the top of l while keeping
their incentives the same under the two hierarchies. As everyone has weakly more
followers after adding the link, we can always do that. In the end, let s′ be the
resulting new contract. Then s′ ≤ s. Also, by construction:

kl(s,H) = kl(s
′,H + ij),∀l ∈ N .

So w(s,H) = w(s′,H + ij). That establishes the claim. �

Proof of Proposition 1.5.5

Proof Let t1, t2, · · · , tnk be the shares of workers on the same level, say Nk, in an
optimal contract s. Let y =

∑
l>k

∑
j∈N l kj. Then by Theorem 4.3, the responsive

coefficients of these nk members are given by g(ti, y), and the contribution to
welfare by these workers is

G(t1, · · · , tnk) :=

nk∑
i=1

{
g(ti, y)− 1

2
g(ti, y)2

}
Define F (t1, · · · , tnk) :=

∑nk
i=1 {g(ti, y)} as the sum of the responsive coefficients.

We prove the proposition by contradiction.

If tm 6= tn for m 6= n, then let s =
∑nk
i=1 ti
nk

be the new equalized share for members

in Nk. We claim that

G(t1, · · · , tnk) < G(s, · · · , s) and F (t1, · · · , tnk) < F (s, · · · , s) (3.9)

Note g(t, y) is strictly concave in t (Lemma 3.1.1), so

F (t1, · · · , tnk) = nk

nk∑
i=1

{
1

nk
g(ti, y)

}
< nk

{
g(

∑nk
i=1 ti
nk

, y)

}
= nkg(s, y) = F (s, · · · , s)

by Jensen’s inequality.
Similarly, g(t, y)− 1

2
g(t, y)2 = (1− 1

2
t)g(t, y)− 1

2
ty is concave in t because

(g(t, y)− 1

2
g(t, y)2)′′ = (1− 1

2
t)gxx(t, y)− gx(t, y) < 0

Here t < 1, 1 − 1
2
t > 0, gxx < 0, gx > 0. By the same logic, we can show

G(t1, · · · , tnk) < G(s, · · · , s).
For Equation (3.9), we can get a similar contradiction as shown in the proof of
Theorem 1.4.14. We do not repeat the argument here. �
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Proof of Proposition 1.5.6

Proof Let s be the optimal share profile for φ(t,H). We compare the coefficients
ki for s under H and H′. The incentives of workers in Nk+1, · · · , Nh and Nk\{i}
are obviously the same in both cases. Worker i’s incentive is different because i
has more followers, so

k′i(s,H′) = g

si, ( ∑
j∈Nk\{i},

kl(s,H′)) + y

 > ki(s,H′) = g(si, y)

where y =
∑h

l=k+1

∑
j∈N l kj(s,H). Therefore, we can reduce the share of si by a

small amount δ > 0, such that

g

si − δ, ( ∑
j∈Nk\{i},

kl(s,H′)) + y

 = ki(s,H′) = g(si, y)

With this reduction, the incentives for workers in Nk are also the same as before.
Then by induction, the responsive coefficients for workers in Nk−1, · · · , N1 are also
the same. Therefore, we can find a share profile for H′ that uses less total share
(adds up to 1 − δ) and yields the same welfare. Extra share is welfare improving
by Theorem 4.9, hence φ(t,H) < φ(t,H′). �

Proof of Equation 1.11 and Proposition 1.6.2

Proof: Once we have equation 1.11, Proposition 1.6.2 follows from a similar argu-
ment. So, it suffices to show equation 1.11 holds for any hierarchy inMs(N,K, 1).

Suppose H ∈Ms(N,K, 1). Take any middle manger, say M with his q follow-
ers. Suppose shares of the middle manager and his followers are u, v1, v2, · · · , vq.
Then we claim that:

(†) g(u,

q∑
i=1

vi) +

q∑
i=1

vi ≤
4

3
(u+

q∑
i=1

vi)

Taking summation over all the middle level workers, then the right hand side
will be 4

3
times the sum of shares of 2p followers, which is exactly 4

3
(1 − l). The

left hand side will be the sum of the responsive coefficients of those 2p workers.
That is exactly equation 1.11. Inequality (†) follows from

g(x, y) + y ≤ max
t∈[0,x+y]

g(x+ y − t, t) + t = g(x+ y − t, t) + t|t= 2
3

(x+y) =
4

3
(x+ y),

while the equality in the middle follows from part 4 of Lemma 3.1.4.
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If any middle level worker has more than one follower, then either equation 1.11
is strict, or equation 1.12 is strict. In this case we have a strict welfare comparison,
which shows that H1 is the most efficient hierarchy in Ms(N,K, 1). �

Remark 8 The proof also shows that to achieve the highest welfare under H1, we
must assign m = 1−l

3p
to each manager and f = 2(1−l)

3p
to each terminal worker, and

l to the leader for some l ∈ (0, 1). The only unknown variable is the number l.
The optimal l can be determined by solving the corresponding welfare maximization
program.

3.3 Additional Materials

Adding Links is Not Always Welfare Improving

Take a hierarchy as shown in figure 3.1a, in which A and B9 are on level 1, and
Bj are on level 10 − j for each j. Their shares are: sA = 91% and sBi = 1%, i =
1, · · · , 9. The responsive coefficients kBi are: {0.01, 0.016, 0.022, 0.027, 0.033, 0.038,
0.043, 0.049, 0.054}, and kA = sA = 0.9. If one additional link is added from A

(a) old hier-
archy

(b) new hier-
archy

Figure 3.1: A counterexample: adding links is not always welfare improving.

to B8 as shown in Figure 3.1b, then A’s responsive coefficient under the new
structure is k̃A = g(0.9,

∑8
i=1 kBi) = 1.10688, which is further away from kFB = 1

than kA = 0.9. Moreover, this transformation only affects the incentive for A; the
equilibrium efforts for other members are not affected. Therefore the aggregate
welfare of the new hierarchy with this additional link is actually lower than the
original one. This is not inconsistent with Theorem 5.3 because we have not
adjusted the shares optimally here.
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More About Belief Functions in V Structure

We explore more possible belief functions in the V structure in this subsection.
Unlike the analysis with the chain structure, conditions (P1′), (P2′), (B′) are not
enough to uniquely pin down the equilibrium efforts in this case. In general,
different belief functions can support different equilibrium efforts, and one belief
function can support multiple equilibria.

Definition 8 Given a belief function β satisfying B′, we say e1, e2 are supported
by β if e1, e2 and β satisfy conditions S, P1′, P2′.

To find equilibria, it suffices to find functions e1, e2 that can be supported by a
given β. In the following examples, we list some special belief functions and find
the effort functions that can be supported by each.

The first one is the one used in the paper.

1. Pessimistic belief
βp(θ1, θ2) = min(θ1, θ2) (3.10)

In this case, using FOC, we can rewrite P1′, P2′ as:

∀θ, θ
3
≤ ei(θ) ≤

θ

3

(
1 +

1

3e′i(θ)

)
, i = 1, 2. (3.11)

There are multiple solutions to equation 3.11. For example, ei(θ) = kiθ, for

any ki ∈ [1
3
, 1+

√
5

6
], i = 1, 2. Nevertheless, the solutions to equation 3.11 are

bounded in the following sense.

Lemma 3.3.1 If ei is monotonic and satisfies equation 3.11, then

∀θ, e(θ) ≤ ei(θ) ≤ ē(θ)

Here, ē(θ) := g(1
3
, 1

3
)θ and e(θ) := θ

3
are defined in section 2. So, ē(θ) and e(θ)

are the upper and lower bounds for the solutions to equation 3.11. Moreover,
both ē(θ) and e(θ) satisfy equation 3.11.

2. Trigger belief

βt(θ1, θ2) =

{
θ1 if θ1 = θ2

0 otherwise
(3.12)

In this case both leaders have the same information about the state. If
any leader deviates, F will detect it and choose zero effort under this belief
assumption. Moreover, P1′, P2′ are equivalent to:(

ei(θ)−
1

3
θ

)2

≤ 2

9
θ2, i = 1, 2. (3.13)
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In particular, ei(θ) = kiθ, for any ki ∈ (0, 1+
√

2
3

], i = 1, 2 will satisfy these
conditions. Not all solutions to the above equations are linear.

3. Weighted belief
βw1,w2(θ1, θ2) = w1θ1 + w2θ2 (3.14)

for 0 ≤ wi ≤ 1, w1 + w2 = 1. Under this belief, P1′, P2′ can be written as:

θ

3

(
1 +

wi
3e′i(θ)

)
= ei(θ), i = 1, 2.

The solutions to this differential equation are linear in θ, and given by

ei(θ|wi) = g(
1

3
,
wi
3

)θ, i = 1, 2. (3.15)

Note that e and ē are special cases with wi = 0, and wi = 1. But, this
belief function cannot support ei = e,∀i or ei = ē,∀i, because otherwise
w1 + w2 6= 1.

Not every specification of β is consistent with equilibrium, as the next ex-
ample shows.

4. Optimistic belief
βo(θ1, θ2) = max(θ1, θ2) (3.16)

In this case, P1′, P2′ can be written as:

θ

3
≥ ei(θ) ≥

θ

3

(
1 +

1

3e′i(θ)

)
, i = 1, 2.

Note that θ
3
< θ

3

(
1 + 1

3e′i(θ)

)
. These two inequalities are inconsistent, hence

there is no separating equilibrium with optimistic belief.

The trigger belief βt can generate not only very efficient outcomes, for example
ei(θ) = 1+

√
2

3
θ, i = 1, 2, but also very inefficient ones, for example ei(θ) = εθ, i =

1, 2 for arbitrarily small ε > 0. A unsatisfactory fact about βt is that it has jumps
and it is not monotonic in θ1, θ2. For βp, and βw1,w2, the equilibrium efforts of
both leaders are at least θ

3
.

Sometimes, the following restrictions are natural to assume.

(BDM) β is continuous, differentiable and monotonic in θ1, θ2

With this assumption (BDM), P1′ and P2′ can be replaced by the corresponding
FOCs.

θ

3

(
1 +

βi(θ, θ)

3e′i(θ)

)
= ei(θ), i = 1, 2 (3.17)
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where βi = ∂β
∂θi

. For any β satisfying (BDM), we can find an equilibrium by solving
the differential equations (3.17). Although the solutions are in general different
for different βs, nevertheless, we claim:

Claim 3.3.2 All solutions to equation 3.17 satisfy equation 3.11.

Proof Differentiating both sides of β(θ, θ) = θ gives β1(θ, θ) + β2(θ, θ) = 1. Note
β is monotonic, so βi(θ, θ) ≥ 0. Therefore 0 ≤ βi(θ, θ) ≤ 1. By equation 3.17,

θ

3
=
θ

3

(
1 +

0

3e′i(θ)

)
≤ ei(θ) =

θ

3

(
1 +

βi(θ, θ)

3e′i(θ)

)
≤ θ

3

(
1 +

1

3e′i(θ)

)
which is exactly equation 3.11. �

This immediately yields the following result.

Proposition 3.3.3 If {ei, i = 1, 2} can be supported by a belief function β satis-
fying (BDM), then {ei, i = 1, 2} can also supported by pessimistic belief βp.

Of course, β is part of the equilibrium. In general, we cannot impose assump-
tions on the endogenous belief functions. We believe that (BDM) is satisfied by
a large class of belief functions, although βt, βp violate (BDM). Moreover, we can
show that Proposition 3.3.3 also holds for β satisfying a weaker differentiabil-
ity condition than (BDM): existence of left and right derivatives (not necessarily
equal). In particular, pessimistic belief βp satisfies this weaker condition. In the
text we argued that assuming βp as the out-of-equilibrium belief of F makes some
sense. In section 2, we found the upper and lower bounds on the corresponding
welfare with βp. By Proposition 3.3.3, these upper and lower bounds hold for any
belief satisfying (BDM) or a weaker differentiability condition.3

Proof of Lemma 3.3.1

Proof It is easy to see that ei(θ) ≥ θ
3
. If ei(θ) ≥ g(1

3
, 1

3
)θ, then equation 3.11

implies g(1
3
, 1

3
) ≤ ei(θ)

θ
≤ 1

3

(
1 + 1

3e′i(θ)

)
. Equivalently, e′i(θ) ≤ g(1

3
, 1

3
). Let f(θ) =

ei(θ) − g(1
3
, 1

3
)θ. So f ′(θ) ≤ 0 whenever f(θ) ≥ 0. Also ei(0) = 0, so f(0) = 0.

Lemma 3.1.5 shows that f(θ) ≤ 0,∀θ, or equivalently ei(θ) ≤ g(1
3
, 1

3
)θ, ∀θ. �

3However, for trigger belief βt, we can support ei = 1+
√
2

3 θ, i = 1, 2. The corresponding

welfare is (11+8
√
2)

18 θ2 ≈ 1.23965 θ2, which is higher than WS .
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Theorem 2.3.1, Proof of Existence

To show: for each Λ, there exists a set S with the property that:

1. ν(S) = Λ,

2. There exists a finite number α such that g ≥ α on S, and g ≤ α on the
complement.

To this end, for each a ∈ (−∞,∞) , define t(a) = ν{g ≤ a}, and define right
and left limits:

t−(a) := limn→∞ t(a− 1
n
) = limn→∞ ν{g ≤ a− 1

n
} = ν({g < a})

t+(a) := limn→∞ t(a+ 1
n
) = limn→∞ ν{g ≤ a+ 1

n
} = ν({g ≤ a}) = t(a).

Because t is monotonic increasing, both the left limit t−(a) and right limit t+(a)
exist. Moreover, t is right continuous, but may have jumps. Let t+(a) − t−(a) =
ν({g = a}) ≥ 0 be the jump at a.

Let λ = 1− Λ, hence λ ∈ (0, 1). Define α = inf{a |t(a) ≥ λ}. Then α is finite
and t−(α) ≤ λ ≤ t+ (α) = t (α) . The jump at α is t(α) − t−(α). There are two
cases:

1. If there is zero jump at α, choose S = {g > α}. Then ν(S) = 1 − t(α) =
1− λ = Λ. Clearly g ≤ α on the complement of S.

2. If there is a positive jump at α, ν({g = α} = t(α) − t− (α) > 0. Then
0 ≤ λ − t− (α) ≤ t(α) − t− (α). Since ν is atomless, there exists a subset P1 ⊂
{g = α} with measure ν(P1) = λ− t− (α). Let P2 = {g = α}\P1, P+ = {g > α},
P− = {g < α}, then (P+, P−, P1, P2) is a partitioning of the whole space. Choose
S = P+∪P2. Then the complement of S is P−∪P1, so g ≤ α on the complement,
and ν({g < α})+ν(P1) = t− (α)+λ−t− (α) = λ. Therefore and ν(S) = 1−λ = Λ
and g ≥ α on S. �
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